1
|
Rabl L, Deuerling E. The nascent polypeptide-associated complex (NAC) as regulatory hub on ribosomes. Biol Chem 2025:hsz-2025-0114. [PMID: 40167342 DOI: 10.1515/hsz-2025-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The correct synthesis of new proteins is essential for maintaining a functional proteome and cell viability. This process is tightly regulated, with ribosomes and associated protein biogenesis factors ensuring proper protein production, modification, and targeting. In eukaryotes, the conserved nascent polypeptide-associated complex (NAC) plays a central role in coordinating early protein processing by regulating the ribosome access of multiple protein biogenesis factors. NAC recruits modifying enzymes to the ribosomal exit site to process the N-terminus of nascent proteins and directs secretory proteins into the SRP-mediated targeting pathway. In this review we will focus on these pathways, which are critical for proper protein production, and summarize recent advances in understanding the cotranslational functions and mechanisms of NAC in higher eukaryotes.
Collapse
Affiliation(s)
- Laurenz Rabl
- Department of Biology, 26567 University of Konstanz , D-78457 Konstanz, Germany
| | - Elke Deuerling
- Department of Biology, 26567 University of Konstanz , D-78457 Konstanz, Germany
| |
Collapse
|
2
|
Lentzsch AM, Lee JH, Shan SO. Mechanistic Insights into Protein Biogenesis and Maturation on the Ribosome. J Mol Biol 2025:169056. [PMID: 40024436 DOI: 10.1016/j.jmb.2025.169056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
The ribosome is a major cellular machine that converts genetic information into biological function. Emerging data show that the ribosome is not only a protein synthesis machine, but also participates in the maturation of the nascent protein into properly folded and active molecules. The ribosome surface near the opening of the polypeptide exit tunnel can interact directly with the newly synthesized proteins and, more importantly, provides a platform where numerous protein biogenesis factors assemble, gain access to the nascent chain, and direct them into diverse biogenesis pathways. In this article, we review the current understanding of cotranslational protein maturation pathways, with an emphasis on systems in which biochemical studies provided a high-resolution molecular understanding and yielded generalizable mechanistic principles.
Collapse
Affiliation(s)
- Alfred M Lentzsch
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jae Ho Lee
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
3
|
Brown SL, May JP. Viral condensates formed by Pea enation mosaic virus 2 sequester ribosomal components and suppress translation. Virology 2025; 601:110301. [PMID: 39549315 PMCID: PMC11649027 DOI: 10.1016/j.virol.2024.110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Viral proteins with intrinsic disorder, such as the p26 movement protein from Pea enation mosaic virus 2 (PEMV2), can phase separate and form condensates that aid specific stages of virus replication. However, little is known about the impact of viral condensate formation on essential cellular processes, like translation. In this study, we performed mass spectrometry on affinity-purified p26 condensates and found an enrichment of RNA-binding proteins involved in translation and ribosome biogenesis. Puromycin assays and polysome profiling show that ectopic p26 expression suppresses ribosome assembly and translation in Nicotiana benthamiana, mirroring defects in late-stage PEMV2 infection. Despite interactions with the 2'-O-methyltransferase fibrillarin, p26 does not inhibit translation by altering rRNA methylation but instead binds directly to rRNAs and decreases their solubility. Disruption of ribosome assembly and translation by p26 during late PEMV2 infection may promote stages of the virus replication cycle that are incompatible with translation, including systemic movement.
Collapse
Affiliation(s)
- Shelby L Brown
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO, 64110, USA
| | - Jared P May
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO, 64110, USA.
| |
Collapse
|
4
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Muhammad T, Edwards SL, Morphis AC, Johnson MV, Oliveira VD, Chamera T, Liu S, Nguyen NGT, Li J. Non-cell-autonomous regulation of germline proteostasis by insulin/IGF-1 signaling-induced dietary peptide uptake via PEPT-1. EMBO J 2024; 43:4892-4921. [PMID: 39284915 PMCID: PMC11535032 DOI: 10.1038/s44318-024-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 11/06/2024] Open
Abstract
Gametogenesis involves active protein synthesis and is proposed to rely on proteostasis. Our previous work in C. elegans indicates that germline development requires coordinated activities of insulin/IGF-1 signaling (IIS) and HSF-1, the central regulator of the heat shock response. However, the downstream mechanisms were not identified. Here, we show that depletion of HSF-1 from germ cells impairs chaperone gene expression, causing protein degradation and aggregation and, consequently, reduced fecundity and gamete quality. Conversely, reduced IIS confers germ cell resilience to HSF-1 depletion-induced protein folding defects and various proteotoxic stresses. Surprisingly, this effect was not mediated by an enhanced stress response, which underlies longevity in low IIS conditions, but by reduced ribosome biogenesis and translation rate. We found that IIS activates the expression of intestinal peptide transporter PEPT-1 by alleviating its repression by FOXO/DAF-16, allowing dietary proteins to be efficiently incorporated into an amino acid pool that fuels germline protein synthesis. Our data suggest this non-cell-autonomous pathway is critical for proteostasis regulation during gametogenesis.
Collapse
Affiliation(s)
- Tahir Muhammad
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Stacey L Edwards
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Allison C Morphis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Mary V Johnson
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Vitor De Oliveira
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Tomasz Chamera
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Siyan Liu
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | | | - Jian Li
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
6
|
Molière A, Park JYC, Goyala A, Vayndorf EM, Zhang B, Hsiung KC, Jung Y, Kwon S, Statzer C, Meyer D, Nguyen R, Chadwick J, Thompson MA, Schumacher B, Lee SJV, Essmann CL, MacArthur MR, Kaeberlein M, David D, Gems D, Ewald CY. Improved resilience and proteostasis mediate longevity upon DAF-2 degradation in old age. GeroScience 2024; 46:5015-5036. [PMID: 38900346 PMCID: PMC11335714 DOI: 10.1007/s11357-024-01232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Little is known about the possibility of reversing age-related biological changes when they have already occurred. To explore this, we have characterized the effects of reducing insulin/IGF-1 signaling (IIS) during old age. Reduction of IIS throughout life slows age-related decline in diverse species, most strikingly in the nematode Caenorhabditis elegans. Here we show that even at advanced ages, auxin-induced degradation of DAF-2 in single tissues, including neurons and the intestine, is still able to markedly increase C. elegans lifespan. We describe how reversibility varies among senescent changes. While senescent pathologies that develop in mid-life were not reversed, there was a rejuvenation of the proteostasis network, manifesting as a restoration of the capacity to eliminate otherwise intractable protein aggregates that accumulate with age. Moreover, resistance to several stressors was restored. These results support several new conclusions. (1) Loss of resilience is not solely a consequence of pathologies that develop in earlier life. (2) Restoration of proteostasis and resilience by inhibiting IIS is a plausible cause of the increase in lifespan. And (3), most interestingly, some aspects of the age-related transition from resilience to frailty can be reversed to a certain extent. This raises the possibility that the effect of IIS and related pathways on resilience and frailty during aging in higher animals might possess some degree of reversibility.
Collapse
Affiliation(s)
- Adrian Molière
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Elena M Vayndorf
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kuei Ching Hsiung
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - David Meyer
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Richard Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | | | | | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Clara L Essmann
- Bioinformatics and Molecular Genetics, Institute of Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79108, Freiburg, Germany
| | - Michael R MacArthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | | | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
7
|
Minello LVP, Kuntzler SG, Lamb TI, Neves CDO, Berghahn E, da Paschoa RP, Silveira V, de Lima JC, Aguzzoli C, Sperotto RA. Rice plants treated with biochar derived from Spirulina ( Arthrospira platensis) optimize resource allocation towards seed production. FRONTIERS IN PLANT SCIENCE 2024; 15:1422935. [PMID: 39359626 PMCID: PMC11444984 DOI: 10.3389/fpls.2024.1422935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
The use of biofertilizers is becoming an economical and environmentally friendly alternative to promote sustainable agriculture. Biochar from microalgae/cyanobacteria can be applied to enhance the productivity of food crops through soil improvement, slow nutrient absorption and release, increased water uptake, and long-term mitigation of greenhouse gas sequestration. Therefore, the aim of this study was to evaluate the stimulatory effects of biochar produced from Spirulina (Arthrospira platensis) biomass on the development and seed production of rice plants. Biochar was produced by slow pyrolysis at 300°C, and characterization was performed through microscopy, chemical, and structural composition analyses. Molecular and physiological analyses were performed in rice plants submitted to different biochar concentrations (0.02, 0.1, and 0.5 mg mL-1) to assess growth and productivity parameters. Morphological and physicochemical characterization revealed a heterogeneous morphology and the presence of several minerals (Na, K, P, Mg, Ca, S, Fe, and Si) in the biochar composition. Chemical modification of compounds post-pyrolysis and a highly porous structure with micropores were observed. Rice plants submitted to 0.5 mg mL-1 of biochar presented a decrease in root length, followed by an increase in root dry weight. The same concentration influenced seed production, with an increase of 44% in the number of seeds per plant, 17% in the percentage of full seeds per plant, 12% in the weight of 1,000 full seeds, 53% in the seed weight per plant, and 12% in grain area. Differential proteomic analyses in shoots and roots of rice plants submitted to 0.5 mg mL-1 of biochar for 20 days revealed a fine-tuning of resource allocation towards seed production. These results suggest that biochar derived from Arthrospira platensis biomass can stimulate rice seed production.
Collapse
Affiliation(s)
- Luana Vanessa Peretti Minello
- Botany Department, Graduate Program in Plant Physiology, Biology Institute, Federal University of Pelotas, Pelotas, Brazil
| | | | - Thainá Inês Lamb
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | | | - Emílio Berghahn
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - Roberta Pena da Paschoa
- Laboratory of Biotechnology, Bioscience and Biotechnology Center, State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - Vanildo Silveira
- Laboratory of Biotechnology, Bioscience and Biotechnology Center, State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | | | - Cesar Aguzzoli
- Area of Knowledge in Exact Sciences and Engineering, Graduate Program in Materials Engineering and Science, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Raul Antonio Sperotto
- Botany Department, Graduate Program in Plant Physiology, Biology Institute, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
8
|
Klein M, Wild K, Sinning I. Multi-protein assemblies orchestrate co-translational enzymatic processing on the human ribosome. Nat Commun 2024; 15:7681. [PMID: 39227397 PMCID: PMC11372111 DOI: 10.1038/s41467-024-51964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Nascent chains undergo co-translational enzymatic processing as soon as their N-terminus becomes accessible at the ribosomal polypeptide tunnel exit (PTE). In eukaryotes, N-terminal methionine excision (NME) by Methionine Aminopeptidases (MAP1 and MAP2), and N-terminal acetylation (NTA) by N-Acetyl-Transferase A (NatA), is the most common combination of subsequent modifications carried out on the 80S ribosome. How these enzymatic processes are coordinated in the context of a rapidly translating ribosome has remained elusive. Here, we report two cryo-EM structures of multi-enzyme complexes assembled on vacant human 80S ribosomes, indicating two routes for NME-NTA. Both assemblies form on the 80S independent of nascent chain substrates. Irrespective of the route, NatA occupies a non-intrusive 'distal' binding site on the ribosome which does not interfere with MAP1 or MAP2 binding nor with most other ribosome-associated factors (RAFs). NatA can partake in a coordinated, dynamic assembly with MAP1 through the hydra-like chaperoning function of the abundant Nascent Polypeptide-Associated Complex (NAC). In contrast to MAP1, MAP2 completely covers the PTE and is thus incompatible with NAC and MAP1 recruitment. Together, our data provide the structural framework for the coordinated orchestration of NME and NTA in protein biogenesis.
Collapse
Affiliation(s)
- Marius Klein
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Pereira CD, Espadas G, Martins F, Bertrand AT, Servais L, Sabidó E, Chevalier P, da Cruz e Silva OA, Rebelo S. Quantitative proteome analysis of LAP1-deficient human fibroblasts: A pilot approach for predicting the signaling pathways deregulated in LAP1-associated diseases. Biochem Biophys Rep 2024; 39:101757. [PMID: 39035020 PMCID: PMC11260385 DOI: 10.1016/j.bbrep.2024.101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024] Open
Abstract
Lamina-associated polypeptide 1 (LAP1), a ubiquitously expressed nuclear envelope protein, appears to be essential for the maintenance of cell homeostasis. Although rare, mutations in the human LAP1-encoding TOR1AIP1 gene cause severe diseases and can culminate in the premature death of affected individuals. Despite there is increasing evidence of the pathogenicity of TOR1AIP1 mutations, the current knowledge on LAP1's physiological roles in humans is limited; hence, investigation is required to elucidate the critical functions of this protein, which can be achieved by uncovering the molecular consequences of LAP1 depletion, a topic that remains largely unexplored. In this work, the proteome of patient-derived LAP1-deficient fibroblasts carrying a pathological TOR1AIP1 mutation (LAP1 E482A) was quantitatively analyzed to identify global changes in protein abundance levels relatively to control fibroblasts. An in silico functional enrichment analysis of the mass spectrometry-identified differentially expressed proteins was also performed, along with additional in vitro functional assays, to unveil the biological processes that are potentially dysfunctional in LAP1 E482A fibroblasts. Collectively, our findings suggest that LAP1 deficiency may induce significant alterations in various cellular activities, including DNA repair, messenger RNA degradation/translation, proteostasis and glutathione metabolism/antioxidant response. This study sheds light on possible new functions of human LAP1 and could set the basis for subsequent in-depth mechanistic investigations. Moreover, by identifying deregulated signaling pathways in LAP1-deficient cells, our work may offer valuable molecular targets for future disease-modifying therapies for TOR1AIP1-associated nuclear envelopathies.
Collapse
Affiliation(s)
- Cátia D. Pereira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Guadalupe Espadas
- Center for Genomics Regulation, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Filipa Martins
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Anne T. Bertrand
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Laurent Servais
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford and NIHR Oxford Biomedical Research Center, Oxford, OX3 9DU, United Kingdom
- Neuromuscular Center, Division of Paediatrics, University Hospital of Liège and University of Liège, 4000, Liège, Belgium
| | - Eduard Sabidó
- Center for Genomics Regulation, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Philippe Chevalier
- Université Claude Bernard Lyon 1, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Odete A.B. da Cruz e Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
10
|
Mishra D, Shekhar S, Subba P, Prasad TSK, Chakraborty S, Chakraborty N. Wheat TaNACα18 functions as a positive regulator of high-temperature adaptive responses and improves cell defense machinery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2217-2235. [PMID: 38961633 DOI: 10.1111/tpj.16913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Global wheat production amounted to >780 MMT during 2022-2023 whose market size are valued at >$128 billion. Wheat is highly susceptible to high-temperature stress (HTS) throughout the life cycle and its yield declines 5-7% with the rise in each degree of temperature. Previously, we reported an array of HTS-response markers from a resilient wheat cv. Unnat Halna and described their putative role in heat acclimation. To complement our previous results and identify the key determinants of thermotolerance, here we examined the cytoplasmic proteome of a sensitive cv. PBW343. The HTS-triggered metabolite reprograming highlighted how proteostasis defects influence the formation of an integrated stress-adaptive response. The proteomic analysis identified several promising HTS-responsive proteins, including a NACα18 protein, designated TaNACα18, whose role in thermotolerance remains unknown. Dual localization of TaNACα18 suggests its crucial functions in the cytoplasm and nucleus. The homodimerization of TaNACα18 anticipated its function as a transcriptional coactivator. The complementation of TaNACα18 in yeast and overexpression in wheat demonstrated its role in thermotolerance across the kingdom. Altogether, our results suggest that TaNACα18 imparts tolerance through tight regulation of gene expression, cell wall remodeling and activation of cell defense responses.
Collapse
Affiliation(s)
- Divya Mishra
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shubhendu Shekhar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya, Mangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya, Mangalore, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
11
|
Kinger S, Jagtap YA, Kumar P, Choudhary A, Prasad A, Prajapati VK, Kumar A, Mehta G, Mishra A. Proteostasis in neurodegenerative diseases. Adv Clin Chem 2024; 121:270-333. [PMID: 38797543 DOI: 10.1016/bs.acc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India.
| |
Collapse
|
12
|
Bao X, Jia H, Zhang X, Tian S, Zhao Y, Li X, Lin P, Ma C, Wang P, Song CP, Zhu X. Mapping of cytosol-facing organelle outer membrane proximity proteome by proximity-dependent biotinylation in living Arabidopsis cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:7-23. [PMID: 38261530 DOI: 10.1111/tpj.16641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
The cytosol-facing outer membrane (OM) of organelles communicates with other cellular compartments to exchange proteins, metabolites, and signaling molecules. Cellular surveillance systems also target OM-resident proteins to control organellar homeostasis and ensure cell survival under stress. However, the OM proximity proteomes have never been mapped in plant cells since using traditional approaches to discover OM proteins and identify their dynamically interacting partners remains challenging. In this study, we developed an OM proximity labeling (OMPL) system using biotin ligase-mediated proximity biotinylation to identify the proximity proteins of the OMs of mitochondria, chloroplasts, and peroxisomes in living Arabidopsis (Arabidopsis thaliana) cells. Using this approach, we mapped the OM proximity proteome of these three organelles under normal conditions and examined the effects of the ultraviolet-B (UV-B) or high light (HL) stress on the abundances of OM proximity proteins. We demonstrate the power of this system with the discovery of cytosolic factors and OM receptor candidates potentially involved in local protein translation and translocation. The candidate proteins that are involved in mitochondrion-peroxisome, mitochondrion-chloroplast, or peroxisome-chloroplast contacts, and in the organellar quality control system are also proposed based on OMPL analysis. OMPL-generated OM proximity proteomes are valuable sources of candidates for functional validation and suggest directions for further investigation of important questions in cell biology.
Collapse
Affiliation(s)
- Xinyue Bao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Huifang Jia
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaoyan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Sang Tian
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanming Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiangyun Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ping Lin
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chongyang Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaohong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
13
|
Jung R, Lechler MC, Fernandez-Villegas A, Chung CW, Jones HC, Choi YH, Thompson MA, Rödelsperger C, Röseler W, Kaminski Schierle GS, Sommer RJ, David DC. A safety mechanism enables tissue-specific resistance to protein aggregation during aging in C. elegans. PLoS Biol 2023; 21:e3002284. [PMID: 37708127 PMCID: PMC10501630 DOI: 10.1371/journal.pbio.3002284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
During aging, proteostasis capacity declines and distinct proteins become unstable and can accumulate as protein aggregates inside and outside of cells. Both in disease and during aging, proteins selectively aggregate in certain tissues and not others. Yet, tissue-specific regulation of cytoplasmic protein aggregation remains poorly understood. Surprisingly, we found that the inhibition of 3 core protein quality control systems, namely chaperones, the proteasome, and macroautophagy, leads to lower levels of age-dependent protein aggregation in Caenorhabditis elegans pharyngeal muscles, but higher levels in body-wall muscles. We describe a novel safety mechanism that selectively targets newly synthesized proteins to suppress their aggregation and associated proteotoxicity. The safety mechanism relies on macroautophagy-independent lysosomal degradation and involves several previously uncharacterized components of the intracellular pathogen response (IPR). We propose that this protective mechanism engages an anti-aggregation machinery targeting aggregating proteins for lysosomal degradation.
Collapse
Affiliation(s)
- Raimund Jung
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Marie C. Lechler
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
| | - Ana Fernandez-Villegas
- Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Chyi Wei Chung
- Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Harry C. Jones
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
| | - Yoon Hee Choi
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
| | | | - Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | - Waltraud Röseler
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | | | - Ralf J. Sommer
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | - Della C. David
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Zheng S, Qi J, Fu T, Chen Y, Qiu X. Novel mechanisms of cadmium tolerance and Cd-induced fungal stress in wheat: Transcriptomic and metagenomic insights. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114842. [PMID: 37027945 DOI: 10.1016/j.ecoenv.2023.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Although several studies on the effects of cadmium (Cd) on wheat have been reported, the gene expression profiles of different wheat tissues in response to gradient concentrations of Cd, and whether soil microorganisms are involved in the damage to wheat remain to be discovered. To gain further insight into the molecular mechanisms of Cd-resistance in wheat, we sowed bread wheat (Triticum aestivum) in artificially Cd-contaminated soil and investigated the transcriptomic response of the wheat roots, stems, and leaves to gradient concentrations of Cd, as well as the alteration of the soil microbiome. Results indicated that the root bioaccumulation factors increased with Cd when concentrations were < 10 mg/kg, but at even higher concentrations, the bioaccumulation factors decreased, which is consistent with the overexpression of metal transporters and other genes related to Cd tolerance. In the Cd-contaminated soil, the abundance of fungal pathogens increased, and the antimicrobial response in wheat root was observed. Most of the differentially expressed genes (DEGs) of wheat changed significantly when the Cd concentration increased above 10 mg/kg, and the transcriptional response is much greater in roots than in stems and leaves. The DEGs are mainly involved in Cd transport and chelation, antioxidative stress, antimicrobial responses, and growth regulation. COPT3 and ZnT1 were identified for the first time as the major transporters responding to Cd in wheat. Overexpression of the nicotianamine synthase and pectinesterase genes suggested that nicotianamine and pectin are the key chelators in Cd detoxification. endochitinase, chitinase, and snakin2 were involved in the anti-fungal stress caused by Cd-induced cell damage. Several phytohormone-related DEGs are involved in the root's growth and repair. Overall, this study presents the novel Cd tolerance mechanisms in wheat and the changes in soil fungal pathogens that increase plant damage.
Collapse
Affiliation(s)
- Senlin Zheng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Joyce Qi
- Mulgrave School, West Vancouver, V7S 3H9, Canada
| | - Tengwei Fu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yijing Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | | |
Collapse
|
15
|
Jawed A, Ho CT, Grousl T, Shrivastava A, Ruppert T, Bukau B, Mogk A. Balanced activities of Hsp70 and the ubiquitin proteasome system underlie cellular protein homeostasis. Front Mol Biosci 2023; 9:1106477. [PMID: 36660429 PMCID: PMC9845930 DOI: 10.3389/fmolb.2022.1106477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
To counteract proteotoxic stress and cellular aging, protein quality control (PQC) systems rely on the refolding, degradation and sequestration of misfolded proteins. In Saccharomyces cerevisiae the Hsp70 chaperone system plays a central role in protein refolding, while degradation is predominantly executed by the ubiquitin proteasome system (UPS). The sequestrases Hsp42 and Btn2 deposit misfolded proteins in cytosolic and nuclear inclusions, thereby restricting the accessibility of misfolded proteins to Hsp70 and preventing the exhaustion of limited Hsp70 resources. Therefore, in yeast, sequestrase mutants show negative genetic interactions with double mutants lacking the Hsp70 co-chaperone Fes1 and the Hsp104 disaggregase (fes1Δ hsp104Δ, ΔΔ) and suffering from low Hsp70 capacity. Growth of ΔΔbtn2Δ mutants is highly temperature-sensitive and results in proteostasis breakdown at non-permissive temperatures. Here, we probed for the role of the ubiquitin proteasome system in maintaining protein homeostasis in ΔΔbtn2Δ cells, which are affected in two major protein quality control branches. We show that ΔΔbtn2Δ cells induce expression of diverse stress-related pathways including the ubiquitin proteasome system to counteract the proteostasis defects. Ubiquitin proteasome system dependent degradation of the stringent Hsp70 substrate firefly Luciferase in the mutant cells mirrors such compensatory activities of the protein quality control system. Surprisingly however, the enhanced ubiquitin proteasome system activity does not improve but aggravates the growth defects of ΔΔbtn2Δ cells. Reducing ubiquitin proteasome system activity in the mutant by lowering the levels of functional 26S proteasomes improved growth, increased refolding yield of the Luciferase reporter and attenuated global stress responses. Our findings indicate that an imbalance between Hsp70-dependent refolding, sequestration and ubiquitin proteasome system-mediated degradation activities strongly affects protein homeostasis of Hsp70 capacity mutants and contributes to their severe growth phenotypes.
Collapse
Affiliation(s)
- Areeb Jawed
- Center for Molecular Biology of Heidelberg University (ZMBH), University of Heidelberg, Heidelberg, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chi-Ting Ho
- Center for Molecular Biology of Heidelberg University (ZMBH), University of Heidelberg, Heidelberg, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tomas Grousl
- Center for Molecular Biology of Heidelberg University (ZMBH), University of Heidelberg, Heidelberg, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aseem Shrivastava
- Center for Molecular Biology of Heidelberg University (ZMBH), University of Heidelberg, Heidelberg, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Ruppert
- Center for Molecular Biology of Heidelberg University (ZMBH), University of Heidelberg, Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), University of Heidelberg, Heidelberg, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany,*Correspondence: Axel Mogk, ; Bernd Bukau,
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), University of Heidelberg, Heidelberg, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany,*Correspondence: Axel Mogk, ; Bernd Bukau,
| |
Collapse
|
16
|
Bhattacharya U, Thavathiru E, Neizer-Ashun F, Xu C, Gatalica Z, Dwivedi SKD, Dey A, Mukherjee P, Bhattacharya R. The deubiquitinase USP10 protects pancreatic cancer cells from endoplasmic reticulum stress. NPJ Precis Oncol 2022; 6:93. [PMID: 36543867 PMCID: PMC9772324 DOI: 10.1038/s41698-022-00336-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
The ubiquitin-specific peptidase 10 (USP10) plays a context-specific, pro or anti-tumorigenic role in different malignancies. However, the role of USP10 in pancreatic cancer remains unclear. Our protein and RNA level analysis from archived specimens and public databases show that USP10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and expression correlates with poor overall patient survival. Phenotypically, silencing USP10 decreased viability, clonal growth and invasive properties of pancreatic cancer cells. Mechanistically, silencing USP10 upregulated BiP and induced endoplasmic reticulum (ER) stress that led to an unfolded protein response (UPR) and upregulation of PERK, IRE1α. Decreased cell viability of USP10 silenced cells could be rescued by a chemical chaperone that promotes protein folding. Our studies suggest that USP10 by protecting pancreatic cancer cells from ER stress may support tumor progression.
Collapse
Affiliation(s)
- Udayan Bhattacharya
- grid.266902.90000 0001 2179 3618Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Elangovan Thavathiru
- grid.266902.90000 0001 2179 3618Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Fiifi Neizer-Ashun
- grid.266902.90000 0001 2179 3618Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Chao Xu
- grid.266902.90000 0001 2179 3618Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Zoran Gatalica
- grid.266902.90000 0001 2179 3618Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Shailendra Kumar Dhar Dwivedi
- grid.266902.90000 0001 2179 3618Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Anindya Dey
- grid.266902.90000 0001 2179 3618Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Priyabrata Mukherjee
- grid.266902.90000 0001 2179 3618Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
17
|
One-day thermal regime extends the lifespan in Caenorhabditis elegans. Comput Struct Biotechnol J 2022; 21:495-505. [PMID: 36618984 PMCID: PMC9813578 DOI: 10.1016/j.csbj.2022.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Environmental factors, including temperature, can modulate an animal's lifespan. However, their underlying mechanisms remain largely undefined. We observed a profound effect of temperature on the aging of Caenorhabditis elegans (C. elegans) by performing proteomic analysis at different time points (young adult, middle age, and old age) and temperature conditions (20 °C and 25 °C). Importantly, although at the higher temperature, animals had short life spans, the shift from 20 °C to 25 °C for one day during early adulthood was beneficial for protein homeostasis since; it decreased protein synthesis and increased degradation. Consistent with our findings, animals who lived longer in the 25 °C shift were also more resistant to high temperatures along with oxidative and UV stresses. Furthermore, the lifespan extension by the 25 °C shift was mediated by three important transcription factors, namely FOXO/DAF-16, HSF-1, and HIF-1. We revealed an unexpected and complicated mechanism underlying the effects of temperature on aging, which could potentially aid in developing strategies to treat age-related diseases. Our data are available in ProteomeXchange with the identifier PXD024916.
Collapse
|
18
|
Yu W, Bosquée E, Fan J, Liu Y, Bragard C, Francis F, Chen J. Proteomic and Transcriptomic Analysis for Identification of Endosymbiotic Bacteria Associated with BYDV Transmission Efficiency by Sitobion miscanthi. PLANTS (BASEL, SWITZERLAND) 2022; 11:3352. [PMID: 36501390 PMCID: PMC9735544 DOI: 10.3390/plants11233352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Sitobion miscanthi, an important viral vector of barley yellow dwarf virus (BYDV), is also symbiotically associated with endosymbionts, but little is known about the interactions between endosymbionts, aphid and BYDV. Therefore, two aphids' geographic populations, differing in their BYDV transmission efficiency, after characterizing their endosymbionts, were treated with antibiotics to investigate how changes in the composition of their endosymbiont population affected BYDV transmission efficiency. After antibiotic treatment, Rickettsia was eliminated from two geographic populations. BYDV transmission efficiency by STY geographic population dropped significantly, by -44.2% with ampicillin and -25.01% with rifampicin, but HDZ geographic population decreased by only 14.19% with ampicillin and 23.88% with rifampicin. Transcriptomic analysis showed that the number of DEGs related to the immune system, carbohydrate metabolism and lipid metabolism did increase in the STY rifampicin treatment, while replication and repair, glycan biosynthesis and metabolism increased in the STY ampicillin treatment. Proteomic analysis showed that the abundance of symbionin symL, nascent polypeptide-associated complex subunit alpha and proteasome differed significantly between the two geographic populations. We found that the endosymbionts can mediate vector viral transmission. They should therefore be included in investigations into aphid-virus interactions and plant disease epidemiology. Our findings should also help with the development of strategies to prevent virus transmission.
Collapse
Affiliation(s)
- Wenjuan Yu
- MOA Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Emilie Bosquée
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Jia Fan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Claude Bragard
- Applied Microbiologye-Phytopathology, Earth and Life Institute, UCLouvain, Croix du Sud L7.05.03, 1348 Louvain-la-Neuve, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Julian Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
19
|
Schroeder AM, Nielsen T, Lynott M, Vogler G, Colas AR, Bodmer R. Nascent polypeptide-Associated Complex and Signal Recognition Particle have cardiac-specific roles in heart development and remodeling. PLoS Genet 2022; 18:e1010448. [PMID: 36240221 PMCID: PMC9604979 DOI: 10.1371/journal.pgen.1010448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Establishing a catalog of Congenital Heart Disease (CHD) genes and identifying functional networks would improve our understanding of its oligogenic underpinnings. Our studies identified protein biogenesis cofactors Nascent polypeptide-Associated Complex (NAC) and Signal-Recognition-Particle (SRP) as disease candidates and novel regulators of cardiac differentiation and morphogenesis. Knockdown (KD) of the alpha- (Nacα) or beta-subunit (bicaudal, bic) of NAC in the developing Drosophila heart disrupted cardiac developmental remodeling resulting in a fly with no heart. Heart loss was rescued by combined KD of Nacα with the posterior patterning Hox gene Abd-B. Consistent with a central role for this interaction in cardiogenesis, KD of Nacα in cardiac progenitors derived from human iPSCs impaired cardiac differentiation while co-KD with human HOXC12 and HOXD12 rescued this phenotype. Our data suggest that Nacα KD preprograms cardioblasts in the embryo for abortive remodeling later during metamorphosis, as Nacα KD during translation-intensive larval growth or pupal remodeling only causes moderate heart defects. KD of SRP subunits in the developing fly heart produced phenotypes that targeted specific segments and cell types, again suggesting cardiac-specific and spatially regulated activities. Together, we demonstrated directed function for NAC and SRP in heart development, and that regulation of NAC function depends on Hox genes.
Collapse
Affiliation(s)
- Analyne M. Schroeder
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail: (AMS); (RB)
| | - Tanja Nielsen
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Georg Vogler
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Alexandre R. Colas
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail: (AMS); (RB)
| |
Collapse
|
20
|
Shrivastava A, Sandhof CA, Reinle K, Jawed A, Ruger-Herreros C, Schwarz D, Creamer D, Nussbaum-Krammer C, Mogk A, Bukau B. The cytoprotective sequestration activity of small heat shock proteins is evolutionarily conserved. J Cell Biol 2022; 221:213447. [PMID: 36069810 PMCID: PMC9458469 DOI: 10.1083/jcb.202202149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
The chaperone-mediated sequestration of misfolded proteins into inclusions is a pivotal cellular strategy to maintain proteostasis in Saccharomyces cerevisiae, executed by small heat shock proteins (sHsps) Hsp42 and Btn2. Direct homologs of Hsp42 and Btn2 are absent in other organisms, questioning whether sequestration represents a conserved proteostasis strategy and, if so, which factors are involved. We examined sHsps from Escherchia coli, Caenorhabditis elegans, and humans for their ability to complement the defects of yeast sequestrase mutants. We show that sequestration of misfolded proteins is an original and widespread activity among sHsps executed by specific family members. Sequestrase positive C. elegans' sHsps harbor specific sequence features, including a high content of aromatic and methionine residues in disordered N-terminal extensions. Those sHsps buffer limitations in Hsp70 capacity in C. elegans WT animals and are upregulated in long-lived daf-2 mutants, contributing to lifespan extension. Cellular protection by sequestration of misfolded proteins is, therefore, an evolutionarily conserved activity of the sHsp family.
Collapse
Affiliation(s)
- Aseem Shrivastava
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carl Alexander Sandhof
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kevin Reinle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Areeb Jawed
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carmen Ruger-Herreros
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Schwarz
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Declan Creamer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Zheng AJL, Thermou A, Daskalogianni C, Malbert-Colas L, Karakostis K, Le Sénéchal R, Trang Dinh V, Tovar Fernandez MC, Apcher S, Chen S, Blondel M, Fahraeus R. The nascent polypeptide-associated complex (NAC) controls translation initiation in cis by recruiting nucleolin to the encoding mRNA. Nucleic Acids Res 2022; 50:10110-10122. [PMID: 36107769 PMCID: PMC9508830 DOI: 10.1093/nar/gkac751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/10/2022] [Indexed: 11/20/2022] Open
Abstract
Protein aggregates and abnormal proteins are toxic and associated with neurodegenerative diseases. There are several mechanisms to help cells get rid of aggregates but little is known on how cells prevent aggregate-prone proteins from being synthesised. The EBNA1 of the Epstein-Barr virus (EBV) evades the immune system by suppressing its own mRNA translation initiation in order to minimize the production of antigenic peptides for the major histocompatibility (MHC) class I pathway. Here we show that the emerging peptide of the disordered glycine–alanine repeat (GAr) within EBNA1 dislodges the nascent polypeptide-associated complex (NAC) from the ribosome. This results in the recruitment of nucleolin to the GAr-encoding mRNA and suppression of mRNA translation initiation in cis. Suppressing NAC alpha (NACA) expression prevents nucleolin from binding to the GAr mRNA and overcomes GAr-mediated translation inhibition. Taken together, these observations suggest that EBNA1 exploits a nascent protein quality control pathway to regulate its own rate of synthesis that is based on sensing the nascent GAr peptide by NAC followed by the recruitment of nucleolin to the GAr-encoding RNA sequence.
Collapse
Affiliation(s)
- Alice J L Zheng
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Aikaterini Thermou
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Chrysoula Daskalogianni
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Laurence Malbert-Colas
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Konstantinos Karakostis
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Ronan Le Sénéchal
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Van Trang Dinh
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Maria C Tovar Fernandez
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Sébastien Apcher
- Institut Gustave Roussy, Université Paris Sud, Unité 1015 département d’immunologie , 114, rue Edouard Vaillant , 94805 Villejuif , France
| | - Sa Chen
- Department of Medical Biosciences, Building 6M, Umeå University , 901 85 Umeå , Sweden
| | - Marc Blondel
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Robin Fahraeus
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- Department of Medical Biosciences, Building 6M, Umeå University , 901 85 Umeå , Sweden
- RECAMO, Masaryk Memorial Cancer Institute , Zluty kopec 7 , 65653 Brno , Czech Republic
| |
Collapse
|
22
|
Guthertz N, van der Kant R, Martinez RM, Xu Y, Trinh C, Iorga BI, Rousseau F, Schymkowitz J, Brockwell DJ, Radford SE. The effect of mutation on an aggregation-prone protein: An in vivo, in vitro, and in silico analysis. Proc Natl Acad Sci U S A 2022; 119:e2200468119. [PMID: 35613051 PMCID: PMC9295795 DOI: 10.1073/pnas.2200468119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023] Open
Abstract
Aggregation of initially stably structured proteins is involved in more than 20 human amyloid diseases. Despite intense research, however, how this class of proteins assembles into amyloid fibrils remains poorly understood, principally because of the complex effects of amino acid substitutions on protein stability, solubility, and aggregation propensity. We address this question using β2-microglobulin (β2m) as a model system, focusing on D76N-β2m that is involved in hereditary amyloidosis. This amino acid substitution causes the aggregation-resilient wild-type protein to become highly aggregation prone in vitro, although the mechanism by which this occurs remained elusive. Here, we identify the residues key to protecting β2m from aggregation by coupling aggregation with antibiotic resistance in E. coli using a tripartite β-lactamase assay (TPBLA). By performing saturation mutagenesis at three different sites (D53X-, D76X-, and D98X-β2m) we show that residue 76 has a unique ability to drive β2m aggregation in vivo and in vitro. Using a randomly mutated D76N-β2m variant library, we show that all of the mutations found to improve protein behavior involve residues in a single aggregation-prone region (APR) (residues 60 to 66). Surprisingly, no correlation was found between protein stability and protein aggregation rate or yield, with several mutations in the APR decreasing aggregation without affecting stability. Together, the results demonstrate the power of the TPBLA to develop proteins that are resilient to aggregation and suggest a model for D76N-β2m aggregation involving the formation of long-range couplings between the APR and Asn76 in a nonnative state.
Collapse
Affiliation(s)
- N. Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - R. van der Kant
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - R. M. Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Y. Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - C. Trinh
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - B. I. Iorga
- Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, 91198 Gif-sur-Yvette, France
| | - F. Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - J. Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - D. J. Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - S. E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
23
|
Wang X, Middleton FA, Tawil R, Chen XJ. Cytosolic adaptation to mitochondria-induced proteostatic stress causes progressive muscle wasting. iScience 2022; 25:103715. [PMID: 35072007 PMCID: PMC8762400 DOI: 10.1016/j.isci.2021.103715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/15/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction causes muscle wasting in many diseases and probably also during aging. The underlying mechanism is poorly understood. We generated transgenic mice with unbalanced mitochondrial protein loading and import, by moderately overexpressing the nuclear-encoded adenine nucleotide translocase, Ant1. We found that these mice progressively lose skeletal muscle. Ant1-overloading reduces mitochondrial respiration. Interestingly, it also induces small heat shock proteins and aggresome-like structures in the cytosol, suggesting increased proteostatic burden due to accumulation of unimported mitochondrial preproteins. The transcriptome of Ant1-transgenic muscles is drastically remodeled to counteract proteostatic stress, by repressing protein synthesis and promoting proteasomal function, autophagy, and lysosomal amplification. These proteostatic adaptations collectively reduce protein content thereby reducing myofiber size and muscle mass. Thus, muscle wasting can occur as a trade-off of adaptation to mitochondria-induced proteostatic stress. This finding could have implications for understanding the mechanism of muscle wasting, especially in diseases associated with Ant1 overexpression, including facioscapulohumeral dystrophy.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Frank A. Middleton
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
24
|
Hsieh HH, Shan SO. Fidelity of Cotranslational Protein Targeting to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:ijms23010281. [PMID: 35008707 PMCID: PMC8745203 DOI: 10.3390/ijms23010281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/04/2023] Open
Abstract
Fidelity of protein targeting is essential for the proper biogenesis and functioning of organelles. Unlike replication, transcription and translation processes, in which multiple mechanisms to recognize and reject noncognate substrates are established in energetic and molecular detail, the mechanisms by which cells achieve a high fidelity in protein localization remain incompletely understood. Signal recognition particle (SRP), a conserved pathway to mediate the localization of membrane and secretory proteins to the appropriate cellular membrane, provides a paradigm to understand the molecular basis of protein localization in the cell. In this chapter, we review recent progress in deciphering the molecular mechanisms and substrate selection of the mammalian SRP pathway, with an emphasis on the key role of the cotranslational chaperone NAC in preventing protein mistargeting to the ER and in ensuring the organelle specificity of protein localization.
Collapse
|
25
|
Sarkar A, Nazir A. Carrying Excess Baggage Can Slowdown Life: Protein Clearance Machineries That Go Awry During Aging and the Relevance of Maintaining Them. Mol Neurobiol 2021; 59:821-840. [PMID: 34792731 DOI: 10.1007/s12035-021-02640-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
Cellular homeostasis is maintained by rapid and systematic cleansing of aberrant and aggregated proteins within cells. Neurodegenerative diseases (NDs) especially Parkinson's and Alzheimer's disease are known to be associated with multiple factors, most important being impaired clearance of aggregates, resulting in the accumulation of specific aggregated protein in the brain. Protein quality control (PQC) of proteostasis network comprises proteolytic machineries and chaperones along with their regulators to ensure precise operation and maintenance of proteostasis. Such regulatory factors coordinate among each other multiple functional aspects related to proteins, including their synthesis, folding, transport, and degradation. During aging due to inevitable endogenous and external stresses, sustaining a proteome balance is a challenging task. Such stresses decline the capacity of the proteostasis network compromising the proteome integrity, affecting the fundamental physiological processes including reproductive fitness of the organism. This review focuses on highlighting proteome-wide changes during aging and the strategies for proteostasis improvements. The possibility of augmenting the proteostasis network either via genetic or pharmacological interventions may be a promising strategy towards delaying age-associated pathological consequences due to proteome disbalance, thus promoting healthy aging and prolonged longevity.
Collapse
Affiliation(s)
- Arunabh Sarkar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India.
| |
Collapse
|
26
|
Gene Expression Analysis of Microtubers of Potato Solanum tuberosum L. Induced in Cytokinin Containing Medium and Osmotic Stress. PLANTS 2021; 10:plants10050876. [PMID: 33925316 PMCID: PMC8146008 DOI: 10.3390/plants10050876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022]
Abstract
Potato microtuber productions through in vitro techniques are ideal propagules for producing high quality seed potatoes. Microtuber development is influenced by several factors, i.e., high content sucrose and cytokinins are among them. To understand a molecular mechanism of microtuberization using osmotic stress and cytokinin signaling will help us to elucidate this process. We demonstrate in this work a rapid and efficient protocol for microtuber development and gene expression analysis. Medium with high content of sucrose and gelrite supplemented with 2iP as cytokinin under darkness condition produced the higher quantity and quality of microtubers. Gene expression analysis of genes involved in the two-component signaling system (StHK1), cytokinin signaling, (StHK3, StHP4, StRR1) homeodomains (WUSCHEL, POTH1, BEL5), auxin signaling, ARF5, carbon metabolism (TPI, TIM), protein synthesis, NAC5 and a morphogenetic regulator of tuberization (POTH15) was performed by qPCR real time. Differential gene expression was observed during microtuber development. Gene regulation of two component and cytokinin signaling is taking place during this developmental process, yielding more microtubers. Further analysis of each component is required to elucidate it.
Collapse
|
27
|
Haeussler S, Yeroslaviz A, Rolland SG, Luehr S, Lambie EJ, Conradt B. Genome-wide RNAi screen for regulators of UPRmt in Caenorhabditis elegans mutants with defects in mitochondrial fusion. G3-GENES GENOMES GENETICS 2021; 11:6204483. [PMID: 33784383 PMCID: PMC8495942 DOI: 10.1093/g3journal/jkab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Mitochondrial dynamics plays an important role in mitochondrial quality control and the adaptation of metabolic activity in response to environmental changes. The disruption of mitochondrial dynamics has detrimental consequences for mitochondrial and cellular homeostasis and leads to the activation of the mitochondrial unfolded protein response (UPRmt), a quality control mechanism that adjusts cellular metabolism and restores homeostasis. To identify genes involved in the induction of UPRmt in response to a block in mitochondrial fusion, we performed a genome-wide RNAi screen in Caenorhabditis elegans mutants lacking the gene fzo-1, which encodes the ortholog of mammalian Mitofusin, and identified 299 suppressors and 86 enhancers. Approximately 90% of these 385 genes are conserved in humans, and one third of the conserved genes have been implicated in human disease. Furthermore, many have roles in developmental processes, which suggests that mitochondrial function and the response to stress are defined during development and maintained throughout life. Our dataset primarily contains mitochondrial enhancers and non-mitochondrial suppressors of UPRmt, indicating that the maintenance of mitochondrial homeostasis has evolved as a critical cellular function, which, when disrupted, can be compensated for by many different cellular processes. Analysis of the subsets 'non-mitochondrial enhancers' and 'mitochondrial suppressors' suggests that organellar contact sites, especially between the ER and mitochondria, are of importance for mitochondrial homeostasis. In addition, we identified several genes involved in IP3 signaling that modulate UPRmt in fzo-1 mutants and found a potential link between pre-mRNA splicing and UPRmt activation.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Assa Yeroslaviz
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Planegg-Martinsried, Germany
| | - Stéphane G Rolland
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Sebastian Luehr
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Eric J Lambie
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, United Kingdom
| |
Collapse
|
28
|
Kinetic analysis reveals that independent nucleation events determine the progression of polyglutamine aggregation in C. elegans. Proc Natl Acad Sci U S A 2021; 118:2021888118. [PMID: 33836595 PMCID: PMC7980373 DOI: 10.1073/pnas.2021888118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protein aggregation is associated with a wide range of degenerative human diseases with devastating consequences, as exemplified by Alzheimer's, Parkinson's, and Huntington's diseases. In vitro kinetic studies have provided a mechanistic understanding of the aggregation process at the molecular level. However, it has so far remained largely unclear to what extent the biophysical principles of amyloid formation learned in vitro translate to the complex environment of living organisms. Here, we take advantage of the unique properties of a Caenorhabditis elegans model expressing a fluorescently tagged polyglutamine (polyQ) protein, which aggregates into discrete micrometer-sized inclusions that can be directly visualized in real time. We provide a quantitative analysis of protein aggregation in this system and show that the data are described by a molecular model where stochastic nucleation occurs independently in each cell, followed by rapid aggregate growth. Global fitting of the image-based aggregation kinetics reveals a nucleation rate corresponding to 0.01 h-1 per cell at 1 mM intracellular protein concentration, and shows that the intrinsic molecular stochasticity of nucleation accounts for a significant fraction of the observed animal-to-animal variation. Our results highlight how independent, stochastic nucleation events in individual cells control the overall progression of polyQ aggregation in a living animal. The key finding that the biophysical principles associated with protein aggregation in small volumes remain the governing factors, even in the complex environment of a living organism, will be critical for the interpretation of in vivo data from a wide range of protein aggregation diseases.
Collapse
|
29
|
Wang H, Xing J, Wang W, Lv G, He H, Lu Y, Sun M, Chen H, Li X. Molecular Characterization of the Oncogene BTF3 and Its Targets in Colorectal Cancer. Front Cell Dev Biol 2021; 8:601502. [PMID: 33644029 PMCID: PMC7905040 DOI: 10.3389/fcell.2020.601502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed and leading causes of cancer mortality worldwide, and the prognosis of patients with CRC remains unsatisfactory. Basic transcription factor 3 (BTF3) is an oncogene and hazardous prognosticator in CRC. Although two distinct functional mechanisms of BTF3 in different cancer types have been reported, its role in CRC is still unclear. In this study, we aimed to molecularly characterize the oncogene BTF3 and its targets in CRC. Here, we first identified the transcriptional targets of BTF3 by applying combined RNA-Seq and ChIP-Seq analysis, identifying CHD1L as a transcriptional target of BTF3. Thereafter, we conducted immunoprecipitation (IP)-MS and E3 ubiquitin ligase analysis to identify potential interacting targets of BTF3 as a subunit of the nascent-polypeptide-associated complex (NAC). The analysis revealed that BTF3 might also inhibit E3 ubiquitin ligase HERC2-mediated p53 degradation. Finally, miRNAs targeting BTF3 were predicted and validated. Decreased miR-497-5p expression is responsible for higher levels of BTF3 post-transcriptionally. Collectively, we concluded that BTF3 is an oncogene, and there may exist a transcription factor and NAC-related proteolysis mechanism in CRC. This study provides a comprehensive basis for understanding the oncogenic mechanisms of BTF3 in CRC.
Collapse
Affiliation(s)
- Hantao Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Junjie Xing
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Wei Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Guifen Lv
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Haiyan He
- Department of Digestive Endoscopy, Changhai Hospital, Shanghai, China
| | - Yeqing Lu
- Department of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Mei Sun
- Department of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Haiyan Chen
- Department of Endocrinology, Changzheng Hospital, Shanghai, China
| | - Xu Li
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
30
|
Ewe CK, Alok G, Rothman JH. Stressful development: integrating endoderm development, stress, and longevity. Dev Biol 2020; 471:34-48. [PMID: 33307045 DOI: 10.1016/j.ydbio.2020.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
In addition to performing digestion and nutrient absorption, the intestine serves as one of the first barriers to the external environment, crucial for protecting the host from environmental toxins, pathogenic invaders, and other stress inducers. The gene regulatory network (GRN) governing embryonic development of the endoderm and subsequent differentiation and maintenance of the intestine has been well-documented in C. elegans. A key regulatory input that initiates activation of the embryonic GRN for endoderm and mesoderm in this animal is the maternally provided SKN-1 transcription factor, an ortholog of the vertebrate Nrf1 and 2, which, like C. elegans SKN-1, perform conserved regulatory roles in mediating a variety of stress responses across metazoan phylogeny. Other key regulatory factors in early gut development also participate in stress response as well as in innate immunity and aging and longevity. In this review, we discuss the intersection between genetic nodes that mediate endoderm/intestine differentiation and regulation of stress and homeostasis. We also consider how direct signaling from the intestine to the germline, in some cases involving SKN-1, facilitates heritable epigenetic changes, allowing transmission of adaptive stress responses across multiple generations. These connections between regulation of endoderm/intestine development and stress response mechanisms suggest that varying selective pressure exerted on the stress response pathways may influence the architecture of the endoderm GRN, thereby leading to genetic and epigenetic variation in early embryonic GRN regulatory events.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Geneva Alok
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
31
|
Bhattacharya U, Neizer-Ashun F, Mukherjee P, Bhattacharya R. When the chains do not break: the role of USP10 in physiology and pathology. Cell Death Dis 2020; 11:1033. [PMID: 33277473 PMCID: PMC7718870 DOI: 10.1038/s41419-020-03246-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
Deubiquitination is now understood to be as important as its partner ubiquitination for the maintenance of protein half-life, activity, and localization under both normal and pathological conditions. The enzymes that remove ubiquitin from target proteins are called deubiquitinases (DUBs) and they regulate a plethora of cellular processes. DUBs are essential enzymes that maintain intracellular protein homeostasis by recycling ubiquitin. Ubiquitination is a post-translational modification where ubiquitin molecules are added to proteins thus influencing activation, localization, and complex formation. Ubiquitin also acts as a tag for protein degradation, especially by proteasomal or lysosomal degradation systems. With ~100 members, DUBs are a large enzyme family; the ubiquitin-specific peptidases (USPs) being the largest group. USP10, an important member of this family, has enormous significance in diverse cellular processes and many human diseases. In this review, we discuss recent studies that define the roles of USP10 in maintaining cellular function, its involvement in human pathologies, and the molecular mechanisms underlying its association with cancer and neurodegenerative diseases. We also discuss efforts to modulate USPs as therapy in these diseases.
Collapse
Affiliation(s)
- Udayan Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Fiifi Neizer-Ashun
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
32
|
Shih SR, Huntsman EM, Flores ME, Snow JW. Reproductive potential does not cause loss of heat shock response performance in honey bees. Sci Rep 2020; 10:19610. [PMID: 33184302 PMCID: PMC7661715 DOI: 10.1038/s41598-020-74456-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
In other species characterized to date, aging, as a function of reproductive potential, results in the breakdown of proteaostasis and a decreased capacity to mount responses by the heat shock response (HSR) and other proteostatic network pathways. Our understanding of the maintenance of stress pathways, such as the HSR, in honey bees, and in the reproductive queen in particular, is incomplete. Based on the findings in other species showing an inverse relationship between reproductive potential and HSR function, one might predict that that HSR function would be lost in the reproductive queens. However, as queens possess an atypical uncoupling of the reproduction-maintenance trade-off typically found in solitary organisms, HSR maintenance might also be expected. Here we demonstrate that reproductive potential does not cause loss of HSR performance in honey bees as queens induce target gene expression to levels comparable to those induced in attendant worker bees. Maintenance of HSR function with advent of reproductive potential is unique among invertebrates studied to date and provides a potential model for examining the molecular mechanisms regulating the uncoupling of the reproduction-maintenance trade-off in queen bees, with important consequences for understanding how stresses impact different types of individuals in honey bee colonies.
Collapse
Affiliation(s)
- S R Shih
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - E M Huntsman
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - M E Flores
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - J W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|
33
|
Grapevine-Downy Mildew Rendezvous: Proteome Analysis of the First Hours of an Incompatible Interaction. PLANTS 2020; 9:plants9111498. [PMID: 33167573 PMCID: PMC7694532 DOI: 10.3390/plants9111498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/26/2022]
Abstract
Grapevine is one of the most relevant crops in the world being used for economically important products such as wine. However, relevant grapevine cultivars are heavily affected by diseases such as the downy mildew disease caused by Plasmopara viticola. Improvements on grapevine resistance are made mainly by breeding techniques where resistance traits are introgressed into cultivars with desired grape characteristics. However, there is still a lack of knowledge on how resistant or tolerant cultivars tackle the P. viticola pathogen. In this study, using a shotgun proteomics LC-MS/MS approach, we unravel the protein modulation of a highly tolerant grapevine cultivar, Vitis vinifera “Regent”, in the first hours post inoculation (hpi) with P. viticola. At 6 hpi, proteins related to defense and to response to stimuli are negatively modulated while at 12 hpi there is an accumulation of proteins belonging to both categories. The co-occurrence of indicators of effector-triggered susceptibility (ETS) and effector-triggered immunity (ETI) is detected at both time-points, showing that these defense processes present high plasticity. The results obtained in this study unravel the tolerant grapevine defense strategy towards P. viticola and may provide valuable insights on resistance associated candidates and mechanisms, which may play an important role in the definition of new strategies for breeding approaches.
Collapse
|
34
|
Määttä TA, Rettel M, Sridharan S, Helm D, Kurzawa N, Stein F, Savitski MM. Aggregation and disaggregation features of the human proteome. Mol Syst Biol 2020; 16:e9500. [PMID: 33022891 PMCID: PMC7538195 DOI: 10.15252/msb.20209500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Protein aggregates have negative implications in disease. While reductionist experiments have increased our understanding of aggregation processes, the systemic view in biological context is still limited. To extend this understanding, we used mass spectrometry-based proteomics to characterize aggregation and disaggregation in human cells after non-lethal heat shock. Aggregation-prone proteins were enriched in nuclear proteins, high proportion of intrinsically disordered regions, high molecular mass, high isoelectric point, and hydrophilic amino acids. During recovery, most aggregating proteins disaggregated with a rate proportional to the aggregation propensity: larger loss in solubility was counteracted by faster disaggregation. High amount of intrinsically disordered regions were associated with faster disaggregation. However, other characteristics enriched in aggregating proteins did not correlate with the disaggregation rates. In addition, we analyzed changes in protein thermal stability after heat shock. Soluble remnants of aggregated proteins were more thermally stable compared with control condition. Therefore, our results provide a rich resource of heat stress-related protein solubility data and can foster further studies related to protein aggregation diseases.
Collapse
Affiliation(s)
- Tomi A Määttä
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD Degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Mandy Rettel
- Proteomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Sindhuja Sridharan
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Dominic Helm
- Proteomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Nils Kurzawa
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD Degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Frank Stein
- Proteomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Mikhail M Savitski
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Proteomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
35
|
Gallrein C, Iburg M, Michelberger T, Koçak A, Puchkov D, Liu F, Ayala Mariscal SM, Nayak T, Kaminski Schierle GS, Kirstein J. Novel amyloid-beta pathology C. elegans model reveals distinct neurons as seeds of pathogenicity. Prog Neurobiol 2020; 198:101907. [PMID: 32926945 DOI: 10.1016/j.pneurobio.2020.101907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/28/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Abstract
Protein misfolding and aggregation are hallmarks of neurodegenerative diseases such as Alzheimer's disease (AD). In AD, the accumulation and aggregation of tau and the amyloid-beta peptide Aβ1-42 precedes the onset of AD symptoms. Modelling the aggregation of Aβ is technically very challenging in vivo due to its size of only 42 aa. Here, we employed sub-stoichiometric labelling of Aβ1-42 in C. elegans to enable tracking of the peptide in vivo, combined with the "native" aggregation of unlabeled Aβ1-42. Expression of Aβ1-42 leads to severe physiological defects, neuronal dysfunction and neurodegeneration. Moreover, we can demonstrate spreading of neuronal Aβ to other tissues. Fluorescence lifetime imaging microscopy enabled a quantification of the formation of amyloid fibrils with ageing and revealed a heterogenic yet specific pattern of aggregation. Notably, we found that Aβ aggregation starts in a subset of neurons of the anterior head ganglion, the six IL2 neurons. We further demonstrate that cell-specific, RNAi-mediated depletion of Aβ in these IL2 neurons systemically delays Aβ aggregation and pathology.
Collapse
Affiliation(s)
- Christian Gallrein
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Manuel Iburg
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Tim Michelberger
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Alen Koçak
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Dmytro Puchkov
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Fan Liu
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Sara Maria Ayala Mariscal
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Tanmoyita Nayak
- University of Bremen, Faculty 2, Cell Biology, Leobener Strasse, 28359, Bremen, Germany
| | - Gabriele S Kaminski Schierle
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Janine Kirstein
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany; University of Bremen, Faculty 2, Cell Biology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
36
|
Vélez-Segarra V, González-Crespo S, Santiago-Cartagena E, Vázquez-Quiñones LE, Martínez-Matías N, Otero Y, Zayas JJ, Siaca R, Del Rosario J, Mejías I, Aponte JJ, Collazo NC, Lasso FJ, Snider J, Jessulat M, Aoki H, Rymond BC, Babu M, Stagljar I, Rodríguez-Medina JR. Protein Interactions of the Mechanosensory Proteins Wsc2 and Wsc3 for Stress Resistance in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2020; 10:3121-3135. [PMID: 32641451 PMCID: PMC7466973 DOI: 10.1534/g3.120.401468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 12/23/2022]
Abstract
Antifungal drug discovery and design is very challenging because of the considerable similarities in genetic features and metabolic pathways between fungi and humans. However, cell wall composition represents a notable point of divergence. Therefore, a research strategy was designed to improve our understanding of the mechanisms for maintaining fungal cell wall integrity, and to identify potential targets for new drugs that modulate the underlying protein-protein interactions in Saccharomyces cerevisiae This study defines roles for Wsc2p and Wsc3p and their interacting protein partners in the cell wall integrity signaling and cell survival mechanisms that respond to treatments with fluconazole and hydrogen peroxide. By combined genetic and biochemical approaches, we report the discovery of 12 novel protein interactors of Wsc2p and Wsc3p Of these, Wsc2p interacting partners Gtt1p and Yck2p, have opposing roles in the resistance and sensitivity to fluconazole treatments respectively. The interaction of Wsc2p with Ras2p was confirmed by iMYTH and IP-MS approaches and is shown to play a dominant role in response to oxidative stress induced by hydrogen peroxide. Consistent with an earlier study, Ras2p was also identified as an interacting partner of Wsc1p and Mid2p cell wall integrity signaling proteins. Collectively, this study expands the interaction networks of the mechanosensory proteins of the Cell Wall Integrity pathway.
Collapse
Affiliation(s)
- Vladimir Vélez-Segarra
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Sahily González-Crespo
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Ednalise Santiago-Cartagena
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Luis E Vázquez-Quiñones
- School of Science and Technology, University Ana G. Mendez, Cupey Campus, Ana G Mendez Ave, No.1399, San Juan, PR 00926
| | - Nelson Martínez-Matías
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Yamirelis Otero
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Julián J Zayas
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Rafael Siaca
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Jeanmadi Del Rosario
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Inoushka Mejías
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - José J Aponte
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Noelani C Collazo
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Francisco J Lasso
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| | - Jamie Snider
- Donnelly Centre, Department of Biochemistry, and Department of Molecular Genetics, University of Toronto, Ontario M5S 3E1, Canada
| | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Brian C Rymond
- Department of Biology, University of Kentucky, Lexington, KY 40506
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Igor Stagljar
- Donnelly Centre, Department of Biochemistry, and Department of Molecular Genetics, University of Toronto, Ontario M5S 3E1, Canada
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - José R Rodríguez-Medina
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR 00936-067
| |
Collapse
|
37
|
Abstract
Sustaining a healthy proteome is a lifelong challenge for each individual cell of an organism. However, protein homeostasis or proteostasis is constantly jeopardized since damaged proteins accumulate under proteotoxic stress that originates from ever-changing metabolic, environmental, and pathological conditions. Proteostasis is achieved via a conserved network of quality control pathways that orchestrate the biogenesis of correctly folded proteins, prevent proteins from misfolding, and remove potentially harmful proteins by selective degradation. Nevertheless, the proteostasis network has a limited capacity and its collapse deteriorates cellular functionality and organismal viability, causing metabolic, oncological, or neurodegenerative disorders. While cell-autonomous quality control mechanisms have been described intensely, recent work on Caenorhabditis elegans has demonstrated the systemic coordination of proteostasis between distinct tissues of an organism. These findings indicate the existence of intricately balanced proteostasis networks important for integration and maintenance of the organismal proteome, opening a new door to define novel therapeutic targets for protein aggregation diseases. Here, we provide an overview of individual protein quality control pathways and the systemic coordination between central proteostatic nodes. We further provide insights into the dynamic regulation of cellular and organismal proteostasis mechanisms that integrate environmental and metabolic changes. The use of C. elegans as a model has pioneered our understanding of conserved quality control mechanisms important to safeguard the organismal proteome in health and disease.
Collapse
Affiliation(s)
- Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany and
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC), the Hebrew University School of Medicine, Jerusalem 91120, Israel
| |
Collapse
|
38
|
Abstract
Ageing is a major risk factor for the development of many diseases, prominently including neurodegenerative disorders such as Alzheimer disease and Parkinson disease. A hallmark of many age-related diseases is the dysfunction in protein homeostasis (proteostasis), leading to the accumulation of protein aggregates. In healthy cells, a complex proteostasis network, comprising molecular chaperones and proteolytic machineries and their regulators, operates to ensure the maintenance of proteostasis. These factors coordinate protein synthesis with polypeptide folding, the conservation of protein conformation and protein degradation. However, sustaining proteome balance is a challenging task in the face of various external and endogenous stresses that accumulate during ageing. These stresses lead to the decline of proteostasis network capacity and proteome integrity. The resulting accumulation of misfolded and aggregated proteins affects, in particular, postmitotic cell types such as neurons, manifesting in disease. Recent analyses of proteome-wide changes that occur during ageing inform strategies to improve proteostasis. The possibilities of pharmacological augmentation of the capacity of proteostasis networks hold great promise for delaying the onset of age-related pathologies associated with proteome deterioration and for extending healthspan.
Collapse
|
39
|
Anisimova AS, Alexandrov AI, Makarova NE, Gladyshev VN, Dmitriev SE. Protein synthesis and quality control in aging. Aging (Albany NY) 2019; 10:4269-4288. [PMID: 30562164 PMCID: PMC6326689 DOI: 10.18632/aging.101721] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Aging is characterized by the accumulation of damage and other deleterious changes, leading to the loss of functionality and fitness. Age-related changes occur at most levels of organization of a living organism (molecular, organellar, cellular, tissue and organ). However, protein synthesis is a major biological process, and thus understanding how it changes with age is of paramount importance. Here, we discuss the relationships between lifespan, aging, protein synthesis and translational control, and expand this analysis to the various aspects of proteome behavior in organisms with age. Characterizing the consequences of changes in protein synthesis and translation fidelity, and determining whether altered translation is pathological or adaptive is necessary for understanding the aging process, as well as for developing approaches to target dysfunction in translation as a strategy for extending lifespan.
Collapse
Affiliation(s)
- Aleksandra S Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander I Alexandrov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nadezhda E Makarova
- School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vadim N Gladyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
40
|
Deuerling E, Gamerdinger M, Kreft SG. Chaperone Interactions at the Ribosome. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033977. [PMID: 30833456 DOI: 10.1101/cshperspect.a033977] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The continuous refreshment of the proteome is critical to maintain protein homeostasis and to adapt cells to changing conditions. Thus, de novo protein biogenesis by ribosomes is vitally important to every cellular system. This process is delicate and error-prone and requires, besides cytosolic chaperones, the guidance by a specialized set of molecular chaperones that bind transiently to the translation machinery and the nascent protein to support early folding events and to regulate cotranslational protein transport. These chaperones include the bacterial trigger factor (TF), the archaeal and eukaryotic nascent polypeptide-associated complex (NAC), and the eukaryotic ribosome-associated complex (RAC). This review focuses on the structures, functions, and substrates of these ribosome-associated chaperones and highlights the most recent findings about their potential mechanisms of action.
Collapse
Affiliation(s)
- Elke Deuerling
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Martin Gamerdinger
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Stefan G Kreft
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
41
|
Abstract
Using neXtProt release 2019-01-11, we manually curated a list of 1837 functionally uncharacterized human proteins. Using OrthoList 2, we found that 270 of them have homologues in Caenorhabditis elegans, including 60 with a one-to-one orthology relationship. According to annotations extracted from WormBase, the vast majority of these 60 worm genes have RNAi experimental data or mutant alleles, but manual inspection shows that only 15% have phenotypes that could be interpreted in terms of a specific function. One third of the worm orthologs have protein-protein interaction data, and two of these interactions are conserved in humans. The combination of phenotypic, protein-protein interaction, and gene expression data provides functional hypotheses for 8 uncharacterized human proteins. Experimental validation in human or orthologs is necessary before they can be considered for annotation.
Collapse
Affiliation(s)
- Paula Duek
- CALIPHO Group , SIB-Swiss Institute of Bioinformatics, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland
| | - Lydie Lane
- CALIPHO Group , SIB-Swiss Institute of Bioinformatics, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine , University of Geneva, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland
| |
Collapse
|
42
|
Paraskevopoulou S, Dennis AB, Weithoff G, Hartmann S, Tiedemann R. Within species expressed genetic variability and gene expression response to different temperatures in the rotifer Brachionus calyciflorus sensu stricto. PLoS One 2019; 14:e0223134. [PMID: 31568501 PMCID: PMC6768451 DOI: 10.1371/journal.pone.0223134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/14/2019] [Indexed: 01/14/2023] Open
Abstract
Genetic divergence is impacted by many factors, including phylogenetic history, gene flow, genetic drift, and divergent selection. Rotifers are an important component of aquatic ecosystems, and genetic variation is essential to their ongoing adaptive diversification and local adaptation. In addition to coding sequence divergence, variation in gene expression may relate to variable heat tolerance, and can impose ecological barriers within species. Temperature plays a significant role in aquatic ecosystems by affecting species abundance, spatio-temporal distribution, and habitat colonization. Recently described (formerly cryptic) species of the Brachionus calyciflorus complex exhibit different temperature tolerance both in natural and in laboratory studies, and show that B. calyciflorus sensu stricto (s.s.) is a thermotolerant species. Even within B. calyciflorus s.s., there is a tendency for further temperature specializations. Comparison of expressed genes allows us to assess the impact of stressors on both expression and sequence divergence among disparate populations within a single species. Here, we have used RNA-seq to explore expressed genetic diversity in B. calyciflorus s.s. in two mitochondrial DNA lineages with different phylogenetic histories and differences in thermotolerance. We identify a suite of candidate genes that may underlie local adaptation, with a particular focus on the response to sustained high or low temperatures. We do not find adaptive divergence in established candidate genes for thermal adaptation. Rather, we detect divergent selection among our two lineages in genes related to metabolism (lipid metabolism, metabolism of xenobiotics).
Collapse
Affiliation(s)
- Sofia Paraskevopoulou
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Unit of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- * E-mail:
| | - Alice B. Dennis
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Guntram Weithoff
- Unit of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Stefanie Hartmann
- Unit of Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
43
|
Abrusán G, Marsh JA. Ligand Binding Site Structure Shapes Folding, Assembly and Degradation of Homomeric Protein Complexes. J Mol Biol 2019; 431:3871-3888. [PMID: 31306664 PMCID: PMC6739599 DOI: 10.1016/j.jmb.2019.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Ligand binding site structure has profound consequences for the evolution of function of protein complexes, particularly in homomers—complexes comprising multiple copies of the same protein. Previously, we have shown that homomers with multichain binding sites (MBSs) are characterized by more conserved binding sites and quaternary structure, and qualitatively different allosteric pathways than homomers with single-chain binding sites (SBSs) or monomers. Here, using computational methods, we show that the folds of single-domain MBS and SBS homomers are different, and SBS homomers are likely to be folded cotranslationally, while MBS homomers are more likely to form post-translationally and rely on more advanced folding-assistance and quality control mechanisms, which include chaperonins. In addition, our findings demonstrate that MBS homomers are qualitatively different from monomers, while SBS homomers are much less distinct, supporting the hypothesis that the evolution of quaternary structure in SBS homomers is significantly influenced by stochastic processes.
Collapse
Affiliation(s)
- György Abrusán
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
44
|
Lucena ACR, Amorim JC, de Paula Lima CV, Batista M, Krieger MA, de Godoy LMF, Marchini FK. Quantitative phosphoproteome and proteome analyses emphasize the influence of phosphorylation events during the nutritional stress of Trypanosoma cruzi: the initial moments of in vitro metacyclogenesis. Cell Stress Chaperones 2019; 24:927-936. [PMID: 31368045 PMCID: PMC6717228 DOI: 10.1007/s12192-019-01018-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/15/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation is an important event in cell signaling that is modulated by kinases and phosphatases. In Trypanosoma cruzi, the etiological agent of Chagas disease, approximately 2% of the protein-coding genes encode for protein kinases. This parasite has a heteroxenic life cycle with four different development stages. In the midgut of invertebrate vector, epimastigotes differentiate into metacyclic trypomastigotes in a process known as metacyclogenesis. This process can be reproduced in vitro by submitting parasites to nutritional stress (NS). Aiming to contribute to the elucidation of mechanisms that trigger metacyclogenesis, we applied super-SILAC (super-stable isotope labeling by amino acids in cell culture) and LC-MS/MS to analyze different points during NS. This analysis resulted in the identification of 4205 protein groups and 3643 phosphopeptides with the location of 4846 phosphorylation sites. Several phosphosites were considered modulated along NS and are present in proteins associated with various functions, such as fatty acid synthesis and the regulation of protein expression, reinforcing the importance of phosphorylation and signaling events to the parasite. These modulated sites may be triggers of metacyclogenesis.
Collapse
Affiliation(s)
- Aline Castro Rodrigues Lucena
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Juliana Carolina Amorim
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Carla Vanessa de Paula Lima
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Michel Batista
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Marco Aurelio Krieger
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Lyris Martins Franco de Godoy
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Fabricio Klerynton Marchini
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.
| |
Collapse
|
45
|
Early Scanning of Nascent Polypeptides inside the Ribosomal Tunnel by NAC. Mol Cell 2019; 75:996-1006.e8. [PMID: 31377116 DOI: 10.1016/j.molcel.2019.06.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/08/2019] [Accepted: 06/19/2019] [Indexed: 11/24/2022]
Abstract
Cotranslational processing of newly synthesized proteins is fundamental for correct protein maturation. Protein biogenesis factors are thought to bind nascent polypeptides not before they exit the ribosomal tunnel. Here, we identify a nascent chain recognition mechanism deep inside the ribosomal tunnel by an essential eukaryotic cytosolic chaperone. The nascent polypeptide-associated complex (NAC) inserts the N-terminal tail of its β subunit (N-βNAC) into the ribosomal tunnel to sense substrates directly upon synthesis close to the peptidyl-transferase center. N-βNAC escorts the growing polypeptide to the cytosol and relocates to an alternate binding site on the ribosomal surface. Using C. elegans as an in vivo model, we demonstrate that the tunnel-probing activity of NAC is essential for organismal viability and critical to regulate endoplasmic reticulum (ER) protein transport by controlling ribosome-Sec61 translocon interactions. Thus, eukaryotic protein maturation relies on the early sampling of nascent chains inside the ribosomal tunnel.
Collapse
|
46
|
Kramer G, Shiber A, Bukau B. Mechanisms of Cotranslational Maturation of Newly Synthesized Proteins. Annu Rev Biochem 2019; 88:337-364. [DOI: 10.1146/annurev-biochem-013118-111717] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The timely production of functional proteins is of critical importance for the biological activity of cells. To reach the functional state, newly synthesized polypeptides have to become enzymatically processed, folded, and assembled into oligomeric complexes and, for noncytosolic proteins, translocated across membranes. Key activities of these processes occur cotranslationally, assisted by a network of machineries that transiently engage nascent polypeptides at distinct phases of translation. The sequence of events is tuned by intrinsic features of the nascent polypeptides and timely association of factors with the translating ribosome. Considering the dynamics of translation, the heterogeneity of cellular proteins, and the diversity of interaction partners, it is a major cellular achievement that these processes are temporally and spatially so precisely coordinated, minimizing the generation of damaged proteins. This review summarizes the current progress we have made toward a comprehensive understanding of the cotranslational interactions of nascent chains, which pave the way to their functional state.
Collapse
Affiliation(s)
- Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| | - Ayala Shiber
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| |
Collapse
|
47
|
Chaari A. Molecular chaperones biochemistry and role in neurodegenerative diseases. Int J Biol Macromol 2019; 131:396-411. [DOI: 10.1016/j.ijbiomac.2019.02.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
|
48
|
Hu J, Sun F, Chen W, Zhang J, Zhang T, Qi M, Feng T, Liu H, Li X, Xing Y, Xiong X, Shi B, Zhou G, Han B. BTF3 sustains cancer stem-like phenotype of prostate cancer via stabilization of BMI1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:227. [PMID: 31138311 PMCID: PMC6540453 DOI: 10.1186/s13046-019-1222-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Background Cancer stem-like traits contribute to prostate cancer (PCa) progression and metastasis. Deciphering the novel molecular mechanisms underlying stem-like traits may provide important insight for developing novel therapeutics. Methods Immunohistochemistry and immunofluorescence assays in prostatic tissues; gain- and loss-of-function analyses using ectopic overexpression and shRNAs in PCa cell lines; measurements of tumorigenic and stemness properties, and transcription in vitro and in vivo; transcriptional analysis in public databases. Results We identified that overexpression of BTF3 in PCa tissues and BTF3 expression highly correlates to stem-like traits. Cancer stem-like characteristics in PCa including self-renewal and metastatic potential were impaired by BTF3 loss and promoted by BTF3 overexpression. Mechanistically, BTF3 could stabilize BMI1, which is a crucial regulator of prostate stem cell self-renewal. More importantly, our data revealed that BTF3 is highly predictive of poor prognosis and may help in risk stratification of PCa patients. Conclusions BTF3 promotes PCa progression though modeling stem-like traits in PCa. BTF3 represents a stratification marker in PCa progression and outcomes. Electronic supplementary material The online version of this article (10.1186/s13046-019-1222-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan, 250012, China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated To Shandong University, Jinan, 250021, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Shandong University, Jinan, 250012, China
| | - Mei Qi
- Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hui Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xinjun Li
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.,Department of Pathology, Binzhou People's Hospital, Binzhou, 256610, China
| | - Yuanxin Xing
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan, 250012, China
| | - Xueting Xiong
- Department of Molecular Genetics, University of Toronto, M5S1A8, Toronto, ON, Canada
| | - Benkang Shi
- Department of Urology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Gengyin Zhou
- Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China. .,Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China.
| |
Collapse
|
49
|
Shen K, Gamerdinger M, Chan R, Gense K, Martin EM, Sachs N, Knight PD, Schlömer R, Calabrese AN, Stewart KL, Leiendecker L, Baghel A, Radford SE, Frydman J, Deuerling E. Dual Role of Ribosome-Binding Domain of NAC as a Potent Suppressor of Protein Aggregation and Aging-Related Proteinopathies. Mol Cell 2019; 74:729-741.e7. [PMID: 30982745 PMCID: PMC6527867 DOI: 10.1016/j.molcel.2019.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/22/2019] [Accepted: 03/08/2019] [Indexed: 01/11/2023]
Abstract
The nascent polypeptide-associated complex (NAC) is a conserved ribosome-associated protein biogenesis factor. Whether NAC exerts chaperone activity and whether this function is restricted to de novo protein synthesis is unknown. Here, we demonstrate that NAC directly exerts chaperone activity toward structurally diverse model substrates including polyglutamine (PolyQ) proteins, firefly luciferase, and Aβ40. Strikingly, we identified the positively charged ribosome-binding domain in the N terminus of the βNAC subunit (N-βNAC) as a major chaperone entity of NAC. N-βNAC by itself suppressed aggregation of PolyQ-expanded proteins in vitro, and the positive charge of this domain was critical for this activity. Moreover, we found that NAC also exerts a ribosome-independent chaperone function in vivo. Consistently, we found that a substantial fraction of NAC is non-ribosomal bound in higher eukaryotes. In sum, NAC is a potent suppressor of aggregation and proteotoxicity of mutant PolyQ-expanded proteins associated with human diseases like Huntington's disease and spinocerebellar ataxias.
Collapse
Affiliation(s)
- Koning Shen
- Department of Biology, Stanford University, Stanford, CA 94305-5430, USA
| | | | - Rebecca Chan
- Department of Biology, Stanford University, Stanford, CA 94305-5430, USA
| | - Karina Gense
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Esther M Martin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nadine Sachs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Patrick D Knight
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Renate Schlömer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Lukas Leiendecker
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Ankit Baghel
- Department of Biology, Stanford University, Stanford, CA 94305-5430, USA
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305-5430, USA.
| | - Elke Deuerling
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
50
|
Chen P, Zhong Q, Li Z, Zhang Y, Huang Z. Expression and clinical significance of basic transcription factor 3 in nasopharyngeal carcinoma. Oncol Lett 2018; 17:789-796. [PMID: 30655831 PMCID: PMC6312943 DOI: 10.3892/ol.2018.9699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/15/2018] [Indexed: 12/28/2022] Open
Abstract
Basic transcription factor 3 (BTF3), a transcription factor and modulator of apoptosis, is differentially expressed in carcinoma. To acquire further understanding of the involvement of BTF3 in carcinoma, the present study analyzed the expression of BTF3, as well as its role in cell function in nasopharyngeal carcinoma (NPC). BTF3 transcription rates in human NPC samples (n=46) and adjacent normal tissue samples (n=46) were analyzed using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. BTF3-silencing in NPC cells was performed via specific small interfering RNA molecules. The function of BTF3 was analyzed by proliferation assays and colony forming assays using a Cellomic assay system. The positive expression rates of BTF3 were significantly increased in cancerous tissues compared with those in adjacent tissues (P<0.05). In addition, BTF3-silencing decreased cell proliferation and colony formation (P<0.01) in TCA-8113 and 5–8F cells. BTF3 is overexpressed in NPC, and its silencing is associated with decreased cell proliferation and colony formation, enhanced apoptosis and cell cycle regulation of TCA-8113 and 5–8F cells.
Collapse
Affiliation(s)
- Ping Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Qi Zhong
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Zufei Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yang Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Zhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|