1
|
Azami T, Theeuwes B, Nu Ton ML, Mansfield W, Harland L, Kinoshita M, Gottgens B, Nichols J. STAT3 signaling enhances tissue expansion during postimplantation mouse development. Cell Rep 2025; 44:115506. [PMID: 40188437 DOI: 10.1016/j.celrep.2025.115506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 01/10/2025] [Accepted: 03/12/2025] [Indexed: 04/08/2025] Open
Abstract
Signal transducer and activator of transcription (STAT)3 signaling has been studied extensively using mouse embryonic stem cells. Zygotic deletion of Stat3 enables embryo implantation, but thereafter, mutants resemble non-affected littermates from the previous day until around mid-gestation. This probably results from the loss of serine-phosphorylated STAT3, the predominant form in early postimplantation embryonic tissues associated with mitochondrial activity. Bulk RNA sequencing of isolated mouse epiblasts confirmed developmental delay transcriptionally. Single-cell RNA sequencing revealed the exclusion of derivatives of Stat3 null embryonic stem cells exclusively from the erythroid lineage of mid-gestation chimeras. We show that Stat3 null embryonic stem cells can differentiate into erythroid and hematopoietic lineages in vitro but become outcompeted when mixed with wild-type cells. Our results implicate a role for STAT3 in the temporal control of embryonic progression, particularly in tissues requiring rapid cell division, such as postimplantation epiblast and hematopoietic lineages. Interestingly, mutations in STAT3 are associated with short stature in humans.
Collapse
Affiliation(s)
- Takuya Azami
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - Bart Theeuwes
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Mai-Linh Nu Ton
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - William Mansfield
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Luke Harland
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Masaki Kinoshita
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Berthold Gottgens
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Jennifer Nichols
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Fan S, Guo C, Yang G, Hong L, Li H, Ma J, Zhou Y, Fan S, Xue Y, Zeng F. GPR160 regulates the self-renewal and pluripotency of mouse embryonic stem cells via JAK1/STAT3 signaling pathway. J Genet Genomics 2024; 51:1055-1065. [PMID: 38750952 DOI: 10.1016/j.jgg.2024.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 07/14/2024]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and regulate various physiological and pathological processes. Despite extensive studies, the roles of GPCRs in mouse embryonic stem cells (mESCs) remain poorly understood. Here, we show that GPR160, a class A member of GPCRs, is dramatically downregulated concurrent with mESC differentiation into embryoid bodies in vitro. Knockdown of Gpr160 leads to downregulation of the expression of pluripotency-associated transcription factors and upregulation of the expression of lineage markers, accompanying with the arrest of the mESC cell-cycle in the G0/G1 phase. RNA-seq analysis shows that GPR160 participates in the JAK/STAT signaling pathway crucial for maintaining ESC stemness, and the knockdown of Gpr160 results in the downregulation of STAT3 phosphorylation level, which in turn is partially rescued by colivelin, a STAT3 activator. Consistent with these observations, GPR160 physically interacts with JAK1, and cooperates with leukemia inhibitory factor receptor (LIFR) and gp130 to activate the STAT3 pathway. In summary, our results suggest that GPR160 regulates mESC self-renewal and pluripotency by interacting with the JAK1-LIFR-gp130 complex to mediate the JAK1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Shasha Fan
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Chuanliang Guo
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Guanheng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Lei Hong
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Hongyu Li
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Ji Ma
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Yiye Zhou
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Shuyue Fan
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Yan Xue
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China.
| | - Fanyi Zeng
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China; School of Pharmacy, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
3
|
Arekatla G, Skylaki S, Corredor Suarez D, Jackson H, Schapiro D, Engler S, Auler M, Camargo Ortega G, Hastreiter S, Reimann A, Loeffler D, Bodenmiller B, Schroeder T. Identification of an embryonic differentiation stage marked by Sox1 and FoxA2 co-expression using combined cell tracking and high dimensional protein imaging. Nat Commun 2024; 15:7860. [PMID: 39251590 PMCID: PMC11385471 DOI: 10.1038/s41467-024-52069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Pluripotent mouse embryonic stem cells (ESCs) can differentiate to all germ layers and serve as an in vitro model of embryonic development. To better understand the differentiation paths traversed by ESCs committing to different lineages, we track individual differentiating ESCs by timelapse imaging followed by multiplexed high-dimensional Imaging Mass Cytometry (IMC) protein quantification. This links continuous live single-cell molecular NANOG and cellular dynamics quantification over 5-6 generations to protein expression of 37 different molecular regulators in the same single cells at the observation endpoints. Using this unique data set including kinship history and live lineage marker detection, we show that NANOG downregulation occurs generations prior to, but is not sufficient for neuroectoderm marker Sox1 upregulation. We identify a developmental cell type co-expressing both the canonical Sox1 neuroectoderm and FoxA2 endoderm markers in vitro and confirm the presence of such a population in the post-implantation embryo. RNASeq reveals cells co-expressing SOX1 and FOXA2 to have a unique cell state characterized by expression of both endoderm as well as neuroectoderm genes suggesting lineage potential towards both germ layers.
Collapse
Affiliation(s)
- Geethika Arekatla
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Stavroula Skylaki
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Hartland Jackson
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Health Systems; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Denis Schapiro
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Spatial Profiling Center (TSPC), Heidelberg, Germany
| | - Stefanie Engler
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Markus Auler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Simon Hastreiter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Andreas Reimann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology and Laboratory Medicine, The University of Tennessee, Memphis, TN, USA
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
4
|
Choi H, Oh D, Kim M, Jawad A, Zheng H, Cai L, Lee J, Kim E, Lee G, Jang H, Moon C, Hyun SH. Establishment of porcine embryonic stem cells in simplified serum free media and feeder free expansion. Stem Cell Res Ther 2024; 15:245. [PMID: 39113095 PMCID: PMC11304784 DOI: 10.1186/s13287-024-03858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The establishment of stable porcine embryonic stem cells (pESCs) can contribute to basic and biomedical research, including comparative developmental biology, as well as assessing the safety of stem cell-based therapies. Despite these advantages, most pESCs obtained from in vitro blastocysts require complex media and feeder layers, making routine use, genetic modification, and differentiation into specific cell types difficult. We aimed to establish pESCs with a single cell-passage ability, high proliferative potency, and stable in long-term culture from in vitro-derived blastocysts using a simplified serum-free medium. METHODS We evaluated the establishment efficiency of pESCs from in vitro blastocysts using various basal media (DMEM/F10 (1:1), DMEM/F12, and a-MEM) and factors (FGF2, IWR-1, CHIR99021, and WH-4-023). The pluripotency and self-renewal capacity of the established pESCs were analyzed under feeder or feeder-free conditions. Ultimately, we developed a simplified culture medium (FIW) composed of FGF2, IWR-1, and WH-4-023 under serum-free conditions. RESULTS The pESC-FIW lines were capable of single-cell passaging with short cell doubling times and expressed the pluripotency markers POU5F1, SOX2, and NANOG, as well as cell surface markers SSEA1, SSEA4, and TRA-1-60. pESC-FIW showed a stable proliferation rate and normal karyotype, even after 50 passages. Transcriptome analysis revealed that pESC-FIW were similar to reported pESC maintained in complex media and showed gastrulating epiblast cell characteristics. pESC-FIW were maintained for multiple passages under feeder-free conditions on fibronectin-coated plates using mTeSR™, a commercial medium used for feeder-free culture, exhibiting characteristics similar to those observed under feeder conditions. CONCLUSIONS These results indicated that inhibition of WNT and SRC was sufficient to establish pESCs capable of single-cell passaging and feeder-free expansion under serum-free conditions. The easy maintenance of pESCs facilitates their application in gene editing technology for agriculture and biomedicine, as well as lineage commitment studies.
Collapse
Affiliation(s)
- Hyerin Choi
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Haomiao Zheng
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Department of Companion Animal Industry, Semyung University, Jecheon, 27136, Republic of Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins Medicine, Baltimore, ML, USA
| | - Hyewon Jang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea.
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea.
- Vet-ICT Convergence Education and Research Center (VICERC), Chungbuk National University, Cheongju, Republic of Korea.
- Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
5
|
Wang Z, Gong W, Yao Z, Jin K, Niu Y, Li B, Zuo Q. Mechanisms of Embryonic Stem Cell Pluripotency Maintenance and Their Application in Livestock and Poultry Breeding. Animals (Basel) 2024; 14:1742. [PMID: 38929361 PMCID: PMC11201147 DOI: 10.3390/ani14121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Embryonic stem cells (ESCs) are remarkably undifferentiated cells that originate from the inner cell mass of the blastocyst. They possess the ability to self-renew and differentiate into multiple cell types, making them invaluable in diverse applications such as disease modeling and the creation of transgenic animals. In recent years, as agricultural practices have evolved from traditional to biological breeding, it has become clear that pluripotent stem cells (PSCs), either ESCs or induced pluripotent stem cells (iPSCs), are optimal for continually screening suitable cellular materials. However, the technologies for long-term in vitro culture or establishment of cell lines for PSCs in livestock are still immature, and research progress is uneven, which poses challenges for the application of PSCs in various fields. The establishment of a robust in vitro system for these cells is critically dependent on understanding their pluripotency maintenance mechanisms. It is believed that the combined effects of pluripotent transcription factors, pivotal signaling pathways, and epigenetic regulation contribute to maintaining their pluripotent state, forming a comprehensive regulatory network. This article will delve into the primary mechanisms underlying the maintenance of pluripotency in PSCs and elaborate on the applications of PSCs in the field of livestock.
Collapse
Affiliation(s)
- Ziyu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wei Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zeling Yao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Ji J, Cao J, Chen P, Huang R, Ye SD. Inhibition of protein kinase C increases Prdm14 level to promote self-renewal of embryonic stem cells through reducing Suv39h-induced H3K9 methylation. J Biol Chem 2024; 300:105714. [PMID: 38309502 PMCID: PMC10909794 DOI: 10.1016/j.jbc.2024.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/19/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024] Open
Abstract
Inhibition of protein kinase C (PKC) efficiently promoted the self-renewal of embryonic stem cells (ESCs). However, information about the function of PKC inhibition remains lacking. Here, RNA-sequencing showed that the addition of Go6983 significantly inhibited the expression of de novo methyltransferases (Dnmt3a and Dnmt3b) and their regulator Dnmt3l, resulting in global hypomethylation of DNA in mouse ESCs. Mechanistically, PR domain-containing 14 (Prdm14), a site-specific transcriptional activator, partially contributed to Go6983-mediated repression of Dnmt3 genes. Administration of Go6983 increased Prdm14 expression mainly through the inhibition of PKCδ. High constitutive expression of Prdm14 phenocopied the ability of Go6983 to maintain` mouse ESC stemness in the absence of self-renewal-promoting cytokines. In contrast, the knockdown of Prdm14 eliminated the response to PKC inhibition and substantially impaired the Go6983-induced resistance of mouse ESCs to differentiation. Furthermore, liquid chromatography-mass spectrometry profiling and Western blotting revealed low levels of Suv39h1 and Suv39h2 in Go6983-treated mouse ESCs. Suv39h enzymes are histone methyltransferases that recognize dimethylated and trimethylated histone H3K9 specifically and usually function as transcriptional repressors. Consistently, the inhibition of Suv39h1 by RNA interference or the addition of the selective inhibitor chaetocin increased Prdm14 expression. Moreover, chromatin immunoprecipitation assay showed that Go6983 treatment led to decreased enrichment of dimethylation and trimethylation of H3K9 at the Prdm14 promoter but increased RNA polymerase Ⅱ binding affinity. Together, our results provide novel insights into the pivotal association between PKC inhibition-mediated self-renewal and epigenetic changes, which will help us better understand the regulatory network of stem cell pluripotency.
Collapse
Affiliation(s)
- Junxiang Ji
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Jianjian Cao
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Peng Chen
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Ru Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China.
| |
Collapse
|
7
|
Otero-Albiol D, Santos-Pereira JM, Lucena-Cacace A, Clemente-González C, Muñoz-Galvan S, Yoshida Y, Carnero A. Hypoxia-induced immortalization of primary cells depends on Tfcp2L1 expression. Cell Death Dis 2024; 15:177. [PMID: 38418821 PMCID: PMC10902313 DOI: 10.1038/s41419-024-06567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Cellular senescence is a stress response mechanism that induces proliferative arrest. Hypoxia can bypass senescence and extend the lifespan of primary cells, mainly by decreasing oxidative damage. However, how hypoxia promotes these effects prior to malignant transformation is unknown. Here we observed that the lifespan of mouse embryonic fibroblasts (MEFs) is increased when they are cultured in hypoxia by reducing the expression of p16INK4a, p15INK4b and p21Cip1. We found that proliferating MEFs in hypoxia overexpress Tfcp2l1, which is a main regulator of pluripotency and self-renewal in embryonic stem cells, as well as stemness genes including Oct3/4, Sox2 and Nanog. Tfcp2l1 expression is lost during culture in normoxia, and its expression in hypoxia is regulated by Hif1α. Consistently, its overexpression in hypoxic levels increases the lifespan of MEFs and promotes the overexpression of stemness genes. ATAC-seq and Chip-seq experiments showed that Tfcp2l1 regulates genes that control proliferation and stemness such as Sox2, Sox9, Jarid2 and Ezh2. Additionally, Tfcp2l1 can replicate the hypoxic effect of increasing cellular reprogramming. Altogether, our data suggest that the activation of Tfcp2l1 by hypoxia contributes to immortalization prior to malignant transformation, facilitating tumorigenesis and dedifferentiation by regulating Sox2, Sox9, and Jarid2.
Collapse
Affiliation(s)
- D Otero-Albiol
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - J M Santos-Pereira
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013, Seville, Spain
| | - A Lucena-Cacace
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - C Clemente-González
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - S Muñoz-Galvan
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Y Yoshida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - A Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain.
- CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
8
|
Sultana Z, Dorel M, Klinger B, Sieber A, Dunkel I, Blüthgen N, Schulz EG. Modeling unveils sex differences of signaling networks in mouse embryonic stem cells. Mol Syst Biol 2023; 19:e11510. [PMID: 37735975 PMCID: PMC10632733 DOI: 10.15252/msb.202211510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
For a short period during early development of mammalian embryos, both X chromosomes in females are active, before dosage compensation is ensured through X-chromosome inactivation. In female mouse embryonic stem cells (mESCs), which carry two active X chromosomes, increased X-dosage affects cell signaling and impairs differentiation. The underlying mechanisms, however, remain poorly understood. To dissect X-dosage effects on the signaling network in mESCs, we combine systematic perturbation experiments with mathematical modeling. We quantify the response to a variety of inhibitors and growth factors for cells with one (XO) or two X chromosomes (XX). We then build models of the signaling networks in XX and XO cells through a semi-quantitative modeling approach based on modular response analysis. We identify a novel negative feedback in the PI3K/AKT pathway through GSK3. Moreover, the presence of a single active X makes mESCs more sensitive to the differentiation-promoting Activin A signal and leads to a stronger RAF1-mediated negative feedback in the FGF-triggered MAPK pathway. The differential response to these differentiation-promoting pathways can explain the impaired differentiation propensity of female mESCs.
Collapse
Affiliation(s)
- Zeba Sultana
- Systems Epigenetics, Otto‐Warburg‐LaboratoriesMax Planck Institute for Molecular GeneticsBerlinGermany
| | - Mathurin Dorel
- Computational Modelling in Medicine, Institute of PathologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Bertram Klinger
- Computational Modelling in Medicine, Institute of PathologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Anja Sieber
- Computational Modelling in Medicine, Institute of PathologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Ilona Dunkel
- Systems Epigenetics, Otto‐Warburg‐LaboratoriesMax Planck Institute for Molecular GeneticsBerlinGermany
| | - Nils Blüthgen
- Computational Modelling in Medicine, Institute of PathologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Edda G Schulz
- Systems Epigenetics, Otto‐Warburg‐LaboratoriesMax Planck Institute for Molecular GeneticsBerlinGermany
| |
Collapse
|
9
|
Kohler TN, De Jonghe J, Ellermann AL, Yanagida A, Herger M, Slatery EM, Weberling A, Munger C, Fischer K, Mulas C, Winkel A, Ross C, Bergmann S, Franze K, Chalut K, Nichols J, Boroviak TE, Hollfelder F. Plakoglobin is a mechanoresponsive regulator of naive pluripotency. Nat Commun 2023; 14:4022. [PMID: 37419903 PMCID: PMC10329048 DOI: 10.1038/s41467-023-39515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2023] [Indexed: 07/09/2023] Open
Abstract
Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs will provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this type of regulation by exerting microenvironmental control over mouse embryonic stem cells. Microfluidic encapsulation of mouse embryonic stem cells in agarose microgels stabilizes the naive pluripotency network and specifically induces expression of Plakoglobin (Jup), a vertebrate homolog of β-catenin. Overexpression of Plakoglobin is sufficient to fully re-establish the naive pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we find that, in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos - further strengthening the link between Plakoglobin and naive pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naive pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.
Collapse
Affiliation(s)
- Timo N Kohler
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Joachim De Jonghe
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Anna L Ellermann
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Ayaka Yanagida
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Veterinary Anatomy, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Michael Herger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Erin M Slatery
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Antonia Weberling
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Clara Munger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Katrin Fischer
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Carla Mulas
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Alex Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Connor Ross
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 91, 91052, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - Kevin Chalut
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Thorsten E Boroviak
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
10
|
Dinarello A, Betto RM, Diamante L, Tesoriere A, Ghirardo R, Cioccarelli C, Meneghetti G, Peron M, Laquatra C, Tiso N, Martello G, Argenton F. STAT3 and HIF1α cooperatively mediate the transcriptional and physiological responses to hypoxia. Cell Death Discov 2023; 9:226. [PMID: 37407568 DOI: 10.1038/s41420-023-01507-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
STAT3 and HIF1α are two fundamental transcription factors involved in many merging processes, like angiogenesis, metabolism, and cell differentiation. Notably, under pathological conditions, the two factors have been shown to interact genetically, but both the molecular mechanisms underlying such interactions and their relevance under physiological conditions remain unclear. In mouse embryonic stem cells (ESCs) we manage to determine the specific subset of hypoxia-induced genes that need STAT3 to be properly transcribed and, among them, fundamental genes like Vegfa, Hk1, Hk2, Pfkp and Hilpda are worth mentioning. Unexpectedly, we also demonstrated that the absence of STAT3 does not affect the expression of Hif1α mRNA nor the stabilization of HIF1α protein, but the STAT3-driven regulation of the hypoxia-dependent subset of gene could rely on the physical interaction between STAT3 and HIF1α. To further elucidate the physiological roles of this STAT3 non-canonical nuclear activity, we used a CRISPR/Cas9 zebrafish stat3 knock-out line. Notably, hypoxia-related fluorescence of the hypoxia zebrafish reporter line (HRE:mCherry) cannot be induced when Stat3 is not active and, while Stat3 Y705 phosphorylation seems to have a pivotal role in this process, S727 does not affect the Stat3-dependent hypoxia response. Hypoxia is fundamental for vascularization, angiogenesis and immune cells mobilization; all processes that, surprisingly, cannot be induced by low oxygen levels when Stat3 is genetically ablated. All in all, here we report the specific STAT3/HIF1α-dependent subset of genes in vitro and, for the first time with an in vivo model, we determined some of the physiological roles of STAT3-hypoxia crosstalk.
Collapse
Affiliation(s)
| | | | - Linda Diamante
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | | | | - Claudio Laquatra
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | | | | |
Collapse
|
11
|
Carbognin E, Carlini V, Panariello F, Chieregato M, Guerzoni E, Benvegnù D, Perrera V, Malucelli C, Cesana M, Grimaldi A, Mutarelli M, Carissimo A, Tannenbaum E, Kugler H, Hackett JA, Cacchiarelli D, Martello G. Esrrb guides naive pluripotent cells through the formative transcriptional programme. Nat Cell Biol 2023; 25:643-657. [PMID: 37106060 PMCID: PMC7614557 DOI: 10.1038/s41556-023-01131-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
During embryonic development, naive pluripotent epiblast cells transit to a formative state. The formative epiblast cells form a polarized epithelium, exhibit distinct transcriptional and epigenetic profiles and acquire competence to differentiate into all somatic and germline lineages. However, we have limited understanding of how the transition to a formative state is molecularly controlled. Here we used murine embryonic stem cell models to show that ESRRB is both required and sufficient to activate formative genes. Genetic inactivation of Esrrb leads to illegitimate expression of mesendoderm and extra-embryonic markers, impaired formative expression and failure to self-organize in 3D. Functionally, this results in impaired ability to generate formative stem cells and primordial germ cells in the absence of Esrrb. Computational modelling and genomic analyses revealed that ESRRB occupies key formative genes in naive cells and throughout the formative state. In so doing, ESRRB kickstarts the formative transition, leading to timely and unbiased capacity for multi-lineage differentiation.
Collapse
Affiliation(s)
- Elena Carbognin
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Valentina Carlini
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL)-Rome, Adriano Buzzati-Traverso Campus, Rome, Italy
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Francesco Panariello
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | | | - Elena Guerzoni
- Department of Biology, University of Padua, Padua, Italy
| | | | - Valentina Perrera
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Cristina Malucelli
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Antonio Grimaldi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Margherita Mutarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Istituto di Scienze Applicate e Sistemi Intelligenti 'Eduardo Caianiello', Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Istituto per le Applicazioni del Calcolo 'Mauro Picone,' Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Eitan Tannenbaum
- The Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Hillel Kugler
- The Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Jamie A Hackett
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL)-Rome, Adriano Buzzati-Traverso Campus, Rome, Italy.
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy.
- Department of Translational Medicine, University of Naples 'Federico II', Naples, Italy.
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples 'Federico II', Naples, Italy.
| | | |
Collapse
|
12
|
Fontana CM, Terrin F, Facchinello N, Meneghetti G, Dinarello A, Gambarotto L, Zuccarotto A, Caichiolo M, Brocca G, Verin R, Nazio F, Carnevali O, Cecconi F, Bonaldo P, Dalla Valle L. Zebrafish ambra1b knockout reveals a novel role for Ambra1 in primordial germ cells survival, sex differentiation and reproduction. Biol Res 2023; 56:19. [PMID: 37106439 PMCID: PMC10142490 DOI: 10.1186/s40659-023-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND AMBRA1 is an intrinsically disordered protein, working as a scaffold molecule to coordinate, by protein-protein interaction, many cellular processes, including autophagy, mitophagy, apoptosis and cell cycle progression. The zebrafish genome contains two ambra1 paralogous genes (a and b), both involved in development and expressed at high levels in the gonads. Characterization of the zebrafish paralogous genes mutant lines generated by CRISPR/Cas9 approach showed that ambra1b knockout leads to an all-male population. RESULTS We demonstrated that the silencing of the ambra1b gene determines a reduction of primordial germ cells (PGCs), a condition that, in the zebrafish, leads to the development of all-male progeny. PGC reduction was confirmed by knockdown experiments and rescued by injection of ambra1b and human AMBRA1 mRNAs, but not ambra1a mRNA. Moreover, PGC loss was not rescued by injection with human AMBRA1 mRNA mutated in the CUL4-DDB1 binding region, thus suggesting that interaction with this complex is involved in PGC protection from loss. Results from zebrafish embryos injected with murine Stat3 mRNA and stat3 morpholino suggest that Ambra1b could indirectly regulate this protein through CUL4-DDB1 interaction. According to this, Ambra1+/- mice showed a reduced Stat3 expression in the ovary together with a low number of antral follicles and an increase of atretic follicles, indicating a function of Ambra1 in the ovary of mammals as well. Moreover, in agreement with the high expression of these genes in the testis and ovary, we found significant impairment of the reproductive process and pathological alterations, including tumors, mainly limited to the gonads. CONCLUSIONS By exploiting ambra1a and ambra1b knockout zebrafish lines, we prove the sub-functionalization between the two paralogous zebrafish genes and uncover a novel function of Ambra1 in the protection from excessive PGC loss, which seems to require binding with the CUL4-DDB1 complex. Both genes seem to play a role in the regulation of reproductive physiology.
Collapse
Affiliation(s)
- Camilla Maria Fontana
- Department of Biology, University of Padua, Padua, Italy
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | - Alberto Dinarello
- Department of Biology, University of Padua, Padua, Italy
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Denver, USA
| | - Lisa Gambarotto
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Annalisa Zuccarotto
- Department of Biology, University of Padua, Padua, Italy
- Department of Biology and Evolution of Marine Organisms, Zoological Station Anton Dohrn, Naples, Italy
| | | | - Ginevra Brocca
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
- Aquatic Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
| | - Francesca Nazio
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | |
Collapse
|
13
|
Zorzan I, Betto RM, Rossignoli G, Arboit M, Drusin A, Corridori C, Martini P, Martello G. Chemical conversion of human conventional PSCs to TSCs following transient naive gene activation. EMBO Rep 2023; 24:e55235. [PMID: 36847616 PMCID: PMC10074076 DOI: 10.15252/embr.202255235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
In human embryos, naive pluripotent cells of the inner cell mass (ICM) generate epiblast, primitive endoderm and trophectoderm (TE) lineages, whence trophoblast cells derive. In vitro, naive pluripotent stem cells (PSCs) retain this potential and efficiently generate trophoblast stem cells (TSCs), while conventional PSCs form TSCs at low efficiency. Transient histone deacetylase and MEK inhibition combined with LIF stimulation is used to chemically reset conventional to naive PSCs. Here, we report that chemical resetting induces the expression of both naive and TSC markers and of placental imprinted genes. A modified chemical resetting protocol allows for the fast and efficient conversion of conventional PSCs into TSCs, entailing shutdown of pluripotency genes and full activation of the trophoblast master regulators, without induction of amnion markers. Chemical resetting generates a plastic intermediate state, characterised by co-expression of naive and TSC markers, after which cells steer towards one of the two fates in response to the signalling environment. The efficiency and rapidity of our system will be useful to study cell fate transitions and to generate models of placental disorders.
Collapse
Affiliation(s)
- Irene Zorzan
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | | | | | - Mattia Arboit
- Department of Biology, University of Padua, Padua, Italy
| | - Andrea Drusin
- Department of Biology, University of Padua, Padua, Italy
| | | | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | |
Collapse
|
14
|
Kraunsoe S, Azami T, Pei Y, Martello G, Jones K, Boroviak T, Nichols J. Requirement for STAT3 and its target, TFCP2L1, in self-renewal of naïve pluripotent stem cells in vivo and in vitro. Biol Open 2023; 12:bio059650. [PMID: 36504370 PMCID: PMC9884119 DOI: 10.1242/bio.059650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated gradual loss of epiblast during diapause in embryos lacking components of the LIF/IL6 receptor. Here, we explore the requirement for the downstream signalling transducer andactivator of transcription STAT3 and its target, TFCP2L1, in maintenance of naïve pluripotency. Unlike conventional markers, such as NANOG, which remains high in epiblast until implantation, both STAT3 and TFCP2L1 proteins decline during blastocyst expansion, but intensify in the embryonic region after induction of diapause, as observed visually and confirmed using our image-analysis pipeline, consistent with our previous transcriptional expression data. Embryos lacking STAT3 or TFCP2L1 underwent catastrophic loss of most of the inner cell mass during the first few days of diapause, indicating involvement of signals in addition to LIF/IL6 for sustaining naïve pluripotency in vivo. By blocking MEK/ERK signalling from the morula stage, we could derive embryonic stem cells with high efficiency from STAT3 null embryos, but not those lacking TFCP2L1, suggesting a hitherto unknown additional role for this essential STAT3 target in transition from embryo to embryonic stem cells in vitro. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sophie Kraunsoe
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Department of Biology, University of Padua, Padova 35121, Italy
| | - Takuya Azami
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Yihan Pei
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | | | - Kenneth Jones
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thorsten Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Correia B, Sousa MI, Branco AF, Rodrigues AS, Ramalho-Santos J. Leucine and Arginine Availability Modulate Mouse Embryonic Stem Cell Proliferation and Metabolism. Int J Mol Sci 2022; 23:ijms232214286. [PMID: 36430764 PMCID: PMC9694364 DOI: 10.3390/ijms232214286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Amino acids are crucial nutrients involved in several cellular and physiological processes, including fertilization and early embryo development. In particular, Leucine and Arginine have been shown to stimulate implantation, as lack of both in a blastocyst culture system is able to induce a dormant state in embryos. The aim of this work was to evaluate the effects of Leucine and Arginine withdrawal on pluripotent mouse embryonic stem cell status, notably, their growth, self-renewal, as well as glycolytic and oxidative metabolism. Our results show that the absence of both Leucine and Arginine does not affect mouse embryonic stem cell pluripotency, while reducing cell proliferation through cell-cycle arrest. Importantly, these effects are not related to Leukemia Inhibitory Factor (LIF) and are reversible when both amino acids are reconstituted in the culture media. Moreover, a lack of these amino acids is related to a reduction in glycolytic and oxidative metabolism and decreased protein translation in mouse embryonic stem cells (mESCs), while maintaining their pluripotent status.
Collapse
Affiliation(s)
- Bibiana Correia
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Maria Inês Sousa
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Ana Filipa Branco
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Ana Sofia Rodrigues
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - João Ramalho-Santos
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
16
|
Differentiation of human induced pluripotent stem cells into hypothalamic vasopressin neurons with minimal exogenous signals and partial conversion to the naive state. Sci Rep 2022; 12:17381. [PMID: 36253431 PMCID: PMC9576732 DOI: 10.1038/s41598-022-22405-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 10/14/2022] [Indexed: 01/10/2023] Open
Abstract
Familial neurohypophyseal diabetes insipidus (FNDI) is a degenerative disease of vasopressin (AVP) neurons. Studies in mouse in vivo models indicate that accumulation of mutant AVP prehormone is associated with FNDI pathology. However, studying human FNDI pathology in vivo is technically challenging. Therefore, an in vitro human model needs to be developed. When exogenous signals are minimized in the early phase of differentiation in vitro, mouse embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) differentiate into AVP neurons, whereas human ESCs/iPSCs die. Human ESCs/iPSCs are generally more similar to mouse epiblast stem cells (mEpiSCs) compared to mouse ESCs. In this study, we converted human FNDI-specific iPSCs by the naive conversion kit. Although the conversion was partial, we found improved cell survival under minimal exogenous signals and differentiation into rostral hypothalamic organoids. Overall, this method provides a simple and straightforward differentiation direction, which may improve the efficiency of hypothalamic differentiation.
Collapse
|
17
|
Sladeček S, Radaszkiewicz KA, Bőhmová M, Gybeľ T, Radaszkiewicz TW, Pacherník J. Dual specificity phosphatase 7 drives the formation of cardiac mesoderm in mouse embryonic stem cells. PLoS One 2022; 17:e0275860. [PMID: 36227898 PMCID: PMC9560500 DOI: 10.1371/journal.pone.0275860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Dual specificity phosphatase 7 (DUSP7) is a protein belonging to a broad group of phosphatases that can dephosphorylate phosphoserine/phosphothreonine as well as phosphotyrosine residues within the same substrate. DUSP7 has been linked to the negative regulation of mitogen activated protein kinases (MAPK), and in particular to the regulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). MAPKs play an important role in embryonic development, where their duration, magnitude, and spatiotemporal activity must be strictly controlled by other proteins, among others by DUSPs. In this study, we focused on the effect of DUSP7 depletion on the in vitro differentiation of mouse embryonic stem (ES) cells. We showed that even though DUSP7 knock-out ES cells do retain some of their basic characteristics, when it comes to differentiation, they preferentially differentiate towards neural cells, while the formation of early cardiac mesoderm is repressed. Therefore, our data indicate that DUSP7 is necessary for the correct formation of neuroectoderm and cardiac mesoderm during the in vitro differentiation of ES cells.
Collapse
Affiliation(s)
- Stanislava Sladeček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Martina Bőhmová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Gybeľ
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
18
|
Li Y, Yang Z, Li X, Yu Y, Li X, Chen P, Li B, Wang X, Ye SD. Prdm14 promotes mouse ESC self-renewal and PGCLC specification through enhancement of Stat3 activity. iScience 2022; 25:105293. [PMID: 36300005 PMCID: PMC9589213 DOI: 10.1016/j.isci.2022.105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Prdm14 plays an important role in the maintenance of mouse embryonic stem cell (mESC) pluripotency and the specification of primordial germ cells (PGCs). However, the mechanism downstream of Prdm14 is still not fully understood. Here, using high-throughput sequencing, chromatin immunoprecipitation, and luciferase reporter assays, we show that Prdm14 directly binds to the promoter of Socs3 and represses its transcription to increase the phosphorylation level of Stat3 protein, a critical downstream effector of LIF. Therefore, ectopic expression of Socs3 is able to decrease the ability of Prdm14 to promote mouse mESC self-renewal and PGC-like cell generation. As expected, similar phenotypes were observed in Prdm14-transfected mESCs after knockdown of Stat3 transcripts or treatment with a pan-inhibitor of JAKs, positive modulators of the LIF/Stat3 signaling pathway. These data will facilitate a better understanding of the regulatory network governing ESC identity and germ cell development.
Collapse
Affiliation(s)
- Yuting Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Ziqiong Yang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiangfen Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Yang Yu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiaofeng Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Peng Chen
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Bing Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiaoxiao Wang
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
- Corresponding author
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Corresponding author
| |
Collapse
|
19
|
Roodgar M, Suchy FP, Nguyen LH, Bajpai VK, Sinha R, Vilches-Moure JG, Van Bortle K, Bhadury J, Metwally A, Jiang L, Jian R, Chiang R, Oikonomopoulos A, Wu JC, Weissman IL, Mankowski JL, Holmes S, Loh KM, Nakauchi H, VandeVoort CA, Snyder MP. Chimpanzee and pig-tailed macaque iPSCs: Improved culture and generation of primate cross-species embryos. Cell Rep 2022; 40:111264. [PMID: 36044843 PMCID: PMC10075238 DOI: 10.1016/j.celrep.2022.111264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/06/2022] [Accepted: 08/04/2022] [Indexed: 12/26/2022] Open
Abstract
As our closest living relatives, non-human primates uniquely enable explorations of human health, disease, development, and evolution. Considerable effort has thus been devoted to generating induced pluripotent stem cells (iPSCs) from multiple non-human primate species. Here, we establish improved culture methods for chimpanzee (Pan troglodytes) and pig-tailed macaque (Macaca nemestrina) iPSCs. Such iPSCs spontaneously differentiate in conventional culture conditions, but can be readily propagated by inhibiting endogenous WNT signaling. As a unique functional test of these iPSCs, we injected them into the pre-implantation embryos of another non-human species, rhesus macaques (Macaca mulatta). Ectopic expression of gene BCL2 enhances the survival and proliferation of chimpanzee and pig-tailed macaque iPSCs within the pre-implantation embryo, although the identity and long-term contribution of the transplanted cells warrants further investigation. In summary, we disclose transcriptomic and proteomic data, cell lines, and cell culture resources that may be broadly enabling for non-human primate iPSCs research.
Collapse
Affiliation(s)
- Morteza Roodgar
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Fabian P Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lan H Nguyen
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vivek K Bajpai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jose G Vilches-Moure
- Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kevin Van Bortle
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Joydeep Bhadury
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Biomedicine, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Ahmed Metwally
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Rosaria Chiang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Angelos Oikonomopoulos
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Kyle M Loh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Catherine A VandeVoort
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, Davis, CA, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Wang X, Wu Q. The Divergent Pluripotent States in Mouse and Human Cells. Genes (Basel) 2022; 13:genes13081459. [PMID: 36011370 PMCID: PMC9408542 DOI: 10.3390/genes13081459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pluripotent stem cells (PSCs), which can self-renew and give rise to all cell types in all three germ layers, have great potential in regenerative medicine. Recent studies have shown that PSCs can have three distinct but interrelated pluripotent states: naive, formative, and primed. The PSCs of each state are derived from different stages of the early developing embryo and can be maintained in culture by different molecular mechanisms. In this review, we summarize the current understanding on features of the three pluripotent states and review the underlying molecular mechanisms of maintaining their identities. Lastly, we discuss the interrelation and transition among these pluripotency states. We believe that comprehending the divergence of pluripotent states is essential to fully harness the great potential of stem cells in regenerative medicine.
Collapse
Affiliation(s)
| | - Qiang Wu
- Correspondence: ; Tel.: +853-8897-2708
| |
Collapse
|
21
|
Andersson E, Sjö M, Kaji K, Olariu V. CELLoGeNe - An energy landscape framework for logical networks controlling cell decisions. iScience 2022; 25:104743. [PMID: 35942105 PMCID: PMC9356104 DOI: 10.1016/j.isci.2022.104743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/01/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Experimental and computational efforts are constantly made to elucidate mechanisms controlling cell fate decisions during development and reprogramming. One powerful computational method is to consider cell commitment and reprogramming as movements in an energy landscape. Here, we develop Computation of Energy Landscapes of Logical Gene Networks (CELLoGeNe), which maps Boolean implementation of gene regulatory networks (GRNs) into energy landscapes. CELLoGeNe removes inadvertent symmetries in the energy landscapes normally arising from standard Boolean operators. Furthermore, CELLoGeNe provides tools to visualize and stochastically analyze the shapes of multi-dimensional energy landscapes corresponding to epigenetic landscapes for development and reprogramming. We demonstrate CELLoGeNe on two GRNs governing different aspects of induced pluripotent stem cells, identifying experimentally validated attractors and revealing potential reprogramming roadblocks. CELLoGeNe is a general framework that can be applied to various biological systems offering a broad picture of intracellular dynamics otherwise inaccessible with existing methods. CELLoGeNe – Computation of Energy Landscapes of Logical Gene Networks Cell states as landscape attractors Maintenance and acquisition of cell pluripotency applications Single cell stochastic landscape navigation and visualization tool
Collapse
|
22
|
Diamante L, Martello G. Metabolic regulation in pluripotent stem cells. Curr Opin Genet Dev 2022; 75:101923. [PMID: 35691147 DOI: 10.1016/j.gde.2022.101923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Pluripotent stem cells (PSCs) have the capacity to give rise to all cell types of the adult body and to expand rapidly while retaining genome integrity, representing a perfect tool for regenerative medicine. PSCs are obtained from preimplantation embryos as embryonic stem cells (ESCs), or by reprogramming of somatic cells as induced pluripotent stem cells (iPSCs). Understanding the metabolic requirements of PSCs is instrumental for their efficient generation, expansion and differentiation. PSCs reshape their metabolic profile during developmental progression. Fatty acid oxidation is strictly required for energy production in naive PSCs, but becomes dispensable in more advanced, or primed, PSCs. Other metabolites directly affect proliferation, differentiation or the epigenetic profile of PSCs, showing how metabolism plays an instructive role on PSC behaviour. Developmental progression of pluripotent cells can be paused, both in vitro and in vivo, in response to hormonal and metabolic alterations. Such reversible pausing has been recently linked to mammalian target of rapamycin activity, lipid metabolism and mitochondrial activity. Finally, metabolism is not simply regulated by exogenous stimuli or nutrient availability in PSCs, as key pluripotency regulators, such as Oct4, Stat3 and Tfcp2l1, actively shape the metabolic profile of PSCs.
Collapse
Affiliation(s)
- Linda Diamante
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | | |
Collapse
|
23
|
Martínez-Alarcón O, García-López G, Guerra-Mora JR, Molina-Hernández A, Diaz-Martínez NE, Portillo W, Díaz NF. Prolactin from Pluripotency to Central Nervous System Development. Neuroendocrinology 2022; 112:201-214. [PMID: 33934093 DOI: 10.1159/000516939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022]
Abstract
Prolactin (PRL) is a versatile hormone that exerts more than 300 functions in vertebrates, mainly associated with physiological effects in adult animals. Although the process that regulates early development is poorly understood, evidence suggests a role of PRL in the early embryonic development regarding pluripotency and nervous system development. Thus, PRL could be a crucial regulator in oocyte preimplantation and maturation as well as during diapause, a reversible state of blastocyst development arrest that shares metabolic, transcriptomic, and proteomic similarities with pluripotent stem cells in the naïve state. Thus, we analyzed the role of the hormone during those processes, which involve the regulation of its receptor and several signaling cascades (Jak/Mapk, Jak/Stat, and PI3k/Akt), resulting in either a plethora of physiological actions or their dysregulation, a factor in developmental disorders. Finally, we propose models to improve the knowledge on PRL function during early development.
Collapse
Affiliation(s)
- Omar Martínez-Alarcón
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - José Raúl Guerra-Mora
- Departamento de Neurociencias, Instituto Nacional de Cancerología, Ciudad de México, Mexico
- Departamento de Cirugia Experimental, Instituto Nacional de Nutrición, Ciudad de México, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Néstor Emmanuel Diaz-Martínez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica CONACYT, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, UNAM, Quéretaro, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| |
Collapse
|
24
|
Salewskij K, Gross-Thebing T, Ing-Simmons E, Duethorn B, Rieger B, Fan R, Chen R, Govindasamy N, Brinkmann H, Kremer L, Kuempel-Rink N, Mildner K, Zeuschner D, Stehling M, Dejosez M, Zwaka TP, Schöler HR, Busch KB, Vaquerizas JM, Bedzhov I. Ronin governs the metabolic capacity of the embryonic lineage for post-implantation development. EMBO Rep 2021; 22:e53048. [PMID: 34515391 PMCID: PMC8567215 DOI: 10.15252/embr.202153048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
During implantation, the murine embryo transitions from a “quiet” into an active metabolic/proliferative state, which kick‐starts the growth and morphogenesis of the post‐implantation conceptus. Such transition is also required for embryonic stem cells to be established from mouse blastocysts, but the factors regulating this process are poorly understood. Here, we show that Ronin plays a critical role in the process by enabling active energy production, and the loss of Ronin results in the establishment of a reversible quiescent state in which naïve pluripotency is promoted. In addition, Ronin fine‐tunes the expression of genes that encode ribosomal proteins and is required for proper tissue‐scale organisation of the pluripotent lineage during the transition from blastocyst to egg cylinder stage. Thus, Ronin function is essential for governing the metabolic capacity so that it can support the pluripotent lineage’s high‐energy demands for cell proliferation and morphogenesis.
Collapse
Affiliation(s)
- Kirill Salewskij
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Theresa Gross-Thebing
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Elizabeth Ing-Simmons
- Regulatory Genomics Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Binyamin Duethorn
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bettina Rieger
- Institut für Integrative Zellbiologie und Physiologie, University of Münster, Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Rui Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Niraimathi Govindasamy
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Heike Brinkmann
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ludmila Kremer
- Transgenic Facility, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Nannette Kuempel-Rink
- Transgenic Facility, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Karina Mildner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marion Dejosez
- Department for Cell, Regenerative and Developmental Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Huffington Foundation Center for Cell-based Research in Parkinson's Disease, New York, NY, USA
| | - Thomas P Zwaka
- Department for Cell, Regenerative and Developmental Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Huffington Foundation Center for Cell-based Research in Parkinson's Disease, New York, NY, USA
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Karin B Busch
- Institut für Integrative Zellbiologie und Physiologie, University of Münster, Münster, Germany
| | - Juan M Vaquerizas
- Regulatory Genomics Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,MRC London Institute of Medical Sciences, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
25
|
Zhang Y, Ding H, Wang X, Wang X, Wan S, Xu A, Gan R, Ye SD. MK2 promotes Tfcp2l1 degradation via β-TrCP ubiquitin ligase to regulate mouse embryonic stem cell self-renewal. Cell Rep 2021; 37:109949. [PMID: 34731635 DOI: 10.1016/j.celrep.2021.109949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022] Open
Abstract
Tfcp2l1 can maintain mouse embryonic stem cell (mESC) self-renewal. However, it remains unknown how Tfcp2l1 protein stability is regulated. Here, we demonstrate that β-transducin repeat-containing protein (β-TrCP) targets Tfcp2l1 for ubiquitination and degradation in a mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2)-dependent manner. Specifically, β-TrCP1 and β-TrCP2 recognize and ubiquitylate Tfcp2l1 through the canonical β-TrCP-binding motif DSGDNS, in which the serine residues have been phosphorylated by MK2. Point mutation of serine-to-alanine residues reduces β-TrCP-mediated ubiquitylation and enhances the ability of Tfcp2l1 to promote mESC self-renewal while repressing the speciation of the endoderm, mesoderm, and trophectoderm. Similarly, inhibition of MK2 reduces the association of Tfcp2l1 with β-TrCP1 and increases the self-renewal-promoting effects of Tfcp2l1, whereas overexpression of MK2 or β-TrCP genes decreases Tfcp2l1 protein levels and induces mESC differentiation. Collectively, our study reveals a posttranslational modification of Tfcp2l1 that will expand our understanding of the regulatory network of stem cell pluripotency.
Collapse
Affiliation(s)
- Yan Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Huiwen Ding
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiaoxiao Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xin Wang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Shengpeng Wan
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Anchun Xu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Ruoyi Gan
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
26
|
Pluripotency Stemness and Cancer: More Questions than Answers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:77-100. [PMID: 34725790 DOI: 10.1007/5584_2021_663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Embryonic stem cells and induced pluripotent stem cells provided us with fascinating new knowledge in recent years. Mechanistic insight into intricate regulatory circuitry governing pluripotency stemness and disclosing parallels between pluripotency stemness and cancer instigated numerous studies focusing on roles of pluripotency transcription factors, including Oct4, Sox2, Klf4, Nanog, Sall4 and Tfcp2L1, in cancer. Although generally well substantiated as tumour-promoting factors, oncogenic roles of pluripotency transcription factors and their clinical impacts are revealing themselves as increasingly complex. In certain tumours, both Oct4 and Sox2 behave as genuine oncogenes, and reporter genes driven by composite regulatory elements jointly recognized by both the factors can identify stem-like cells in a proportion of tumours. On the other hand, cancer stem cells seem to be biologically very heterogeneous both among different tumour types and among and even within individual tumours. Pluripotency transcription factors are certainly implicated in cancer stemness, but do not seem to encompass its entire spectrum. Certain cancer stem cells maintain their stemness by biological mechanisms completely different from pluripotency stemness, sometimes even by engaging signalling pathways that promote differentiation of pluripotent stem cells. Moreover, while these signalling pathways may well be antithetical to stemness in pluripotent stem cells, they may cooperate with pluripotency factors in cancer stem cells - a paradigmatic example is provided by the MAPK-AP-1 pathway. Unexpectedly, forced expression of pluripotency transcription factors in cancer cells frequently results in loss of their tumour-initiating ability, their phenotypic reversion and partial epigenetic normalization. Besides the very different signalling contexts operating in pluripotent and cancer stem cells, respectively, the pronounced dose dependency of reprogramming pluripotency factors may also contribute to the frequent loss of tumorigenicity observed in induced pluripotent cancer cells. Finally, contradictory cell-autonomous and non-cell-autonomous effects of various signalling molecules operate during pluripotency (cancer) reprogramming. The effects of pluripotency transcription factors in cancer are thus best explained within the concept of cancer stem cell heterogeneity.
Collapse
|
27
|
Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov 2021; 7:271. [PMID: 34601500 PMCID: PMC8487429 DOI: 10.1038/s41420-021-00667-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Many self-renewal-promoting factors of embryonic stem cells (ESCs) have been implicated in carcinogenesis, while little known about the genes that direct ESCs exit from pluripotency and regulate tumor development. Here, we show that the transcripts of Gadd45 family genes, including Gadd45a, Gadd45b, and Gadd45g, are gradually increased upon mouse ESC differentiation. Upregulation of Gadd45 members decreases cell proliferation and induces endodermal and trophectodermal lineages. In contrast, knockdown of Gadd45 genes can delay mouse ESC differentiation. Mechanistic studies reveal that Gadd45g activates MAPK signaling by increasing expression levels of the positive modulators of this pathway, such as Csf1r, Igf2, and Fgfr3. Therefore, inhibition of MAPK signaling with a MEK specific inhibitor is capable of eliminating the differentiation phenotype caused by Gadd45g upregulation. Meanwhile, GADD45G functions as a suppressor in human breast cancers. Enforced expression of GADD45G significantly inhibits tumor formation and breast cancer metastasis in mice through limitation of the propagation and invasion of breast cancer cells. These results not only expand our understanding of the regulatory network of ESCs, but also help people better treatment of cancers by manipulating the prodifferentiation candidates.
Collapse
|
28
|
Sohn EJ, Nam YK. The Transcription Factor TFCP2L1 is Associated with Myelination via miR708-5p Regulation in the Peripheral Nerve System. Neurochem Res 2021; 47:434-445. [PMID: 34581937 DOI: 10.1007/s11064-021-03457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/25/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) have been implicated in nerve injury and demyelination; however, their functions in peripheral nerves remain unclear. To determine the potential functions of miRNAs, an miRNA array was carried out. Here, miRNA array analysis of neuregulin-treated Schwann cells revealed 18 upregulated (> 2-fold) and 13 downregulated (> 2-fold) miRNAs. After sciatic nerve injury, miR708-5p was highly expressed in neuregulin-treated Schwann cells, whereas it was downregulated during postnatal development. A predicted functional interaction was found between miR708-5p and transcription factor CP2-like protein 1 (TFCP2L1) using a bioinformatics tool. This finding suggested that miR708-5p may regulate TFCP2L1. During sciatic nerve development, TFCP2L1 was upregulated on postnatal days 1 and 4, while it was downregulated after nerve axotomy and crush injury. Notably, TFCP2L1 was upregulated in cAMP-treated Schwann cells. We also found that activity of the myelin protein zero promoter was downregulated in TFCP2L1 siRNA-treated Schwann cells, whereas it was upregulated in TFCP2L1-overexpressing cells. Immunofluorescence analysis showed that TFCP2L1 was localized in Schwann cells. In addition, miR708-5p overexpression promoted migration of Schwann cells, while miR-708-5p inhibitor inhibited migration. miR708-5p inhibitor also blocked the migration of TFCP2L1 siRNA-treated Schwann cells. These findings indicate the functions of miR708-5p in TFCP2L1 regulation in the peripheral nervous system occur via regulation of Schwann cell migration.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Pusan National University, Yangsan, South Korea.
| | - Yun Kyung Nam
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan, South Korea
| |
Collapse
|
29
|
Zhang M, Ji J, Wang X, Zhang X, Zhang Y, Li Y, Wang X, Li X, Ban Q, Ye SD. The transcription factor Tfcp2l1 promotes primordial germ cell-like cell specification of pluripotent stem cells. J Biol Chem 2021; 297:101217. [PMID: 34555410 PMCID: PMC8517209 DOI: 10.1016/j.jbc.2021.101217] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
Primordial germ cells (PGCs) are common ancestors of all germline cells. However, mechanistic understanding of how PGC specification occurs is limited. Here, we identified transcription factor CP2-like 1 (Tfcp2l1), an important pluripotency factor, as a pivotal factor for PGC-like cell (PGCLC) specification. High-throughput sequencing and quantitative real-time PCR analysis showed that Tfcp2l1 expression is gradually increased during mouse and human epiblast differentiation into PGCLCs in vivo and in vitro. Consequently, overexpression of Tfcp2l1 can enhance the specification efficiency even without inductive cytokines in mouse epiblast-like cells derived from embryonic stem cells, while knockdown of Tfcp2l1 significantly inhibits PGCLC generation. Mechanistic studies revealed that Tfcp2l1 exerts its function partially through the direct induction of PR domain zinc finger protein 14, a key PGC marker, as downregulation of the PR domain zinc finger protein 14 transcript can impair the ability of Tfcp2l1 to direct PGCLC commitment. Importantly, we finally demonstrated that the crucial role of the human homolog Tfcp2l1 in promoting PGCLC specification is conserved in human pluripotent stem cells. Together, our data uncover a novel function of Tfcp2l1 in PGCLC fate determination and facilitate a better understanding of germ cell development.
Collapse
Affiliation(s)
- Meng Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Junxiang Ji
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Xiaoxiao Wang
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinbao Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yan Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yuting Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Xin Wang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Xiaofeng Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Qian Ban
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China.
| |
Collapse
|
30
|
Festuccia N, Owens N, Chervova A, Dubois A, Navarro P. The combined action of Esrrb and Nr5a2 is essential for murine naïve pluripotency. Development 2021; 148:271840. [PMID: 34397088 PMCID: PMC8451941 DOI: 10.1242/dev.199604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
The maintenance of pluripotency in mouse embryonic stem cells (ESCs) is governed by the action of an interconnected network of transcription factors. Among them, only Oct4 and Sox2 have been shown to be strictly required for the self-renewal of ESCs and pluripotency, particularly in culture conditions in which differentiation cues are chemically inhibited. Here, we report that the conjunct activity of two orphan nuclear receptors, Esrrb and Nr5a2, parallels the importance of that of Oct4 and Sox2 in naïve mouse ESCs. By occupying a large common set of regulatory elements, these two factors control the binding of Oct4, Sox2 and Nanog to DNA. Consequently, in their absence the pluripotency network collapses and the transcriptome is substantially deregulated, leading to the differentiation of ESCs. Altogether, this work identifies orphan nuclear receptors, previously thought to be performing supportive functions, as a set of core regulators of naïve pluripotency. Summary: Esrrb and Nr5a2, two orphan nuclear receptors, are identified as essential regulators of pluripotency in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Nicola Festuccia
- Regulatory Dynamics and Cell Identity, MRC London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.,Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| | - Nick Owens
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Almira Chervova
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| | - Agnès Dubois
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| | - Pablo Navarro
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| |
Collapse
|
31
|
Peron M, Dinarello A, Meneghetti G, Martorano L, Betto RM, Facchinello N, Tesoriere A, Tiso N, Martello G, Argenton F. Y705 and S727 are required for the mitochondrial import and transcriptional activities of STAT3, and for regulation of stem cell proliferation. Development 2021; 148:272054. [PMID: 34473253 PMCID: PMC8451946 DOI: 10.1242/dev.199477] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
The STAT3 transcription factor, acting both in the nucleus and mitochondria, maintains embryonic stem cell pluripotency and promotes their proliferation. In this work, using zebrafish, we determined in vivo that mitochondrial STAT3 regulates mtDNA transcription in embryonic and larval stem cell niches and that this activity affects their proliferation rates. As a result, we demonstrated that import of STAT3 inside mitochondria requires Y705 phosphorylation by Jak, whereas its mitochondrial transcriptional activity, as well as its effect on proliferation, depends on the MAPK target S727. These data were confirmed using mouse embryonic stem cells: although the Y705-mutated STAT3 cannot enter mitochondria, the S727 mutation does not affect import into the organelle and is responsible for STAT3-dependent mitochondrial transcription. Surprisingly, STAT3-dependent increase of mitochondrial transcription appears to be independent from STAT3 binding to STAT3-responsive elements. Finally, loss-of-function experiments, with chemical inhibition of the JAK/STAT3 pathway or genetic ablation of stat3 gene, demonstrated that STAT3 is also required for cell proliferation in the intestine of zebrafish. Summary: Mitochondrial import of STAT3 requires Y705 phosphorylation by Jak, whereas STAT3 mitochondrial transcriptional activity and its effect on proliferation depend on the MAPK target S727.
Collapse
Affiliation(s)
- Margherita Peron
- Department of Biology, University of Padova, 35121, Padova, Italy
| | | | | | - Laura Martorano
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Riccardo M Betto
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | | | | | - Natascia Tiso
- Department of Biology, University of Padova, 35121, Padova, Italy
| | | | | |
Collapse
|
32
|
Mao Y, Wang L, Zhong B, Yang N, Li Z, Cui T, Feng G, Li W, Zhang Y, Zhou Q. Continuous expression of reprogramming factors induces and maintains mouse pluripotency without specific growth factors and signaling inhibitors. Cell Prolif 2021; 54:e13090. [PMID: 34197016 PMCID: PMC8349648 DOI: 10.1111/cpr.13090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives Derivation and maintenance of pluripotent stem cells (PSCs) generally require optimized and complex culture media, which hinders the derivation of PSCs from various species. Expression of Oct4, Sox2, Klf4, and c‐Myc (OSKM) can reprogram somatic cells into induced PSCs (iPSCs), even for species possessing no optimal culture condition. Herein, we explored whether expression of OSKM could induce and maintain pluripotency without PSC‐specific growth factors and signaling inhibitors. Methods The culture medium of Tet‐On‐OSKM/Oct4‐GFP mouse embryonic stem cells (ESCs) was switched from N2B27 with MEK inhibitor, GSK3β inhibitor, and leukemia inhibitory factor (LIF) (2iL) to N2B27 with doxycycline. Tet‐On‐OSKM mouse embryonic fibroblast (MEF) cells were reprogrammed in N2B27 with doxycycline. Cell proliferation was traced. Pluripotency was assessed by expression of ESC marker genes, teratoma, and chimera formation. RNA‐Seq was conducted to analyze gene expression. Results Via continuous expression of OSKM, mouse ESCs (OSKM‐ESCs) and the resulting iPSCs (OSKM‐iPSCs) reprogrammed from MEF cells propagated stably, expressed pluripotency marker genes, and formed three germ layers in teratomas. Transcriptional landscapes of OSKM‐iPSCs resembled those of ESCs cultured in 2iL and were more similar to those of ESCs cultured in serum/LIF. Furthermore, OSKM‐iPSCs contributed to germline transmission. Conclusions Expression of OSKM could induce and maintain mouse pluripotency without specific culturing factors. Importantly, OSKM‐iPSCs could produce gene‐modified animals through germline transmission, with potential applications in other species.
Collapse
Affiliation(s)
- Yihuan Mao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Libin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Bei Zhong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Ning Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhikun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Tongtong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Yadav PS, Feng S, Cong Q, Kim H, Liu Y, Yang Y. Stat3 loss in mesenchymal progenitors causes Job syndrome-like skeletal defects by reducing Wnt/β-catenin signaling. Proc Natl Acad Sci U S A 2021; 118:e2020100118. [PMID: 34172578 PMCID: PMC8256036 DOI: 10.1073/pnas.2020100118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Job syndrome is a rare genetic disorder caused by STAT3 mutations and primarily characterized by immune dysfunction along with comorbid skeleton developmental abnormalities including osteopenia, recurrent fracture of long bones, and scoliosis. So far, there is no definitive cure for the skeletal defects in Job syndrome, and treatments are limited to management of clinical symptoms only. Here, we have investigated the molecular mechanism whereby Stat3 regulates skeletal development and osteoblast differentiation. We showed that removing Stat3 function in the developing limb mesenchyme or osteoprogenitor cells in mice resulted in shortened and bow limbs with multiple fractures in long bones that resembled the skeleton symptoms in the Job Syndrome. However, Stat3 loss did not alter chondrocyte differentiation and hypertrophy in embryonic development, while osteoblast differentiation was severely reduced. Genome-wide transcriptome analyses as well as biochemical and histological studies showed that Stat3 loss resulted in down-regulation of Wnt/β-catenin signaling. Restoration of Wnt/β-catenin signaling by injecting BIO, a small molecule inhibitor of GSK3, or crossing with a Lrp5 gain of function (GOF) allele, rescued the bone reduction phenotypes due to Stat3 loss to a great extent. These studies uncover the essential functions of Stat3 in maintaining Wnt/β-catenin signaling in early mesenchymal or osteoprogenitor cells and provide evidence that bone defects in the Job Syndrome are likely caused by Wnt/β-catenin signaling reduction due to reduced STAT3 activities in bone development. Enhancing Wnt/β-catenin signaling could be a therapeutic approach to reduce bone symptoms of Job syndrome patients.
Collapse
Affiliation(s)
- Prem Swaroop Yadav
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Shuhao Feng
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Hanjun Kim
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115;
- Harvard Stem Cell Institute, Cambridge, MA 02138
| |
Collapse
|
34
|
Liang P, Zheng L, Long C, Yang W, Yang L, Zuo Y. HelPredictor models single-cell transcriptome to predict human embryo lineage allocation. Brief Bioinform 2021; 22:6284371. [PMID: 34037706 DOI: 10.1093/bib/bbab196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
The in-depth understanding of cellular fate decision of human preimplantation embryos has prompted investigations on how changes in lineage allocation, which is far from trivial and remains a time-consuming task by experimental methods. It is desirable to develop a novel effective bioinformatics strategy to consider transitions of coordinated embryo lineage allocation and stage-specific patterns. There are rapidly growing applications of machine learning models to interpret complex datasets for identifying candidate development-related factors and lineage-determining molecular events. Here we developed the first machine learning platform, HelPredictor, that integrates three feature selection methods, namely, principal components analysis, F-score algorithm and squared coefficient of variation, and four classical machine learning classifiers that different combinations of methods and classifiers have independent outputs by increment feature selection method. With application to single-cell sequencing data of human embryo, HelPredictor not only achieved 94.9% and 90.9% respectively with cross-validation and independent test, but also fast classified different embryonic lineages and their development trajectories using less HelPredictor-predicted factors. The above-mentioned candidate lineage-specific genes were discussed in detail and were clustered for exploring transitions of embryonic heterogeneity. Our tool can fast and efficiently reveal potential lineage-specific and stage-specific biomarkers and provide insights into how advanced computational tools contribute to development research. The source code is available at https://github.com/liameihao/HelPredictor.
Collapse
Affiliation(s)
- Pengfei Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lei Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Chunshen Long
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wuritu Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
35
|
MPP8 is essential for sustaining self-renewal of ground-state pluripotent stem cells. Nat Commun 2021; 12:3034. [PMID: 34031396 PMCID: PMC8144423 DOI: 10.1038/s41467-021-23308-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Deciphering the mechanisms that control the pluripotent ground state is key for understanding embryonic development. Nonetheless, the epigenetic regulation of ground-state mouse embryonic stem cells (mESCs) is not fully understood. Here, we identify the epigenetic protein MPP8 as being essential for ground-state pluripotency. Its depletion leads to cell cycle arrest and spontaneous differentiation. MPP8 has been suggested to repress LINE1 elements by recruiting the human silencing hub (HUSH) complex to H3K9me3-rich regions. Unexpectedly, we find that LINE1 elements are efficiently repressed by MPP8 lacking the chromodomain, while the unannotated C-terminus is essential for its function. Moreover, we show that SETDB1 recruits MPP8 to its genomic target loci, whereas transcriptional repression of LINE1 elements is maintained without retaining H3K9me3 levels. Taken together, our findings demonstrate that MPP8 protects the DNA-hypomethylated pluripotent ground state through its association with the HUSH core complex, however, independently of detectable chromatin binding and maintenance of H3K9me3.
Collapse
|
36
|
Yan H, Malik N, Kim YI, He Y, Li M, Dubois W, Liu H, Peat TJ, Nguyen JT, Tseng YC, Ayaz G, Alzamzami W, Chan K, Andresson T, Tessarollo L, Mock BA, Lee MP, Huang J. Fatty acid oxidation is required for embryonic stem cell survival during metabolic stress. EMBO Rep 2021; 22:e52122. [PMID: 33950553 DOI: 10.15252/embr.202052122] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic regulation is critical for the maintenance of pluripotency and the survival of embryonic stem cells (ESCs). The transcription factor Tfcp2l1 has emerged as a key factor for the naïve pluripotency of ESCs. Here, we report an unexpected role of Tfcp2l1 in metabolic regulation in ESCs-promoting the survival of ESCs through regulating fatty acid oxidation (FAO) under metabolic stress. Tfcp2l1 directly activates many metabolic genes in ESCs. Deletion of Tfcp2l1 leads to an FAO defect associated with upregulation of glucose uptake, the TCA cycle, and glutamine catabolism. Mechanistically, Tfcp2l1 activates FAO by inducing Cpt1a, a rate-limiting enzyme transporting free fatty acids into the mitochondria. ESCs with defective FAO are sensitive to cell death induced by glycolysis inhibition and glutamine deprivation. Moreover, the Tfcp2l1-Cpt1a-FAO axis promotes the survival of quiescent ESCs and diapause-like blastocysts induced by mTOR inhibition. Thus, our results reveal how ESCs orchestrate pluripotent and metabolic programs to ensure their survival in response to metabolic stress.
Collapse
Affiliation(s)
- Hualong Yan
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Navdeep Malik
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Young-Im Kim
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yunlong He
- Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Mangmang Li
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wendy Dubois
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Huaitian Liu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tyler J Peat
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joe T Nguyen
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu-Chou Tseng
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gamze Ayaz
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Waseem Alzamzami
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - King Chan
- Cancer Research Technology Program, Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Thorkell Andresson
- Cancer Research Technology Program, Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jing Huang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Kang X, Li C. A Dimension Reduction Approach for Energy Landscape: Identifying Intermediate States in Metabolism-EMT Network. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003133. [PMID: 34026435 PMCID: PMC8132071 DOI: 10.1002/advs.202003133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/18/2020] [Indexed: 05/08/2023]
Abstract
Dimension reduction is a challenging problem in complex dynamical systems. Here, a dimension reduction approach of landscape (DRL) for complex dynamical systems is proposed, by mapping a high-dimensional system on a low-dimensional energy landscape. The DRL approach is applied to three biological networks, which validates that new reduced dimensions preserve the major information of stability and transition of original high-dimensional systems. The consistency of barrier heights calculated from the low-dimensional landscape and transition actions calculated from the high-dimensional system further shows that the landscape after dimension reduction can quantify the global stability of the system. The epithelial-mesenchymal transition (EMT) and abnormal metabolism are two hallmarks of cancer. With the DRL approach, a quadrastable landscape for metabolism-EMT network is identified, including epithelial (E), abnormal metabolic (A), hybrid E/M (H), and mesenchymal (M) cell states. The quantified energy landscape and kinetic transition paths suggest that for the EMT process, the cells at E state need to first change their metabolism, then enter the M state. The work proposes a general framework for the dimension reduction of a stochastic dynamical system, and advances the mechanistic understanding of the underlying relationship between EMT and cellular metabolism.
Collapse
Affiliation(s)
- Xin Kang
- School of Mathematical SciencesFudan UniversityShanghai200433China
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
| | - Chunhe Li
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| |
Collapse
|
38
|
Genolet O, Monaco AA, Dunkel I, Boettcher M, Schulz EG. Identification of X-chromosomal genes that drive sex differences in embryonic stem cells through a hierarchical CRISPR screening approach. Genome Biol 2021; 22:110. [PMID: 33863351 PMCID: PMC8051100 DOI: 10.1186/s13059-021-02321-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND X-chromosomal genes contribute to sex differences, in particular during early development, when both X chromosomes are active in females. Double X-dosage shifts female pluripotent cells towards the naive stem cell state by increasing pluripotency factor expression, inhibiting the differentiation-promoting MAP kinase (MAPK) signaling pathway, and delaying differentiation. RESULTS To identify the genetic basis of these sex differences, we use a two-step CRISPR screening approach to comprehensively identify X-linked genes that cause the female pluripotency phenotype in murine embryonic stem cells. A primary chromosome-wide CRISPR knockout screen and three secondary screens assaying for different aspects of the female pluripotency phenotype allow us to uncover multiple genes that act in concert and to disentangle their relative roles. Among them, we identify Dusp9 and Klhl13 as two central players. While Dusp9 mainly affects MAPK pathway intermediates, Klhl13 promotes pluripotency factor expression and delays differentiation, with both factors jointly repressing MAPK target gene expression. CONCLUSIONS Here, we elucidate the mechanisms that drive sex-induced differences in pluripotent cells and our approach serves as a blueprint to discover the genetic basis of the phenotypic consequences of other chromosomal effects.
Collapse
Affiliation(s)
- Oriana Genolet
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anna A Monaco
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Present address: BIMSB, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michael Boettcher
- Medical Faculty, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
39
|
Betto RM, Diamante L, Perrera V, Audano M, Rapelli S, Lauria A, Incarnato D, Arboit M, Pedretti S, Rigoni G, Guerineau V, Touboul D, Stirparo GG, Lohoff T, Boroviak T, Grumati P, Soriano ME, Nichols J, Mitro N, Oliviero S, Martello G. Metabolic control of DNA methylation in naive pluripotent cells. Nat Genet 2021; 53:215-229. [PMID: 33526924 PMCID: PMC7116828 DOI: 10.1038/s41588-020-00770-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
Naive epiblast and embryonic stem cells (ESCs) give rise to all cells of adults. Such developmental plasticity is associated with genome hypomethylation. Here, we show that LIF-Stat3 signaling induces genomic hypomethylation via metabolic reconfiguration. Stat3-/- ESCs show decreased α-ketoglutarate production from glutamine, leading to increased Dnmt3a and Dnmt3b expression and DNA methylation. Notably, genome methylation is dynamically controlled through modulation of α-ketoglutarate availability or Stat3 activation in mitochondria. Alpha-ketoglutarate links metabolism to the epigenome by reducing the expression of Otx2 and its targets Dnmt3a and Dnmt3b. Genetic inactivation of Otx2 or Dnmt3a and Dnmt3b results in genomic hypomethylation even in the absence of active LIF-Stat3. Stat3-/- ESCs show increased methylation at imprinting control regions and altered expression of cognate transcripts. Single-cell analyses of Stat3-/- embryos confirmed the dysregulated expression of Otx2, Dnmt3a and Dnmt3b as well as imprinted genes. Several cancers display Stat3 overactivation and abnormal DNA methylation; therefore, the molecular module that we describe might be exploited under pathological conditions.
Collapse
Affiliation(s)
- Riccardo M Betto
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Linda Diamante
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Valentina Perrera
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
- Neuroscience Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Stefania Rapelli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
| | - Andrea Lauria
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
| | - Danny Incarnato
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Mattia Arboit
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Giovanni Rigoni
- Department of Biology, University of Padua, Padua, Italy
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Vincent Guerineau
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | | | - Tim Lohoff
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Thorsten Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy.
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy.
| | - Graziano Martello
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy.
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
40
|
Pluripotency of Dental Pulp Cells and Periodontal Ligament Cells Was Enhanced through Cell-Cell Communication via STAT3/Oct-4/Sox2 Signaling. Stem Cells Int 2021; 2021:8898506. [PMID: 33542738 PMCID: PMC7840254 DOI: 10.1155/2021/8898506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Alternation in culture environment due to cell-cell communications can rejuvenate the biological activity of aged/differentiated cells and stimulate the expression of pluripotency markers. Dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) are promising candidates in dental tissue regeneration. However, the molecular network that underlies cell-cell communications between dental-derived cells and the microenvironment remains to be identified. To elucidate the signaling network that regulates the pluripotency of DPCs and PDLCs, proliferation, apoptosis, cell cycle, and the expression of Oct-4/Sox2/c-Myc in DPCs and PDLCs with indirect/direct coculture were examined. PCR arrays were constructed to identify genes that were differentially expressed, and the results were confirmed by a rat model with injury. Further research on the mechanism of the related signaling pathways was investigated by overexpression/silence of STAT3, ChIP, the dual-luciferase reporter assay, and EMSA. We found that the proliferation and apoptosis of DPCs and PDLCs were inhibited, and their cell cycles were arrested at the G0/G1 phase after coculture. Oct-4, Sox2, and STAT3 expression significantly increased and PAX5 expression decreased in the coculture systems. Oct-4/Sox2/STAT3/PAX5 was actively expressed in the rat defect model. Moreover, STAT3 was directly bound to the Oct-4 and Sox2 gene promoter regions and activated the expression of those genes. Our data showed that the pluripotency of DPCs and PDLCs was enhanced through cell-cell communication. STAT3 plays essential roles in regulating the pluripotency of DPCs and PDLCs by targeting Oct-4 and Sox2 both in vitro and in vivo.
Collapse
|
41
|
Stirparo GG, Kurowski A, Yanagida A, Bates LE, Strawbridge SE, Hladkou S, Stuart HT, Boroviak TE, Silva JCR, Nichols J. OCT4 induces embryonic pluripotency via STAT3 signaling and metabolic mechanisms. Proc Natl Acad Sci U S A 2021; 118:e2008890118. [PMID: 33452132 PMCID: PMC7826362 DOI: 10.1073/pnas.2008890118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm-associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency.
Collapse
Affiliation(s)
- Giuliano G Stirparo
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom;
- Living Systems Institute, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Agata Kurowski
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ayaka Yanagida
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Living Systems Institute, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Lawrence E Bates
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, United Kingdom
| | - Stanley E Strawbridge
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
| | - Siarhei Hladkou
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, United Kingdom
| | - Hannah T Stuart
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EG Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, CB2 3EG Cambridge, United Kingdom
| | - Jose C R Silva
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, United Kingdom
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom;
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EG Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, CB2 3EG Cambridge, United Kingdom
| |
Collapse
|
42
|
Ye Y, Chen X, Zhang W. Mammalian SWI/SNF Chromatin Remodeling Complexes in Embryonic Stem Cells: Regulating the Balance Between Pluripotency and Differentiation. Front Cell Dev Biol 2021; 8:626383. [PMID: 33537314 PMCID: PMC7848206 DOI: 10.3389/fcell.2020.626383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 12/04/2022] Open
Abstract
The unique capability of embryonic stem cells (ESCs) to maintain and adjust the equilibrium between self-renewal and multi-lineage cellular differentiation contributes indispensably to the integrity of all developmental processes, leading to the advent of an organism in its adult form. The ESC fate decision to favor self-renewal or differentiation into specific cellular lineages largely depends on transcriptome modulations through gene expression regulations. Chromatin remodeling complexes play instrumental roles to promote chromatin structural changes resulting in gene expression changes that are key to the ESC fate choices governing the equilibrium between pluripotency and differentiation. BAF (Brg/Brahma-associated factors) or mammalian SWI/SNF complexes employ energy generated by ATP hydrolysis to change chromatin states, thereby governing the accessibility of transcriptional regulators that ultimately affect transcriptome and cell fate. Interestingly, the requirement of BAF complex in self-renewal and differentiation of ESCs has been recently shown by genetic studies through gene expression modulations of various BAF components in ESCs, although the precise molecular mechanisms by which BAF complex influences ESC fate choice remain largely underexplored. This review surveys these recent progresses of BAF complex on ESC functions, with a focus on its role of conditioning the pluripotency and differentiation balance of ESCs. A discussion of the mechanistic bases underlying the genetic requirements for BAF in ESC biology as well as the outcomes of its interplays with key transcription factors or other chromatin remodelers in ESCs will be highlighted.
Collapse
Affiliation(s)
- Ying Ye
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
43
|
Okawa ER, Gupta MK, Kahraman S, Goli P, Sakaguchi M, Hu J, Duan K, Slipp B, Lennerz JK, Kulkarni RN. Essential roles of insulin and IGF-1 receptors during embryonic lineage development. Mol Metab 2021; 47:101164. [PMID: 33453419 PMCID: PMC7890209 DOI: 10.1016/j.molmet.2021.101164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/25/2020] [Accepted: 01/09/2021] [Indexed: 12/24/2022] Open
Abstract
The insulin and insulin-like growth factor-1 (IGF-1) receptors are important for the growth and development of embryonic tissues. To directly define their roles in the maintenance of pluripotency and differentiation of stem cells, we knocked out both receptors in induced pluripotent stem cells (iPSCs). iPSCs lacking both insulin and IGF-1 receptors (double knockout, DKO) exhibited preserved pluripotency potential despite decreased expression of transcription factors Lin28a and Tbx3 compared to control iPSCs. While embryoid body and teratoma assays revealed an intact ability of DKO iPSCs to form all three germ layers, the latter were composed of primitive neuroectodermal tumor-like cells in the DKO group. RNA-seq analyses of control vs DKO iPSCs revealed differential regulation of pluripotency, developmental, E2F1, and apoptosis pathways. Signaling analyses pointed to downregulation of the AKT/mTOR pathway and upregulation of the STAT3 pathway in DKO iPSCs in the basal state and following stimulation with insulin/IGF-1. Directed differentiation toward the three lineages was dysregulated in DKO iPSCs, with significant downregulation of key markers (Cebpα, Fas, Pparγ, and Fsp27) in adipocytes and transcription factors (Ngn3, Isl1, Pax6, and Neurod1) in pancreatic endocrine progenitors. Furthermore, differentiated pancreatic endocrine progenitor cells from DKO iPSCs showed increased apoptosis. We conclude that insulin and insulin-like growth factor-1 receptors are indispensable for normal lineage development and perturbations in the function and signaling of these receptors leads to upregulation of alternative compensatory pathways to maintain pluripotency. Insulin and IGF-1 receptor signaling regulate the expression of pluripotency genes Lin28 and Tbx3. The STAT3 pathway is upregulated in DKO iPSCs. RNA-seq analyses revealed key developmental and apoptosis pathways regulated by insulin and IGF-1 receptors. Lineage development was dysregulated in DKO iPSCs with downregulation of key mesoderm and endodermal markers.
Collapse
Affiliation(s)
- Erin R Okawa
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA; Division of Endocrinology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Manoj K Gupta
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Sevim Kahraman
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Praneeth Goli
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Masaji Sakaguchi
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Jiang Hu
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Kaiti Duan
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Brittany Slipp
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Rohit N Kulkarni
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA; Harvard Stem Cell Institute, Boston, MA, 02215, USA.
| |
Collapse
|
44
|
Kim J, T. Jakobsen S, Natarajan KN, Won KJ. TENET: gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data. Nucleic Acids Res 2021; 49:e1. [PMID: 33170214 PMCID: PMC7797076 DOI: 10.1093/nar/gkaa1014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Accurate prediction of gene regulatory rules is important towards understanding of cellular processes. Existing computational algorithms devised for bulk transcriptomics typically require a large number of time points to infer gene regulatory networks (GRNs), are applicable for a small number of genes and fail to detect potential causal relationships effectively. Here, we propose a novel approach 'TENET' to reconstruct GRNs from single cell RNA sequencing (scRNAseq) datasets. Employing transfer entropy (TE) to measure the amount of causal relationships between genes, TENET predicts large-scale gene regulatory cascades/relationships from scRNAseq data. TENET showed better performance than other GRN reconstructors, in identifying key regulators from public datasets. Specifically from scRNAseq, TENET identified key transcriptional factors in embryonic stem cells (ESCs) and during direct cardiomyocytes reprogramming, where other predictors failed. We further demonstrate that known target genes have significantly higher TE values, and TENET predicted higher TE genes were more influenced by the perturbation of their regulator. Using TENET, we identified and validated that Nme2 is a culture condition specific stem cell factor. These results indicate that TENET is uniquely capable of identifying key regulators from scRNAseq data.
Collapse
Affiliation(s)
- Junil Kim
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Simon T. Jakobsen
- Functional Genomics and Metabolism Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
| | - Kedar N Natarajan
- Functional Genomics and Metabolism Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
- Danish Institute of Advanced Study (D-IAS), University of Southern Denmark, Denmark
| | - Kyoung-Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
45
|
Vila-Cejudo M, Alonso-Alonso S, Pujol A, Santaló J, Ibáñez E. Wnt pathway modulation generates blastomere-derived mouse embryonic stem cells with different pluripotency features. J Assist Reprod Genet 2020; 37:2967-2979. [PMID: 33047186 DOI: 10.1007/s10815-020-01964-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/04/2020] [Indexed: 11/30/2022] Open
Abstract
PURPOSE This study aimed to determine the role of Wnt pathway in mouse embryonic stem cell (mESC) derivation from single blastomeres isolated from eight-cell embryos and in the pluripotency features of the mESC established. METHODS Wnt activator CHIR99021, Wnt inhibitor IWR-1-endo, and MEK inhibitor PD0325901 were used alone or in combination during ESC derivation and maintenance from single blastomeres biopsied from eight-cell embryos. Alkaline phosphatase activity, FGF5 levels, expression of key pluripotency genes, and chimera formation were assessed to determine the pluripotency state of the mESC lines. RESULTS Derivation efficiencies were highest when combining pairs of inhibitors (15-24.7%) than when using single inhibitors or none (1.4-10.1%). Full naïve pluripotency was only achieved in CHIR- and 2i-treated mESC lines, whereas IWR and PD treatments or the absence of treatment resulted in co-existence of naïve-like and primed-like pluripotency features. IWR + CHIR- and IWR + PD-treated mESC displayed features of primed pluripotency, but IWR + CHIR-treated lines were able to generate germline-competent chimeric mice, resembling the predicted properties of formative pluripotency. CONCLUSION Wnt and MAPK pathways have a key role in the successful derivation and pluripotency features of mESC from single precompaction blastomeres. Modulation of these pathways results in mESC lines with various degrees of naïve-like and primed-like pluripotency features.
Collapse
Affiliation(s)
- Marta Vila-Cejudo
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Tissue Engineering Unit, Centre for Genomic Regulation, Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Sandra Alonso-Alonso
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Anna Pujol
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine and Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Josep Santaló
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Elena Ibáñez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
46
|
Riveiro AR, Brickman JM. From pluripotency to totipotency: an experimentalist's guide to cellular potency. Development 2020; 147:147/16/dev189845. [PMID: 32847824 DOI: 10.1242/dev.189845] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) are derived from the pre-implantation mammalian blastocyst. At this point in time, the newly formed embryo is concerned with the generation and expansion of both the embryonic lineages required to build the embryo and the extra-embryonic lineages that support development. When used in grafting experiments, embryonic cells from early developmental stages can contribute to both embryonic and extra-embryonic lineages, but it is generally accepted that ESCs can give rise to only embryonic lineages. As a result, they are referred to as pluripotent, rather than totipotent. Here, we consider the experimental potential of various ESC populations and a number of recently identified in vitro culture systems producing states beyond pluripotency and reminiscent of those observed during pre-implantation development. We also consider the nature of totipotency and the extent to which cell populations in these culture systems exhibit this property.
Collapse
Affiliation(s)
- Alba Redó Riveiro
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Joshua Mark Brickman
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
47
|
Zhu Z, Zhang Y, Wang X, Wang X, Ye SD. Inhibition of protein kinase D by CID755673 promotes maintenance of the pluripotency of embryonic stem cells. Development 2020; 147:dev185264. [PMID: 32747433 DOI: 10.1242/dev.185264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 07/20/2020] [Indexed: 12/30/2022]
Abstract
The identification of novel mechanisms to maintain embryonic stem cell (ESC) pluripotency is of crucial importance, because the currently used culture conditions are not suitable for ESCs from all species. In this study, we show that the protein kinase D (PKD) inhibitor CID755673 (CID) is able to maintain the undifferentiated state of mouse ESCs in combination with the mitogen-activated protein kinase kinase (MEK) inhibitor. The expression levels of PKD members, including PKD1, PKD2 and PKD3, were low in mouse ESCs but significantly increased under differentiation conditions. Therefore, depletion of three PKD genes was able to phenocopy PKD inhibition. Mechanistically, PKD inhibition activated PI3K/AKT signaling by increasing the level of AKT phosphorylation, and the addition of a PI3K/AKT signaling pathway inhibitor partially reduced the cellular response to PKD inhibition. Importantly, the self-renewal-promoting effect of CID was maintained in human ESCs. Simultaneous knockdown of the three human PKD isoforms enabled short-term self-renewal in human ESCs, whereas PI3K/AKT signaling inhibition eliminated this self-renewal ability downstream of the PKD inhibitor. These findings expand our understanding of the gene regulatory network of ESC pluripotency.
Collapse
Affiliation(s)
- Zhenhua Zhu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Yan Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Xiaoxiao Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Xiaohu Wang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
48
|
Mulas C, Hodgson AC, Kohler TN, Agley CC, Humphreys P, Kleine-Brüggeney H, Hollfelder F, Smith A, Chalut KJ. Microfluidic platform for 3D cell culture with live imaging and clone retrieval. LAB ON A CHIP 2020; 20:2580-2591. [PMID: 32573646 DOI: 10.1039/d0lc00165a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Combining live imaging with the ability to retrieve individual cells of interest remains a technical challenge. Combining imaging with precise cell retrieval is of particular interest when studying highly dynamic or transient, asynchronous, or heterogeneous cell biological and developmental processes. Here, we present a method to encapsulate live cells in a 3D hydrogel matrix, via hydrogel bead compartmentalisation. Using a small-scale screen, we optimised matrix conditions for the culture and multilineage differentiation of mouse embryonic stem cells. Moreover, we designed a custom microfluidic platform that is compatible with live imaging. With this platform we can long-term culture and subsequently extract individual cells-in-beads by media flow only, obviating the need for enzymatic cell removal from the platform. Specific beads may be extracted from the platform in isolation, without disrupting the adjacent beads. We show that we can differentiate mouse embryonic stem cells, monitor reporter expression by live imaging, and retrieve individual beads for functional assays, correlating reporter expression with functional response. Overall, we present a highly flexible 3D cell encapsulation and microfluidic platform that enables both monitoring of cellular dynamics and retrieval for molecular and functional assays.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shiozawa S, Nakajima M, Okahara J, Kuortaki Y, Kisa F, Yoshimatsu S, Nakamura M, Koya I, Yoshimura M, Sasagawa Y, Nikaido I, Sasaki E, Okano H. Primed to Naive-Like Conversion of the Common Marmoset Embryonic Stem Cells. Stem Cells Dev 2020; 29:761-773. [DOI: 10.1089/scd.2019.0259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Seiji Shiozawa
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Mayutaka Nakajima
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Yoko Kuortaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Fumihiko Kisa
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
- Discovery Research Laboratories I, Minase Research Institute, Ono Pharmaceutical Co., Ltd., Mishima, Japan
| | - Sho Yoshimatsu
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Mari Nakamura
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Ikuko Koya
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Mika Yoshimura
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Japan
- Bioinformatics Course, Master's/Doctoral Program in Life Science Innovation (T-LSI), School of Integrative and Global Majors (SIGMA), University of Tsukuba, Wako, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
50
|
Zorzan I, Pellegrini M, Arboit M, Incarnato D, Maldotti M, Forcato M, Tagliazucchi GM, Carbognin E, Montagner M, Oliviero S, Martello G. The transcriptional regulator ZNF398 mediates pluripotency and epithelial character downstream of TGF-beta in human PSCs. Nat Commun 2020; 11:2364. [PMID: 32398665 PMCID: PMC7217929 DOI: 10.1038/s41467-020-16205-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) have the capacity to give rise to all differentiated cells of the adult. TGF-beta is used routinely for expansion of conventional hPSCs as flat epithelial colonies expressing the transcription factors POU5F1/OCT4, NANOG, SOX2. Here we report a global analysis of the transcriptional programme controlled by TGF-beta followed by an unbiased gain-of-function screening in multiple hPSC lines to identify factors mediating TGF-beta activity. We identify a quartet of transcriptional regulators promoting hPSC self-renewal including ZNF398, a human-specific mediator of pluripotency and epithelial character in hPSCs. Mechanistically, ZNF398 binds active promoters and enhancers together with SMAD3 and the histone acetyltransferase EP300, enabling transcription of TGF-beta targets. In the context of somatic cell reprogramming, inhibition of ZNF398 abolishes activation of pluripotency and epithelial genes and colony formation. Our findings have clear implications for the generation of bona fide hPSCs for regenerative medicine.
Collapse
Affiliation(s)
- Irene Zorzan
- Department of Molecular Medicine, Medical School, University of Padua, 35121, Padua, Italy
| | - Marco Pellegrini
- Department of Molecular Medicine, Medical School, University of Padua, 35121, Padua, Italy.,UCL Great Ormond Street Institute of Child Health, Developmental Biology and Cancer, Stem Cells and Regenerative Medicine, 30 Guilford Street, WC1N 1EH, London, UK
| | - Mattia Arboit
- Department of Molecular Medicine, Medical School, University of Padua, 35121, Padua, Italy
| | - Danny Incarnato
- Department of Life Sciences and Systems Biology and Molecular Biotechnology Center (MCB), University of Turin, 10126, Turin, Italy.,Italian Institute for Genomic Medicine (IIGM), 10060, Candiolo (TO), Italy.,Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Mara Maldotti
- Department of Life Sciences and Systems Biology and Molecular Biotechnology Center (MCB), University of Turin, 10126, Turin, Italy.,Italian Institute for Genomic Medicine (IIGM), 10060, Candiolo (TO), Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Guidantonio Malagoli Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.,UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, WC1E 6BT, London, UK
| | - Elena Carbognin
- Department of Molecular Medicine, Medical School, University of Padua, 35121, Padua, Italy
| | - Marco Montagner
- Department of Molecular Medicine, Medical School, University of Padua, 35121, Padua, Italy
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology and Molecular Biotechnology Center (MCB), University of Turin, 10126, Turin, Italy. .,Italian Institute for Genomic Medicine (IIGM), 10060, Candiolo (TO), Italy.
| | - Graziano Martello
- Department of Molecular Medicine, Medical School, University of Padua, 35121, Padua, Italy.
| |
Collapse
|