1
|
Webster CP, Hall B, Crossley OM, Dauletalina D, King M, Lin YH, Castelli LM, Yang ZL, Coldicott I, Kyrgiou-Balli E, Higginbottom A, Ferraiuolo L, De Vos KJ, Hautbergue GM, Shaw PJ, West RJ, Azzouz M. RuvBL1/2 reduce toxic dipeptide repeat protein burden in multiple models of C9orf72-ALS/FTD. Life Sci Alliance 2025; 8:e202402757. [PMID: 39638345 PMCID: PMC11629685 DOI: 10.26508/lsa.202402757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
A G4C2 hexanucleotide repeat expansion in C9orf72 is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Bidirectional transcription and subsequent repeat-associated non-AUG (RAN) translation of sense and antisense transcripts leads to the formation of five dipeptide repeat (DPR) proteins. These DPRs are toxic in a wide range of cell and animal models. Therefore, decreasing RAN-DPRs may be of therapeutic benefit in the context of C9ALS/FTD. In this study, we found that C9ALS/FTD patients have reduced expression of the AAA+ family members RuvBL1 and RuvBL2, which have both been implicated in aggregate clearance. We report that overexpression of RuvBL1, but to a greater extent RuvBL2, reduced C9orf72-associated DPRs in a range of in vitro systems including cell lines, primary neurons from the C9-500 transgenic mouse model, and patient-derived iPSC motor neurons. In vivo, we further demonstrated that RuvBL2 overexpression and consequent DPR reduction in our Drosophila model was sufficient to rescue a number of DPR-related motor phenotypes. Thus, modulating RuvBL levels to reduce DPRs may be of therapeutic potential in C9ALS/FTD.
Collapse
Affiliation(s)
- Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Bradley Hall
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Olivia M Crossley
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Dana Dauletalina
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Marianne King
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Zih-Liang Yang
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ergita Kyrgiou-Balli
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ryan Jh West
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Gene Therapy Innovation and Manufacturing Centre (GTIMC), Division of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Cheung CY, Huang TT, Chow N, Zhang S, Zhao Y, Chau MP, Chan WC, Wong CCL, Boassa D, Phan S, Ellisman MH, Yates JR, Xu S, Yu Z, Zhang Y, Zhang R, Ng LL, Ko BCB. Unconventional tonicity-regulated nuclear trafficking of NFAT5 mediated by KPNB1, XPOT and RUVBL2. J Cell Sci 2022; 135:jcs259280. [PMID: 35635291 PMCID: PMC9377714 DOI: 10.1242/jcs.259280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/20/2022] [Indexed: 11/20/2022] Open
Abstract
NFAT5 is the only known mammalian tonicity-responsive transcription factor with an essential role in cellular adaptation to hypertonic stress. It is also implicated in diverse physiological and pathological processes. NFAT5 activity is tightly regulated by extracellular tonicity, but the underlying mechanisms remain elusive. Here, we demonstrate that NFAT5 enters the nucleus via the nuclear pore complex. We found that NFAT5 utilizes a unique nuclear localization signal (NFAT5-NLS) for nuclear import. siRNA screening revealed that only karyopherin β1 (KPNB1), but not karyopherin α, is responsible for the nuclear import of NFAT5 via direct interaction with the NFAT5-NLS. Proteomics analysis and siRNA screening further revealed that nuclear export of NFAT5 under hypotonicity is driven by exportin-T (XPOT), where the process requires RuvB-like AAA-type ATPase 2 (RUVBL2) as an indispensable chaperone. Our findings have identified an unconventional tonicity-dependent nucleocytoplasmic trafficking pathway for NFAT5 that represents a critical step in orchestrating rapid cellular adaptation to change in extracellular tonicity. These findings offer an opportunity for the development of novel NFAT5 targeting strategies that are potentially useful for the treatment of diseases associated with NFAT5 dysregulation.
Collapse
Affiliation(s)
- Chris Y. Cheung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ting-Ting Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ning Chow
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shuqi Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yanxiang Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mary P. Chau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wing Cheung Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Catherine C. L. Wong
- Center for Precision Medicine Multi-Omics Research, Health Science Center, Peking University, China Clinical Laboratory Department, The Cancer Hospital of the University of Chinese Academy of Sciences, 102206, Beijing, China
| | - Daniela Boassa
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sebastien Phan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark H. Ellisman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - SongXiao Xu
- The Clinical Laboratory Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
| | - Zicheng Yu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yajing Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Rui Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ling Ling Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ben C. B. Ko
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
3
|
Tang D, Zhang Z, Zboril E, Wetzel MD, Xu X, Zhang W, Chen L, Liu Z. Pontin Functions as A Transcriptional Co-activator for Retinoic Acid-induced HOX Gene Expression. J Mol Biol 2021; 433:166928. [PMID: 33713676 PMCID: PMC8184613 DOI: 10.1016/j.jmb.2021.166928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Pontin is a AAA+ ATPase protein that has functions in various biological contexts including gene transcription regulation, chromatin remodeling, DNA damage sensing and repair, as well as assembly of protein and ribonucleoprotein complexes. Pontin is known to regulate the transcription of several important signaling pathways, including Wnt signaling. However, its role in early embryonic signaling regulation remains unclear. Retinoic acid (RA) signaling plays a central role in vertebrate development. Using an in vivo biotin tagging technology, we mapped the genome-wide binding pattern of Pontin before and after RA-induced differentiation in the pluripotent embryo carcinoma cell line NTERA-2. Biotin ChIP-seq revealed significant changes in genome-wide Pontin binding sites upon RA stimulation. We also identified a substantial amount of overlapping binding peaks between Pontin and RARα, especially on all of the HOX gene loci (A-D clusters). Pontin knockdown experiments showed that its chromatin binding at the HOX gene clusters is required for RA-induced HOX gene expression. Furthermore, we performed Global Run-On sequencing (GRO-seq) to map de novo transcripts genome-wide and found that Pontin knockdown significantly diminished nascent HOX gene transcripts, indicating that Pontin regulates HOX gene expression at the transcriptional level. Finally, proteomic analysis demonstrated that Pontin associates with chromatin organization/remodeling complexes and various other functional complexes. Altogether, we have demonstrated that Pontin is a critical transcriptional co-activator for RA-induced HOX gene activation.
Collapse
Affiliation(s)
- Dan Tang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of General Practice, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Emily Zboril
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael D Wetzel
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xinping Xu
- Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wei Zhang
- Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
4
|
Fingerhut JM, Yamashita YM. mRNA localization mediates maturation of cytoplasmic cilia in Drosophila spermatogenesis. J Cell Biol 2020; 219:e202003084. [PMID: 32706373 PMCID: PMC7480094 DOI: 10.1083/jcb.202003084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
Cytoplasmic cilia, a specialized type of cilia in which the axoneme resides within the cytoplasm rather than within the ciliary compartment, are proposed to allow for the efficient assembly of very long cilia. Despite being found diversely in male gametes (e.g., Plasmodium falciparum microgametocytes and human and Drosophila melanogaster sperm), very little is known about cytoplasmic cilia assembly. Here, we show that a novel RNP granule containing the mRNAs for axonemal dynein motor proteins becomes highly polarized to the distal end of the cilia during cytoplasmic ciliogenesis in Drosophila sperm. This allows for the incorporation of these axonemal dyneins into the axoneme directly from the cytoplasm, possibly by localizing translation. We found that this RNP granule contains the proteins Reptin and Pontin, loss of which perturbs granule formation and prevents incorporation of the axonemal dyneins, leading to sterility. We propose that cytoplasmic cilia assembly requires the precise localization of mRNAs encoding key axonemal constituents, allowing these proteins to incorporate efficiently into the axoneme.
Collapse
Affiliation(s)
- Jaclyn M. Fingerhut
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Yukiko M. Yamashita
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
5
|
Jain S, Maini J, Narang A, Maiti S, Brahmachari V. The regulatory function of dIno80 correlates with its DNA binding activity. Gene 2020; 732:144368. [PMID: 31954859 DOI: 10.1016/j.gene.2020.144368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/06/2023]
Abstract
The INO80 complex, including the Ino80 protein, forms a highly conserved canonical complex that remodels chromatin in the context of multiple cellular functions. The Drosophila homologue, dIno80, is involved in homeotic gene regulation during development as a canonical Pho-dIno80 complex. Previously, we found that dIno80 regulates homeotic genes by interacting with epigenetic regulators, such as polycomb and trithorax, suggesting the occurrence of non-canonical Ino80 complexes. Here using spectroscopic methods and gel retardation assays, we identified a set of consensus DNA sequences that DNA binding domain of dIno80 (DBINO) interacts with having differential affinity and high specificity. Testing these sequences in reporter assays, showed that this interaction can positively regulate transcription. These results suggest that, dIno80 has a sequence preference for interaction with DNA leading to transcriptional changes.
Collapse
Affiliation(s)
- Shruti Jain
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| | - Jayant Maini
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Ankita Narang
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Souvik Maiti
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
| | - Vani Brahmachari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
6
|
Umer Z, Akhtar J, Khan MHF, Shaheen N, Haseeb MA, Mazhar K, Mithani A, Anwar S, Tariq M. Genome-wide RNAi screen in Drosophila reveals Enok as a novel trithorax group regulator. Epigenetics Chromatin 2019; 12:55. [PMID: 31547845 PMCID: PMC6757429 DOI: 10.1186/s13072-019-0301-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
Background Polycomb group (PcG) and trithorax group (trxG) proteins contribute to the specialization of cell types by maintaining differential gene expression patterns. Initially discovered as positive regulators of HOX genes in forward genetic screens, trxG counteracts PcG-mediated repression of cell type-specific genes. Despite decades of extensive analysis, molecular understanding of trxG action and regulation are still punctuated by many unknowns. This study aimed at discovering novel factors that elicit an anti-silencing effect to facilitate trxG-mediated gene activation. Results We have developed a cell-based reporter system and performed a genome-wide RNAi screen to discover novel factors involved in trxG-mediated gene regulation in Drosophila. We identified more than 200 genes affecting the reporter in a manner similar to trxG genes. From the list of top candidates, we have characterized Enoki mushroom (Enok), a known histone acetyltransferase, as an important regulator of trxG in Drosophila. Mutants of enok strongly suppressed extra sex comb phenotype of Pc mutants and enhanced homeotic transformations associated with trx mutations. Enok colocalizes with both TRX and PC at chromatin. Moreover, depletion of Enok specifically resulted in an increased enrichment of PC and consequently silencing of trxG targets. This downregulation of trxG targets was also accompanied by a decreased occupancy of RNA-Pol-II in the gene body, correlating with an increased stalling at the transcription start sites of these genes. We propose that Enok facilitates trxG-mediated maintenance of gene activation by specifically counteracting PcG-mediated repression. Conclusion Our ex vivo approach led to identification of new trxG candidate genes that warrant further investigation. Presence of chromatin modifiers as well as known members of trxG and their interactors in the genome-wide RNAi screen validated our reverse genetics approach. Genetic and molecular characterization of Enok revealed a hitherto unknown interplay between Enok and PcG/trxG system. We conclude that histone acetylation by Enok positively impacts the maintenance of trxG-regulated gene activation by inhibiting PRC1-mediated transcriptional repression.
Collapse
Affiliation(s)
- Zain Umer
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Jawad Akhtar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Haider Farooq Khan
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Najma Shaheen
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Abdul Haseeb
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Khalida Mazhar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Aziz Mithani
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Saima Anwar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.,Biomedical Engineering Centre, University of Engineering and Technology Lahore, KSK Campus, Lahore, Pakistan
| | - Muhammad Tariq
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| |
Collapse
|
7
|
Identification of RUVBL1 and RUVBL2 as Novel Cellular Interactors of the Ebola Virus Nucleoprotein. Viruses 2019; 11:v11040372. [PMID: 31018511 PMCID: PMC6521077 DOI: 10.3390/v11040372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/25/2022] Open
Abstract
Ebola virus (EBOV) is a filovirus that has become a global public health threat in recent years. EBOV is the causative agent of a severe, often fatal hemorrhagic fever. A productive viral infection relies on the successful recruitment of host factors for various stages of the viral life cycle. To date, several investigations have discovered specific host-pathogen interactions for various EBOV proteins. However, relatively little is known about the EBOV nucleoprotein (NP) with regard to host interactions. In the present study, we aimed to elucidate NP-host protein-protein interactions (PPIs). Affinity purification-mass spectrometry (AP-MS) was used to identify candidate NP cellular interactors. Candidate interactors RUVBL1 and RUVBL2, partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) superfamily, were confirmed to interact with NP in co-immunoprecipitation (co-IP) and immunofluorescence (IF) experiments. Functional studies using a minigenome system revealed that the siRNA-mediated knockdown of RUVBL1 but not RUVBL2 moderately decreased EBOV minigenome activity. Super resolution structured illumination microscopy (SIM) was used to identify an association between NP and components of the R2TP complex, which includes RUVBL1, RUVBL2, RPAP3, and PIH1D1, suggesting a potential role for the R2TP complex in capsid formation. Moreover, the siRNA-mediated knockdown of RPAP3 and subsequent downregulation of PIH1D1 was shown to have no effect on minigenome activity, further suggesting a role in capsid formation. Overall, we identify RUVBL1 and RUVBL2 as novel interactors of EBOV NP and for the first time report EBOV NP recruitment of the R2TP complex, which may provide novel targets for broad-acting anti-EBOV therapeutics.
Collapse
|
8
|
Silva STN, Brito JA, Arranz R, Sorzano CÓS, Ebel C, Doutch J, Tully MD, Carazo JM, Carrascosa JL, Matias PM, Bandeiras TM. X-ray structure of full-length human RuvB-Like 2 - mechanistic insights into coupling between ATP binding and mechanical action. Sci Rep 2018; 8:13726. [PMID: 30213962 PMCID: PMC6137109 DOI: 10.1038/s41598-018-31997-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/30/2018] [Indexed: 01/27/2023] Open
Abstract
RuvB-Like transcription factors function in cell cycle regulation, development and human disease, such as cancer and heart hyperplasia. The mechanisms that regulate adenosine triphosphate (ATP)-dependent activity, oligomerization and post-translational modifications in this family of enzymes are yet unknown. We present the first crystallographic structure of full-length human RuvBL2 which provides novel insights into its mechanistic action and biology. The ring-shaped hexameric RuvBL2 structure presented here resolves for the first time the mobile domain II of the human protein, which is responsible for protein-protein interactions and ATPase activity regulation. Structural analysis suggests how ATP binding may lead to domain II motion through interactions with conserved N-terminal loop histidine residues. Furthermore, a comparison between hsRuvBL1 and 2 shows differences in surface charge distribution that may account for previously described differences in regulation. Analytical ultracentrifugation and cryo electron microscopy analyses performed on hsRuvBL2 highlight an oligomer plasticity that possibly reflects different physiological conformations of the protein in the cell, as well as that single-stranded DNA (ssDNA) can promote the oligomerization of monomeric hsRuvBL2. Based on these findings, we propose a mechanism for ATP binding and domain II conformational change coupling.
Collapse
Affiliation(s)
- Sara T N Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - José A Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Rocío Arranz
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Carlos Óscar S Sorzano
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Christine Ebel
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs CS 10090, 38044, Grenoble, France
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, STFC, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Mark D Tully
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - José-María Carazo
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal.
| |
Collapse
|
9
|
Pontin/Tip49 negatively regulates JNK-mediated cell death in Drosophila. Cell Death Discov 2018; 4:8. [PMID: 30062057 PMCID: PMC6060144 DOI: 10.1038/s41420-018-0074-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 01/02/2023] Open
Abstract
Pontin (Pont), also known as Tip49, encodes a member of the AAA+ (ATPases Associated with Diverse Cellular Activities) superfamily and plays pivotal roles in cell proliferation and growth, yet its function in cell death has remained poorly understood. Here we performed a genetic screen for dominant modifiers of Eiger-induced JNK-dependent cell death in Drosophila, and identified Pont as a negative regulator of JNK-mediated cell death. In addition, loss of function of Pont is sufficient to induce cell death and activate the transcription of JNK target gene puc. Furthermore, the epistasis analysis indicates that Pont acts downstream of Hep. Finally, we found that Pont is also required for JNK-mediated thorax development and acts as a negative regulator of JNK phosphorylation. Together, our data suggest that pont encodes a negative component of Egr/JNK signaling pathway in Drosophila through negatively regulating JNK phosphorylation, which provides a novel role of ATPase in Egr-JNK signaling.
Collapse
|
10
|
Shang J, Yamashita T, Fukui Y, Song D, Li X, Zhai Y, Nakano Y, Morihara R, Hishikawa N, Ohta Y, Abe K. Different Associations of Plasma Biomarkers in Alzheimer's Disease, Mild Cognitive Impairment, Vascular Dementia, and Ischemic Stroke. J Clin Neurol 2018; 14:29-34. [PMID: 29629537 PMCID: PMC5765253 DOI: 10.3988/jcn.2018.14.1.29] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/05/2017] [Accepted: 08/10/2017] [Indexed: 12/22/2022] Open
Abstract
Background and Purpose Cognitive and cerebrovascular diseases are common in the elderly, but differences in the plasma levels and associations of plasma biomarkers in these diseases remain elusive. Methods The present study investigated differences in plasma fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)], adiponectin, reptin, plasma markers of inflammation [high-sensitivity C-reactive protein (hsCRP) and serum amyloid A (serum AA)], and plasma lipids [high-density lipoprotein and low-density lipoprotein (LDL)] in patients with Alzheimer's disease (AD) (n=266), mild cognitive impairment (MCI) (n=44), vascular dementia (VaD) (n=33), and ischemic stroke (IS) (n=200) in comparison to normal controls (n=130). Results The serological data showed that lower EPA and DHA levels and higher reptin and LDL levels were associated with AD and IS, the reptin/adiponectin ratio was strongly associated with IS, the hsCRP level was more strongly associated with VaD and IS, and the serum AA level was associated with all three cognitive diseases and IS. Conclusions This is the first report of differences in the expression levels of plasma biomarkers and peripheral arterial tonometry among AD, MCI, VaD, and IS patients and normal controls. These different associations indicate that diverse pathological mechanisms underlie these diseases.
Collapse
Affiliation(s)
- Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Dongjing Song
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Xianghong Li
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yun Zhai
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
11
|
Li Y, Zhao L, Yuan S, Zhang J, Sun Z. Axonemal dynein assembly requires the R2TP complex component Pontin. Development 2017; 144:4684-4693. [PMID: 29113992 PMCID: PMC5769618 DOI: 10.1242/dev.152314] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/30/2017] [Indexed: 01/03/2023]
Abstract
Pontin (Ruvbl1) and Reptin (Ruvbl2) are closely related AAA ATPases. They are components of the Ruvbl1-Ruvbl2-Tah1-Pih1 (R2TP) complexes that function as co-chaperones for the assembly of multiple macromolecular protein complexes. Here, we show that Pontin is essential for cilia motility in both zebrafish and mouse and that Pontin and Reptin function cooperatively in this process. Zebrafish pontin mutants display phenotypes tightly associated with cilia defects, and cilia motility is lost in a number of ciliated tissues along with a reduction in the number of outer and inner dynein arms. Pontin protein is enriched in cytosolic puncta in ciliated cells in zebrafish embryos. In mouse testis, Pontin is essential for the stabilization of axonemal dynein intermediate chain 1 (DNAI1) and DNAI2, the first appreciated step in axonemal dynein arm assembly. Strikingly, multiple dynein arm assembly factors show structural similarities to either Tah1 or Pih1, the other two components of the R2TP complex. Based on these results, we propose that Pontin and Reptin function to facilitate dynein arm assembly in cytosolic foci enriched with R2TP-like complexes.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lu Zhao
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shiaulou Yuan
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jiefang Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou 310016, Zhejiang, PR China
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Lakshminarasimhan M, Boanca G, Banks CAS, Hattem GL, Gabriel AE, Groppe BD, Smoyer C, Malanowski KE, Peak A, Florens L, Washburn MP. Proteomic and Genomic Analyses of the Rvb1 and Rvb2 Interaction Network upon Deletion of R2TP Complex Components. Mol Cell Proteomics 2016; 15:960-74. [PMID: 26831523 DOI: 10.1074/mcp.m115.053165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 11/06/2022] Open
Abstract
The highly conserved yeast R2TP complex, consisting of Rvb1, Rvb2, Pih1, and Tah1, participates in diverse cellular processes ranging from assembly of protein complexes to apoptosis. Rvb1 and Rvb2 are closely related proteins belonging to the AAA+ superfamily and are essential for cell survival. Although Rvbs have been shown to be associated with various protein complexes including the Ino80 and Swr1chromatin remodeling complexes, we performed a systematic quantitative proteomic analysis of their associated proteins and identified two additional complexes that associate with Rvb1 and Rvb2: the chaperonin-containing T-complex and the 19S regulatory particle of the proteasome complex. We also analyzed Rvb1 and Rvb2 purified from yeast strains devoid of PIH1 and TAH1. These analyses revealed that both Rvb1 and Rvb2 still associated with Hsp90 and were highly enriched with RNA polymerase II complex components. Our analyses also revealed that both Rvb1 and Rvb2 were recruited to the Ino80 and Swr1 chromatin remodeling complexes even in the absence of Pih1 and Tah1 proteins. Using further biochemical analysis, we showed that Rvb1 and Rvb2 directly interacted with Hsp90 as well as with the RNA polymerase II complex. RNA-Seq analysis of the deletion strains compared with the wild-type strains revealed an up-regulation of ribosome biogenesis and ribonucleoprotein complex biogenesis genes, down-regulation of response to abiotic stimulus genes, and down-regulation of response to temperature stimulus genes. A Gene Ontology analysis of the 80 proteins whose protein associations were altered in the PIH1 or TAH1 deletion strains found ribonucleoprotein complex proteins to be the most enriched category. This suggests an important function of the R2TP complex in ribonucleoprotein complex biogenesis at both the proteomic and genomic levels. Finally, these results demonstrate that deletion network analyses can provide novel insights into cellular systems.
Collapse
Affiliation(s)
| | - Gina Boanca
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Charles A S Banks
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Gaye L Hattem
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Ana E Gabriel
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Brad D Groppe
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Christine Smoyer
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Kate E Malanowski
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Allison Peak
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Laurence Florens
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and
| | - Michael P Washburn
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and §Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
13
|
Ghasemi M, Pawar H, Mishra RK, Brahmachari V. The functional diversity of Drosophila Ino80 in development. Mech Dev 2015; 138 Pt 2:113-121. [PMID: 26253267 DOI: 10.1016/j.mod.2015.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
Ino80 is well known as a chromatin remodeling protein with the catalytic function of DNA dependent ATPase and is highly conserved across phyla. Ino80 in human and Drosophila is known to form the Ino80 complex in association with the DNA binding protein Ying-Yang 1 (YY1)/Pleiohomeotic (Pho) the Drosophila homologue. We have earlier reported that Ino80 sub-family of proteins has two functional domains, namely, the DNA dependent ATPase and the DNA binding domain. In the background of the essential role of dIno80 in development, we provide evidence of Pho independent function of dIno80 in development and analyze the dual role of dIno80 in activation as well as repression in the context of the homeotic gene Scr (sex combs reduced) in imaginal discs. This differential effect of dIno80 in different imaginal discs suggests the contextual function of dIno80 as an Enhancer of Trithorax and Polycomb (ETP). We speculate on the role of dIno80 as a chromatin remodeler on one hand and a potential recruiter of epigenetic regulatory complexes on the other.
Collapse
Affiliation(s)
- Mohsen Ghasemi
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Hema Pawar
- Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Vani Brahmachari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
14
|
Mu X, Fu Y, Zhu Y, Wang X, Xuan Y, Shang H, Goff SP, Gao G. HIV-1 Exploits the Host Factor RuvB-like 2 to Balance Viral Protein Expression. Cell Host Microbe 2015. [PMID: 26211835 DOI: 10.1016/j.chom.2015.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The correct ratio of the HIV-1 structural protein Gag to the envelope protein (Env) is important for maximal virion infectivity. How the virus ensures the production of Gag and Env proteins in an appropriate ratio remains unknown. We report that HIV-1 exploits the host factor RuvB-like 2 (RVB2) to balance relative expression of Gag and Env for efficient production of infectious virions. RVB2 inhibits Gag expression by interacting with both the encoded Matrix (MA) domain of Gag protein and 5' UTR of the translating mRNA and promoting mRNA degradation in a translation-dependent manner. This inhibitory activity of RVB2 is antagonized by Env through competitive interaction with MA, allowing Gag synthesis to proceed when Env levels are adequate for virion assembly. In HIV-1-positive patients, RVB2 levels positively correlate with viral loads and disease progression status. These findings reveal a mechanism by which HIV-1 regulates its protein expression.
Collapse
Affiliation(s)
- Xin Mu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Fu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, The First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Yiping Zhu
- Department of Biochemistry and Molecular Biophysics, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York NY, 10032, USA
| | - Xinlu Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifang Xuan
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, The First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York NY, 10032, USA
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
Magalska A, Schellhaus A, Moreno-Andrés D, Zanini F, Schooley A, Sachdev R, Schwarz H, Madlung J, Antonin W. RuvB-like ATPases Function in Chromatin Decondensation at the End of Mitosis. Dev Cell 2014; 31:305-318. [DOI: 10.1016/j.devcel.2014.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/22/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
|
16
|
Queval R, Papin C, Dalvai M, Bystricky K, Humbert O. Reptin and Pontin oligomerization and activity are modulated through histone H3 N-terminal tail interaction. J Biol Chem 2014; 289:33999-4012. [PMID: 25336637 DOI: 10.1074/jbc.m114.576785] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pontin/RUVBL1 and Reptin/RUVBL2 are DNA-dependent ATPases involved in numerous cellular processes and are essential components of chromatin remodeling complexes and transcription factor assemblies. However, their existence as monomeric and oligomeric forms with differential activity in vivo reflects their versatility. Using a biochemical approach, we have studied the role of the nucleosome core particle and histone N-terminal tail modifications in the assembly and enzymatic activities of Reptin/Pontin. We demonstrate that purified Reptin and Pontin form stable complexes with nucleosomes. The ATPase activity of Reptin/Pontin is modulated by acetylation and methylation of the histone H3 N terminus. In vivo, association of Reptin with the progesterone receptor gene promoter is concomitant with changes in H3 marks of the surrounding nucleosomes. Furthermore, the presence of H3 tail peptides regulates the monomer-oligomer transition of Reptin/Pontin. Proteins that are pulled down by monomeric Reptin/Pontin differ from those that can bind to hexamers. We propose that changes in the oligomeric status of Reptin/Pontin create a platform that brings specific cofactors close to gene promoters and loads regulatory factors to establish an active state of chromatin.
Collapse
Affiliation(s)
- Richard Queval
- From the Laboratoire de Biologie Moléculaire Eucaryote, CNRS/UMR 5099, F-31062 Toulouse Cedex, the Université de Toulouse, UPS, 31062 Toulouse Cedex, and
| | - Christophe Papin
- the Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM, Université de Strasbourg, 67404 Illkirch Cedex, France
| | - Mathieu Dalvai
- From the Laboratoire de Biologie Moléculaire Eucaryote, CNRS/UMR 5099, F-31062 Toulouse Cedex, the Université de Toulouse, UPS, 31062 Toulouse Cedex, and
| | - Kerstin Bystricky
- From the Laboratoire de Biologie Moléculaire Eucaryote, CNRS/UMR 5099, F-31062 Toulouse Cedex, the Université de Toulouse, UPS, 31062 Toulouse Cedex, and
| | - Odile Humbert
- From the Laboratoire de Biologie Moléculaire Eucaryote, CNRS/UMR 5099, F-31062 Toulouse Cedex, the Université de Toulouse, UPS, 31062 Toulouse Cedex, and
| |
Collapse
|
17
|
Yasunaga A, Hanna SL, Li J, Cho H, Rose PP, Spiridigliozzi A, Gold B, Diamond MS, Cherry S. Genome-wide RNAi screen identifies broadly-acting host factors that inhibit arbovirus infection. PLoS Pathog 2014; 10:e1003914. [PMID: 24550726 PMCID: PMC3923753 DOI: 10.1371/journal.ppat.1003914] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/18/2013] [Indexed: 01/12/2023] Open
Abstract
Vector-borne viruses are an important class of emerging and re-emerging pathogens; thus, an improved understanding of the cellular factors that modulate infection in their respective vertebrate and insect hosts may aid control efforts. In particular, cell-intrinsic antiviral pathways restrict vector-borne viruses including the type I interferon response in vertebrates and the RNA interference (RNAi) pathway in insects. However, it is likely that additional cell-intrinsic mechanisms exist to limit these viruses. Since insects rely on innate immune mechanisms to inhibit virus infections, we used Drosophila as a model insect to identify cellular factors that restrict West Nile virus (WNV), a flavivirus with a broad and expanding geographical host range. Our genome-wide RNAi screen identified 50 genes that inhibited WNV infection. Further screening revealed that 17 of these genes were antiviral against additional flaviviruses, and seven of these were antiviral against other vector-borne viruses, expanding our knowledge of invertebrate cell-intrinsic immunity. Investigation of two newly identified factors that restrict diverse viruses, dXPO1 and dRUVBL1, in the Tip60 complex, demonstrated they contributed to antiviral defense at the organismal level in adult flies, in mosquito cells, and in mammalian cells. These data suggest the existence of broadly acting and functionally conserved antiviral genes and pathways that restrict virus infections in evolutionarily divergent hosts.
Collapse
Affiliation(s)
- Ari Yasunaga
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sheri L. Hanna
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jianqing Li
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Hyelim Cho
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Patrick P. Rose
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anna Spiridigliozzi
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Beth Gold
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
18
|
Banreti A, Hudry B, Sass M, Saurin AJ, Graba Y. Hox proteins mediate developmental and environmental control of autophagy. Dev Cell 2014; 28:56-69. [PMID: 24389064 DOI: 10.1016/j.devcel.2013.11.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 09/06/2013] [Accepted: 11/27/2013] [Indexed: 11/16/2022]
Abstract
Hox genes encode evolutionarily conserved transcription factors, providing positional information used for differential morphogenesis along the anteroposterior axis. Here, we show that Drosophila Hox proteins are potent repressors of the autophagic process. In inhibiting autophagy, Hox proteins display no apparent paralog specificity and do not provide positional information. Instead, they impose temporality on developmental autophagy and act as effectors of environmental signals in starvation-induced autophagy. Further characterization establishes that temporality is controlled by Pontin, a facultative component of the Brahma chromatin remodeling complex, and that Hox proteins impact on autophagy by repressing the expression of core components of the autophagy machinery. Finally, the potential of central and posterior mouse Hox proteins to inhibit autophagy in Drosophila and in vertebrate COS-7 cells indicates that regulation of autophagy is an evolutionary conserved feature of Hox proteins.
Collapse
Affiliation(s)
- Agnes Banreti
- CNRS, Aix Marseille Université, IBDML, UMR 7288, Campus de Luminy, Marseille, cedex 09, 13288, France; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary.
| | - Bruno Hudry
- CNRS, Aix Marseille Université, IBDML, UMR 7288, Campus de Luminy, Marseille, cedex 09, 13288, France
| | - Miklos Sass
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Andrew J Saurin
- CNRS, Aix Marseille Université, IBDML, UMR 7288, Campus de Luminy, Marseille, cedex 09, 13288, France
| | - Yacine Graba
- CNRS, Aix Marseille Université, IBDML, UMR 7288, Campus de Luminy, Marseille, cedex 09, 13288, France.
| |
Collapse
|
19
|
Gata3/Ruvbl2 complex regulates T helper 2 cell proliferation via repression of Cdkn2c expression. Proc Natl Acad Sci U S A 2013; 110:18626-31. [PMID: 24167278 DOI: 10.1073/pnas.1311100110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
GATA-binding protein 3 (Gata3) controls the differentiation of naive CD4 T cells into T helper 2 (Th2) cells by induction of chromatin remodeling of the Th2 cytokine gene loci, direct transactivation of Il5 and Il13 genes, and inhibition of Ifng. Gata3 also facilitates Th2 cell proliferation via additional mechanisms that are far less well understood. We herein found that Gata3 associates with RuvB-like protein 2 (Ruvbl2) and represses the expression of a CDK inhibitor, cyclin-dependent kinase inhibitor 2c (Cdkn2c) to facilitate the proliferation of Th2 cells. Gata3 directly bound to the Cdkn2c locus in an Ruvbl2-dependent manner. The defect in the proliferation of Gata3-deficient Th2 cells is rescued by the knockdown of Cdkn2c, indicating that Cdkn2c is a key molecule involved in the Gata3-mediated induction of Th2 cell proliferation. Ruvbl2-knockdown Th2 cells showed decreased antigen-induced expansion and caused less airway inflammation in vivo. We therefore have identified a functional Gata3/Ruvbl2 complex that regulates the proliferation of differentiating Th2 cells through the repression of a CDK inhibitor, Cdkn2c.
Collapse
|
20
|
Nano N, Houry WA. Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110399. [PMID: 23530256 DOI: 10.1098/rstb.2011.0399] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rvb1 and Rvb2 are highly conserved and essential eukaryotic AAA+ proteins linked to a wide range of cellular processes. AAA+ proteins are ATPases associated with diverse cellular activities and are characterized by the presence of one or more AAA+ domains. These domains have the canonical Walker A and Walker B nucleotide binding and hydrolysis motifs. Rvb1 and Rvb2 have been found to be part of critical cellular complexes: the histone acetyltransferase Tip60 complex, chromatin remodelling complexes Ino80 and SWR-C, and the telomerase complex. In addition, Rvb1 and Rvb2 are components of the R2TP complex that was identified by our group and was determined to be involved in the maturation of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes. Furthermore, the Rvbs have been associated with mitotic spindle assembly, as well as phosphatidylinositol 3-kinase-related protein kinase (PIKK) signalling. This review sheds light on the potential role of the Rvbs as chaperones in the assembly and remodelling of these critical complexes.
Collapse
Affiliation(s)
- Nardin Nano
- Department of Biochemistry, University of Toronto, , Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
21
|
Abstract
RVB1/RVB2 (RuvBL1/RuvBL2 or pontin/reptin) are enigmatic AAA(+) ATPase proteins that are present in multiple cellular complexes. Although they have been implicated in many cellular functions, the exact molecular function of RVB proteins in the various complexes is not clear. TIP60 complex (TIP60.com) is a tumor suppressor chromatin-remodeling complex containing RVB proteins. RVBs are required for the lysine acetyltransferase activity of TIP60.com but not for that of the pure recombinant TIP60 polypeptide. Here we describe two molecular functions of RVBs in TIP60.com. First, RVBs negate the repression of catalytic activity of TIP60 by another protein in TIP60.com, p400. RVBs competitively displace the SNF2 domain of p400 from the TIP60 polypeptide. In addition RVBs are also required for heat stability of TIP60.com by a p400-independent pathway. RVB1 and RVB2 are redundant with each other for these functions and do not require their ATPase activities. Thus, RVB proteins act as molecular adaptors that can substitute for one another to facilitate the optimal assembly, heat stability, and function of the TIP60 complex.
Collapse
|
22
|
Ma CH, Cui H, Hajra S, Rowley PA, Fekete C, Sarkeshik A, Ghosh SK, Yates JR, Jayaram M. Temporal sequence and cell cycle cues in the assembly of host factors at the yeast 2 micron plasmid partitioning locus. Nucleic Acids Res 2012; 41:2340-53. [PMID: 23275556 PMCID: PMC3575823 DOI: 10.1093/nar/gks1338] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae 2 micron plasmid exemplifies a benign but selfish genome, whose stability approaches that of the chromosomes of its host. The plasmid partitioning locus STB (stability locus) displays certain functional analogies with centromeres along with critical distinctions, a significant one being the absence of the kinetochore complex at STB. The remodels the structure of chromatin (RSC) chromatin remodeling complex, the nuclear motor Kip1, the histone H3 variant Cse4 and the cohesin complex associate with both loci. These factors appear to contribute to plasmid segregation either directly or indirectly through their roles in chromosome segregation. Assembly and disassembly of the plasmid-coded partitioning proteins Rep1 and Rep2 and host factors at STB follow a temporal hierarchy during the cell cycle. Assembly is initiated by STB association of [Rsc8-Rsc58], followed by [Rep1-Rep2-Kip1] and [Cse4-Rsc2-Sth1] recruitment, and culminates in cohesin assembly. Disassembly starts with dissociation of RSC components, is followed by cohesin disassembly and Cse4 exit during anaphase and late telophase, respectively. [Rep1-Rep2-Kip1] persists through G1 of the ensuing cell cycle. The de novo assembly of the 'partitioning complex' is cued by the innate cell cycle clock and is dependent on DNA replication. Shared functional attributes of STB and centromere (CEN) are consistent with a potential evolutionary link between them.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Section of Molecular Genetics & Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Izumi N, Yamashita A, Ohno S. Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2. Nucleus 2012; 3:29-43. [PMID: 22540023 PMCID: PMC3337166 DOI: 10.4161/nucl.18926] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Proteins of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family are activated by various cellular stresses, including DNA damage, premature termination codon and nutritional status, and induce appropriate cellular responses. The importance of PIKK functions in the maintenance of genome integrity, accurate gene expression and the proper control of cell growth/proliferation is established. Recently, ATPase associated diverse cellular activities (AAA+) proteins RUVBL1 and RUVBL2 (RUVBL1/2) have been shown to be common regulators of PIKKs. The RUVBL1/2 complex regulates PIKK-mediated stress responses through physical interactions with PIKKs and by controlling PIKK mRNA levels. In this review, the functions of PIKKs in stress responses are outlined and the physiological significance of the integrated regulation of PIKKs by the RUVBL1/2 complex is presented. We also discuss a putative "PIKK regulatory chaperone complex" including other PIKK regulators, Hsp90 and the Tel2 complex.
Collapse
Affiliation(s)
- Natsuko Izumi
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | |
Collapse
|
24
|
Protein landscape at Drosophila melanogaster telomere-associated sequence repeats. Mol Cell Biol 2012; 32:2170-82. [PMID: 22493064 DOI: 10.1128/mcb.00010-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The specific set of proteins bound at each genomic locus contributes decisively to regulatory processes and to the identity of a cell. Understanding of the function of a particular locus requires the knowledge of what factors interact with that locus and how the protein composition changes in different cell types or during the response to internal and external signals. Proteomic analysis of isolated chromatin segments (PICh) was developed as a tool to target, purify, and identify proteins associated with a defined locus and was shown to allow the purification of human telomeric chromatin. Here we have developed this method to identify proteins that interact with the Drosophila telomere-associated sequence (TAS) repeats. Several of the purified factors were validated as novel TAS-bound proteins by chromatin immunoprecipitation, and the Brahma complex was confirmed as a dominant modifier of telomeric position effect through the use of a genetic test. These results offer information on the efficacy of applying the PICh protocol to loci with sequence more complex than that found at human telomeres and identify proteins that bind to the TAS repeats, which might contribute to TAS biology and chromatin silencing.
Collapse
|
25
|
Song PP, Hu Y, Liu CM, Yan MJ, Song G, Cui Y, Xia HF, Ma X. Embryonic ectoderm development protein is regulated by microRNAs in human neural tube defects. Am J Obstet Gynecol 2011; 204:544.e9-17. [PMID: 21497788 DOI: 10.1016/j.ajog.2011.01.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/25/2010] [Accepted: 01/20/2011] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The objective of the study was to investigate the expression and regulation of polycomb group (PcG) proteins in human neural tube defects (NTDs). STUDY DESIGN PcG proteins in human NTD fetuses and age-matched controls were detected by Western blot. The relation between PcG proteins and microribonucleic acids was predicted and confirmed by the bioinformatics method, real-time polymerase chain reaction (PCR), dual-luciferase activity assay, and Western blot. The trimethyl condition of histone H3 Lys27 (H3K27) was detected by immunohistochemical and immunofluorescence. RESULTS Embryonic ectoderm development protein (EED) was differentially detected in placenta, cerebral cortex, and spinal cord from NTDs and age-matched controls. MiR-30b can interact with 3'-untranslated region (UTR) of Eed and regulate endogenous EED expression in neural tissues. In addition, we found an inverse relationship between the miR-30b expression and the amount of trimethyl H3K27. CONCLUSION Differential expression of EED exists in the nerves system in human NTDs and that is regulated by miR-30b.
Collapse
|
26
|
Bonner MK, Poole DS, Xu T, Sarkeshik A, Yates JR, Skop AR. Mitotic spindle proteomics in Chinese hamster ovary cells. PLoS One 2011; 6:e20489. [PMID: 21647379 PMCID: PMC3103581 DOI: 10.1371/journal.pone.0020489] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/27/2011] [Indexed: 12/11/2022] Open
Abstract
Mitosis is a fundamental process in the development of all organisms. The mitotic spindle guides the cell through mitosis as it mediates the segregation of chromosomes, the orientation of the cleavage furrow, and the progression of cell division. Birth defects and tissue-specific cancers often result from abnormalities in mitotic events. Here, we report a proteomic study of the mitotic spindle from Chinese Hamster Ovary (CHO) cells. Four different isolations of metaphase spindles were subjected to Multi-dimensional Protein Identification Technology (MudPIT) analysis and tandem mass spectrometry. We identified 1155 proteins and used Gene Ontology (GO) analysis to categorize proteins into cellular component groups. We then compared our data to the previously published CHO midbody proteome and identified proteins that are unique to the CHO spindle. Our data represent the first mitotic spindle proteome in CHO cells, which augments the list of mitotic spindle components from mammalian cells.
Collapse
Affiliation(s)
- Mary Kate Bonner
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Daniel S. Poole
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tao Xu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ali Sarkeshik
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ahna R. Skop
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
27
|
TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol 2011; 13:550-8. [PMID: 21478858 PMCID: PMC3311221 DOI: 10.1038/ncb2225] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 02/07/2011] [Indexed: 12/17/2022]
Abstract
Export of proteins from the endoplasmic reticulum in COPII-coated vesicles occurs at defined sites that contain the scaffolding protein Sec16. We identify TFG-1, a new conserved regulator of protein secretion that interacts directly with SEC-16 and controls the export of cargoes from the endoplasmic reticulum in Caenorhabditis elegans. Hydrodynamic studies indicate that TFG-1 forms hexamers that facilitate the co-assembly of SEC-16 with COPII subunits. Consistent with these findings, TFG-1 depletion leads to a marked decline in both SEC-16 and COPII levels at endoplasmic reticulum exit sites. The sequence encoding the amino terminus of human TFG has been previously identified in chromosome translocation events involving two protein kinases, which created a pair of oncogenes. We propose that fusion of these kinases to TFG relocalizes their activities to endoplasmic reticulum exit sites, where they prematurely phosphorylate substrates during endoplasmic reticulum export. Our findings provide a mechanism by which translocations involving TFG can result in cellular transformation and oncogenesis.
Collapse
|
28
|
Grigoletto A, Lestienne P, Rosenbaum J. The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta Rev Cancer 2011; 1815:147-57. [DOI: 10.1016/j.bbcan.2010.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 01/29/2023]
|
29
|
Hutson SL, Mui E, Kinsley K, Witola WH, Behnke MS, El Bissati K, Muench SP, Rohrman B, Liu SR, Wollmann R, Ogata Y, Sarkeshik A, Yates JR, McLeod R. T. gondii RP promoters & knockdown reveal molecular pathways associated with proliferation and cell-cycle arrest. PLoS One 2010; 5:e14057. [PMID: 21124925 PMCID: PMC2989910 DOI: 10.1371/journal.pone.0014057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 10/25/2010] [Indexed: 01/16/2023] Open
Abstract
Molecular pathways regulating rapid proliferation and persistence are fundamental for pathogens but are not elucidated fully in Toxoplasma gondii. Promoters of T. gondii ribosomal proteins (RPs) were analyzed by EMSAs and ChIP. One RP promoter domain, known to bind an Apetela 2, bound to nuclear extract proteins. Promoter domains appeared to associate with histone acetyl transferases. To study effects of a RP gene's regulation in T. gondii, mutant parasites (Δrps13) were engineered with integration of tetracycline repressor (TetR) response elements in a critical location in the rps13 promoter and transfection of a yellow fluorescent-tetracycline repressor (YFP-TetR). This permitted conditional knockdown of rps13 expression in a tightly regulated manner. Δrps13 parasites were studied in the presence (+ATc) or absence of anhydrotetracycline (-ATc) in culture. -ATc, transcription of the rps13 gene and expression of RPS13 protein were markedly diminished, with concomitant cessation of parasite replication. Study of Δrps13 expressing Myc-tagged RPL22, -ATc, showed RPL22 diminished but at a slower rate. Quantitation of RNA showed diminution of 18S RNA. Depletion of RPS13 caused arrest of parasites in the G1 cell cycle phase, thereby stopping parasite proliferation. Transcriptional differences ±ATc implicate molecules likely to function in regulation of these processes. In vitro, -ATc, Δrps13 persists for months and the proliferation phenotype can be rescued with ATc. In vivo, however, Δrps13 could only be rescued when ATc was given simultaneously and not at any time after 1 week, even when L-NAME and ATc were administered. Immunization with Δrps13 parasites protects mice completely against subsequent challenge with wildtype clonal Type 1 parasites, and robustly protects mice against wildtype clonal Type 2 parasites. Our results demonstrate that G1 arrest by ribosomal protein depletion is associated with persistence of T. gondii in a model system in vitro and immunization with Δrps13 protects mice against subsequent challenge with wildtype parasites.
Collapse
Affiliation(s)
- Samuel L. Hutson
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Ernest Mui
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Karen Kinsley
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - William H. Witola
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Michael S. Behnke
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Kamal El Bissati
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Stephen P. Muench
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, United Kingdom
| | - Brittany Rohrman
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Susan R. Liu
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
| | - Robert Wollmann
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Yuko Ogata
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Ali Sarkeshik
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, California, United States of America
| | - Rima McLeod
- Department of Surgery (Ophthalmology), The University of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics (Infectious Disease), The University of Chicago, Chicago, Illinois, United States of America
- Committees on Immunology, Molecular Medicine, and Genetics, Institute of Genomics and Systems Biology, The College, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
30
|
Oligomeric assembly and interactions within the human RuvB-like RuvBL1 and RuvBL2 complexes. Biochem J 2010; 429:113-25. [PMID: 20412048 DOI: 10.1042/bj20100489] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two closely related eukaryotic AAA+ proteins (ATPases associated with various cellular activities), RuvBL1 (RuvB-like 1) and RuvBL2, are essential components of large multi-protein complexes involved in diverse cellular processes. Although the molecular mechanisms of RuvBL1 and RuvBL2 function remain unknown, oligomerization is likely to be important for their function together or individually, and different oligomeric forms might underpin different functions. Several experimental approaches were used to investigate the molecular architecture of the RuvBL1-RuvBL2 complex and the role of the ATPase-insert domain (domain II) for its assembly and stability. Analytical ultracentrifugation showed that RuvBL1 and RuvBL2 were mainly monomeric and each monomer co-existed with small proportions of dimers, trimers and hexamers. Adenine nucleotides induced hexamerization of RuvBL2, but not RuvBL1. In contrast, the RuvBL1-RuvBL2 complexes contained single- and double-hexamers together with smaller forms. The role of domain II in complex assembly was examined by size-exclusion chromatography using deletion mutants of RuvBL1 and RuvBL2. Significantly, catalytically competent dodecameric RuvBL1-RuvBL2, complexes lacking domain II in one or both proteins could be assembled but the loss of domain II in RuvBL1 destabilized the dodecamer. The composition of the RuvBL1-RuvBL2 complex was analysed by MS. Several species of mixed RuvBL1/2 hexamers with different stoichiometries were seen in the spectra of the RuvBL1-RuvBL2 complex. A number of our results indicate that the architecture of the human RuvBL1-RuvBL2 complex does not fit the recent structural model of the yeast Rvb1-Rvb2 complex.
Collapse
|
31
|
Bhatia S, Pawar H, Dasari V, Mishra RK, Chandrashekaran S, Brahmachari V. Chromatin remodeling protein INO80 has a role in regulation of homeotic gene expression in Drosophila. Genes Cells 2010; 15:725-35. [PMID: 20545766 DOI: 10.1111/j.1365-2443.2010.01416.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The homologues of yeast INO80 are identified across phyla from Caenorhabditis elegans to human. In Drosophila it has been shown that dINO80 forms a complex with Pleiohomeotic but does not interact with Hox PRE (polycomb responsive element). As some proteins of the INO80 complex are implicated in homeotic gene regulation, we examined if dINO80 is involved in regulation of homeotic genes. We find that dINO80 null mutants generated by imprecise excision of P-element are late embryonic lethals and show homeotic transformation. We detect misexpression of homeotic genes like Sex-comb reduced, Antennapedia, Ultrabithorax and Abdominal-B in dIno80 mutant embryos by immunostaining which is further substantiated by quantitative PCR. Polycomb phenotype in dIno80-Pc is enhanced in double mutants. Concurrently, the localization of dINO80 to sequences upstream of misexpressed genes in vivo shows that dINO80 is involved in homeotic gene regulation and probably through its interactions with PcG-trxG complexes.
Collapse
Affiliation(s)
- Shipra Bhatia
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, India
| | | | | | | | | | | |
Collapse
|
32
|
Li W, Zeng J, Li Q, Zhao L, Liu T, Björkholm M, Jia J, Xu D. Reptin is required for the transcription of telomerase reverse transcriptase and over-expressed in gastric cancer. Mol Cancer 2010; 9:132. [PMID: 20509972 PMCID: PMC2887797 DOI: 10.1186/1476-4598-9-132] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 05/30/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Telomerase is activated in oncogenesis, which confers an immortal phenotype to cancer cells. The AAA + ATPase Reptin is required for telomerase biogenesis by maintaining telomerase RNA (hTER) stability and is aberrantly expressed in certain cancers. Given its role in chromatin remodeling and transcription regulation, we determined the effect of Reptin on the transcription of the telomerase reverse transcriptase (hTERT) gene, a key component of the telomerase complex and its expression in gastric cancer. RESULTS Knocking down Reptin or its partner Pontin using small interfering RNA in gastric and cervical cancer cells led to significant decreases in hTERT mRNA, but hTERT promoter activity was inhibited in only Reptin-depleted cells. Reptin interacted with the c-MYC oncoprotein and its stimulatory effect on the hTERTpromoter was significantly dependent on functional E-boxes in the promoter. Moreover, Reptin bound to the hTERT proximal promoter and the loss of the Reptin occupancy led to dissociation of c-MYC from the hTERT promoter in Reptin-depleted cells. Reptin inhibition dramatically impaired clonogenic potential of gastric cancer cells by inducing cell growtharrest and over-expression of Reptin was observed in primary gastric cancer specimens. CONCLUSIONS The hTERT gene is a direct target of Reptin, and hTERT transcription requires constitutive expression of Reptin and its cooperation with c-MYC. Thus, Reptin regulates telomerase at two different levels. This finding, together with the requirementof Reptin for the clonogenic potential of cancer cells and its over-expression in gastriccancer and other solid tumors, suggests that Reptin may be a putative therapeutic target.
Collapse
Affiliation(s)
- Wenjuan Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine and School of Life Sciences, Shandong University, Jinan, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Huen J, Kakihara Y, Ugwu F, Cheung KLY, Ortega J, Houry WA. Rvb1–Rvb2: essential ATP-dependent helicases for critical complexesThis paper is one of a selection of papers published in this special issue entitled 8th International Conference on AAA Proteins and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:29-40. [DOI: 10.1139/o09-122] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rvb1 and Rvb2 are highly conserved, essential AAA+ helicases found in a wide range of eukaryotes. The versatility of these helicases and their central role in the biology of the cell is evident from their involvement in a wide array of critical cellular complexes. Rvb1 and Rvb2 are components of the chromatin-remodeling complexes INO80, Swr-C, and BAF. They are also members of the histone acetyltransferase Tip60 complex, and the recently identified R2TP complex present in Saccharomyces cerevisiae and Homo sapiens; a complex that is involved in small nucleolar ribonucleoprotein (snoRNP) assembly. Furthermore, in humans, Rvb1 and Rvb2 have been identified in the URI prefoldin-like complex. In Drosophila, the Polycomb Repressive complex 1 contains Rvb2, but not Rvb1, and the Brahma complex contains Rvb1 and not Rvb2. Both of these complexes are involved in the regulation of growth and development genes in Drosophila. Rvbs are therefore crucial factors in various cellular processes. Their importance in chromatin remodeling, transcription regulation, DNA damage repair, telomerase assembly, mitotic spindle formation, and snoRNP biogenesis is discussed in this review.
Collapse
Affiliation(s)
- Jennifer Huen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Yoshito Kakihara
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Francisca Ugwu
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Kevin L. Y. Cheung
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Joaquin Ortega
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
34
|
The chromatin-remodeling protein Osa interacts with CyclinE in Drosophila eye imaginal discs. Genetics 2009; 184:731-44. [PMID: 20008573 DOI: 10.1534/genetics.109.109967] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coordinating cell proliferation and differentiation is essential during organogenesis. In Drosophila, the photoreceptor, pigment, and support cells of the eye are specified in an orchestrated wave as the morphogenetic furrow passes across the eye imaginal disc. Cells anterior of the furrow are not yet differentiated and remain mitotically active, while most cells in the furrow arrest at G(1) and adopt specific ommatidial fates. We used microarray expression analysis to monitor changes in transcription at the furrow and identified genes whose expression correlates with either proliferation or fate specification. Some of these are members of the Polycomb and Trithorax families that encode epigenetic regulators. Osa is one; it associates with components of the Drosophila SWI/SNF chromatin-remodeling complex. Our studies of this Trithorax factor in eye development implicate Osa as a regulator of the cell cycle: Osa overexpression caused a small-eye phenotype, a reduced number of M- and S-phase cells in eye imaginal discs, and a delay in morphogenetic furrow progression. In addition, we present evidence that Osa interacts genetically and biochemically with CyclinE. Our results suggest a dual mechanism of Osa function in transcriptional regulation and cell cycle control.
Collapse
|
35
|
Haurie V, Ménard L, Nicou A, Touriol C, Metzler P, Fernandez J, Taras D, Lestienne P, Balabaud C, Bioulac-Sage P, Prats H, Zucman-Rossi J, Rosenbaum J. Adenosine triphosphatase pontin is overexpressed in hepatocellular carcinoma and coregulated with reptin through a new posttranslational mechanism. Hepatology 2009; 50:1871-83. [PMID: 19877184 PMCID: PMC2927003 DOI: 10.1002/hep.23215] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Reptin and Pontin are related ATPases associated with stoichiometric amounts in several complexes involved in chromatin remodeling, transcriptional regulation, and telomerase activity. We found that Reptin was up-regulated in hepatocellular carcinoma (HCC) and that down-regulation of Reptin led to growth arrest. We show here that Pontin messenger RNA (mRNA) is also up-regulated in human HCC 3.9-fold as compared to nontumor liver (P = 0.0004). Pontin expression was a strong independent factor of poor prognosis in a multivariate analysis. As for Reptin, depletion of Pontin in HuH7 cells with small interfering RNAs (siRNAs) led to growth arrest. Remarkably, Pontin depletion led to down-regulation of Reptin as shown with western blot, and vice versa. Whereas siRNAs induced a decrease of their cognate mRNA targets, they did not affect the transcripts of the partner protein. Translation of Pontin or Reptin was not altered when the partner protein was silenced. However, pulse-chase experiments demonstrated that newly synthesized Pontin or Reptin stability was reduced in Reptin- or Pontin-depleted cells, respectively. This phenomenon was reversed upon inhibition of proteasome or ubiquitin-activating enzyme (E1). In addition, proteasome inhibition could partly restore Pontin steady-state levels in Reptin-depleted cells, as shown by western blot. This restoration was not observed when cells were also treated with cycloheximide, thus confirming that proteasomal degradation in this setting was restricted to newly synthesized Pontin. CONCLUSION Reptin and Pontin protein levels are strictly controlled by a posttranslational mechanism involving proteasomal degradation of newly synthesized proteins. These data demonstrate a tight regulatory and reciprocal interaction between Reptin and Pontin, which may in turn lead to the maintenance of their 1:1 stoichiometry.
Collapse
Affiliation(s)
- Valérie Haurie
- Fibrose hépatique et cancer du foie
INSERM : U889Université Victor Segalen - Bordeaux IIIFR66146 rue léo saignat, 33076 Bordeaux Cedex,FR
| | - Ludovic Ménard
- Fibrose hépatique et cancer du foie
INSERM : U889Université Victor Segalen - Bordeaux IIIFR66146 rue léo saignat, 33076 Bordeaux Cedex,FR
| | - Alexandra Nicou
- Fibrose hépatique et cancer du foie
INSERM : U889Université Victor Segalen - Bordeaux IIIFR66146 rue léo saignat, 33076 Bordeaux Cedex,FR
| | - Christian Touriol
- I2MR, Institut de médecine moléculaire de Rangueil
INSERM : U858IFR31IFR150Université Paul Sabatier - Toulouse IIIInstitut Louis Bugnard 1, avenue Jean Poulhes BP 84225 31432 TOULOUSE CEDEX 4,FR
| | - Philippe Metzler
- Fibrose hépatique et cancer du foie
INSERM : U889Université Victor Segalen - Bordeaux IIIFR66146 rue léo saignat, 33076 Bordeaux Cedex,FR
| | - Jérémy Fernandez
- Fibrose hépatique et cancer du foie
INSERM : U889Université Victor Segalen - Bordeaux IIIFR66146 rue léo saignat, 33076 Bordeaux Cedex,FR
| | - Danièle Taras
- Fibrose hépatique et cancer du foie
INSERM : U889Université Victor Segalen - Bordeaux IIIFR66146 rue léo saignat, 33076 Bordeaux Cedex,FR
| | - Patrick Lestienne
- Fibrose hépatique et cancer du foie
INSERM : U889Université Victor Segalen - Bordeaux IIIFR66146 rue léo saignat, 33076 Bordeaux Cedex,FR
| | - Charles Balabaud
- Fibrose hépatique et cancer du foie
INSERM : U889Université Victor Segalen - Bordeaux IIIFR66146 rue léo saignat, 33076 Bordeaux Cedex,FR,Service d'hépato-gastroentérologie
CHU BordeauxFR
| | - Paulette Bioulac-Sage
- Fibrose hépatique et cancer du foie
INSERM : U889Université Victor Segalen - Bordeaux IIIFR66146 rue léo saignat, 33076 Bordeaux Cedex,FR,Laboratoire d'anatomie pathologique
CHU BordeauxGroupe hospitalier PellegrinFR
| | - Hervé Prats
- I2MR, Institut de médecine moléculaire de Rangueil
INSERM : U858IFR31IFR150Université Paul Sabatier - Toulouse IIIInstitut Louis Bugnard 1, avenue Jean Poulhes BP 84225 31432 TOULOUSE CEDEX 4,FR
| | - Jessica Zucman-Rossi
- Genomique Fonctionnelle des Tumeurs Solides
INSERM : U674Université Paris-Diderot - Paris VIIIFR105Hopital Saint-Louis - IFR 105 PARIS VII 27, Rue Juliette Dodu 75010 PARIS,FR
| | - Jean Rosenbaum
- Fibrose hépatique et cancer du foie
INSERM : U889Université Victor Segalen - Bordeaux IIIFR66146 rue léo saignat, 33076 Bordeaux Cedex,FR,* Correspondence should be adressed to: Jean Rosenbaum
| |
Collapse
|
36
|
Schirling C, Heseding C, Heise F, Kesper D, Klebes A, Klein-Hitpass L, Vortkamp A, Hoffmann D, Saumweber H, Ehrenhofer-Murray AE. Widespread regulation of gene expression in the Drosophila genome by the histone acetyltransferase dTip60. Chromosoma 2009; 119:99-113. [PMID: 19949809 DOI: 10.1007/s00412-009-0247-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 11/10/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
The MYST histone acetyltransferase (HAT) dTip60 is part of a multimeric protein complex that unites both HAT and chromatin remodeling activities. Here, we sought to gain insight into the biological functions of dTip60. Strong ubiquitous dTip60 knock-down in flies was lethal, whereas knock-down in the wing imaginal disk led to developmental defects in the wing. dTip60 localized to the nucleus in early embryos and was present in a large number of interbands on polytene chromosomes. Genome-wide expression analysis upon depletion of dTip60 in cell culture showed that it regulated a large number of genes in Drosophila, among which those with chromatin-related functions were highly enriched. Surprisingly, a significant portion of these genes were upregulated upon dTip60 loss, indicating that dTip60 has repressive as well as activating functions. dTip60 protein was directly located at promoter regions of a subset of repressed genes, suggesting a direct role in gene repression. Comparison of the gene expression signature of dTip60 downregulation with that of histone deacetylase inhibition with trichostatin A revealed a significant correlation, suggesting that the dTip60 complex recruits an HDAC-containing complex to regulate gene expression in the Drosophila genome.
Collapse
Affiliation(s)
- Corinna Schirling
- Abteilung für Genetik, Zentrum für Medizinische Biotechnologie, Universität Duisburg-Essen, Universitätsstrasse 5, 45117, Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Choi J, Heo K, An W. Cooperative action of TIP48 and TIP49 in H2A.Z exchange catalyzed by acetylation of nucleosomal H2A. Nucleic Acids Res 2009; 37:5993-6007. [PMID: 19696079 PMCID: PMC2764430 DOI: 10.1093/nar/gkp660] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
H2A.Z is an evolutionarily conserved H2A variant that plays a key role in the regulation of chromatin transcription. To understand the molecular mechanism of H2A.Z exchange, we purified two distinct H2A.Z-interacting complexes termed the small and big complexes from a human cell line. The big complex contains most components of the SRCAP chromatin remodeling and TIP60 HAT complexes, whereas the small complex possesses only a subset of SRCAP and TIP60 subunits. Our exchange analysis revealed that both small and big complexes enhance the incorporation of H2A.Z-H2B dimer into the nucleosome. In addition, TIP60-mediated acetylation of nucleosomal H2A specifically facilitates the action of the small complex in the H2A.Z exchange reaction. Among factors present in the small complex, we determined that TIP48 and TIP49 play a major role in catalyzing H2A acetylation-induced H2A.Z exchange via their ATPase activities. Overall, our work uncovers the previously-unrecognized role of TIP48 and TIP49 in H2A.Z exchange and a novel epigenetic mechanism controlling this process.
Collapse
Affiliation(s)
- Jongkyu Choi
- Department of Biochemistry and Molecular Biology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
38
|
Jha S, Dutta A. RVB1/RVB2: running rings around molecular biology. Mol Cell 2009; 34:521-33. [PMID: 19524533 DOI: 10.1016/j.molcel.2009.05.016] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/25/2009] [Accepted: 05/20/2009] [Indexed: 12/31/2022]
Abstract
RVB1/RVB2 (also known as Pontin/Reptin, TIP49/TIP48, RuvbL1/RuvbL2, ECP54/ECP51, INO80H/INO80J, TIH1/TIH2, and TIP49A/TIP49B) are two highly conserved members of the AAA+ family that are present in different protein and nucleoprotein complexes. Recent studies implicate the RVB-containing complexes in many cellular processes such as transcription, DNA damage response, snoRNP assembly, cellular transformation, and cancer metastasis. In this review, we discuss recent advances in our understanding of RVB-containing complexes and their role in these pathways.
Collapse
Affiliation(s)
- Sudhakar Jha
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan 1240, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | | |
Collapse
|
39
|
Abstract
Hepatitis C virus (HCV) RNA genome replicates within the ribonucleoprotein (RNP) complex in the modified membranous structures extended from endoplasmic reticulum. A proteomic analysis of HCV RNP complexes revealed the association of oxysterol binding protein (OSBP) as one of the components of these complexes. OSBP interacted with the N-terminal domain I of the HCV NS5A protein and colocalized to the Golgi compartment with NS5A. An OSBP-specific short hairpin RNA that partially downregulated OSBP expression resulted in a decrease of the HCV particle release in culture supernatant with little effect on viral RNA replication. The pleckstrin homology (PH) domain located in the N-terminal region of OSBP targeted this protein to the Golgi apparatus. OSBP deletion mutation in the PH (DeltaPH) domain failed to localize to the Golgi apparatus and inhibited the HCV particle release. These studies suggest a possible functional role of OSBP in the HCV maturation process.
Collapse
|
40
|
Transcription coactivator SAYP combines chromatin remodeler Brahma and transcription initiation factor TFIID into a single supercomplex. Proc Natl Acad Sci U S A 2009; 106:11049-54. [PMID: 19541607 DOI: 10.1073/pnas.0901801106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription activation by RNA polymerase II is a complicated process driven by combined, precisely coordinated action of a wide array of coactivator complexes, which carry out chromatin-directed activities and nucleate the assembly of the preinitiation complex on the promoter. Using various techniques, we have shown the existence of a stable coactivator supercomplex consisting of the chromatin-remodeling factor Brahma (SWI/SNF) and the transcription initiation factor TFIID, named BTFly (Brahma and TFIID in one assembly). The coupling of Brahma and TFIID is mediated by the SAYP factor, whose evolutionarily conserved activation domain SAY can directly bind to both BAP170 subunit of Brahma and TAF5 subunit of TFIID. The integrity of BTFly is crucial for its ability to activate transcription. BTFly is distributed genome-wide and appears to be a means of effective transcription activation.
Collapse
|
41
|
Abstract
Pontin and reptin are conserved AAA+ ATPases identified in chromatin-remodeling complexes. In a recent issue of Cell, Venteicher et al. provide new insight into the function of pontin and reptin in telomerase biogenesis, which is important for cellular senescence, aging, and cancer. These unexpected findings have implications for new avenues for development of effective therapeutic drugs in human disease.
Collapse
Affiliation(s)
- Sung Hee Baek
- Department of Biological Sciences, Research Center for Functional Cellulomics, Seoul National University, Seoul 151-742, South Korea.
| |
Collapse
|