1
|
Liu L, Liu L, Yue C, Du S, Liu J, Yu Z. PYK2 promotes cell proliferation and epithelial-mesenchymal transition in endometriosis by phosphorylating Snail1. Mol Med 2025; 31:155. [PMID: 40289074 PMCID: PMC12036249 DOI: 10.1186/s10020-025-01218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Endometriosis can lead to decreased endometrial receptivity, reduced rates of implantation, and diminished ovarian reserve. Currently, more than 50% of infertile women are found to suffer from endometriosis. However the etiology and pathogenesis of endometriosis are still poorly understood. Epithelial-mesenchymal transition (EMT) has been confirmed to be involved in endometriosis. PYK2 is a non-receptor tyrosine kinase that affects cell proliferation, survival, and migration by regulating intracellular signaling pathways. PYK2 plays a regulatory role in the EMT process by affecting the expression of genes associated with EMT through the influence of transcription factors. Snail1 (Snail1) plays a key role in the EMT process and is highly expressed in endometriosis tissues. On the other hand, Snail1 affects the invasive and metastatic ability of endometriosis cells mainly by regulating the EMT process. However, the upstream mechanisms that regulate the process of Snail1 protein stability in endometriosis are not clear. METHODS We identified a non-receptor tyrosine kinase, proline-rich tyrosine kinase 2 (PYK2 or PTK2B), and examined the expression of PYK2 in endometriosis. The relevant plasmids were constructed. This study enrolled 20 patients with laparoscopically confirmed endometriosis meeting ASRM diagnostic criteria, collecting ectopic lesions (14 ovarian endometriotic cysts and 6 deep infiltrating nodules) along with matched eutopic endometrial tissues (15 proliferative phase, 5 secretory phase) as controls. All tissue specimens underwent immunohistochemical analysis. Human endometrial stromal cells (HESC) were isolated from normal endometrium of 3 control patients for in vitro meconium induction. Ectopic endometrial stromal cells (EESC) were obtained from 5 ectopic lesions. Protein extracts from both ectopic tissues and cells were subjected to Western blot and co-immunoprecipitation (Co-IP) interaction validation. Functional assays (proliferation/migration/invasion) were performed using EESC and 11Z cell lines with triplicate biological replicates. Co-IP experiments were performed to verify the interaction between PYK2 and Snail1, as well as to determine the specific location of this interaction. Additionally, we examined the effect of PYK2 on endometriosis cells in vitro and whether VS-6063 inhibits the biological functions of endometriosis cells. Endometriosis models were established in 20 five-week-old female C57BL/6 mice, randomly allocated into experimental (n = 10) and control (n = 10) groups. Statistical analyses were conducted using GraphPad Prism 7.0, employing parametric tests for normally distributed data and non-parametric methods otherwise, with Benjamini-Hochberg correction for multiple comparisons. RESULTS PYK2 is highly expressed in endometriosis tissues. It acts as a new binding partner of Snail1 and enhances EMT in endometriosis by increasing the phosphorylation of Snail1. Additionally, PYK2 promotes the proliferation, migration, and invasion of endometriosis cells while inhibiting decidualization. We demonstrated that VS-6063 inhibited the proliferation, migration, and invasion of endometriosis cells in vitro, as well as the growth of endometriotic lesions in vivo. CONCLUSIONS PYK2 is a novel binding partner of Snail1. PYK2 promotes the occurrence and development of endometriosis by up-regulating Snail1, which could be a promising therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Lu Liu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P. R. China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, P. R. China
| | - Lan Liu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P. R. China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, P. R. China
| | - Chenjing Yue
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P. R. China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, P. R. China
| | - Shiyu Du
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P. R. China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, P. R. China
| | - Jiayu Liu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P. R. China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, P. R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P. R. China.
| |
Collapse
|
2
|
Chen T, Ren M, Li Y, Jing Z, Xu X, Liu F, Mo D, Zhang W, Zeng J, Zhang H, Ji P, Yang S. Preliminary study of the homeostatic regulation of osseointegration by nanotube topology. Mater Today Bio 2024; 26:101038. [PMID: 38638704 PMCID: PMC11025008 DOI: 10.1016/j.mtbio.2024.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
The ideal implant surface plays a substantial role in maintaining bone homeostasis by simultaneously promoting osteoblast differentiation and limiting overactive osteoclast activity to a certain extent, which leads to satisfactory dynamic osseointegration. However, the rational search for implant materials with an ideal surface structure is challenging and a hot research topic in the field of tissue engineering. In this study, we constructed titanium dioxide titanium nanotubes (TNTs) by anodic oxidation and found that this structure significantly promoted osteoblast differentiation and inhibited osteoclast formation and function while simultaneously inhibiting the total protein levels of proline-rich tyrosine kinase 2 (PYK2) and focal adhesion kinase (FAK). Knockdown of the PYK2 gene by siRNA significantly suppressed the number and osteoclastic differentiation activity of mouse bone marrow mononuclear cells (BMMs), while overexpression of PYK2 inhibited osteogenesis and increased osteoclastic activity. Surprisingly, we found for the first time that neither knockdown nor overexpression of the FAK gene alone caused changes in osteogenesis or osteoclastic function. More importantly, compared with deletion or overexpression of PYK2/FAK alone, coexpression or cosilencing of the two kinases accelerated the effects of TNTs on osteoclastic and osteogenic differentiation on the surface of cells. Furthermore, in vivo experiments revealed a significant increase in positiveexpression-PYK2 cells on the surface of TNTs, but no significant change in positiveexpression -FAK cells was observed. In summary, PYK2 is a key effector molecule by which osteoblasts sense nanotopological mechanical signals and maintain bone homeostasis around implants. These results provide a referable molecular mechanism for the future development and design of homeostasis-based regulatory implant biomaterials.
Collapse
Affiliation(s)
- Tao Chen
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - MingXing Ren
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - YuZhou Li
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Zheng Jing
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - XinXin Xu
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - FengYi Liu
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - DingQiang Mo
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - WenXue Zhang
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Jie Zeng
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - He Zhang
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| |
Collapse
|
3
|
Chen T, Li S, Wang L. Semaphorins in tumor microenvironment: Biological mechanisms and therapeutic progress. Int Immunopharmacol 2024; 132:112035. [PMID: 38603857 DOI: 10.1016/j.intimp.2024.112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Hallmark features of the tumor microenvironment include immune cells, stromal cells, blood vessels, and extracellular matrix (ECM), providing a conducive environment for the growth and survival of tumors. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins (SEMAs). SEMAs are a large and diverse family of widely expressed secreted and membrane-binding proteins, which were initially implicated in axon guidance and neural development. However, it is now clear that they are widely expressed beyond the nervous system and participate in regulating immune responses and cancer progression. In fact, accumulating evidence disclosed that different SEMAs can either stimulate or restrict tumor progression, some of which act as important regulators of tumor angiogenesis. Conversely, limited information is known about the functional relevance of SEMA signals in TME. In this setting, we systematically elaborate the role SEMAs and their major receptors played in characterized components of TME. Furthermore, we provide a convergent view of current SEMAs pharmacological progress in clinical treatment and also put forward their potential application value and clinical prospects in the future.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Shazhou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Lufang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
4
|
Toledano S, Neufeld G. Plexins as Regulators of Cancer Cell Proliferation, Migration, and Invasivity. Cancers (Basel) 2023; 15:4046. [PMID: 37627074 PMCID: PMC10452846 DOI: 10.3390/cancers15164046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Plexins are a family of nine single-pass transmembrane receptors with a conserved GTPase activating protein (GAP) domain. The plexin family is divided into four subfamilies: Type-A, type-B, type-C, and type-D plexins. Plexins function as receptors for axon guidance factors of the semaphorin family. The semaphorin gene family contains 22 genes that are divided into eight subclasses of which subclasses three to seven represent vertebrate semaphorins. The plexins and their semaphorin ligands have important roles as regulators of angiogenesis, cancer proliferation, and metastasis. Class 3 semaphorins, with the exception of sema3E, are the only semaphorins that do not bind directly to plexins. In order to transduce their signals, they bind instead to complexes consisting of receptors of the neuropilin family and various plexins. Some plexins also form complexes with tyrosine-kinase receptors such as the epidermal growth factor receptor ErbB2, the mesenchymal epithelial transition factor receptor (MET), and the Vascular endothelial growth factor receptor 2 (VEGFR2) and, as a result, can modulate cell proliferation and tumor progression. This review focuses on the roles of the different plexins in the control of cancer cell proliferation and invasiveness. Plexins also affect tumor progression and tumor metastasis by indirect mechanisms, such as modulation of angiogenesis and immune responses. However, these topics are not covered in the present review.
Collapse
Affiliation(s)
| | - Gera Neufeld
- The Cancer Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109602, Israel;
| |
Collapse
|
5
|
Fard D, Testa E, Panzeri V, Rizzolio S, Bianchetti G, Napolitano V, Masciarelli S, Fazi F, Maulucci G, Scicchitano BM, Sette C, Viscomi MT, Tamagnone L. SEMA6C: a novel adhesion-independent FAK and YAP activator, required for cancer cell viability and growth. Cell Mol Life Sci 2023; 80:111. [PMID: 37002363 PMCID: PMC10066115 DOI: 10.1007/s00018-023-04756-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
Transmembrane semaphorins are signaling molecules, controlling axonal wiring and embryo development, which are increasingly implicated in human diseases. Semaphorin 6C (Sema6C) is a poorly understood family member and its functional role is still unclear. Upon targeting Sema6C expression in a range of cancer cells, we observed dramatic growth suppression, decreased ERK phosphorylation, upregulation of cell cycle inhibitor proteins p21, p27 and p53, and the onset of cell senescence, associated with activation of autophagy. These data are consistent with a fundamental requirement for Sema6C to support viability and growth in cancer cells. Mechanistically, we unveiled a novel signaling pathway elicited by Sema6C, and dependent on its intracellular domain, mediated by tyrosine kinases c-Abl and Focal Adhesion Kinase (FAK). Sema6C was found in complex with c-Abl, and induced its phosphorylation, which in turn led to FAK activation, independent of cell-matrix adhesion. Sema6C-induced FAK activity was furthermore responsible for increased nuclear localization of YAP transcriptional regulator. Moreover, Sema6C conferred YAP signaling-dependent long-term cancer cell survival upon nutrient deprivation. In conclusion, our findings demonstrate that Sema6C elicits a cancer promoting-signaling pathway sustaining cell viability and self-renewal, independent of growth factors and nutrients availability.
Collapse
Affiliation(s)
- Damon Fard
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Erika Testa
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Panzeri
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giada Bianchetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Virginia Napolitano
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Masciarelli
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Maulucci
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Bianca Maria Scicchitano
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy.
| |
Collapse
|
6
|
Lee D, Hong JH. Activated PyK2 and Its Associated Molecules Transduce Cellular Signaling from the Cancerous Milieu for Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232415475. [PMID: 36555115 PMCID: PMC9779422 DOI: 10.3390/ijms232415475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
PyK2 is a member of the proline-rich tyrosine kinase and focal adhesion kinase families and is ubiquitously expressed. PyK2 is mainly activated by stimuli, such as activated Src kinases and intracellular acidic pH. The mechanism of PyK2 activation in cancer cells has been addressed extensively. The up-regulation of PyK2 through overexpression and enhanced phosphorylation is a key feature of tumorigenesis and cancer migration. In this review, we summarized the cancer milieu, including acidification and cancer-associated molecules, such as chemical reagents, interactive proteins, chemokine-related molecules, calcium channels/transporters, and oxidative molecules that affect the fate of PyK2. The inhibition of PyK2 leads to a beneficial strategy to attenuate cancer cell development, including metastasis. Thus, we highlighted the effect of PyK2 on various cancer cell types and the distribution of molecules that affect PyK2 activation. In particular, we underlined the relationship between PyK2 and cancer metastasis and its potential to treat cancer cells.
Collapse
|
7
|
Jiang J, Lu Y, Zhang F, Pan T, Zhang Z, Wan Y, Ren X, Zhang R. Semaphorin 4B promotes tumor progression and associates with immune infiltrates in lung adenocarcinoma. BMC Cancer 2022; 22:632. [PMID: 35676688 PMCID: PMC9178879 DOI: 10.1186/s12885-022-09696-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Semaphorins have been found to play important roles in multiple malignancy-related processes. However, the role of Semaphorin 4B (SEMA4B) in lung cancer remains unclear. Here, we aimed to explore the biological functions of SEMA4B in through bioinformatic analysis, in vitro and in vivo assays. In the present study, the possible mechanism by which SEMA4B affected the tumor growth and microenvironment of lung adenocarcinoma (LUAD) were investigated. METHODS The expression of SEMA4B in LUAD was analyzed by bioinformatic analysis and verified by the immunohistochemistry staining. The prognostic value of SEMA4B in LUAD was investigated using the Kaplan-Meier survival and Cox's regression model. After silencing SEMA4B expression, the functions of SEMA4B in LUAD cells were investigated by in vitro experiments, including CCK-8 and plate clone formation. And the effect of SEMA4B on tumor growth and immune infiltration was explored in C57BL/6 mice tumor-bearing models. RESULTS SEMA4B expression was upregulated in LUAD tissues and correlated with later pathological stages and poor prognosis of LUAD patients. Further study found that SEMA4B silencing suppressed the proliferation of lung cancer cells both in vitro and in vivo. Bioinformatic analysis showed that SEMA4B expression was correlated with the increased infiltration of myeloid-derived suppressor cells (MDSCs), T-regs and the decreased infiltration of CD8+ T cell in LUAD. Importantly, in vivo study verified that the infiltration of T-regs and MDSCs in tumor microenvironment (TME) of Xenograft tissues was decreased after SEMA4B silencing. CONCLUSIONS These findings demonstrated SEMA4B might play an oncogenic role in LUAD progression, and be a promising therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Health Service, Base of Health Service, Fourth Military Medical University, Xi'an, China
| | - Yuan Lu
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tao Pan
- Department of Respiratory and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Wan
- Department of Health Service, Base of Health Service, Fourth Military Medical University, Xi'an, China
| | - Xinling Ren
- Department of Respiratory and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
- Department of Pulmonary Medicine, Shenzhen General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
8
|
Ramšak Ž, Modic V, Li RA, vom Berg C, Zupanic A. From Causal Networks to Adverse Outcome Pathways: A Developmental Neurotoxicity Case Study. FRONTIERS IN TOXICOLOGY 2022; 4:815754. [PMID: 35295214 PMCID: PMC8915909 DOI: 10.3389/ftox.2022.815754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
The last decade has seen the adverse outcome pathways (AOP) framework become one of the most powerful tools in chemical risk assessment, but the development of new AOPs remains a slow and manually intensive process. Here, we present a faster approach for AOP generation, based on manually curated causal toxicological networks. As a case study, we took a recently published zebrafish developmental neurotoxicity network, which contains causally connected molecular events leading to neuropathologies, and developed two new adverse outcome pathways: Inhibition of Fyna (Src family tyrosine kinase A) leading to increased mortality via decreased eye size (AOP 399 on AOP-Wiki) and GSK3beta (Glycogen synthase kinase 3 beta) inactivation leading to increased mortality via defects in developing inner ear (AOP 410). The approach consists of an automatic separation of the toxicological network into candidate AOPs, filtering the AOPs according to available evidence and length as well as manual development of new AOPs and weight-of-evidence evaluation. The semiautomatic approach described here provides a new opportunity for fast and straightforward AOP development based on large network resources.
Collapse
Affiliation(s)
- Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vid Modic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Roman A. Li
- Department of Environmental Toxicology, Eawag—Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Colette vom Berg
- Department of Environmental Toxicology, Eawag—Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Anze Zupanic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- *Correspondence: Anze Zupanic,
| |
Collapse
|
9
|
Plexin-B2 orchestrates collective stem cell dynamics via actomyosin contractility, cytoskeletal tension and adhesion. Nat Commun 2021; 12:6019. [PMID: 34650052 PMCID: PMC8517024 DOI: 10.1038/s41467-021-26296-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 09/29/2021] [Indexed: 11/08/2022] Open
Abstract
During morphogenesis, molecular mechanisms that orchestrate biomechanical dynamics across cells remain unclear. Here, we show a role of guidance receptor Plexin-B2 in organizing actomyosin network and adhesion complexes during multicellular development of human embryonic stem cells and neuroprogenitor cells. Plexin-B2 manipulations affect actomyosin contractility, leading to changes in cell stiffness and cytoskeletal tension, as well as cell-cell and cell-matrix adhesion. We have delineated the functional domains of Plexin-B2, RAP1/2 effectors, and the signaling association with ERK1/2, calcium activation, and YAP mechanosensor, thus providing a mechanistic link between Plexin-B2-mediated cytoskeletal tension and stem cell physiology. Plexin-B2-deficient stem cells exhibit premature lineage commitment, and a balanced level of Plexin-B2 activity is critical for maintaining cytoarchitectural integrity of the developing neuroepithelium, as modeled in cerebral organoids. Our studies thus establish a significant function of Plexin-B2 in orchestrating cytoskeletal tension and cell-cell/cell-matrix adhesion, therefore solidifying the importance of collective cell mechanics in governing stem cell physiology and tissue morphogenesis.
Collapse
|
10
|
Kanth SM, Gairhe S, Torabi-Parizi P. The Role of Semaphorins and Their Receptors in Innate Immune Responses and Clinical Diseases of Acute Inflammation. Front Immunol 2021; 12:672441. [PMID: 34012455 PMCID: PMC8126651 DOI: 10.3389/fimmu.2021.672441] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Semaphorins are a group of proteins that have been studied extensively for their critical function in neuronal development. They have been shown to regulate airway development, tumorigenesis, autoimmune diseases, and the adaptive immune response. Notably, emerging literature describes the role of immunoregulatory semaphorins and their receptors, plexins and neuropilins, as modulators of innate immunity and diseases defined by acute injury to the kidneys, abdomen, heart and lungs. In this review we discuss the pathogenic functions of semaphorins in clinical conditions of acute inflammation, including sepsis and acute lung injury, with a focus on regulation of the innate immune response as well as potential future therapeutic targeting.
Collapse
Affiliation(s)
- Shreya M Kanth
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Salina Gairhe
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Abstract
Semaphorin 4D (Sema4D) is a classic member of the semaphorin family involved in axonal guidance processes. The key effects of Sema4D in neurons are mediated by high affinity plexin receptors and are associated with cytoskeleton rearrangement, leading to growth cone collapse or regulation of cell migration. Along with this, the semaphorin is widely represented in the immune system and has a pronounced immunoregulatory activity. The involvement of Sema4D in the control of immune cell migration was shown almost twenty years ago, in one of the first studies of semaphorin. The emergence of such work was quite predictable, since the most well-known effects of Sema4D outside the immune system were associated precisely with the control of cell motility. However, after identification of CD72 as a specific Sema4D receptor in the immune system, studies of the immunoregulatory activity of semaphorin focused on its CD72-dependent effects unrelated to cytoskeleton rearrangement, and this trend continues up to now. Nevertheless, a number of recent studies demonstrating the presence of plexin receptors for Sema4D in the immune system forces us to return to the question of whether this semaphorin can play its classic role of a guidance molecule in relation to immune cells too. The review discusses Sema4D involvement in the control of immune cell migration, as well as the mechanisms of these effects and their potential contribution to the development and function of immune system.
Collapse
Affiliation(s)
- Elena Kuklina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
12
|
Stacchiotti S, Baldi GG, Morosi C, Gronchi A, Maestro R. Extraskeletal Myxoid Chondrosarcoma: State of the Art and Current Research on Biology and Clinical Management. Cancers (Basel) 2020; 12:cancers12092703. [PMID: 32967265 PMCID: PMC7563993 DOI: 10.3390/cancers12092703] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The aim of this review is to provide an overview of the biological basis of pathogenesis and current research in extraskeletal myxoid chondrosarcoma (EMC), together with the state of the art of treatment for localized and advanced disease. EMC is an ultra-rare sarcoma sub-type, more often arising from the soft tissues, marked by specific molecular features consisting in rearrangement of the NR4A3 gene, identified in recent years and very useful to distinguish EMC from other mimics. Available pharmacological treatments in particular are discussed, with a focus on the most recent results and future perspectives. Abstract Extraskeletal myxoid chondrosarcoma (EMC) is an ultra-rare mesenchymal neoplasm with uncertain differentiation, which arises mostly in the deep soft tissue of proximal extremities and limb girdles. EMC is marked by a translocation involving the NR4A3 gene, which can be fused in-frame with different partners, most often EWSR1 or TAF1. Although EMC biology is still poorly defined, recent studies have started shedding light on the specific contribution of NR4A3 chimeric proteins to EMC pathogenesis and clinical outcome. Standard treatment for localized disease is surgery, plus or minus radiation therapy with an expected prolonged survival even though the risk of relapse is about 50%. In advanced cases, besides the standard chemotherapy currently used for soft tissue sarcoma, antiangiogenic agents have recently shown promising activity. The aim of this review is to provide the state of the art of treatment for localized and advanced disease, with a focus on pharmacological treatments available for EMC. The biological basis of current research and future perspectives will be also discussed.
Collapse
Affiliation(s)
- Silvia Stacchiotti
- Medical Oncology Unit 2, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
- Correspondence: ; Tel.: +39-02-2390-2803; Fax: +39-02-2390-2804
| | - Giacomo Giulio Baldi
- “Sandro Pitigliani” Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy;
| | - Carlo Morosi
- Deparment of Radiology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy;
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy;
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, 33081 Aviano, Italy;
| |
Collapse
|
13
|
Zhang X, Shao S, Li L. Characterization of Class-3 Semaphorin Receptors, Neuropilins and Plexins, as Therapeutic Targets in a Pan-Cancer Study. Cancers (Basel) 2020; 12:cancers12071816. [PMID: 32640719 PMCID: PMC7409005 DOI: 10.3390/cancers12071816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
Class-3 semaphorins (SEMA3s), initially characterized as axon guidance cues, have been recognized as key regulators for immune responses, angiogenesis, tumorigenesis and drug responses. The functions of SEMA3s are attributed to the activation of downstream signaling cascades mainly mediated by cell surface receptors neuropilins (NRPs) and plexins (PLXNs), yet their roles in human cancers are not completely understood. Here, we provided a detailed pan-cancer analysis of NRPs and PLXNs in their expression, and association with key signal transducers, patient survival, tumor microenvironment (TME), and drug responses. The expression of NRPs and PLXNs were dysregulated in many cancer types, and the majority of them were further dysregulated in metastatic tumors, indicating a role in metastatic progression. Importantly, the expression of these genes was frequently associated with key transducers, patient survival, TME, and drug responses; however, the direction of the association varied for the particular gene queried and the specific cancer type/subtype tested. Specifically, NRP1, NRP2, PLXNA1, PLXNA3, PLXNB3, PLXNC1, and PLXND1 were primarily associated with aggressive phenotypes, whereas the rest were more associated with favorable prognosis. These data highlighted the need to study each as a separate entity in a cancer type- and subtype-dependent manner.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
- Correspondence:
| | - Shuai Shao
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43201, USA;
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| |
Collapse
|
14
|
Li ZL, Müller-Greven J, Kim S, Tamagnone L, Buck M. Plexin-Bs enhance their GAP activity with a novel activation switch loop generating a cooperative enzyme. Cell Mol Life Sci 2020; 78:1101-1112. [PMID: 32601713 DOI: 10.1007/s00018-020-03571-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/24/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023]
Abstract
Plexins receive guidance cues from semaphorin ligands and transmit their signal through the plasma membrane. This family of proteins is unique amongst single-pass transmembrane receptors as their intracellular regions interact directly with several small GTPases, which regulate cytoskeletal dynamics and cell adhesion. Here, we characterize the GTPase Activating Protein (GAP) function of Plexin-B1 and find that a cooperative GAP activity towards the substrate GTPase, Rap1b, is associated with the N-terminal Juxtamembrane region of Plexin-B1. Importantly, we unveil an activation mechanism of Plexin-B1 by identifying a novel functional loop which partially blocks Rap1b entry into the plexin GAP domain. Consistent with the concept of allokairy developed for other systems, Plexin-B activity is increased by an apparent substrate-mediated cooperative effect. Simulations and mutagenesis suggest the repositioned JM conformation is stabilized by the new activation switch loop when the active site is occupied, giving rise to faster enzymatic turnover and cooperative behavior. The biological implications, essentially those of a threshold behavior for cell migration, are discussed.
Collapse
Affiliation(s)
- Zhen-Lu Li
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Jeannine Müller-Greven
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - SoonJeung Kim
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Luca Tamagnone
- School of Medicine, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Department of Pharmacology, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
15
|
Fyn Tyrosine Kinase as Harmonizing Factor in Neuronal Functions and Dysfunctions. Int J Mol Sci 2020; 21:ijms21124444. [PMID: 32580508 PMCID: PMC7352836 DOI: 10.3390/ijms21124444] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022] Open
Abstract
Fyn is a non-receptor or cytoplasmatic tyrosine kinase (TK) belonging to the Src family kinases (SFKs) involved in multiple transduction pathways in the central nervous system (CNS) including synaptic transmission, myelination, axon guidance, and oligodendrocyte formation. Almost one hundred years after the original description of Fyn, this protein continues to attract extreme interest because of its multiplicity of actions in the molecular signaling pathways underlying neurodevelopmental as well as neuropathologic events. This review highlights and summarizes the most relevant recent findings pertinent to the role that Fyn exerts in the brain, emphasizing aspects related to neurodevelopment and synaptic plasticity. Fyn is a common factor in healthy and diseased brains that targets different proteins and shapes different transduction signals according to the neurological conditions. We will primarily focus on Fyn-mediated signaling pathways involved in neuronal differentiation and plasticity that have been subjected to considerable attention lately, opening the fascinating scenario to target Fyn TK for the development of potential therapeutic interventions for the treatment of CNS injuries and certain neurodegenerative disorders like Alzheimer’s disease.
Collapse
|
16
|
Brenca M, Stacchiotti S, Fassetta K, Sbaraglia M, Janjusevic M, Racanelli D, Polano M, Rossi S, Brich S, Dagrada GP, Collini P, Colombo C, Gronchi A, Astolfi A, Indio V, Pantaleo MA, Picci P, Casali PG, Dei Tos AP, Pilotti S, Maestro R. NR4A3 fusion proteins trigger an axon guidance switch that marks the difference between EWSR1 and TAF15 translocated extraskeletal myxoid chondrosarcomas. J Pathol 2019; 249:90-101. [PMID: 31020999 PMCID: PMC6766969 DOI: 10.1002/path.5284] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 12/31/2022]
Abstract
Extraskeletal myxoid chondrosarcoma (EMC) is a rare sarcoma histotype with uncertain differentiation. EMC is hallmarked by the rearrangement of the NR4A3 gene, which in most cases fuses with EWSR1 or TAF15. TAF15‐translocated EMC seem to feature a more aggressive course compared to EWSR1‐positive EMCs, but whether the type of NR4A3 chimera impinges upon EMC biology is still largely undefined. To gain insights on this issue, a series of EMC samples (7 EWSR1‐NR4A3 and 5 TAF15‐NR4A3) were transcriptionally profiled. Our study unveiled that the two EMC variants display a distinct transcriptional profile and that the axon guidance pathway is a major discriminant. In particular, class 4–6 semaphorins and axonal guidance cues endowed with pro‐tumorigenic activity were more expressed in TAF15‐NR4A3 tumors; vice versa, class 3 semaphorins, considered to convey growth inhibitory signals, were more abundant in EWSR1‐NR4A3 EMC. Intriguingly, the dichotomy in axon guidance signaling observed in the two tumor variants was recapitulated in in vitro cell models engineered to ectopically express EWSR1‐NR4A3 or TAF15‐NR4A3. Moreover, TAF15‐NR4A3 cells displayed a more pronounced tumorigenic potential, as assessed by anchorage‐independent growth. Overall, our results indicate that the type of NR4A3 chimera dictates an axon guidance switch and impacts on tumor cell biology. These findings may provide a framework for interpretation of the different clinical–pathological features of the two EMC variants and lay down the bases for the development of novel patient stratification criteria and therapeutic approaches. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Monica Brenca
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Silvia Stacchiotti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Kelly Fassetta
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Marta Sbaraglia
- Department of Pathology, Treviso Regional Hospital, Treviso, Italy
| | - Milijana Janjusevic
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Dominga Racanelli
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Maurizio Polano
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Sabrina Rossi
- Department of Pathology, Treviso Regional Hospital, Treviso, Italy
| | - Silvia Brich
- Unit of Experimental Molecular Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Gian P Dagrada
- Laboratory of Molecular Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paola Collini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Chiara Colombo
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Annalisa Astolfi
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Maria A Pantaleo
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo G Casali
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.,Oncology and Haemato-Oncology Department, University of Milan, Milano, Italy
| | - Angelo P Dei Tos
- Department of Pathology, Treviso Regional Hospital, Treviso, Italy.,Department of Medicine, University of Padua School of Medicine, Padova, Italy
| | - Silvana Pilotti
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
17
|
Carretero-Ortega J, Chhangawala Z, Hunt S, Narvaez C, Menéndez-González J, Gay CM, Zygmunt T, Li X, Torres-Vázquez J. GIPC proteins negatively modulate Plexind1 signaling during vascular development. eLife 2019; 8:e30454. [PMID: 31050647 PMCID: PMC6499541 DOI: 10.7554/elife.30454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Semaphorins (SEMAs) and their Plexin (PLXN) receptors are central regulators of metazoan cellular communication. SEMA-PLXND1 signaling plays important roles in cardiovascular, nervous, and immune system development, and cancer biology. However, little is known about the molecular mechanisms that modulate SEMA-PLXND1 signaling. As PLXND1 associates with GIPC family endocytic adaptors, we evaluated the requirement for the molecular determinants of their association and PLXND1's vascular role. Zebrafish that endogenously express a Plxnd1 receptor with a predicted impairment in GIPC binding exhibit low penetrance angiogenesis deficits and antiangiogenic drug hypersensitivity. Moreover, gipc mutant fish show angiogenic impairments that are ameliorated by reducing Plxnd1 signaling. Finally, GIPC depletion potentiates SEMA-PLXND1 signaling in cultured endothelial cells. These findings expand the vascular roles of GIPCs beyond those of the Vascular Endothelial Growth Factor (VEGF)-dependent, proangiogenic GIPC1-Neuropilin 1 complex, recasting GIPCs as negative modulators of antiangiogenic PLXND1 signaling and suggest that PLXND1 trafficking shapes vascular development.
Collapse
Affiliation(s)
- Jorge Carretero-Ortega
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Zinal Chhangawala
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Shane Hunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carlos Narvaez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Javier Menéndez-González
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carl M Gay
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Tomasz Zygmunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Xiaochun Li
- Department of Population HealthNew York University School of MedicineNew YorkUnited States
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
18
|
Class-3 Semaphorins and Their Receptors: Potent Multifunctional Modulators of Tumor Progression. Int J Mol Sci 2019; 20:ijms20030556. [PMID: 30696103 PMCID: PMC6387194 DOI: 10.3390/ijms20030556] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/28/2022] Open
Abstract
Semaphorins are the products of a large gene family containing 28 genes of which 21 are found in vertebrates. Class-3 semaphorins constitute a subfamily of seven vertebrate semaphorins which differ from the other vertebrate semaphorins in that they are the only secreted semaphorins and are distinguished from other semaphorins by the presence of a basic domain at their C termini. Class-3 semaphorins were initially characterized as axon guidance factors, but have subsequently been found to regulate immune responses, angiogenesis, lymphangiogenesis, and a variety of additional physiological and developmental functions. Most class-3 semaphorins transduce their signals by binding to receptors belonging to the neuropilin family which subsequently associate with receptors of the plexin family to form functional class-3 semaphorin receptors. Recent evidence suggests that class-3 semaphorins also fulfill important regulatory roles in multiple forms of cancer. Several class-3 semaphorins function as endogenous inhibitors of tumor angiogenesis. Others were found to inhibit tumor metastasis by inhibition of tumor lymphangiogenesis, by direct effects on the behavior of tumor cells, or by modulation of immune responses. Notably, some semaphorins such as sema3C and sema3E have also been found to potentiate tumor progression using various mechanisms. This review focuses on the roles of the different class-3 semaphorins in tumor progression.
Collapse
|
19
|
Brudvig JJ, Cain JT, Schmidt-Grimminger GG, Stumpo DJ, Roux KJ, Blackshear PJ, Weimer JM. MARCKS Is Necessary for Netrin-DCC Signaling and Corpus Callosum Formation. Mol Neurobiol 2018; 55:8388-8402. [PMID: 29546593 PMCID: PMC6139093 DOI: 10.1007/s12035-018-0990-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/06/2018] [Indexed: 11/24/2022]
Abstract
Axons of the corpus callosum (CC), the white matter tract that connects the left and right hemispheres of the brain, receive instruction from a number of chemoattractant and chemorepulsant cues during their initial navigation towards and across the midline. While it has long been known that the CC is malformed in the absence of Myristoylated alanine-rich C-kinase substrate (MARCKS), evidence for a direct role of MARCKS in axon navigation has been lacking. Here, we show that MARCKS is necessary for Netrin-1 (NTN1) signaling through the DCC receptor, which is critical for axon guidance decisions. Marcks null (Marcks-/-) neurons fail to respond to exogenous NTN1 and are deficient in markers of DCC activation. Without MARCKS, the subcellular distributions of two critical mediators of NTN1-DCC signaling, the tyrosine kinases PTK2 and SRC, are disrupted. Together, this work establishes a novel role for MARCKS in axon dynamics and highlights the necessity of MARCKS as an organizer of DCC signaling at the membrane.
Collapse
Affiliation(s)
- J J Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
- Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, 57069, USA
| | - J T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | | | - D J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC, 27709, USA
| | - K J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, 57104, USA
- Department of Pediatrics, University of South Dakota, Sioux Falls, SD, 57105, USA
| | - P J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC, 27709, USA
| | - J M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA.
- Department of Pediatrics, University of South Dakota, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
20
|
Mire E, Hocine M, Bazellières E, Jungas T, Davy A, Chauvet S, Mann F. Developmental Upregulation of Ephrin-B1 Silences Sema3C/Neuropilin-1 Signaling during Post-crossing Navigation of Corpus Callosum Axons. Curr Biol 2018; 28:1768-1782.e4. [PMID: 29779877 DOI: 10.1016/j.cub.2018.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023]
Abstract
The corpus callosum is the largest commissure in the brain, whose main function is to ensure communication between homotopic regions of the cerebral cortex. During fetal development, corpus callosum axons (CCAs) grow toward and across the brain midline and then away on the contralateral hemisphere to their targets. A particular feature of this circuit, which raises a key developmental question, is that the outgoing trajectory of post-crossing CCAs is mirror-symmetric with the incoming trajectory of pre-crossing axons. Here, we show that post-crossing CCAs switch off their response to axon guidance cues, among which the secreted Semaphorin-3C (Sema3C), that act as attractants for pre-crossing axons on their way to the midline. This change is concomitant with an upregulation of the surface protein Ephrin-B1, which acts in CCAs to inhibit Sema3C signaling via interaction with the Neuropilin-1 (Nrp1) receptor. This silencing activity is independent of Eph receptors and involves a N-glycosylation site (N-139) in the extracellular domain of Ephrin-B1. Together, our results reveal a molecular mechanism, involving interaction between the two unrelated guidance receptors Ephrin-B1 and Nrp1, that is used to control the navigation of post-crossing axons in the corpus callosum.
Collapse
Affiliation(s)
- Erik Mire
- Aix Marseille Univ, CNRS, IBDM, 13288 Marseille, France.
| | | | | | - Thomas Jungas
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Alice Davy
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | | | - Fanny Mann
- Aix Marseille Univ, CNRS, IBDM, 13288 Marseille, France.
| |
Collapse
|
21
|
Abstract
Semaphorins are extracellular signaling proteins that are essential for the development and maintenance of many organs and tissues. The more than 20-member semaphorin protein family includes secreted, transmembrane and cell surface-attached proteins with diverse structures, each characterized by a single cysteine-rich extracellular sema domain, the defining feature of the family. Early studies revealed that semaphorins function as axon guidance molecules, but it is now understood that semaphorins are key regulators of morphology and motility in many different cell types including those that make up the nervous, cardiovascular, immune, endocrine, hepatic, renal, reproductive, respiratory and musculoskeletal systems, as well as in cancer cells. Semaphorin signaling occurs predominantly through Plexin receptors and results in changes to the cytoskeletal and adhesive machinery that regulate cellular morphology. While much remains to be learned about the mechanisms underlying the effects of semaphorins, exciting work has begun to reveal how semaphorin signaling is fine-tuned through different receptor complexes and other mechanisms to achieve specific outcomes in various cellular contexts and physiological systems. These and future studies will lead to a more complete understanding of semaphorin-mediated development and to a greater understanding of how these proteins function in human disease.
Collapse
Affiliation(s)
- Laura Taylor Alto
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
22
|
St Clair RM, Emerson SE, D'Elia KP, Weir ME, Schmoker AM, Ebert AM, Ballif BA. Fyn-dependent phosphorylation of PlexinA1 and PlexinA2 at conserved tyrosines is essential for zebrafish eye development. FEBS J 2017; 285:72-86. [PMID: 29091353 DOI: 10.1111/febs.14313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/09/2017] [Accepted: 10/26/2017] [Indexed: 11/29/2022]
Abstract
Plexins (Plxns) are semaphorin (Sema) receptors that play important signaling roles, particularly in the developing nervous system and vasculature. Sema-Plxn signaling regulates cellular processes such as cytoskeletal dynamics, proliferation, and differentiation. However, the receptor-proximal signaling mechanisms driving Sema-Plxn signal transduction are only partially understood. Plxn tyrosine phosphorylation is thought to play an important role in these signaling events as receptor and nonreceptor tyrosine kinases have been shown to interact with Plxn receptors. The Src family kinase Fyn can induce the tyrosine phosphorylation of PlxnA1 and PlxnA2. However, the Fyn-dependent phosphorylation sites on these receptors have not been identified. Here, using mass spectrometry-based approaches, we have identified highly conserved, Fyn-induced PlexinA (PlxnA) tyrosine phosphorylation sites. Mutation of these sites to phenylalanine results in significantly decreased Fyn-dependent PlxnA tyrosine phosphorylation. Furthermore, in contrast to wild-type human PLXNA2 mRNA, mRNA harboring these point mutations cannot rescue eye developmental defects when coinjected with a plxnA2 morpholino in zebrafish embryos. Together these data suggest that Fyn-dependent phosphorylation at two critical tyrosines is a key feature of vertebrate PlxnA1 and PlxnA2 signal transduction.
Collapse
Affiliation(s)
- Riley M St Clair
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Sarah E Emerson
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Kristen P D'Elia
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Marion E Weir
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Anna M Schmoker
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
23
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The role of the semaphorins in cancer. Cell Adh Migr 2016; 10:652-674. [PMID: 27533782 PMCID: PMC5160032 DOI: 10.1080/19336918.2016.1197478] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
The semaphorins were initially characterized as axon guidance factors, but have subsequently been implicated also in the regulation of immune responses, angiogenesis, organ formation, and a variety of additional physiological and developmental functions. The semaphorin family contains more then 20 genes divided into 7 subfamilies, all of which contain the signature sema domain. The semaphorins transduce signals by binding to receptors belonging to the neuropilin or plexin families. Additional receptors which form complexes with these primary semaphorin receptors are also frequently involved in semaphorin signaling. Recent evidence suggests that semaphorins also fulfill important roles in the etiology of multiple forms of cancer. Some semaphorins have been found to function as bona-fide tumor suppressors and to inhibit tumor progression by various mechanisms while other semaphorins function as inducers and promoters of tumor progression.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yelena Mumblat
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Tatyana Smolkin
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Shira Toledano
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Inbal Nir-Zvi
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Keren Ziv
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
24
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The semaphorins and their receptors as modulators of tumor progression. Drug Resist Updat 2016; 29:1-12. [DOI: 10.1016/j.drup.2016.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/31/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022]
|
25
|
Characterization of Semaphorin 6A-Mediated Effects on Angiogenesis Through Regulation of VEGF Signaling. Methods Mol Biol 2016. [PMID: 27787863 DOI: 10.1007/978-1-4939-6448-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Angiogenesis identifies the process of endothelial cell sprouting and remodeling leading to the formation of new and functional blood vessels. Vascular expansion during development and in the adult mammal provides nutrients and oxygen to areas with increased need. Although many molecules and pathways have been identified as regulators of angiogenesis, aspects of this complex process remain unclear. Particularly undefined are the signals that orchestrate vessel survival and pruning once new blood vessels have sprouted. These poorly characterized aspects of angiogenesis need exploration. This chapter describes the experiments and methods enabling the characterization of Semaphorin 6A as a critical regulator of endothelial cell survival and vessel function.
Collapse
|
26
|
Yang WJ, Hu J, Uemura A, Tetzlaff F, Augustin HG, Fischer A. Semaphorin-3C signals through Neuropilin-1 and PlexinD1 receptors to inhibit pathological angiogenesis. EMBO Mol Med 2016. [PMID: 26194913 PMCID: PMC4604683 DOI: 10.15252/emmm.201404922] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinopathy of prematurity causes visual impairment due to destructive neoangiogenesis after degeneration of the retinal microvasculature. This study was aimed at analyzing whether local delivery of Semaphorin-3C (Sema3C) suppresses pathological retinal angiogenesis. Sema3C exerted potent inhibiting effects in cellular models of angiogenesis. In an endothelial cell xenotransplantation assay, Sema3C acted primarily on immature microvessels by inducing endothelial cell apoptosis. Intravitreal administration of recombinant Sema3C disrupted endothelial tip cell formation and cell–cell contacts, which led to decreased vascular bed expansion and vessel branching in the growing retinal vasculature of newborn mice, while not affecting mature vessels in the adult retina. Sema3C administration strongly inhibited the formation of pathological pre-retinal vascular tufts during oxygen-induced retinopathy. Mechanistically, Sema3C signaled through the receptors Neuropilin-1 and PlexinD1, which were strongly expressed on vascular tufts, induced VE-cadherin internalization, and abrogated vascular endothelial growth factor (VEGF)-induced activation of the kinases AKT, FAK, and p38MAPK. This disrupted endothelial cell junctions, focal adhesions, and cytoskeleton assembly resulted in decreased cell migration and survival. Thus, this study identified Sema3C as a potent and selective inhibitor of pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Wan-Jen Yang
- Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM) Heidelberg University, Mannheim, Germany
| | - Junhao Hu
- Vascular Oncology and Metastasis (A190), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Fabian Tetzlaff
- Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Hellmut G Augustin
- Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM) Heidelberg University, Mannheim, Germany Vascular Oncology and Metastasis (A190), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Andreas Fischer
- Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim (CBTM) Heidelberg University, Mannheim, Germany Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
27
|
Cagnoni G, Tamagnone L. Semaphorin receptors meet receptor tyrosine kinases on the way of tumor progression. Oncogene 2013; 33:4795-802. [DOI: 10.1038/onc.2013.474] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 12/21/2022]
|
28
|
Tian TV, Tomavo N, Huot L, Flourens A, Bonnelye E, Flajollet S, Hot D, Leroy X, de Launoit Y, Duterque-Coquillaud M. Identification of novel TMPRSS2:ERG mechanisms in prostate cancer metastasis: involvement of MMP9 and PLXNA2. Oncogene 2013; 33:2204-14. [PMID: 23708657 DOI: 10.1038/onc.2013.176] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/27/2013] [Accepted: 03/18/2013] [Indexed: 12/17/2022]
Abstract
Prostate cancer (PCa) is one of the major public health problems in Western countries. Recently, the TMPRSS2:ERG gene fusion, which results in the aberrant expression of the transcription factor ERG, has been shown to be the most common gene rearrangement in PCa. Previous studies have determined the contributions of this fusion in PCa disease initiation and/or progression in vitro and in vivo. In this study on TMPRSS2:ERG regulation in PCa, we used an androgen receptor and TMPRSS2:ERG fusion double-negative PCa cell model: PC3c. In three cell clones with different TMPRSS2:ERG expression levels, ectopic expression of the fusion resulted in significant induction of cell migration and invasion in a dose-dependent manner. In agreement with this phenotype, high-throughput microarray analysis revealed that a set of genes, functionally associated with cell motility and invasiveness, were deregulated in a dose-dependent manner in TMPRSS2:ERG-expressing cells. Importantly, we identified increased MMP9 (Metalloproteinase 9) and PLXNA2 (Plexin A2) expression in TMPRSS2:ERG-positive PCa samples, and their expression levels were significantly correlated with ERG expression in a PCa cohort. In line with these findings, there was evidence that TMPRSS2:ERG directly and positively regulates MMP9 and PLXNA2 expression in PC3c cells. Moreover, PLXNA2 upregulation contributed to TMPRSS2:ERG-mediated enhancements of PC3c cell migration and invasion. Furthermore, and importantly, PLXNA2 expression was upregulated in metastatic PCa tumors compared with localized primary PCa tumors. This study provides novel insights into the role of the TMPRSS2:ERG fusion in PCa metastasis.
Collapse
Affiliation(s)
- T V Tian
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France [4] Faculté de Médecine Henri Warembourg, Université du Droit et de la Santé Lille II, Lille, France
| | - N Tomavo
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| | - L Huot
- 1] Institut Pasteur de Lille/IFR142, Lille, France [2] Université de Lille Nord de France, Lille, France [3] Centre d'Infection et d'Immunité de Lille (CIIL), INSERM U1019, CNRS UMR8204, Lille, France
| | - A Flourens
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| | | | - S Flajollet
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| | - D Hot
- 1] Institut Pasteur de Lille/IFR142, Lille, France [2] Université de Lille Nord de France, Lille, France [3] Centre d'Infection et d'Immunité de Lille (CIIL), INSERM U1019, CNRS UMR8204, Lille, France
| | - X Leroy
- 1] Université de Lille Nord de France, Lille, France [2] Faculté de Médecine Henri Warembourg, Université du Droit et de la Santé Lille II, Lille, France [3] Centre hospitalier régional et universitaire de Lille, Institut de Pathologie, Lille, France
| | - Y de Launoit
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| | - M Duterque-Coquillaud
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| |
Collapse
|
29
|
Rehman M, Tamagnone L. Semaphorins in cancer: biological mechanisms and therapeutic approaches. Semin Cell Dev Biol 2013; 24:179-89. [PMID: 23099250 DOI: 10.1016/j.semcdb.2012.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 01/07/2023]
Abstract
The hallmarks of cancer include multiple alterations in the physiological processes occurring in normal tissues, such as cell proliferation, apoptosis, and restricted cell migration. These aberrant behaviors are due to genetic and epigenetic changes that affect signaling pathways controlling cancer cells, as well as the surrounding "normal" cells in the tumor microenvironment. Semaphorins and their receptors (mainly plexins and neuropilins) are aberrantly expressed in human tumors, and multiple family members are emerging as pivotal signals deregulated in cancer. Notably, different semaphorins can promote or inhibit tumor progression, depending on the implicated receptor complexes and responsive cell type. The important role of semaphorin signals in the regulation of tumor angiogenesis, invasion and metastasis has initiated multiple experimental approaches aimed at targeting these pathways to inhibit cancer.
Collapse
Affiliation(s)
- Michael Rehman
- Institute for Cancer Research at Candiolo (IRC@C), University of Torino-Dept. of Oncology, 10060 Candiolo, Italy
| | | |
Collapse
|
30
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
31
|
Abstract
Formation of new vessels during development and in the mature mammal generally proceeds through angiogenesis. Although a variety of molecules and signaling pathways are known to underlie endothelial cell sprouting and remodeling during angiogenesis, many aspects of this complex process remain unexplained. Here we show that the transmembrane semaphorin6A (Sema6A) is expressed in endothelial cells, and regulates endothelial cell survival and growth by modulating the expression and signaling of VEGFR2, which is known to maintain endothelial cell viability by autocrine VEGFR signaling. The silencing of Sema6A in primary endothelial cells promotes cell death that is not rescued by exogenous VEGF-A or FGF2, attributable to the loss of prosurvival signaling from endogenous VEGF. Analyses of mouse tissues demonstrate that Sema6A is expressed in angiogenic and remodeling vessels. Mice with null mutations of Sema6A exhibit significant defects in hyaloid vessels complexity associated with increased endothelial cell death, and in retinal vessels development that is abnormally reduced. Adult Sema6A-null mice exhibit reduced tumor, matrigel, and choroidal angiogenesis compared with controls. Sema6A plays important roles in development of the nervous system. Here we show that it also regulates vascular development and adult angiogenesis.
Collapse
|
32
|
Abstract
Solid tumors not only comprise malignant cells but also other nonmalignant cell types, forming a unique microenvironment that can strongly influence the behavior of tumor cells. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins. In fact, semaphorins form a family of molecular signals known to guide and control cell migration during embryo development and in adults. Tumor cells express semaphorins as well as their receptors, plexins and neuropilins. It has been shown that semaphorin signaling can regulate tumor cell behavior. Moreover, semaphorins are important regulators of tumor angiogenesis. Conversely, very little is known about the functional relevance of semaphorin signals for tumor-infiltrating stromal cells, such as leukocytes. In this chapter, we review the current knowledge on the functional role of semaphorins in cancer progression, and we focus on the emerging role of semaphorins in mediating the cross talk between tumor cells and different tumor stromal cells.
Collapse
Affiliation(s)
- Claudia Muratori
- University of Torino Medical School, Institute for Cancer Research (IRCC), Candiolo, Turin, Italy
| | | |
Collapse
|
33
|
Axon guidance in the developing ocular motor system and Duane retraction syndrome depends on Semaphorin signaling via alpha2-chimaerin. Proc Natl Acad Sci U S A 2012; 109:14669-74. [PMID: 22912401 DOI: 10.1073/pnas.1116481109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eye movements depend on correct patterns of connectivity between cranial motor axons and the extraocular muscles. Despite the clinical importance of the ocular motor system, little is known of the molecular mechanisms underlying its development. We have recently shown that mutations in the Chimaerin-1 gene encoding the signaling protein α2-chimaerin (α2-chn) perturb axon guidance in the ocular motor system and lead to the human eye movement disorder, Duane retraction syndrome (DRS). The axon guidance cues that lie upstream of α2-chn are unknown; here we identify candidates to be the Semaphorins (Sema) 3A and 3C, acting via the PlexinA receptors. Sema3A/C are expressed in and around the developing extraocular muscles and cause growth cone collapse of oculomotor neurons in vitro. Furthermore, RNAi knockdown of α2-chn or PlexinAs in oculomotor neurons abrogates Sema3A/C-dependent growth cone collapse. In vivo knockdown of endogenous PlexinAs or α2-chn function results in stereotypical oculomotor axon guidance defects, which are reminiscent of DRS, whereas expression of α2-chn gain-of-function constructs can rescue PlexinA loss of function. These data suggest that α2-chn mediates Sema3-PlexinA repellent signaling. We further show that α2-chn is required for oculomotor neurons to respond to CXCL12 and hepatocyte growth factor (HGF), which are growth promoting and chemoattractant during oculomotor axon guidance. α2-chn is therefore a potential integrator of different types of guidance information to orchestrate ocular motor pathfinding. DRS phenotypes can result from incorrect regulation of this signaling pathway.
Collapse
|
34
|
Abstract
Semaphorins are key players in the control of neural circuit development. Recent studies have uncovered several exciting and novel aspects of neuronal semaphorin signalling in various cellular processes--including neuronal polarization, topographical mapping and axon sorting--that are crucial for the assembly of functional neuronal connections. This progress is important for further understanding the many neuronal and non-neuronal functions of semaphorins and for gaining insight into their emerging roles in the perturbed neural connectivity that is observed in some diseases. This Review discusses recent advances in semaphorin research, focusing on novel aspects of neuronal semaphorin receptor regulation and previously unexplored cellular functions of semaphorins in the nervous system.
Collapse
|
35
|
Tamagnone L. Emerging role of semaphorins as major regulatory signals and potential therapeutic targets in cancer. Cancer Cell 2012; 22:145-52. [PMID: 22897846 DOI: 10.1016/j.ccr.2012.06.031] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 05/16/2012] [Accepted: 06/29/2012] [Indexed: 02/07/2023]
Abstract
Semaphorins are mainly known as guidance signals in development, acting through receptors called Plexins. However, their role in cancer is rapidly emerging in the regulation of tumor angiogenesis, tumor growth, cancer cell invasiveness, and metastatic spreading. Intriguingly, activated plexins can transactivate receptor tyrosine kinases, such as MET, VEGFR2, FGFR2, and ERBB2, and lead to distinctive effects in a cell-context-dependent manner. Moreover, certain semaphorins concomitantly target endothelial and cancer cells, and can achieve remarkable inhibition of angiogenesis and tumor growth, associated with anti-metastatic activity. Altogether, these data validate the identification of semaphorin signals as promising therapeutic targets in cancer.
Collapse
Affiliation(s)
- Luca Tamagnone
- IRCC-Institute for Cancer Research at Candiolo, Candiolo, Italy.
| |
Collapse
|
36
|
Palmisano G, Parker BL, Engholm-Keller K, Lendal SE, Kulej K, Schulz M, Schwämmle V, Graham ME, Saxtorph H, Cordwell SJ, Larsen MR. A novel method for the simultaneous enrichment, identification, and quantification of phosphopeptides and sialylated glycopeptides applied to a temporal profile of mouse brain development. Mol Cell Proteomics 2012; 11:1191-202. [PMID: 22843994 DOI: 10.1074/mcp.m112.017509] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe a method that combines an optimized titanium dioxide protocol and hydrophilic interaction liquid chromatography to simultaneously enrich, identify and quantify phosphopeptides and formerly N-linked sialylated glycopeptides to monitor changes associated with cell signaling during mouse brain development. We initially applied the method to enriched membrane fractions from HeLa cells, which allowed the identification of 4468 unique phosphopeptides and 1809 formerly N-linked sialylated glycopeptides. We subsequently combined the method with isobaric tagging for relative quantification to compare changes in phosphopeptide and formerly N-linked sialylated glycopeptide abundance in the developing mouse brain. A total of 7682 unique phosphopeptide sequences and 3246 unique formerly sialylated glycopeptides were identified. Moreover 669 phosphopeptides and 300 formerly N-sialylated glycopeptides differentially regulated during mouse brain development were detected. This strategy allowed us to reveal extensive changes in post-translational modifications from postnatal mice from day 0 until maturity at day 80. The results of this study confirm the role of sialylation in organ development and provide the first extensive global view of dynamic changes between N-linked sialylation and phosphorylation.
Collapse
Affiliation(s)
- Giuseppe Palmisano
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, and Biomedical Laboratory, Odense University Hospital, Campusvej 55, 5230 Odense M, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Worzfeld T, Swiercz JM, Looso M, Straub BK, Sivaraj KK, Offermanns S. ErbB-2 signals through Plexin-B1 to promote breast cancer metastasis. J Clin Invest 2012; 122:1296-305. [PMID: 22378040 DOI: 10.1172/jci60568] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/18/2012] [Indexed: 01/10/2023] Open
Abstract
Diagnosis of metastatic breast cancer is associated with a very poor prognosis. New therapeutic targets are urgently needed, but their development is hampered by a lack of understanding of the mechanisms leading to tumor metastasis. Exemplifying this is the fact that the approximately 30% of all breast cancers overexpressing the receptor tyrosine kinase ErbB-2 are characterized by high metastatic potential and poor prognosis, but the signaling events downstream of ErbB-2 that drive cancer cell invasion and metastasis remain incompletely understood. Here we show that overexpression of ErbB-2 in human breast cancer cell lines leads to phosphorylation and activation of the semaphorin receptor Plexin-B1. This was required for ErbB-2-dependent activation of the pro-metastatic small GTPases RhoA and RhoC and promoted invasive behavior of human breast cancer cells. In a mouse model of ErbB-2-overexpressing breast cancer, ablation of the gene encoding Plexin-B1 strongly reduced the occurrence of metastases. Moreover, in human patients with ErbB-2-overexpressing breast cancer, low levels of Plexin-B1 expression correlated with good prognosis. Our data suggest that Plexin-B1 represents a new candidate therapeutic target for treating patients with ErbB-2-positive breast cancer.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Casazza A, Kigel B, Maione F, Capparuccia L, Kessler O, Giraudo E, Mazzone M, Neufeld G, Tamagnone L. Tumour growth inhibition and anti-metastatic activity of a mutated furin-resistant Semaphorin 3E isoform. EMBO Mol Med 2012; 4:234-50. [PMID: 22247010 PMCID: PMC3376853 DOI: 10.1002/emmm.201100205] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 11/21/2022] Open
Abstract
Secreted Semaphorin 3E (Sema3E) promotes cancer cell invasiveness and metastatic spreading. The pro-metastatic activity of Sema3E is due to its proteolytic fragment p61, capable of transactivating the oncogenic tyrosine kinase ErbB2 that associates with the Sema3E receptor PlexinD1 in cancer cells. Here, we show that a mutated, uncleavable variant of Sema3E (Uncl-Sema3E) binds to PlexinD1 like p61-Sema3E, but does not promote the association of PlexinD1 with ErbB2 nor activates the ensuing signalling cascade leading to metastatic spreading. Furthermore, Uncl-Sema3E competes with endogenous p61-Sema3E produced by tumour cells, thereby hampering their metastatic ability. Uncl-Sema3E also acts independently as a potent anti-angiogenic factor. It activates a PlexinD1-mediated signalling cascade in endothelial cells that leads to the inhibition of adhesion to extracellular matrix, directional migration and cell survival. The putative therapeutic potential of Uncl-Sema3E was validated in multiple orthotopic or spontaneous tumour models in vivo, where either local or systemic delivery of Uncl-Sema3E-reduced angiogenesis, growth and metastasis, even in the case of tumours refractory to treatment with a soluble vascular endothelial growth factor trap. In summary, we conclude that Uncl-Sema3E is a novel inhibitor of tumour angiogenesis and growth that concomitantly hampers metastatic spreading.
Collapse
Affiliation(s)
- Andrea Casazza
- Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Candiolo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Neufeld G, Sabag AD, Rabinovicz N, Kessler O. Semaphorins in angiogenesis and tumor progression. Cold Spring Harb Perspect Med 2012; 2:a006718. [PMID: 22315716 PMCID: PMC3253028 DOI: 10.1101/cshperspect.a006718] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The semaphorins were initially described as axon guidance factors, but have recently been implicated in a variety of physiological and developmental functions, including regulation of immune response, angiogenesis, and migration of neural crest cells. The semaphorin family contains more than 30 genes divided into seven subfamilies, all of which are characterized by the presence of a sema domain. The semaphorins transduce their signals by binding to one of the nine receptors belonging to the plexin family, or, in the case of the class 3 semaphorins, by binding to one of the two neuropilin receptors. Additional receptors, which form complexes with these primary semaphorin receptors, are also frequently involved in semaphorin signaling. Recent evidence suggests that some semaphorins can act as antiangiogenic and/or antitumorigenic agents whereas other semaphorins promote tumor progression and/or angiogenesis. Furthermore, loss of endogenous inhibitory semaphorin expression or function on one hand, and overexpression of protumorigenic semaphorins on the other hand, is associated with the progression of some tumor types.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer and Vascular Biology Research Center, Rappaport Research Institute in the Medical Sciences, Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 31096, Israel.
| | | | | | | |
Collapse
|
40
|
Zhou Y, Gunput RAF, Adolfs Y, Pasterkamp RJ. MICALs in control of the cytoskeleton, exocytosis, and cell death. Cell Mol Life Sci 2011; 68:4033-44. [PMID: 21822644 PMCID: PMC3221843 DOI: 10.1007/s00018-011-0787-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/14/2011] [Accepted: 07/19/2011] [Indexed: 12/19/2022]
Abstract
MICALs form an evolutionary conserved family of multidomain signal transduction proteins characterized by a flavoprotein monooxygenase domain. MICALs are being implicated in the regulation of an increasing number of molecular and cellular processes including cytoskeletal dynamics and intracellular trafficking. Intriguingly, some of these effects are dependent on the MICAL monooxygenase enzyme and redox signaling, while other functions rely on other parts of the MICAL protein. Recent breakthroughs in our understanding of MICAL signaling identify the ability of MICALs to bind and directly modify the actin cytoskeleton, link MICALs to the docking and fusion of exocytotic vesicles, and uncover MICALs as anti-apoptotic proteins. These discoveries could lead to therapeutic advances in neural regeneration, cancer, and other diseases.
Collapse
Affiliation(s)
- Yeping Zhou
- Department of Neuroscience and Pharmacology, University Medical Center Utrecht, STR 4.229, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Rou-Afza F. Gunput
- Department of Neuroscience and Pharmacology, University Medical Center Utrecht, STR 4.229, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Neuroscience and Pharmacology, University Medical Center Utrecht, STR 4.229, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - R. Jeroen Pasterkamp
- Department of Neuroscience and Pharmacology, University Medical Center Utrecht, STR 4.229, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
41
|
Myers JP, Santiago-Medina M, Gomez TM. Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions. Dev Neurobiol 2011; 71:901-23. [PMID: 21714101 PMCID: PMC3192254 DOI: 10.1002/dneu.20931] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing neurons use a combination of guidance cues to assemble a functional neural network. A variety of proteins immobilized within the extracellular matrix (ECM) provide specific binding sites for integrin receptors on neurons. Integrin receptors on growth cones associate with a number of cytosolic adaptor and signaling proteins that regulate cytoskeletal dynamics and cell adhesion. Recent evidence suggests that soluble growth factors and classic axon guidance cues may direct axon pathfinding by controlling integrin-based adhesion. Moreover, because classic axon guidance cues themselves are immobilized within the ECM and integrins modulate cellular responses to many axon guidance cues, interactions between activated receptors modulate cell signals and adhesion. Ultimately, growth cones control axon outgrowth and pathfinding behaviors by integrating distinct biochemical signals to promote the proper assembly of the nervous system. In this review, we discuss our current understanding how ECM proteins and their associated integrin receptors control neural network formation.
Collapse
Affiliation(s)
- Jonathan P Myers
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
42
|
Perälä N, Sariola H, Immonen T. More than nervous: the emerging roles of plexins. Differentiation 2011; 83:77-91. [PMID: 22099179 DOI: 10.1016/j.diff.2011.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 12/30/2022]
Abstract
Plexins are the receptors for semaphorins, a large family of axon guidance cues. Accordingly, the role of plexins in the development of the nervous system was the first to be acknowledged. However, the expression of plexins is not restricted to neuronal cells, and recent research has been increasingly focused on the roles of plexin-semaphorin signalling outside of the nervous system. During embryogenesis, plexins regulate the development of many organs, including the cardiovascular system, skeleton and kidney. They have also been shown to be involved in immune system functions and tumour progression. Analyses of the plexin signalling in different tissues and cell types have provided new insight to the versatility of plexin interactions with semaphorins and other cell-surface receptors. In this review we try to summarise the current understanding of the roles of plexins in non-neural development and immunity.
Collapse
Affiliation(s)
- Nina Perälä
- Institute of Biomedicine/Biochemistry and Developmental Biology, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
43
|
Hung RJ, Terman JR. Extracellular inhibitors, repellents, and semaphorin/plexin/MICAL-mediated actin filament disassembly. Cytoskeleton (Hoboken) 2011; 68:415-33. [PMID: 21800438 PMCID: PMC3612987 DOI: 10.1002/cm.20527] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023]
Abstract
Multiple extracellular signals have been identified that regulate actin dynamics within motile cells, but how these instructive cues present on the cell surface exert their precise effects on the internal actin cytoskeleton is still poorly understood. One particularly interesting class of these cues is a group of extracellular proteins that negatively alter the movement of cells and their processes. Over the years, these types of events have been described using a variety of terms and herein we provide an overview of inhibitory/repulsive cellular phenomena and highlight the largest known protein family of repulsive extracellular cues, the Semaphorins. Specifically, the Semaphorins (Semas) utilize Plexin cell-surface receptors to dramatically collapse the actin cytoskeleton and we summarize what is known of the direct molecular and biochemical mechanisms of Sema-triggered actin filament (F-actin) disassembly. We also discuss new observations from our lab that reveal that the multidomain oxidoreductase (Redox) enzyme Molecule Interacting with CasL (MICAL), an important mediator of Sema/Plexin repulsion, is a novel F-actin disassembly factor. Our results indicate that MICAL triggers Sema/Plexin-mediated reorganization of the F-actin cytoskeleton and suggest a role for specific Redox signaling events in regulating actin dynamics.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Departments of Neuroscience and Pharmacology, and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology, and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
44
|
Abstract
MICALs (molecules interacting with CasL) are atypical multidomain flavoenzymes with diverse cellular functions. The molecular pathways employed by MICAL proteins to exert their cellular effects remain largely uncharacterized. Via an unbiased proteomics approach, we identify MICAL-1 as a binding partner of NDR (nuclear Dbf2-related) kinases. NDR1/2 kinases are known to mediate apoptosis downstream of the mammalian Ste-20-like kinase MST1, and ablation of NDR1 in mice predisposes the mice to cancer as a result of compromised apoptosis. MST1 phosphorylates NDR1/2 kinases at their hydrophobic motif, thereby facilitating full NDR kinase activity and function. However, if and how this key phosphorylation event is regulated are unknown. Here we show that MICAL-1 interacts with the hydrophobic motif of NDR1/2 and that overexpression or knockdown of MICAL-1 reduces or augments NDR kinase activation or activity, respectively. Surprisingly, MICAL-1 is a phosphoprotein but not an NDR or MST1 substrate. Rather, MICAL-1 competes with MST1 for NDR binding and thereby antagonizes MST1-induced NDR activation. In line with this inhibitory effect, overexpression or knockdown of MICAL-1 inhibits or enhances, respectively, NDR-dependent proapoptotic signaling induced by extrinsic stimuli. Our findings unveil a previously unknown biological role for MICAL-1 in apoptosis and define a novel negative regulatory mechanism of MST-NDR signaling.
Collapse
|
45
|
Wannemacher KM, Wang L, Zhu L, Brass LF. The role of semaphorins and their receptors in platelets: Lessons learned from neuronal and immune synapses. Platelets 2011; 22:461-5. [PMID: 21668292 DOI: 10.3109/09537104.2011.561891] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During thrombus formation, activated platelets come into close and increasingly stable contact with each other. This produces a microenvironment in which soluble agonists can accumulate, and proteins on the surface of adjacent platelets can directly interact with each other, potentially modulating subsequent thrombus growth and stability. In some ways, this microenvironment resembles the synapses that support signal propagation between neurons and the exchange of information between T-cells, B-cells, and dendritic cells. Drawing on this analogy, this brief review discusses the role of semaphorins and their receptors in platelets, two protein families that have previously been defined by their role at cell:cell contacts, in both the developing nervous system and adaptive immunity.
Collapse
Affiliation(s)
- Kenneth M Wannemacher
- Department of Medicine, Hematology-Oncology Division, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
46
|
Gay CM, Zygmunt T, Torres-Vázquez J. Diverse functions for the semaphorin receptor PlexinD1 in development and disease. Dev Biol 2011; 349:1-19. [PMID: 20880496 PMCID: PMC2993764 DOI: 10.1016/j.ydbio.2010.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/14/2010] [Accepted: 09/18/2010] [Indexed: 01/13/2023]
Abstract
Plexins are a family of single-pass transmembrane proteins that serve as cell surface receptors for Semaphorins during the embryonic development of animals. Semaphorin-Plexin signaling is critical for many cellular aspects of organogenesis, including cell migration, proliferation and survival. Until recently, little was known about the function of PlexinD1, the sole member of the vertebrate-specific PlexinD (PlxnD1) subfamily. Here we review novel findings about PlxnD1's roles in the development of the cardiovascular, nervous and immune systems and salivary gland branching morphogenesis and discuss new insights concerning the molecular mechanisms of PlxnD1 activity.
Collapse
Affiliation(s)
- Carl M Gay
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, 540 First Avenue, 4th floor, lab 14, New York, NY 10016, USA
| | | | | |
Collapse
|
47
|
Naska S, Lin DC, Miller FD, Kaplan DR. p75NTR is an obligate signaling receptor required for cues that cause sympathetic neuron growth cone collapse. Mol Cell Neurosci 2010; 45:108-20. [PMID: 20584617 DOI: 10.1016/j.mcn.2010.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/12/2010] [Accepted: 05/29/2010] [Indexed: 11/30/2022] Open
Abstract
The p75 neurotrophin receptor (p75NTR) is required for the activity of growth cone collapsing factors such as Nogo, MAG, OMgP, and ephrin A. Specifically, p75NTR associates with the Nogo receptor and GPI-linked ephrin A, and unliganded p75NTR mediates the biological effects of those proteins. Here we assess the requirement for p75NTR for the growth cone collapsing responses of semaphorins (Sema) 3A and 3F and ephrin B2 in sympathetic neurons. We show that the ability of Sema 3s or ephrin B2 to collapse growth cones is suppressed in p75NTR-/- sympathetic neurons. Ectopic expression of p75NTR restores the collapsing activity of Sema 3 in p75NTR-/- neurons. Moreover, p75NTR must be bound to its neurotrophin ligands to participate in Sema 3-mediated collapse. Ligand-bound p75NTR participates in Sema 3 and ephrin B2-mediated collapse via the Rho signaling pathway, since inhibition of Rho signaling is sufficient to suppress the effects of Sema 3s and ephrin B2 in p75NTR+/+ but not p75NTR-/- neurons. Our data suggest that in addition to its role as a co-receptor, p75NTR may provide an obligate parallel neurotrophin-activated inhibitory pathway that broadly sensitizes neurons to inhibitory cues.
Collapse
Affiliation(s)
- Sibel Naska
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | |
Collapse
|
48
|
Perälä N, Peitsaro N, Sundvik M, Koivula H, Sainio K, Sariola H, Panula P, Immonen T. Conservation, expression, and knockdown of zebrafish plxnb2a and plxnb2b. Dev Dyn 2010; 239:2722-34. [DOI: 10.1002/dvdy.22397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
49
|
Casazza A, Finisguerra V, Capparuccia L, Camperi A, Swiercz JM, Rizzolio S, Rolny C, Christensen C, Bertotti A, Sarotto I, Risio M, Trusolino L, Weitz J, Schneider M, Mazzone M, Mazzone M, Comoglio PM, Tamagnone L. Sema3E-Plexin D1 signaling drives human cancer cell invasiveness and metastatic spreading in mice. J Clin Invest 2010; 120:2684-98. [PMID: 20664171 DOI: 10.1172/jci42118] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 05/19/2010] [Indexed: 12/14/2022] Open
Abstract
Semaphorin 3E (Sema3E) is a secreted molecule implicated in axonal path finding and inhibition of developmental and postischemic angiogenesis. Sema3E is also highly expressed in metastatic cancer cells, but its mechanistic role in tumor progression was not understood. Here we show that expression of Sema3E and its receptor Plexin D1 correlates with the metastatic progression of human tumors. Consistent with the clinical data, knocking down endogenous expression of either Sema3E or Plexin D1 in human metastatic carcinoma cells hampered their metastatic potential when injected into mice, while tumor growth was not markedly affected. Conversely, overexpression of exogenous Sema3E in cancer cells increased their invasiveness, transendothelial migration, and metastatic spreading, although it inhibited tumor vessel formation, resulting in reduced tumor growth in mice. The proinvasive and metastatic activity of Sema3E in tumor cells was dependent on transactivation of the Plexin D1-associated ErbB2/Neu oncogenic kinase. In sum, Sema3E-Plexin D1 signaling in cancer cells is crucially implicated in their metastatic behavior and may therefore be a promising target for strategies aimed at blocking tumor metastasis.
Collapse
Affiliation(s)
- Andrea Casazza
- Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Klagsbrun M, Shimizu A. Semaphorin 3E, an exception to the rule. J Clin Invest 2010; 120:2658-60. [PMID: 20664165 DOI: 10.1172/jci44110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Class 3 semaphorins (Sema3s) regulate axon guidance, angiogenesis, tumor growth, and tumor metastasis. Neuropilins (NRPs; NRP1 and NRP2) are the cell surface receptors for the Sema3s. However, to signal, interaction of Sema3s and NRPs with plexins is obligatory. In this issue of the JCI, Casazza and colleagues report data that challenge the conventional wisdom about the role of Sema3s in tumor metastasis. As a rule, Sema3B and Sema3F, for example, are inhibitors of tumor angiogenesis, progression, and metastasis. However, Casazza et al. found that Sema3E inhibited tumor growth but atypically promoted invasiveness and metastasis. This metastatic potential was dependent on Plexin D1 expression but was independent of NRP expression. Of clinical importance, Sema3E and Plexin D1 were found to be upregulated in human colon cancer, liver metastasis, and melanoma progression.
Collapse
Affiliation(s)
- Michael Klagsbrun
- Department of Surgery, Children's Hospital Boston, and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|