1
|
Piao Y, Jung SN, Lim MA, Zheng S, Oh C, Jin YL, Shen S, Nguyen QK, Park SH, Il Kim Y, Kim MG, Kim JW, Ohm S, Chang JW, Won HR, Koo BS. The role of miR-92b-3p in notch signaling and monitoring of oral squamous cell carcinoma. Oncogene 2025; 44:1300-1311. [PMID: 39966557 DOI: 10.1038/s41388-025-03306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Dysregulation of microRNAs (miRNAs) influences diverse hallmarks of cancer, including proliferative signaling, metastasis, and resistance to cell death. We explored the contribution of miR-92b-3p in oral squamous cell carcinoma (OSCC) and its potential as a monitoring biomarker. Analysis of TCGA, GEO, and our own cohort revealed dysregulation of miR-92b-3p in OSCC, which correlated with aggressive tumor characteristics. miR-92b-3p overexpression augmented proliferation and the epithelial-mesenchymal transition in both YD8 and SCC25 cell lines and xenograft models. Mechanically, augmented miR-92b-3p expression suppressed ATXN1 and CPEB3, activating the Notch signaling pathway and thereby promoting metastasis and cisplatin resistance. In our cohort, serum miR-92b-3p expression reflected the disease status, including relapse. Our results suggest that miR-92b-3p might be an onco-miR involved in OSCC through regulating the ATXN1/CPEB3/Notch pathway. These findings provide novel insights for treating and monitoring OSCC.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- Mouth Neoplasms/genetics
- Mouth Neoplasms/pathology
- Mouth Neoplasms/metabolism
- Signal Transduction/genetics
- Animals
- Receptors, Notch/metabolism
- Receptors, Notch/genetics
- Cell Line, Tumor
- Mice
- Gene Expression Regulation, Neoplastic
- Cell Proliferation/genetics
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Epithelial-Mesenchymal Transition/genetics
- Female
- Male
- Biomarkers, Tumor/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm/genetics
- Mice, Nude
- Xenograft Model Antitumor Assays
- Cisplatin/pharmacology
Collapse
Affiliation(s)
- Yudan Piao
- Dental Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sicong Zheng
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Chan Oh
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Yan Li Jin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Shan Shen
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Quoc Khanh Nguyen
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Se-Hee Park
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Young Il Kim
- Radiation Oncology, Chungnam National University Sejong Hospital, Daejeon, Republic of Korea
| | - Min-Gyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ji Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Sun Ohm
- Department of Biology, Temple University, Philadelpha, PA, 19122, USA
| | - Jae Won Chang
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Ho-Ryun Won
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| | - Bon Seok Koo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Tauziède‐Espariat A, Ebrahimi A, Boddaert N, Pietsch T, Grajkowska W, Blau T, Koch A, Sievers P, Guillemot D, Pierron G, Uro‐Coste E, Nicaise Y, Siegfried A, Gilles A, Bielle F, Mokhtari K, Cazals‐Hatem D, Iakovlev G, Lhermitte B, Entz‐Werle N, Csanyi M, Maurage C, Legrand V, Boutonnat J, Godfraind C, McLeer A, Hasty L, Métais A, Aboubakr O, Blauwblomme T, Beccaria K, Dangouloff‐Ros V, Varlet P. CIC/ATXN1-rearranged tumors in the central nervous system are mainly represented by sarcomas: A comprehensive clinicopathological and epigenetic series. Brain Pathol 2025; 35:e13303. [PMID: 39442927 PMCID: PMC11835441 DOI: 10.1111/bpa.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/16/2024] [Indexed: 10/25/2024] Open
Abstract
CIC fusions have been described in two different central nervous system (CNS) tumor entities. On one hand, fusions of CIC or ATXN1 genes belonging to the same complex of transcriptional repressors, were reported in the CIC-rearranged, sarcoma (SARC-CIC). The diagnosis of this tumor type, which was recently added to the World Health Organization (WHO) Classification of CNS tumors, is difficult mainly because the data concerning its histopathology (as compared to its soft tissue counterpart), immunoprofile, and clinical as well as radiological characteristics are scarce in the literature. On the other hand, a recent study, based on DNA-methylation profiling, has identified a novel high-grade neuroepithelial tumor characterized by recurrent CIC fusions (HGNET-CIC). The aim of this multicentric study was to characterize a cohort of 15 primary CNS tumors harboring a CIC or ATXN1 fusion in terms of clinical, radiological, histopathological, immunophenotypical, and epigenetic characteristics. According to the integrated diagnoses, 14/15 tumors corresponded to SARC-CIC, and only one to HGNET-CIC. The tumors showed similar clinical (mainly pediatric), radiological (mostly supratentorial, cystic, and contrast enhancing), immunophenotypical (common expression of glioneuronal markers), and genetic (similar spectrum of fusions) profiles but their histopathological appearance was clearly distinct. Moreover, we found a novel fusion transcript (CIC::EWSR1) in a SARC-CIC. Most DNA methylation profiles using the Heidelberg Brain Tumor Classifier (v12.8) annotated the samples to the methylation class "SARC-CIC" (9/14 tumors with available data). By using uniform manifold approximation and projection analysis, four other samples were classified as SARC-CIC and another clustered within the methylation class of HGNET-CIC. Our findings confirm that CNS CIC-fused tumors do not represent a single molecular tumor entity. Further analyses are needed to characterize HGNET-CIC in more detail. These results may help to refine the essential diagnostic criteria for SARC-CIC and their terminology (with a suggested consensual name of sarcoma, CIC/ATXN1-complex rearranged).
Collapse
Affiliation(s)
- Arnault Tauziède‐Espariat
- Department of Neuropathology, GHU Paris‐Psychiatrie et NeurosciencesSainte‐Anne HospitalParisFrance
- INSERM U1266, IMABrainInstitute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris CitéParisFrance
| | - Azadeh Ebrahimi
- Department of Neuropathology, DGNN Brain Tumor Reference CenterUniversity of BonnBonnGermany
| | - Nathalie Boddaert
- Pediatric Radiology DepartmentHôpital Necker Enfants Malades, AP‐HPParisFrance
- UMR 1163, Institut Imagine and INSERM U1299Université Paris CitéParisFrance
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumor Reference CenterUniversity of BonnBonnGermany
| | | | - Tobias Blau
- Institute for NeuropathologyUniversity of Duisburg‐EssenEssenGermany
| | - Arend Koch
- Department of NeuropathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Philipp Sievers
- Department of Neuropathology, GHU Paris‐Psychiatrie et NeurosciencesSainte‐Anne HospitalParisFrance
- Department of Neuropathology, Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK)German Cancer Research Center DKFZ)HeidelbergGermany
| | - Delphine Guillemot
- INSERMU830Institut Curie Research Center, Paris‐Sciences‐LettresParisFrance
- Laboratory of Somatic GeneticsInstitut Curie HospitalParisFrance
| | - Gaëlle Pierron
- INSERMU830Institut Curie Research Center, Paris‐Sciences‐LettresParisFrance
- Laboratory of Somatic GeneticsInstitut Curie HospitalParisFrance
| | - Emmanuelle Uro‐Coste
- Department of PathologyToulouse University HospitalToulouseFrance
- INSERM U1037Cancer Research Center of Toulouse (CRCT)ToulouseFrance
- Université Paul Sabatier, Toulouse IIIToulouseFrance
| | - Yvan Nicaise
- Department of PathologyToulouse University HospitalToulouseFrance
- INSERM U1037Cancer Research Center of Toulouse (CRCT)ToulouseFrance
- Université Paul Sabatier, Toulouse IIIToulouseFrance
| | - Aurore Siegfried
- Department of PathologyToulouse University HospitalToulouseFrance
- INSERM U1037Cancer Research Center of Toulouse (CRCT)ToulouseFrance
- Université Paul Sabatier, Toulouse IIIToulouseFrance
| | - Adam Gilles
- Department of NeuroradiologyToulouse University HospitalToulouseFrance
| | - Franck Bielle
- Department of NeuropathologyPitié‐Salpêtrière Hospital, AP‐HP ParisParisFrance
| | - Karima Mokhtari
- Department of NeuropathologyPitié‐Salpêtrière Hospital, AP‐HP ParisParisFrance
| | | | - Gueorgui Iakovlev
- Department of NeurosurgeryAPHP University Hospital BeaujonClichyFrance
| | | | | | - Marie Csanyi
- Department of BiopathologyLille University HospitalLilleFrance
| | | | - Victor Legrand
- Department of NeurosurgeryLille University HospitalLilleFrance
| | - Jean Boutonnat
- Department of PathologyGrenoble University HospitalLa TroncheFrance
| | - Catherine Godfraind
- Neuropathology Unit, UMR 1071Clermont‐Ferrand University Hospital and Université Clermont‐AuvergneClermont‐FerrandFrance
| | - Anne McLeer
- Molecular Pathology Unit, Department of PathologyGrenoble Alpes University, Grenoble University HospitalGrenobleFrance
| | - Lauren Hasty
- Department of Neuropathology, GHU Paris‐Psychiatrie et NeurosciencesSainte‐Anne HospitalParisFrance
| | - Alice Métais
- Department of Neuropathology, GHU Paris‐Psychiatrie et NeurosciencesSainte‐Anne HospitalParisFrance
- INSERM U1266, IMABrainInstitute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris CitéParisFrance
| | - Oumaima Aboubakr
- Department of Neuropathology, GHU Paris‐Psychiatrie et NeurosciencesSainte‐Anne HospitalParisFrance
| | - Thomas Blauwblomme
- Department of Pediatric NeurosurgeryNecker Hospital, APHP, Université Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Kévin Beccaria
- Department of Pediatric NeurosurgeryNecker Hospital, APHP, Université Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Volodia Dangouloff‐Ros
- Pediatric Radiology DepartmentHôpital Necker Enfants Malades, AP‐HPParisFrance
- UMR 1163, Institut Imagine and INSERM U1299Université Paris CitéParisFrance
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris‐Psychiatrie et NeurosciencesSainte‐Anne HospitalParisFrance
- INSERM U1266, IMABrainInstitute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris CitéParisFrance
| | | |
Collapse
|
3
|
Park JS, Kang M, Kim HB, Hong H, Lee J, Song Y, Hur Y, Kim S, Kim TK, Lee Y. The capicua-ataxin-1-like complex regulates Notch-driven marginal zone B cell development and sepsis progression. Nat Commun 2024; 15:10579. [PMID: 39632849 PMCID: PMC11618371 DOI: 10.1038/s41467-024-54803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Follicular B (FOB) and marginal zone B (MZB) cells are pivotal in humoral immune responses against pathogenic infections. MZB cells can exacerbate endotoxic shock via interleukin-6 secretion. Here we show that the transcriptional repressor capicua (CIC) and its binding partner, ataxin-1-like (ATXN1L), play important roles in FOB and MZB cell development. CIC deficiency reduces the size of both FOB and MZB cell populations, whereas ATXN1L deficiency specifically affects MZB cells. B cell receptor signaling is impaired only in Cic-deficient FOB cells, whereas Notch signaling is disrupted in both Cic-deficient and Atxn1l-deficient MZB cells. Mechanistically, ETV4 de-repression leads to inhibition of Notch1 and Notch2 transcription, thereby inhibiting MZB cell development in B cell-specific Cic-deficient (Cicf/f;Cd19-Cre) and Atxn1l-deficient (Atxn1lf/f;Cd19-Cre) mice. In Cicf/f;Cd19-Cre and Atxn1lf/f; Cd19-Cre mice, humoral immune responses and lipopolysaccharide-induced sepsis progression are attenuated but are restored upon Etv4-deletion. These findings highlight the importance of the CIC-ATXN1L complex in MZB cell development and may provide proof of principle for therapeutic targeting in sepsis.
Collapse
Affiliation(s)
- Jong Seok Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Minjung Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Han Bit Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Hyebeen Hong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Youngkwon Song
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Yunjung Hur
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Soeun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Samsami Y, Akhlaghipour I, Taghehchian N, Palizkaran Yazdi M, Farrokhi S, Rahimi HR, Moghbeli M. MicroRNA-382 as a tumor suppressor during tumor progression. Bioorg Med Chem Lett 2024; 113:129967. [PMID: 39293533 DOI: 10.1016/j.bmcl.2024.129967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Despite the recent progresses in therapeutic and diagnostic methods, there is still a significantly high rate of mortality among cancer patients. One of the main reasons for the high mortality rate in cancer patients is late diagnosis, which leads to the failure of therapeutic strategies. Therefore, investigation of cancer biology can lead to the introduction of early diagnostic markers in these patients. MicroRNAs (miRNAs) play an important role in regulation of cellular processes associated with tumor progression. Due to the high stability of miRNAs in body fluids, these factors can be considered as the non-invasive tumor markers. Deregulation of miR-382 has been widely reported in different cancers. Therefore, in this review, we investigated the role of miR-382 during tumor development. It has shown that miR-382 has mainly a tumor suppressive, which inhibits the growth of tumor cells through the regulation of signaling pathways, RNA-binding proteins, and transcription factors. Therefore, miR-382 can be suggested as a diagnostic and therapeutic marker in cancer patients.
Collapse
Affiliation(s)
- Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Saba Farrokhi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Adorno-Farias D, Morales-Pisón S, Gischkow-Rucatti G, Margarit S, Fernández-Ramires R. Genetic and epigenetic landscape of early-onset oral squamous cell carcinoma: Insights of genomic underserved and underrepresented populations. Genet Mol Biol 2024; 47Suppl 1:e20240036. [PMID: 39116405 PMCID: PMC11309523 DOI: 10.1590/1678-4685-gmb-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) has a poor prognosis and the treatment employed generates significant physical deformity in patients. In recent years, an increase in the incidence of cases of OSCC has been observed in adult patients up to 45 years old in several genetic underrepresented and underserved countries. The increase in OSCC cases in young people is very relevant because it shows that OSCC does not make exceptions and hereditarily must play an important role. This fact has not been associated with an evident biological basis, and a large majority of these patients do not present the classic principal risk factors association. OSCC is the result of accumulation of genetic and epigenetic alterations and this information is still fragmented in the literature, mainly in the young group. Conducting studies with a comprehensive analysis of genetic and epigenetic data is crucial, to provide greater understanding of the underlying biology of OSCC, because this information can be decisive to determine targets for therapeutic treatment. We review the main germline and somatic aspects of genetic and genomic variation in OSCC considering the absence of genomic data from developing countries such as Chile and the rest of Hispano-America.
Collapse
Affiliation(s)
- Daniela Adorno-Farias
- Chilean Hereditary Cancer Group (GCCH), Santiago, Chile
- University of Chile, School of Dentistry, Oral Medicine and
Pathology Department, Santiago, Chile
| | - Sebastián Morales-Pisón
- Chilean Hereditary Cancer Group (GCCH), Santiago, Chile
- Mayor University, School of Medicine and Health Sciences, Santiago,
Chile
| | - Guilherme Gischkow-Rucatti
- Chilean Hereditary Cancer Group (GCCH), Santiago, Chile
- Mayor University, School of Medicine and Health Sciences, Santiago,
Chile
| | - Sonia Margarit
- Chilean Hereditary Cancer Group (GCCH), Santiago, Chile
- Desarrollo University, ICIM, School of Medicine, Santiago,
Chile
| | - Ricardo Fernández-Ramires
- Chilean Hereditary Cancer Group (GCCH), Santiago, Chile
- Mayor University, School of Medicine and Health Sciences, Santiago,
Chile
| |
Collapse
|
6
|
Hajisadeghi S, Rafiei M, Tahmasebi E, Khafaei M. Evaluating the expression pattern of ATXN1 and CDC42EP1 genes and related long noncoding RNAs in oral squamous cell carcinoma. Mol Biol Rep 2024; 51:796. [PMID: 39002033 DOI: 10.1007/s11033-024-09719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a significant health issue worldwide, and the expression of long non-coding RNAs (lncRNAs) are altered in these malignancies. The present study evaluated the expression level of ATXN1 CDC42EP1 genes and the lncRNAs related to these genes (lnc-ATXN1L, lnc-ATXN1, lnc-ATXN10, and lnc-CDC42EP1) in paraffin blocks of oral and pharyngeal squamous cell carcinoma (SCC) samples from patients referred to Amir Alam Hospital in Tehran, Iran. METHODS AND RESULTS This cross-sectional study was conducted on 76 paraffin blocks of oral and pharyngeal squamous cell carcinoma (SCC) samples from patients referred to Amir Alam Hospital in Tehran. The expression levels of ATXN1, CDC42EP1, lnc-ATXN1L, lnc-ATXN1, lnc-ATXN10, and lnc-CDC42EP1 were measured in all samples using a qPCR Master Mix kit. Real-time PCR was used to perform the reactions, and GAPDH was considered the housekeeping gene. Statistical analyses were conducted utilizing the Statistical Package for the Social Sciences (SPSS) version 22.0. The expression of lnc-ATXN1, lnc-ATXN10, and lnc-CDC42EP1 significantly differed between the two groups. All of them were downregulated (p < 0.05), and no significant difference was observed between the SCC samples and the adjacent tissue in other genes (p > 0.05). The expression of genes was not related to age, sex, size, and tumor location (p > 0.05). CONCLUSIONS Dysexpression of lnc-ATXN1, lnc-ATXN10, and lnc-CDC42EP1 can be used for diagnosing OSCC.
Collapse
Affiliation(s)
- Samira Hajisadeghi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
- School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
- School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Henriques C, Lopes MM, Silva AC, Lobo DD, Badin RA, Hantraye P, Pereira de Almeida L, Nobre RJ. Viral-based animal models in polyglutamine disorders. Brain 2024; 147:1166-1189. [PMID: 38284949 DOI: 10.1093/brain/awae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/26/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Polyglutamine disorders are a complex group of incurable neurodegenerative disorders caused by an abnormal expansion in the trinucleotide cytosine-adenine-guanine tract of the affected gene. To better understand these disorders, our dependence on animal models persists, primarily relying on transgenic models. In an effort to complement and deepen our knowledge, researchers have also developed animal models of polyglutamine disorders employing viral vectors. Viral vectors have been extensively used to deliver genes to the brain, not only for therapeutic purposes but also for the development of animal models, given their remarkable flexibility. In a time- and cost-effective manner, it is possible to use different transgenes, at varying doses, in diverse targeted tissues, at different ages, and in different species, to recreate polyglutamine pathology. This paper aims to showcase the utility of viral vectors in disease modelling, share essential considerations for developing animal models with viral vectors, and provide a comprehensive review of existing viral-based animal models for polyglutamine disorders.
Collapse
Affiliation(s)
- Carina Henriques
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel M Lopes
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana C Silva
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Romina Aron Badin
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
8
|
Iida N, Muranaka Y, Park JW, Sekine S, Copeland NG, Jenkins NA, Shiraishi Y, Oshima M, Takeda H. Sleeping Beauty transposon mutagenesis in mouse intestinal organoids identifies genes involved in tumor progression and metastasis. Cancer Gene Ther 2024; 31:527-536. [PMID: 38177308 DOI: 10.1038/s41417-023-00723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
To identify genes important for colorectal cancer (CRC) development and metastasis, we established a new metastatic mouse organoid model using Sleeping Beauty (SB) transposon mutagenesis. Intestinal organoids derived from mice carrying actively mobilizing SB transposons, an activating KrasG12D, and an inactivating ApcΔ716 allele, were transplanted to immunodeficient mice. While 66.7% of mice developed primary tumors, 7.6% also developed metastatic tumors. Analysis of SB insertion sites in tumors identified numerous candidate cancer genes (CCGs) identified previously in intestinal SB screens performed in vivo, in addition to new CCGs, such as Slit2 and Atxn1. Metastatic tumors from the same mouse were clonally related to each other and to primary tumors, as evidenced by the transposon insertion site. To provide functional validation, we knocked out Slit2, Atxn1, and Cdkn2a in mouse tumor organoids and transplanted to mice. Tumor development was promoted when these gene were knocked out, demonstrating that these are potent tumor suppressors. Cdkn2a knockout cells also metastasized to the liver in 100% of the mice, demonstrating that Cdkn2a loss confers metastatic ability. Our organoid model thus provides a new approach that can be used to understand the evolutionary forces driving CRC metastasis and a rich resource to uncover CCGs promoting CRC.
Collapse
Affiliation(s)
- Naoko Iida
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yukari Muranaka
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kang-won National University, Chuncheon-si, Republic of Korea
| | - Shigeki Sekine
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Neal G Copeland
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy A Jenkins
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
- Nano-Life Science Institute, Kanazawa University, Ishikawa, Japan
| | - Haruna Takeda
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan.
- Cancer genes and genomes unit, Cancer Research Institute, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
9
|
Zhang X, Zhang M, Li Y, Jiang Y. Comprehensive transcriptional analysis of early dorsal skin development in pigs. Gene 2024; 899:148141. [PMID: 38184019 DOI: 10.1016/j.gene.2024.148141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Porcine skin is similar to human skin in physiology, anatomy and histology and is often used as a model animal for human skin research. There are few studies on the transcriptome aspects of pig skin during the embryonic period. In this study, RNA sequencing was performed on the dorsal skin of Chenghua sows at embryonic day 56 (E56), embryonic day 76 (E76), embryonic day 105 (E105), and 3 days after birth (D3) to explore RNA changes in pig dorsal skin at four ages. A number of skin-related differential genes were identified by intercomparison between RNAs at four time points, and KEGG functional analysis showed that these differential genes were mainly enriched in metabolic and developmental, immune, and disease pathways, and the pathways enriched in GO analysis were highly overlapping. Collagen is an important part of the skin, with type I collagen making up the largest portion. In this study, collagen type I alpha 1 (COL1A1) and collagen type I alpha 2 (COL1A2) were significantly upregulated at four time points. In addition, lncRNA-miRNA-mRNA and miRNA-circRNA coexpression networks were constructed. The data obtained may help to explain age-related changes in transcriptional patterns during skin development and provide further references for understanding human skin development at the molecular level.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Mei Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Yujing Li
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
10
|
Lei X, Zhou D, Wen Y, Sha W, Ma J, Tu X, Zhai K, Li C, Wang H, Tao J, Chen Z, Ruan W, Fan JB, Wang B, Cui C. Cell-free DNA methylation profiles enable early detection of colorectal and gastric cancer. Am J Cancer Res 2024; 14:744-761. [PMID: 38455396 PMCID: PMC10915336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/07/2023] [Indexed: 03/09/2024] Open
Abstract
Colorectal cancer (CRC) and gastric cancer (GC) rank the top five common and lethal cancers worldwide. Early detection can significantly reduce the mortality of CRC and GC. However, current clinical screening methods including invasive endoscopic techniques and noninvasive fecal occult blood test screening tests/fecal immunochemical test have shown low sensitivity or unsatisfactory patient's compliance. Aberrant DNA methylation occurs frequently in tumorigenesis and cell-free DNA (cfDNA) methylation has shown the potential in multi-cancer detection. Herein, we aimed to explore the value of cfDNA methylation in the gastrointestinal cancer detection and develop a noninvasive method for CRC and GC detection. We applied targeted methylation sequencing on a total of 407 plasma samples from patients diagnosed with CRC, GC, and noncancerous gastrointestinal benign diseases (Non-Ca). By analyzing the methylation profiles of 34 CRC, 62 GC and 107 Non-Ca plasma samples in the training set (n=203), we identified 40,110 gastrointestinal cancer-specific markers and 63 tissue of origin (TOO) prediction markers. A new integrated model composed of gastrointestinal cancer detection and TOO prediction for three types of classification of CRC, GC and Non-Ca patients was further developed through logistic regression algorithm and validated in an independent validation set (n=103). The model achieved overall sensitivities of 83% and 81.3% at specificities of 81.5% and 80% for identifying gastrointestinal cancers in the test set and validation set, respectively. The detection sensitivities for GC and CRC were respectively 81.4% and 83.3% in the cohort of the test and validation sets. Among these true positive cancer samples, further TOO prediction showed accuracies of 95.8% and 95.8% for GC patients and accuracies of 86.7% and 93.3% for CRC patients, in test set and validation set, respectively. Collectively, we have identified novel cfDNA methylation biomarkers for CRC and GC detection and shown the promising potential of cfDNA as a noninvasive gastrointestinal cancer detection tool.
Collapse
Affiliation(s)
- Xiaotian Lei
- Department of Surgery, Zhujiang Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Dongxun Zhou
- Department of Endoscopy and Gastroenterology, Eastern Hepatobiliary Hospital, Naval Medical University225 Changhai Road, Shanghai, China
| | - Ying Wen
- AnchorDx Medical Co., Ltd.Guangzhou, Guangdong, China
| | - Weihong Sha
- Guangdong Provincial People’s HospitalGuangzhou, Guangdong, China
| | - Juan Ma
- Guangdong Provincial People’s HospitalGuangzhou, Guangdong, China
- Diagnosis and Treatment Center of High Altitude Digestive Disease, Xining Second People’s HospitalXining, Qinghai, China
| | - Xixiang Tu
- AnchorDx Medical Co., Ltd.Guangzhou, Guangdong, China
| | - Kewei Zhai
- The Affiliated Cancer Hospital of Zhengzhou UniversityZhengzhou, Henan, China
| | - Caixia Li
- Jiyuan Second People’s HospitalJiyuan, Henan, China
| | - Hong Wang
- AnchorDx Medical Co., Ltd.Guangzhou, Guangdong, China
| | - Jinsheng Tao
- AnchorDx Medical Co., Ltd.Guangzhou, Guangdong, China
| | - Zhiwei Chen
- AnchorDx Medical Co., Ltd.Guangzhou, Guangdong, China
- AnchorDx, Inc.Fremont, CA, The United States
| | - Weimei Ruan
- AnchorDx Medical Co., Ltd.Guangzhou, Guangdong, China
| | - Jian-Bing Fan
- AnchorDx Medical Co., Ltd.Guangzhou, Guangdong, China
- AnchorDx, Inc.Fremont, CA, The United States
- Southern Medical UniversityGuangzhou, Guangdong, China
| | - Bin Wang
- Department of Oncology, Changhai Hospital, Naval Medical University168 Changhai Road, Shanghai, China
| | - Chunhui Cui
- Department of Surgery, Zhujiang Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| |
Collapse
|
11
|
Tzouanas CN, Sherman MS, Shay JE, Rubin AJ, Mead BE, Dao TT, Butzlaff T, Mana MD, Kolb KE, Walesky C, Pepe-Mooney BJ, Smith CJ, Prakadan SM, Ramseier ML, Tong EY, Joung J, Chi F, McMahon-Skates T, Winston CL, Jeong WJ, Aney KJ, Chen E, Nissim S, Zhang F, Deshpande V, Lauer GM, Yilmaz ÖH, Goessling W, Shalek AK. Chronic metabolic stress drives developmental programs and loss of tissue functions in non-transformed liver that mirror tumor states and stratify survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569407. [PMID: 38077056 PMCID: PMC10705501 DOI: 10.1101/2023.11.30.569407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Under chronic stress, cells must balance competing demands between cellular survival and tissue function. In metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD/NASH), hepatocytes cooperate with structural and immune cells to perform crucial metabolic, synthetic, and detoxification functions despite nutrient imbalances. While prior work has emphasized stress-induced drivers of cell death, the dynamic adaptations of surviving cells and their functional repercussions remain unclear. Namely, we do not know which pathways and programs define cellular responses, what regulatory factors mediate (mal)adaptations, and how this aberrant activity connects to tissue-scale dysfunction and long-term disease outcomes. Here, by applying longitudinal single-cell multi -omics to a mouse model of chronic metabolic stress and extending to human cohorts, we show that stress drives survival-linked tradeoffs and metabolic rewiring, manifesting as shifts towards development-associated states in non-transformed hepatocytes with accompanying decreases in their professional functionality. Diet-induced adaptations occur significantly prior to tumorigenesis but parallel tumorigenesis-induced phenotypes and predict worsened human cancer survival. Through the development of a multi -omic computational gene regulatory inference framework and human in vitro and mouse in vivo genetic perturbations, we validate transcriptional (RELB, SOX4) and metabolic (HMGCS2) mediators that co-regulate and couple the balance between developmental state and hepatocyte functional identity programming. Our work defines cellular features of liver adaptation to chronic stress as well as their links to long-term disease outcomes and cancer hallmarks, unifying diverse axes of cellular dysfunction around core causal mechanisms.
Collapse
Affiliation(s)
- Constantine N. Tzouanas
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These authors contributed equally
| | - Marc S. Sherman
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- These authors contributed equally
| | - Jessica E.S. Shay
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Alcohol Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Adam J. Rubin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin E. Mead
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler T. Dao
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Titus Butzlaff
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Miyeko D. Mana
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kellie E. Kolb
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chad Walesky
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J. Pepe-Mooney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Colton J. Smith
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sanjay M. Prakadan
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle L. Ramseier
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evelyn Y. Tong
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Joung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Fangtao Chi
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Thomas McMahon-Skates
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolyn L. Winston
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Woo-Jeong Jeong
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine J. Aney
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ethan Chen
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sahar Nissim
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, MA, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Georg M. Lauer
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ömer H. Yilmaz
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- These senior authors contributed equally
| | - Wolfram Goessling
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA, USA
- These senior authors contributed equally
| | - Alex K. Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- These senior authors contributed equally
| |
Collapse
|
12
|
Felício D, du Mérac TR, Amorim A, Martins S. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Hum Genet 2023; 142:1651-1676. [PMID: 37845370 PMCID: PMC10676324 DOI: 10.1007/s00439-023-02607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Felício
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Tanguy Rubat du Mérac
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Faculty of Science, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sandra Martins
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
13
|
Amini J, Beyer C, Zendedel A, Sanadgol N. MAPK Is a Mutual Pathway Targeted by Anxiety-Related miRNAs, and E2F5 Is a Putative Target for Anxiolytic miRNAs. Biomolecules 2023; 13:biom13030544. [PMID: 36979479 PMCID: PMC10046777 DOI: 10.3390/biom13030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Anxiety-related disorders (ARDs) are chronic neuropsychological diseases and the sixth leading cause of disability in the world. As dysregulation of microRNAs (miRs) are observed in the pathological course of neuropsychiatric disorders, the present study aimed to introduce miRs that underlie anxiety processing in the brain. First, we collected the experimentally confirmed anxiety-related miRNAs (ARmiRs), predicted their target transcripts, and introduced critical cellular pathways with key commune hub genes. As a result, we have found nine anxiolytic and ten anxiogenic ARmiRs. The anxiolytic miRs frequently target the mRNA of Acyl-CoA synthetase long-chain family member 4 (Acsl4), AFF4-AF4/FMR2 family member 4 (Aff4), and Krüppel like transcription factor 4 (Klf4) genes, where miR-34b-5p and miR-34c-5p interact with all of them. Moreover, the anxiogenic miRs frequently target the mRNA of nine genes; among them, only two miR (miR-142-5p and miR-218-5p) have no interaction with the mRNA of trinucleotide repeat-containing adaptor 6B (Tnrc6b), and miR-124-3p interacts with all of them where MAPK is the main signaling pathway affected by both anxiolytic and anxiogenic miR. In addition, the anxiolytic miR commonly target E2F transcription factor 5 (E2F5) in the TGF-β signaling pathway, and the anxiogenic miR commonly target Ataxin 1 (Atxn1), WASP-like actin nucleation promoting factor (Wasl), and Solute Carrier Family 17 Member 6 (Slc17a6) genes in the notch signaling, adherence junction, and synaptic vesicle cycle pathways, respectively. Taken together, we conclude that the most important anxiolytic (miR-34c, Let-7d, and miR-17) and anxiogenic (miR-19b, miR-92a, and 218) miR, as hub epigenetic modulators, potentially influence the pathophysiology of anxiety, primarily via interaction with the MAPK signaling pathway. Moreover, the role of E2F5 as a novel putative target for anxiolytic miRNAs in ARDs disorders deserves further exploration.
Collapse
Affiliation(s)
- Javad Amini
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
14
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
15
|
McIntosh CS, Li D, Wilton SD, Aung-Htut MT. Polyglutamine Ataxias: Our Current Molecular Understanding and What the Future Holds for Antisense Therapies. Biomedicines 2021; 9:1499. [PMID: 34829728 PMCID: PMC8615177 DOI: 10.3390/biomedicines9111499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Polyglutamine (polyQ) ataxias are a heterogenous group of neurological disorders all caused by an expanded CAG trinucleotide repeat located in the coding region of each unique causative gene. To date, polyQ ataxias encompass six disorders: spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17 and account for a larger group of disorders simply known as polyglutamine disorders, which also includes Huntington's disease. These diseases are typically characterised by progressive ataxia, speech and swallowing difficulties, lack of coordination and gait, and are unfortunately fatal in nature, with the exception of SCA6. All the polyQ spinocerebellar ataxias have a hallmark feature of neuronal aggregations and share many common pathogenic mechanisms, such as mitochondrial dysfunction, impaired proteasomal function, and autophagy impairment. Currently, therapeutic options are limited, with no available treatments that slow or halt disease progression. Here, we discuss the common molecular and clinical presentations of polyQ spinocerebellar ataxias. We will also discuss the promising antisense oligonucleotide therapeutics being developed as treatments for these devastating diseases. With recent advancements and therapeutic approvals of various antisense therapies, it is envisioned that some of the studies reviewed may progress into clinical trials and beyond.
Collapse
Affiliation(s)
- Craig S. McIntosh
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Dunhui Li
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - May T. Aung-Htut
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
16
|
Edamakanti CR, Opal P. Developmental Alterations in Adult-Onset Neurodegenerative Disorders: Lessons from Polyglutamine Diseases. Mov Disord 2021; 36:1548-1552. [PMID: 34014004 DOI: 10.1002/mds.28657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/22/2023] Open
Affiliation(s)
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Bonelli P, Borrelli A, Tuccillo FM, Buonaguro FM, Tornesello ML. The Role of circRNAs in Human Papillomavirus (HPV)-Associated Cancers. Cancers (Basel) 2021; 13:1173. [PMID: 33803232 PMCID: PMC7963196 DOI: 10.3390/cancers13051173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a new class of "non-coding RNAs" that originate from non-sequential back-splicing of exons and/or introns of precursor messenger RNAs (pre-mRNAs). These molecules are generally produced at low levels in a cell-type-specific manner in mammalian tissues, but due to their circular conformation they are unaffected by the cell mRNA decay machinery. circRNAs can sponge multiple microRNAs or RNA-binding proteins and play a crucial role in the regulation of gene expression and protein translation. Many circRNAs have been shown to be aberrantly expressed in several cancer types, and to sustain specific oncogenic processes. Particularly, in virus-associated malignancies such as human papillomavirus (HPV)-associated anogenital carcinoma and oropharyngeal and oral cancers, circRNAs have been shown to be involved in tumorigenesis and cancer progression, as well as in drug resistance, and some are useful diagnostic and prognostic markers. HPV-derived circRNAs, encompassing the HPV E7 oncogene, have been shown to be expressed and to serve as transcript for synthesis of the E7 oncoprotein, thus reinforcing the virus oncogenic activity in HPV-associated cancers. In this review, we summarize research advances in the biogenesis of cell and viral circRNAs, their features and functions in the pathophysiology of HPV-associated tumors, and their importance as diagnostic, prognostic, and therapeutic targets in anogenital and oropharyngeal and oral cancers.
Collapse
Affiliation(s)
- Patrizia Bonelli
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (F.M.T.); (F.M.B.); (M.L.T.)
| | - Antonella Borrelli
- Innovative Immunological Models, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (F.M.T.); (F.M.B.); (M.L.T.)
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (F.M.T.); (F.M.B.); (M.L.T.)
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (F.M.T.); (F.M.B.); (M.L.T.)
| |
Collapse
|
18
|
Campbell BR, Chen Z, Faden DL, Agrawal N, Li RJ, Hanna GJ, Iyer NG, Boot A, Rozen SG, Vettore AL, Panda B, Krishnan NM, Pickering CR, Myers JN, Guo X, Lang Kuhs KA. The mutational landscape of early- and typical-onset oral tongue squamous cell carcinoma. Cancer 2020; 127:544-553. [PMID: 33146897 DOI: 10.1002/cncr.33309] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The incidence of oral tongue squamous cell carcinoma (OTSCC) is increasing among younger birth cohorts. The etiology of early-onset OTSCC (diagnosed before the age of 50 years) and cancer driver genes remain largely unknown. METHODS The Sequencing Consortium of Oral Tongue Cancer was established through the pooling of somatic mutation data of oral tongue cancer specimens (n = 227 [107 early-onset cases]) from 7 studies and The Cancer Genome Atlas. Somatic mutations at microsatellite loci and Catalog of Somatic Mutations in Cancer mutation signatures were identified. Cancer driver genes were identified with the MutSigCV and WITER algorithms. Mutation comparisons between early- and typical-onset OTSCC were evaluated via linear regression with adjustments for patient-related factors. RESULTS Two novel driver genes (ATXN1 and CDC42EP1) and 5 previously reported driver genes (TP53, CDKN2A, CASP8, NOTCH1, and FAT1) were identified. Six recurrent mutations were identified, with 4 occurring in TP53. Early-onset OTSCC had significantly fewer nonsilent mutations even after adjustments for tobacco use. No associations of microsatellite locus mutations and mutation signatures with the age of OTSCC onset were observed. CONCLUSIONS This international, multicenter consortium is the largest study to characterize the somatic mutational landscape of OTSCC and the first to suggest differences by age of onset. This study validates multiple previously identified OTSCC driver genes and proposes 2 novel cancer driver genes. In analyses by age, early-onset OTSCC had a significantly smaller somatic mutational burden that was not explained by differences in tobacco use. LAY SUMMARY This study identifies 7 specific areas in the human genetic code that could be responsible for promoting the development of tongue cancer. Tongue cancer in young patients (under the age of 50 years) has fewer overall changes to the genetic code in comparison with tongue cancer in older patients, but the authors do not think that this is due to differences in smoking rates between the 2 groups. The cause of increasing cases of tongue cancer in young patients remains unclear.
Collapse
Affiliation(s)
- Benjamin R Campbell
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - Daniel L Faden
- Head and Neck Surgical Oncology, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nishant Agrawal
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Ryan J Li
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon
| | - Glenn J Hanna
- Harvard Medical School, Boston, Massachusetts.,Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - N Gopalakrishna Iyer
- Department of Head and Neck Surgery, National Cancer Centre Singapore, Singapore, Singapore
| | - Arnoud Boot
- Center for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Steven G Rozen
- Center for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Andre L Vettore
- Department of Biological Sciences, Federal University of São Paulo, São Paulo, Brazil
| | - Binay Panda
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Ingram Cancer Center, Nashville, Tennessee.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Krystle A Lang Kuhs
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Ingram Cancer Center, Nashville, Tennessee.,Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
19
|
Doxakis E. Therapeutic antisense oligonucleotides for movement disorders. Med Res Rev 2020; 41:2656-2688. [PMID: 32656818 DOI: 10.1002/med.21706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Movement disorders are a group of neurological conditions characterized by abnormalities of movement and posture. They are broadly divided into akinetic and hyperkinetic syndromes. Until now, no effective symptomatic or disease-modifying therapies have been available. However, since many of these disorders are monogenic or have some well-defined genetic component, they represent strong candidates for antisense oligonucleotide (ASO) therapies. ASO therapies are based on the use of short synthetic single-stranded ASOs that bind to disease-related target RNAs via Watson-Crick base-pairing and pleiotropically modulate their function. With information arising from the RNA sequence alone, it is possible to design ASOs that not only alter the expression levels but also the splicing defects of any protein, far exceeding the intervention repertoire of traditional small molecule approaches. Following the regulatory approval of ASO therapies for spinal muscular atrophy and Duchenne muscular dystrophy in 2016, there has been tremendous momentum in testing such therapies for other neurological disorders. This review article initially focuses on the chemical modifications aimed at improving ASO effectiveness, the mechanisms by which ASOs can interfere with RNA function, delivery systems and pharmacokinetics, and the common set of toxicities associated with their application. It, then, describes the pathophysiology and the latest information on preclinical and clinical trials utilizing ASOs for the treatment of Parkinson's disease, Huntington's disease, and ataxias 1, 2, 3, and 7. It concludes with issues that require special attention to realize the full potential of ASO-based therapies.
Collapse
Affiliation(s)
- Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
20
|
Salazar JL, Yang SA, Yamamoto S. Post-Developmental Roles of Notch Signaling in the Nervous System. Biomolecules 2020; 10:biom10070985. [PMID: 32630239 PMCID: PMC7408554 DOI: 10.3390/biom10070985] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Since its discovery in Drosophila, the Notch signaling pathway has been studied in numerous developmental contexts in diverse multicellular organisms. The role of Notch signaling in nervous system development has been extensively investigated by numerous scientists, partially because many of the core Notch signaling components were initially identified through their dramatic ‘neurogenic’ phenotype of developing fruit fly embryos. Components of the Notch signaling pathway continue to be expressed in mature neurons and glia cells, which is suggestive of a role in the post-developmental nervous system. The Notch pathway has been, so far, implicated in learning and memory, social behavior, addiction, and other complex behaviors using genetic model organisms including Drosophila and mice. Additionally, Notch signaling has been shown to play a modulatory role in several neurodegenerative disease model animals and in mediating neural toxicity of several environmental factors. In this paper, we summarize the knowledge pertaining to the post-developmental roles of Notch signaling in the nervous system with a focus on discoveries made using the fruit fly as a model system as well as relevant studies in C elegans, mouse, rat, and cellular models. Since components of this pathway have been implicated in the pathogenesis of numerous psychiatric and neurodegenerative disorders in human, understanding the role of Notch signaling in the mature brain using model organisms will likely provide novel insights into the mechanisms underlying these diseases.
Collapse
Affiliation(s)
- Jose L. Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
| | - Sheng-An Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.L.S.); (S.-A.Y.)
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Program in Developmental Biology, BCM, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-832-824-8119
| |
Collapse
|
21
|
Laidou S, Alanis-Lobato G, Pribyl J, Raskó T, Tichy B, Mikulasek K, Tsagiopoulou M, Oppelt J, Kastrinaki G, Lefaki M, Singh M, Zink A, Chondrogianni N, Psomopoulos F, Prigione A, Ivics Z, Pospisilova S, Skladal P, Izsvák Z, Andrade-Navarro MA, Petrakis S. Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery. Redox Biol 2020; 32:101458. [PMID: 32145456 PMCID: PMC7058924 DOI: 10.1016/j.redox.2020.101458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Abstract
Spinocerebellar ataxia type-1 (SCA1) is caused by an abnormally expanded polyglutamine (polyQ) tract in ataxin-1. These expansions are responsible for protein misfolding and self-assembly into intranuclear inclusion bodies (IIBs) that are somehow linked to neuronal death. However, owing to lack of a suitable cellular model, the downstream consequences of IIB formation are yet to be resolved. Here, we describe a nuclear protein aggregation model of pathogenic human ataxin-1 and characterize IIB effects. Using an inducible Sleeping Beauty transposon system, we overexpressed the ATXN1(Q82) gene in human mesenchymal stem cells that are resistant to the early cytotoxic effects caused by the expression of the mutant protein. We characterized the structure and the protein composition of insoluble polyQ IIBs which gradually occupy the nuclei and are responsible for the generation of reactive oxygen species. In response to their formation, our transcriptome analysis reveals a cerebellum-specific perturbed protein interaction network, primarily affecting protein synthesis. We propose that insoluble polyQ IIBs cause oxidative and nucleolar stress and affect the assembly of the ribosome by capturing or down-regulating essential components. The inducible cell system can be utilized to decipher the cellular consequences of polyQ protein aggregation. Our strategy provides a broadly applicable methodology for studying polyQ diseases.
Collapse
Affiliation(s)
- Stamatia Laidou
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
| | - Gregorio Alanis-Lobato
- Faculty of Biology, Johannes Gutenberg University Mainz, 55122, Mainz, Germany; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Jan Pribyl
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Tamás Raskó
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
| | - Boris Tichy
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Kamil Mikulasek
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Maria Tsagiopoulou
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
| | - Jan Oppelt
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Georgia Kastrinaki
- Aerosol and Particle Technology Laboratory/Chemical Process & Energy Resources Institute/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
| | - Maria Lefaki
- Institute of Biology, Medicinal Chemistry & Biotechnology/National Hellenic Research Foundation, 11365, Athens, Greece
| | - Manvendra Singh
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
| | - Annika Zink
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry & Biotechnology/National Hellenic Research Foundation, 11365, Athens, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece; Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Alessandro Prigione
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Petr Skladal
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Zsuzsanna Izsvák
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany.
| | | | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece.
| |
Collapse
|
22
|
Volovikov EA, Davidenko AV, Lagarkova MA. Molecular Mechanisms of Spinocerebellar Ataxia Type 1. RUSS J GENET+ 2020. [DOI: 10.1134/s102279542002012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Luo H, Zhao Q, Wei W, Zheng L, Yi S, Li G, Wang W, Sheng H, Pu H, Mo H, Zuo Z, Liu Z, Li C, Xie C, Zeng Z, Li W, Hao X, Liu Y, Cao S, Liu W, Gibson S, Zhang K, Xu G, Xu RH. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med 2020; 12:12/524/eaax7533. [PMID: 31894106 DOI: 10.1126/scitranslmed.aax7533] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 10/04/2019] [Indexed: 02/05/2023]
Abstract
Circulating tumor DNA (ctDNA) has emerged as a useful diagnostic and prognostic biomarker in many cancers. Here, we conducted a study to investigate the potential use of ctDNA methylation markers for the diagnosis and prognostication of colorectal cancer (CRC) and used a prospective cohort to validate their effectiveness in screening patients at high risk of CRC. We first identified CRC-specific methylation signatures by comparing CRC tissues to normal blood leukocytes. Then, we applied a machine learning algorithm to develop a predictive diagnostic and a prognostic model using cell-free DNA (cfDNA) samples from a cohort of 801 patients with CRC and 1021 normal controls. The obtained diagnostic prediction model discriminated patients with CRC from normal controls with high accuracy (area under curve = 0.96). The prognostic prediction model also effectively predicted the prognosis and survival of patients with CRC (P < 0.001). In addition, we generated a ctDNA-based molecular classification of CRC using an unsupervised clustering method and obtained two subgroups of patients with CRC with significantly different overall survival (P = 0.011 in validation cohort). Last, we found that a single ctDNA methylation marker, cg10673833, could yield high sensitivity (89.7%) and specificity (86.8%) for detection of CRC and precancerous lesions in a high-risk population of 1493 participants in a prospective cohort study. Together, our findings showed the value of ctDNA methylation markers in the diagnosis, surveillance, and prognosis of CRC.
Collapse
Affiliation(s)
- Huiyan Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Qi Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Wei Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Lianghong Zheng
- Guangzhou Youze Biological Pharmaceutical Technology Company Ltd., Guangzhou 510005, P.R. China
| | - Shaohua Yi
- Huazhong University of Science and Technology Tongji Medical College, Wuhan 430030, P. R. China
| | - Gen Li
- Guangzhou Women and Children’s Medical Center, Guangzhou 510623, P. R. China
| | - Wenqiu Wang
- Shanghai General Hospital, Shanghai 200080, P. R. China
| | - Hui Sheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Hengying Pu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Haiyu Mo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Zexian Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Chaofeng Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Chuanbo Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Zhaolei Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Weimin Li
- Molecular Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoke Hao
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Yuying Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Sumei Cao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Wanli Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Sarah Gibson
- Guangzhou Women and Children’s Medical Center, Guangzhou 510623, P. R. China
| | - Kang Zhang
- Molecular Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, P. R. China
| | - Guoliang Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| | - Rui-hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China
| |
Collapse
|
24
|
Rocha S, Vieira J, Vázquez N, López-Fernández H, Fdez-Riverola F, Reboiro-Jato M, Sousa AD, Vieira CP. ATXN1 N-terminal region explains the binding differences of wild-type and expanded forms. BMC Med Genomics 2019; 12:145. [PMID: 31655597 PMCID: PMC6814966 DOI: 10.1186/s12920-019-0594-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Background Wild-type (wt) polyglutamine (polyQ) regions are implicated in stabilization of protein-protein interactions (PPI). Pathological polyQ expansion, such as that in human Ataxin-1 (ATXN1), that causes spinocerebellar ataxia type 1 (SCA1), results in abnormal PPI. For ATXN1 a larger number of interactors has been reported for the expanded (82Q) than the wt (29Q) protein. Methods To understand how the expanded polyQ affects PPI, protein structures were predicted for wt and expanded ATXN1, as well as, for 71 ATXN1 interactors. Then, the binding surfaces of wt and expanded ATXN1 with the reported interactors were inferred. Results Our data supports that the polyQ expansion alters the ATXN1 conformation and that it enhances the strength of interaction with ATXN1 partners. For both ATXN1 variants, the number of residues at the predicted binding interface are greater after the polyQ, mainly due to the AXH domain. Moreover, the difference in the interaction strength of the ATXN1 variants was due to an increase in the number of interactions at the N-terminal region, before the polyQ, for the expanded form. Conclusions There are three regions at the AXH domain that are essential for ATXN1 PPI. The N-terminal region is responsible for the strength of the PPI with the ATXN1 variants. How the predicted motifs in this region affect PPI is discussed, in the context of ATXN1 post-transcriptional modifications.
Collapse
Affiliation(s)
- Sara Rocha
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Noé Vázquez
- ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, Universidad de Vigo, 32004, Ourense, Spain.,Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain.,SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, Spain
| | - Hugo López-Fernández
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, Universidad de Vigo, 32004, Ourense, Spain.,Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain.,SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, Spain
| | - Florentino Fdez-Riverola
- ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, Universidad de Vigo, 32004, Ourense, Spain.,Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain.,SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, Spain
| | - Miguel Reboiro-Jato
- ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico, Campus Universitario As Lagoas s/n, Universidad de Vigo, 32004, Ourense, Spain.,Centro de Investigaciones Biomédicas (Centro Singular de Investigación de Galicia), Vigo, Spain.,SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, Spain
| | - André D Sousa
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
25
|
Buijsen RAM, Toonen LJA, Gardiner SL, van Roon-Mom WMC. Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics 2019; 16:263-286. [PMID: 30607747 PMCID: PMC6554265 DOI: 10.1007/s13311-018-00696-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders characterized by degeneration of the cerebellum and its connections. All ADCAs have progressive ataxia as their main clinical feature, frequently accompanied by dysarthria and oculomotor deficits. The most common spinocerebellar ataxias (SCAs) are 6 polyglutamine (polyQ) SCAs. These diseases are all caused by a CAG repeat expansion in the coding region of a gene. Currently, no curative treatment is available for any of the polyQ SCAs, but increasing knowledge on the genetics and the pathological mechanisms of these polyQ SCAs has provided promising therapeutic targets to potentially slow disease progression. Potential treatments can be divided into pharmacological and gene therapies that target the toxic downstream effects, gene therapies that target the polyQ SCA genes, and stem cell replacement therapies. Here, we will provide a review on the genetics, mechanisms, and therapeutic progress in polyglutamine spinocerebellar ataxias.
Collapse
Affiliation(s)
- Ronald A M Buijsen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Lodewijk J A Toonen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Sarah L Gardiner
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Neurology, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
26
|
Guo Y, Yang J, Huang Q, Hsueh C, Zheng J, Wu C, Chen H, Zhou L. Circular RNAs and their roles in head and neck cancers. Mol Cancer 2019; 18:44. [PMID: 30898135 PMCID: PMC6427840 DOI: 10.1186/s12943-019-1003-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/13/2019] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs are abundant endogenous non-coding RNA with no 5′ cap and 3′ polyadenylation tail that modify liner mRNAs and have no terminal structures. Our knowledge of the biogenesis of circular RNAs has been expanded, and circular RNAs were shown to be key regulators of various diseases, especially cancers. Head and neck cancers are the sixth most popular cancers worldwide, and the overall survival rates remain unsatisfactory. Recent studies have indicated that circular RNAs are involved in the tumorigenesis, progression, invasion and chemosensitivity of head and neck cancers and that some circular RNAs could serve as diagnostic and prognostic biomarkers. In this study, we summarize research advances in the regulation of circular RNA biogenesis, their characteristics and functions, the involvement of circular RNAs in the pathophysiology of head and neck cancers and their potential clinical utilization, as well as the likely directions of future studies.
Collapse
Affiliation(s)
- Yang Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jiechao Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Qiang Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Chiyao Hsueh
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Juan Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Chunping Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Hui Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Liang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
27
|
Martins Junior CR, Martinez ARM, Vasconcelos IF, de Rezende TJR, Casseb RF, Pedroso JL, Barsottini OGP, Lopes-Cendes Í, França MC. Structural signature in SCA1: clinical correlates, determinants and natural history. J Neurol 2018; 265:2949-2959. [PMID: 30324307 DOI: 10.1007/s00415-018-9087-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
Spinocerebellar ataxia type 1 is an autosomal dominant disorder caused by a CAG repeat expansion in ATXN1, characterized by progressive cerebellar and extracerebellar symptoms. MRI-based studies in SCA1 focused in the cerebellum and connections, but there are few data about supratentorial/spinal damage and its clinical relevance. We have thus designed this multimodal MRI study to uncover the structural signature of SCA1. To accomplish that, a group of 33 patients and 33 age-and gender-matched healthy controls underwent MRI on a 3T scanner. All patients underwent a comprehensive neurological and neuropsychological evaluation. We correlated the structural findings with the clinical features of the disease. In addition, we evaluated the disease progression looking at differences in SCA1 subgroups defined by disease duration. Ataxia and pyramidal signs were the main symptoms. Neuropsychological evaluation disclosed cognitive impairment in 53% with predominant frontotemporal dysfunction. Gray matter analysis unfolded cortical thinning of primary and associative motor areas with more restricted impairment of deep structures. Deep gray matter atrophy was associated with motor handicap and poor cognition skills. White matter integrity loss was diffuse in the brainstem but restricted in supratentorial structures. Cerebellar cortical thinning was found in multiple areas and correlated not only with motor disability but also with verbal fluency. Spinal cord atrophy correlated with motor handicap. Comparison of MRI findings in disease duration-defined subgroups identified a peculiar pattern of progressive degeneration.
Collapse
Affiliation(s)
- Carlos Roberto Martins Junior
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | - Alberto Rolim Muro Martinez
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | - Ingrid Faber Vasconcelos
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | | | - Raphael Fernandes Casseb
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | - Jose Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Íscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcondes Cavalcante França
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil.
| |
Collapse
|
28
|
Hsa_circ_0008309 May Be a Potential Biomarker for Oral Squamous Cell Carcinoma. DISEASE MARKERS 2018; 2018:7496890. [PMID: 30344795 PMCID: PMC6174780 DOI: 10.1155/2018/7496890] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/02/2018] [Accepted: 08/12/2018] [Indexed: 12/20/2022]
Abstract
Objective Oral squamous cell carcinoma (OSCC) is the most common cancer of the head and neck region. The circular RNA (circRNA) is known to serve an important role in the carcinogenesis of different types of cancer. However, the circRNA role of OSCC remains unclear. Methods 8 pairs of OSCC tissues and adjacent normal tissues were obtained to detect circRNAs expression by high-throughput sequencing, and 45 pairs of OSCC tissues were selected to verify the differentially significant circRNAs by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To further investigate the role of hsa_circ_0008309, the circRNA-microRNA (miR)-mRNA network was predicted using bioinformatics databases. The expression levels of hsa_circ_0008309, miR-1290, miR-136-5P, and miR-382-5P in SCC-15 and CAL27 cell lines were detected by RT-qPCR. Western blotting was performed to detect the protein level of Ataxin 1 (ATXN1). Results The high-throughput sequencing results demonstrated that circRNAs were abundantly expressed in OSCC, and 16 circRNAs were significantly differentially expressed. Hsa_circ_0008309 was significantly downregulated in 45 pairs of OSCC tissue samples and was statistically correlated with pathological differentiation. The bioinformatics databases suggested that hsa_circ_0008309 could combine with miR-1290, miR-136-5P, and miR-382-5P, respectively, to regulate the expression of ATXN1. It was subsequently identified that hsa_circ_0008309 may inhibit miR-136-5P and miR-382-5P expression and increase ATXN1 expression in the OSCC cell lines. Conclusion In summary, the results of the present study revealed that OSCC tissues have abundant circRNAs and, to the best of our knowledge, we firstly explore the regulatory role of the hsa_circ_0008309-miR-136-5P/hsa-miR-382-5P-ATXN1 network in OSCC. The results indicated that hsa_circ_0008309 may be a potential biomarker for OSCC.
Collapse
|
29
|
Transcriptomic analysis of CIC and ATXN1L reveal a functional relationship exploited by cancer. Oncogene 2018; 38:273-290. [PMID: 30093628 DOI: 10.1038/s41388-018-0427-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 12/24/2022]
Abstract
Aberrations in Capicua (CIC) have recently been implicated as a negative prognostic factor in a multitude of cancer types through activation of the MAPK signalling cascade and derepression of oncogenic ETS transcription factors. The Ataxin-family protein ATXN1L has previously been reported to interact with CIC in developmental and disease contexts to facilitate the repression of CIC target genes. To further investigate this relationship, we performed functional in vitro studies utilizing ATXN1LKO and CICKO human cell lines and characterized a reciprocal functional relationship between CIC and ATXN1L. Transcriptomic interrogation of the CIC-ATXN1-ATXN1L axis in low-grade glioma, prostate adenocarcinoma and stomach adenocarcinoma TCGA cohorts revealed context-dependent convergence of gene sets and pathways related to mitotic cell cycle and division. This study highlights the CIC-ATXN1-ATXN1L axis as a more potent regulator of the cell cycle than previously appreciated.
Collapse
|
30
|
The genetic component of preeclampsia: A whole-exome sequencing study. PLoS One 2018; 13:e0197217. [PMID: 29758065 PMCID: PMC5951572 DOI: 10.1371/journal.pone.0197217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/27/2018] [Indexed: 01/08/2023] Open
Abstract
Preeclampsia is a major cause of maternal and perinatal deaths. The aetiology of preeclampsia is largely unknown but a polygenetic component is assumed. To explore this hypothesis, we performed an in-depth whole-exome sequencing study in women with (cases, N = 50) and without (controls, N = 50) preeclampsia. The women were identified in an unselected cohort of 2,545 pregnant women based on data from the Danish National Patient Registry and the Medical Birth Registry. Matching DNA was obtained from a biobank containing excess blood from routine antenatal care visits. Novogene performed the whole-exome sequencing blinded to preeclampsia status. Variants for comparison between cases and controls were filtered in the Ingenuity Variant Analysis software. We applied two different strategies; a disease association panel approach, which included variants in single genes associated with established clinical risk factors for preeclampsia, and a gene panel approach, which included biological pathways harbouring genes previously reported to be associated with preeclampsia. Variant variability was compared in cases and controls at the level of biological processes, signalling pathways, and in single genes. Regardless of the applied strategy and the level of variability examined, we consistently found positive correlations between variant numbers in cases and controls (all R2s>0.88). Contrary to what was expected, cases carried fewer variants in biological processes and signalling pathways than controls (all p-values ≤0.02). In conclusion, our findings challenge the hypothesis of a polygenetic aetiology for preeclampsia with a common network of susceptibility genes. The greater genetic diversity among controls may suggest a protective role of genetic diversity against the development of preeclampsia.
Collapse
|
31
|
Key genes and regulatory networks involved in the initiation, progression and invasion of colorectal cancer. Future Sci OA 2018; 4:FSO278. [PMID: 29568567 PMCID: PMC5859335 DOI: 10.4155/fsoa-2017-0108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
Aim Until now, identification of drug targets for treatment of patients with specific stages of colorectal cancer (CRC) has remained a challenging field of research. Herein, we aimed to identify the key genes and regulatory networks involved in each stage of CRC. Results The results of gene expression profiles were integrated with protein-protein interaction networks, and topologically analyzed. The most important regulatory genes (e.g., CDK1, UBC, ESR1 and ATXN1) and signaling pathways (e.g., Wnt, MAPK and JAK-STAT) in CRC initiation, progression and metastasis were identified. In vitro analysis confirmed some in silico findings. Conclusion Our study introduces functional hub genes, subnetworks, prioritizes signaling pathways and novel biomarkers in CRC that may guide further development of targeted therapy programs.
Collapse
|
32
|
Wang B, Krall EB, Aguirre AJ, Kim M, Widlund HR, Doshi MB, Sicinska E, Sulahian R, Goodale A, Cowley GS, Piccioni F, Doench JG, Root DE, Hahn WC. ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway Inhibition. Cell Rep 2017; 18:1543-1557. [PMID: 28178529 DOI: 10.1016/j.celrep.2017.01.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 12/10/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
Intrinsic resistance and RTK-RAS-MAPK pathway reactivation has limited the effectiveness of MEK and RAF inhibitors (MAPKi) in RAS- and RAF-mutant cancers. To identify genes that modulate sensitivity to MAPKi, we performed genome-scale CRISPR-Cas9 loss-of-function screens in two KRAS mutant pancreatic cancer cell lines treated with the MEK1/2 inhibitor trametinib. Loss of CIC, a transcriptional repressor of ETV1, ETV4, and ETV5, promoted survival in the setting of MAPKi in cancer cells derived from several lineages. ATXN1L deletion, which reduces CIC protein, or ectopic expression of ETV1, ETV4, or ETV5 also modulated sensitivity to trametinib. ATXN1L expression inversely correlates with response to MAPKi inhibition in clinical studies. These observations identify the ATXN1L-CIC-ETS transcription factor axis as a mediator of resistance to MAPKi.
Collapse
Affiliation(s)
- Belinda Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elsa Beyer Krall
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Andrew James Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Miju Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hans Ragnar Widlund
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mihir Bhavik Doshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ewa Sicinska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Molecular Oncologic Pathology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Rita Sulahian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amy Goodale
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | | | | | | | - William Chun Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Darling AL, Uversky VN. Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules 2017; 22:2027. [PMID: 29186753 PMCID: PMC6149999 DOI: 10.3390/molecules22122027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, the increased repeat length often positively correlates with the increased aggregation efficiency and the increased disease severity and penetrance, being negatively correlated with the age of disease onset. The major categories of repeat extensions involved in disease include poly-glutamine and poly-alanine homorepeats, which are often times located in the intrinsically disordered regions, as well as repeats in non-coding regions of genes typically encoding proteins with ordered structures. Repeats in such non-coding regions of genes can be expressed at the mRNA level. Although they can affect the expression levels of encoded proteins, they are not translated as parts of an affected protein and have no effect on its structure. However, in some cases, the repetitive mRNAs can be translated in a non-canonical manner, generating highly repetitive peptides of different length and amino acid composition. The repeat extension-caused aggregation of a repetitive protein may represent a pivotal step for its transformation into a proteotoxic entity that can lead to pathology. The goals of this article are to systematically analyze molecular mechanisms of the proteinopathies caused by the poly-glutamine and poly-alanine homorepeat expansion, as well as by the polypeptides generated as a result of the microsatellite expansions in non-coding gene regions and to examine the related proteins. We also present results of the analysis of the prevalence and functional roles of intrinsic disorder in proteins associated with pathological repeat expansions.
Collapse
Affiliation(s)
- April L. Darling
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veteran’s Hospital, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
34
|
Kang AR, An HT, Ko J, Choi EJ, Kang S. Ataxin-1 is involved in tumorigenesis of cervical cancer cells via the EGFR-RAS-MAPK signaling pathway. Oncotarget 2017; 8:94606-94618. [PMID: 29212253 PMCID: PMC5706899 DOI: 10.18632/oncotarget.21814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
Ataxin-1 (ATXN1) is a coregulator protein within which expansion of the polyglutamine tract causes spinocerebellar ataxia type 1, an autosomal dominant neurodegenerative disorder. Previously, we reported that ATXN1 regulates the epithelial–mesenchymal transition of cervical cancer cells. In the present study, we demonstrate that ATXN1 is involved in cervical cancer tumorigenesis by promoting the proliferation of human cervical cancer cells. Chromatin immunoprecipitation assays showed that ATXN1 bound to the promoter region within cyclin D1 and activated cyclin D1 transcription, resulting in cell proliferation. ATXN1 promoted cyclin D1 expression through the EGFR–RAS–MAPK signaling pathway. Mouse xenograft tumorigenicity assays showed that ATXN1 downregulation inhibited tumorigenesis in cervical cancer cell lines in nude mice. Human cervical cancer tissue microarrays and immunohistochemical techniques showed that ATXN1 was significantly upregulated in many such tissues. Our results suggest that ATXN1 plays an important role in cervical cancer tumorigenesis and is a prognostic marker for cervical cancer.
Collapse
Affiliation(s)
- A-Ram Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Hyoung-Tae An
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Jesang Ko
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Eui-Ju Choi
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
35
|
Kang AR, An HT, Ko J, Kang S. Ataxin-1 regulates epithelial-mesenchymal transition of cervical cancer cells. Oncotarget 2017; 8:18248-18259. [PMID: 28212558 PMCID: PMC5392324 DOI: 10.18632/oncotarget.15319] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
The mutant form of the protein ataxin-1 (ATXN1) causes the neurodegenerative disease spinocerebellar ataxia type-1. Recently, ATXN1 was reported to enhance E-cadherin expression in the breast cancer cell line MCF-7, suggesting a potential association between ATXN1 and cancer development. In the present study, we discovered a novel mechanism through which ATXN1 regulates the epithelial–mesenchymal transition (EMT) of cancer cells. Hypoxia-induced upregulation of the Notch intracellular domain expression decreased ATXN1 expression via MDM2-associated ubiquitination and degradation. In cervical cancer cells, ATXN1 knockdown induced EMT by directly regulating Snail expression, leading to matrix metalloproteinase activation and the promotion of cell migration and invasion. These findings provide insights into a novel mechanism of tumorigenesis and will facilitate the development of new and more effective therapies for cancer.
Collapse
Affiliation(s)
- A-Ram Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Hyoung-Tae An
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Jesang Ko
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
36
|
Wang H, Gui H, Rallo MS, Xu Z, Matise MP. Atrophin protein RERE positively regulates Notch targets in the developing vertebrate spinal cord. J Neurochem 2017; 141:347-357. [PMID: 28144959 DOI: 10.1111/jnc.13969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
Abstract
The Notch signaling pathway controls cell fate decision, proliferation, and other biological functions in both vertebrates and invertebrates. Precise regulation of the canonical Notch pathway ensures robustness of the signal throughout development and adult tissue homeostasis. Aberrant Notch signaling results in profound developmental defects and is linked to many human diseases. In this study, we identified the Atrophin family protein RERE (also called Atro2) as a positive regulator of Notch target Hes genes in the developing vertebrate spinal cord. Prior studies have shown that during early embryogenesis in mouse and zebrafish, deficit of RERE causes various patterning defects in multiple organs including the neural tube. Here, we detected the expression of RERE in the developing chick spinal cord, and found that normal RERE activity is needed for proper neural progenitor proliferation and neuronal differentiation possibly by affecting Notch-mediated Hes expression. In mammalian cells, RERE co-immunoprecipitates with CBF1 and Notch intracellular domain (NICD), and is recruited to nuclear foci formed by over-expressed NICD1. RERE is also necessary for NICD to activate the expression of Notch target genes. Our findings suggest that RERE stimulates Notch target gene expression by preventing degradation of NICD protein, thereby facilitating the assembly of a transcriptional activating complex containing NICD, CBF1/RBPjκ in vertebrate, Su(H) in Drosophila melanogaster, Lag1 in C. elegans, and other coactivators.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| | - Hongxing Gui
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| | - Michael S Rallo
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| | - Zhiyan Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Michael P Matise
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
37
|
Shukla JP, Deshpande G, Shashidhara LS. Ataxin 2-binding protein 1 is a context-specific positive regulator of Notch signaling during neurogenesis in Drosophila melanogaster. Development 2017; 144:905-915. [PMID: 28174239 DOI: 10.1242/dev.140657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/18/2017] [Indexed: 12/28/2022]
Abstract
The role of the Notch pathway during the lateral inhibition that underlies binary cell fate choice is extensively studied, but the context specificity that generates diverse outcomes is less well understood. In the peripheral nervous system of Drosophila melanogaster, differential Notch signaling between cells of the proneural cluster orchestrates sensory organ specification. Here we report functional analysis of Drosophila Ataxin 2-binding protein 1 (A2BP1) during this process. Its human ortholog is linked to type 2 spinocerebellar ataxia and other complex neuronal disorders. Downregulation of Drosophila A2BP1 in the proneural cluster increases adult sensory bristle number, whereas its overexpression results in loss of bristles. We show that A2BP1 regulates sensory organ specification by potentiating Notch signaling. Supporting its direct involvement, biochemical analysis shows that A2BP1 is part of the Suppressor of Hairless [Su(H)] complex in the presence and absence of Notch. However, in the absence of Notch signaling, the A2BP1 interacting fraction of Su(H) does not associate with the repressor proteins Groucho and CtBP. We propose a model explaining the requirement of A2BP1 as a positive regulator of context-specific Notch activity.
Collapse
Affiliation(s)
- Jay Prakash Shukla
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Girish Deshpande
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India.,Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - L S Shashidhara
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
38
|
Doedens AL, Rubinstein MP, Gross ET, Best JA, Craig DH, Baker MK, Cole DJ, Bui JD, Goldrath AW. Molecular Programming of Tumor-Infiltrating CD8+ T Cells and IL15 Resistance. Cancer Immunol Res 2016; 4:799-811. [PMID: 27485135 PMCID: PMC5010943 DOI: 10.1158/2326-6066.cir-15-0178] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 06/29/2016] [Indexed: 12/24/2022]
Abstract
Despite clinical potential and recent advances, durable immunotherapeutic ablation of solid tumors is not routinely achieved. IL15 expands natural killer cell (NK), natural killer T cell (NKT) and CD8(+) T-cell numbers and engages the cytotoxic program, and thus is under evaluation for potentiation of cancer immunotherapy. We found that short-term therapy with IL15 bound to soluble IL15 receptor α-Fc (IL15cx; a form of IL15 with increased half-life and activity) was ineffective in the treatment of autochthonous PyMT murine mammary tumors, despite abundant CD8(+) T-cell infiltration. Probing of this poor responsiveness revealed that IL15cx only weakly activated intratumoral CD8(+) T cells, even though cells in the lung and spleen were activated and dramatically expanded. Tumor-infiltrating CD8(+) T cells exhibited cell-extrinsic and cell-intrinsic resistance to IL15. Our data showed that in the case of persistent viral or tumor antigen, single-agent systemic IL15cx treatment primarily expanded antigen-irrelevant or extratumoral CD8(+) T cells. We identified exhaustion, tissue-resident memory, and tumor-specific molecules expressed in tumor-infiltrating CD8(+) T cells, which may allow therapeutic targeting or programming of specific subsets to evade loss of function and cytokine resistance, and, in turn, increase the efficacy of IL2/15 adjuvant cytokine therapy. Cancer Immunol Res; 4(9); 799-811. ©2016 AACR.
Collapse
Affiliation(s)
- Andrew L Doedens
- Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Mark P Rubinstein
- Division of Biological Sciences, University of California, San Diego, La Jolla, California. Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Emilie T Gross
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - J Adam Best
- Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - David H Craig
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Megan K Baker
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - David J Cole
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, La Jolla, California.
| |
Collapse
|
39
|
Sánchez I, Balagué E, Matilla-Dueñas A. Ataxin-1 regulates the cerebellar bioenergetics proteome through the GSK3β-mTOR pathway which is altered in Spinocerebellar ataxia type 1 (SCA1). Hum Mol Genet 2016; 25:4021-4040. [PMID: 27466200 DOI: 10.1093/hmg/ddw242] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/21/2016] [Accepted: 07/11/2016] [Indexed: 12/17/2022] Open
Abstract
A polyglutamine expansion within the ataxin-1 protein (ATXN1) underlies spinocerebellar ataxia type-1 (SCA1), a neurological disorder mainly characterized by ataxia and cerebellar deficits. In SCA1, both loss and gain of ATXN1 biological functions contribute to cerebellar pathogenesis. However, the critical ATXN1 functions and pathways involved remain unclear. To further investigate the early signalling pathways regulated by ATXN1, we performed an unbiased proteomic study of the Atxn1-KO 5-week-old mice cerebellum. Here, we show that lack of ATXN1 expression induces early alterations in proteins involved in glycolysis [pyruvate kinase, muscle, isoform 1 protein (PKM-i1), citrate synthase (CS), glycerol-3-phosphate dehydrogenase 2 (GPD2), glucose-6-phosphate isomerase (GPI), alpha -: enolase (ENO1)], ATP synthesis [CS, Succinate dehydrogenase complex,subunit A (SDHA), ATP synthase subunit d, mitochondrial (ATP5H)] and oxidative stress [peroxiredoxin-6 (PRDX6), aldehyde dehydrogenase family 1, subfamily A1, 10-formyltetrahydrofolate dehydrogenase]. In the SCA1 mice, several of these proteins (PKM-i1, ATP5H, PRDX6, proteome subunit A6) were down-regulated and ATP levels decreased. The underlying mechanism does not involve modulation of mitochondrial biogenesis, but dysregulation of the activity of the metabolic regulators glycogen synthase kinase 3B (GSK3β), decreased in Atxn1-KO and increased in SCA1 mice, and mechanistic target of rapamycin (serine/threonine kinase) (mTOR), unchanged in the Atxn1-KO and decreased in SCA1 mice cerebellum before the onset of ataxic symptoms. Pharmacological inhibition of GSK3β and activation of mTOR in a SCA1 cell model ameliorated identified ATXN1-regulated metabolic proteome and ATP alterations. Taken together, these results point to an early role of ATXN1 in the regulation of bioenergetics homeostasis in the mouse cerebellum. Moreover, data suggest GSK3β and mTOR pathways modulate this ATXN1 function in SCA1 pathogenesis that could be targeted therapeutically prior to the onset of disease symptoms in SCA1 and other pathologies involving dysregulation of ATXN1 functions.
Collapse
Affiliation(s)
- Ivelisse Sánchez
- Functional and Translational Neurogenetics Unit, Department of Neurosciences, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autonoma de Barcelona, Crta. de Can Ruti, camí de les escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Eudald Balagué
- Functional and Translational Neurogenetics Unit, Department of Neurosciences, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autonoma de Barcelona, Crta. de Can Ruti, camí de les escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Antoni Matilla-Dueñas
- Functional and Translational Neurogenetics Unit, Department of Neurosciences, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autonoma de Barcelona, Crta. de Can Ruti, camí de les escoles s/n, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
40
|
Pereira MDC, Morais S, Sequeiros J, Alonso I. Large-Scale Functional RNAi Screen in C. elegans Identifies TGF-β and Notch Signaling Pathways as Modifiers of CACNA1A. ASN Neuro 2016; 8:8/2/1759091416637025. [PMID: 27005779 PMCID: PMC4811018 DOI: 10.1177/1759091416637025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/31/2016] [Indexed: 01/02/2023] Open
Abstract
Variants in CACNA1A that encodes the pore-forming α1-subunit of human voltage-gated Cav2.1 (P/Q-type) Ca2+ channels cause several autosomal-dominant neurologic disorders, including familial hemiplegic migraine type 1, episodic ataxia type 2, and spinocerebellar ataxia type 6. To identify modifiers of incoordination in movement disorders, we performed a large-scale functional RNAi screen, using the Caenorhabditis elegans strain CB55, which carries a truncating mutation in the unc-2 gene, the worm ortholog for the human CACNA1A. The screen was carried out by the feeding method in 96-well liquid culture format, using the ORFeome v1.1 feeding library, and time-lapse imaging of worms in liquid culture was used to assess changes in thrashing behavior. We looked for genes that, when silenced, either ameliorated the slow and uncoordinated phenotype of unc-2, or interacted to produce a more severe phenotype. Of the 350 putative hits from the primary screen, 37 genes consistently showed reproducible results. At least 75% of these are specifically expressed in the C. elegans neurons. Functional network analysis and gene ontology revealed overrepresentation of genes involved in development, growth, locomotion, signal transduction, and vesicle-mediated transport. We have expanded the functional network of genes involved in neurodegeneration leading to cerebellar ataxia related to unc-2/CACNA1A, further confirming the involvement of the transforming growth factor β pathway and adding a novel signaling cascade, the Notch pathway.
Collapse
Affiliation(s)
- Maria da Conceição Pereira
- UnIGENe, Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Portugal Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Portugal
| | - Sara Morais
- UnIGENe, Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Portugal Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe, Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Portugal Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Portugal CGPP, Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Portugal
| | - Isabel Alonso
- UnIGENe, Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Portugal Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Portugal CGPP, Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Portugal
| |
Collapse
|
41
|
Ataxin-1 regulates proliferation of hippocampal neural precursors. Neuroscience 2016; 322:54-65. [PMID: 26876606 DOI: 10.1016/j.neuroscience.2016.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/11/2016] [Accepted: 02/03/2016] [Indexed: 02/01/2023]
Abstract
Polyglutamine expansion in the protein ATAXIN-1 (ATXN1) causes spinocerebellar ataxia type 1 (SCA1), an inherited neurodegenerative disease characterized by motor deficits, cognitive impairment and depression. Although ubiquitously expressed, mutant ATXN1 causes neurodegeneration primarily in the cerebellum, which is responsible for the observed motor deficits. The role of ATXN1 outside of the cerebellum and the causes of cognitive deficits and depression in SCA1 are less understood. In this study, we demonstrate a novel role of ATXN1 in the hippocampus as a regulator of adult neurogenesis. Adult hippocampal neurogenesis is the process of generating new hippocampal neurons and is linked to cognition and mood. We found that loss of ATXN1 causes a decrease in hippocampal neurogenesis in ATXN1 null (Atxn1(-/-)) mice. This decrease was caused by reduced proliferation of neural precursors in the hippocampus of Atxn1(-/-) mice, and persisted even when Atxn1(-/-) hippocampal neural precursors were removed from their natural environment and grown in vitro, suggesting that ATXN1 affects proliferation in a cell-autonomous manner. Moreover, expression of ATXN1 with a pathological polyglutamine (polyQ) expansion in wild-type neural precursor cells inhibited their proliferation. Our data establish a novel role for ATXN1 in the hippocampus as an intrinsic regulator of precursor cell proliferation, and suggest a mechanism by which polyQ expansion and loss of ATXN1 affect hippocampal function, potentially contributing to cognitive deficits and depression. These results indicate that while depletion of ATXN1 is a promising therapeutic approach to treat the cerebellar aspects of SCA1, this approach should be employed with caution given the potential for side effects on hippocampal function with loss of wild-type ATXN1.
Collapse
|
42
|
Tso JL, Yang S, Menjivar JC, Yamada K, Zhang Y, Hong I, Bui Y, Stream A, McBride WH, Liau LM, Nelson SF, Cloughesy TF, Yong WH, Lai A, Tso CL. Bone morphogenetic protein 7 sensitizes O6-methylguanine methyltransferase expressing-glioblastoma stem cells to clinically relevant dose of temozolomide. Mol Cancer 2015; 14:189. [PMID: 26546412 PMCID: PMC4636799 DOI: 10.1186/s12943-015-0459-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
Background Temozolomide (TMZ) is an oral DNA-alkylating agent used for treating patients with glioblastoma. However, therapeutic benefits of TMZ can be compromised by the expression of O6-methylguanine methyltransferase (MGMT) in tumor tissue. Here we used MGMT-expressing glioblastoma stem cells (GSC) lines as a model for investigating the molecular mechanism underlying TMZ resistance, while aiming to explore a new treatment strategy designed to possibly overcome resistance to the clinically relevant dose of TMZ (35 μM). Methods MGMT-expressing GSC cultures are resistant to TMZ, and IC50 (half maximal inhibitory concentration) is estimated at around 500 μM. Clonogenic GSC surviving 500 μM TMZ (GSC-500 μM TMZ), were isolated. Molecular signatures were identified via comparative analysis of expression microarray against parental GSC (GSC-parental). The recombinant protein of top downregulated signature was used as a single agent or in combination with TMZ, for evaluating therapeutic effects of treatment of GSC. Results The molecular signatures characterized an activation of protective stress responses in GSC-500 μM TMZ, mainly including biotransformation/detoxification of xenobiotics, blocked endoplasmic reticulum stress-mediated apoptosis, epithelial-to-mesenchymal transition (EMT), and inhibited growth/differentiation. Bone morphogenetic protein 7 (BMP7) was identified as the top down-regulated gene in GSC-500 μM TMZ. Although augmenting BMP7 signaling in GSC by exogenous BMP7 treatment did not effectively stop GSC growth, it markedly sensitized both GSC-500 μM TMZ and GSC-parental to 35 μM TMZ treatment, leading to loss of self-renewal and migration capacity. BMP7 treatment induced senescence of GSC cultures and suppressed mRNA expression of CD133, MGMT, and ATP-binding cassette drug efflux transporters (ABCB1, ABCG2), as well as reconfigured transcriptional profiles in GSC by downregulating genes associated with EMT/migration/invasion, stemness, inflammation/immune response, and cell proliferation/tumorigenesis. BMP7 treatment significantly prolonged survival time of animals intracranially inoculated with GSC when compared to those untreated or treated with TMZ alone (p = 0.0017), whereas combination of two agents further extended animal survival compared to BMP7 alone (p = 0.0489). Conclusions These data support the view that reduced endogenous BMP7 expression/signaling in GSC may contribute to maintained stemness, EMT, and chemoresistant phenotype, suggesting that BMP7 treatment may provide a novel strategy in combination with TMZ for an effective treatment of glioblastoma exhibiting unmethylated MGMT. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0459-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan L Tso
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Shuai Yang
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA. .,Department of Neurosurgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China.
| | - Jimmy C Menjivar
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Kazunari Yamada
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA. .,Department of Advanced Molecular and Cell Therapy, Kyushu University Hospital, Higashiku, Fukuoka, Japan.
| | - Yibei Zhang
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA. .,Department of Orthopedics, Zhongshan Hospital, Xiamen University, Xiamen, China.
| | - Irene Hong
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Yvonne Bui
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Alexandra Stream
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - William H McBride
- Department of Radiation-Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, USA.
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, USA.
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, USA.
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, USA.
| | - William H Yong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, USA.
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, USA.
| | - Cho-Lea Tso
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, USA.
| |
Collapse
|
43
|
Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga JI, Totoki Y, Chiba K, Sato-Otsubo A, Nagae G, Ishii R, Muto S, Kotani S, Watatani Y, Takeda J, Sanada M, Tanaka H, Suzuki H, Sato Y, Shiozawa Y, Yoshizato T, Yoshida K, Makishima H, Iwanaga M, Ma G, Nosaka K, Hishizawa M, Itonaga H, Imaizumi Y, Munakata W, Ogasawara H, Sato T, Sasai K, Muramoto K, Penova M, Kawaguchi T, Nakamura H, Hama N, Shide K, Kubuki Y, Hidaka T, Kameda T, Nakamaki T, Ishiyama K, Miyawaki S, Yoon SS, Tobinai K, Miyazaki Y, Takaori-Kondo A, Matsuda F, Takeuchi K, Nureki O, Aburatani H, Watanabe T, Shibata T, Matsuoka M, Miyano S, Shimoda K, Ogawa S. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet 2015; 47:1304-15. [PMID: 26437031 DOI: 10.1038/ng.3415] [Citation(s) in RCA: 619] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022]
Abstract
Adult T cell leukemia/lymphoma (ATL) is a peripheral T cell neoplasm of largely unknown genetic basis, associated with human T cell leukemia virus type-1 (HTLV-1) infection. Here we describe an integrated molecular study in which we performed whole-genome, exome, transcriptome and targeted resequencing, as well as array-based copy number and methylation analyses, in a total of 426 ATL cases. The identified alterations overlap significantly with the HTLV-1 Tax interactome and are highly enriched for T cell receptor-NF-κB signaling, T cell trafficking and other T cell-related pathways as well as immunosurveillance. Other notable features include a predominance of activating mutations (in PLCG1, PRKCB, CARD11, VAV1, IRF4, FYN, CCR4 and CCR7) and gene fusions (CTLA4-CD28 and ICOS-CD28). We also discovered frequent intragenic deletions involving IKZF2, CARD11 and TP73 and mutations in GATA3, HNRNPA2B1, GPR183, CSNK2A1, CSNK2B and CSNK1A1. Our findings not only provide unique insights into key molecules in T cell signaling but will also guide the development of new diagnostics and therapeutics in this intractable tumor.
Collapse
Affiliation(s)
- Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasunobu Nagata
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kitanaka
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Center for Neurological Disease and Cancer, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ryohei Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Satsuki Muto
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinichi Kotani
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosaku Watatani
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - June Takeda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Sanada
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Advanced Diagnosis, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Hiroko Tanaka
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Suzuki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Sato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuichi Yoshizato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masako Iwanaga
- Department of Frontier Life Science, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Guangyong Ma
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kisato Nosaka
- Department of Hematology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Masakatsu Hishizawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidehiro Itonaga
- Department of Hematology, Sasebo City General Hospital, Sasebo, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, Atomic Bomb Disease and Hibakusya Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Wataru Munakata
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Ken Sasai
- KAN Research Institute, Inc., Kobe, Japan
| | | | - Marina Penova
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kotaro Shide
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoko Kubuki
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomonori Hidaka
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takuro Kameda
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tsuyoshi Nakamaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Ishiyama
- Department of Hematology and Oncology, Kanazawa University Hospital, Kanazawa, Japan
| | - Shuichi Miyawaki
- Division of Hematology, Department of Internal Medicine, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kensei Tobinai
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusya Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Molecular Medicine, Human Genome Center, The institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuya Shimoda
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
McGurk L, Berson A, Bonini NM. Drosophila as an In Vivo Model for Human Neurodegenerative Disease. Genetics 2015; 201:377-402. [PMID: 26447127 PMCID: PMC4596656 DOI: 10.1534/genetics.115.179457] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/19/2015] [Indexed: 12/13/2022] Open
Abstract
With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research.
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
45
|
Nirujogi RS, Wright JD, Manda SS, Zhong J, Na CH, Meyerhoff J, Benton B, Jabbour R, Willis K, Kim MS, Pandey A, Sekowski JW. Phosphoproteomic analysis reveals compensatory effects in the piriform cortex of VX nerve agent exposed rats. Proteomics 2015; 15:487-99. [PMID: 25403869 DOI: 10.1002/pmic.201400371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/01/2014] [Accepted: 11/12/2014] [Indexed: 01/15/2023]
Abstract
To gain insights into the toxicity induced by the nerve agent VX, an MS-based phosphoproteomic analysis was carried out on the piriform cortex region of brains from VX-treated rats. Using isobaric tag based TMT labeling followed by titanium dioxide enrichment strategy, we identified 9975 unique phosphosites derived from 3287 phosphoproteins. Temporal changes in the phosphorylation status of peptides were observed over a time period of 24 h in rats exposed to a 1× LD50, intravenous (i.v.) dose with the most notable changes occurring at the 1 h postexposure time point. Five major functional classes of proteins exhibited changes in their phosphorylation status: (i) ion channels/transporters, including ATPases, (ii) kinases/phosphatases, (iii) GTPases, (iv) structural proteins, and (v) transcriptional regulatory proteins. This study is the first quantitative phosphoproteomic analysis of VX toxicity in the brain. Understanding the toxicity and compensatory signaling mechanisms will improve the understanding of the complex toxicity of VX in the brain and aid in the elucidation of novel molecular targets that would be important for development of improved countermeasures. All MS data have been deposited in the ProteomeXchange with identifier PXD001184 (http://proteomecentral.proteomexchange.org/dataset/PXD001184).
Collapse
Affiliation(s)
- Raja Sekhar Nirujogi
- Institute of Bioinformatics, International Tech Park, Bangalore, India; School of Life Sciences, Centre for Bioinformatics, Pondicherry University, Puducherry, India; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hekman KE, Gomez CM. The autosomal dominant spinocerebellar ataxias: emerging mechanistic themes suggest pervasive Purkinje cell vulnerability. J Neurol Neurosurg Psychiatry 2015; 86:554-61. [PMID: 25136055 PMCID: PMC6718294 DOI: 10.1136/jnnp-2014-308421] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/27/2014] [Indexed: 01/05/2023]
Abstract
The spinocerebellar ataxias are a genetically heterogeneous group of disorders with clinically overlapping phenotypes arising from Purkinje cell degeneration, cerebellar atrophy and varying degrees of degeneration of other grey matter regions. For 22 of the 32 subtypes, a genetic cause has been identified. While recurring themes are emerging, there is no clear correlation between the clinical phenotype or penetrance, the type of genetic defect or the category of the disease mechanism, or the neuronal types involved beyond Purkinje cells. These phenomena suggest that cerebellar Purkinje cells may be a uniquely vulnerable neuronal cell type, more susceptible to a wider variety of genetic/cellular insults than most other neuron types.
Collapse
Affiliation(s)
- Katherine E Hekman
- Department of Vascular Surgery, McGaw Medical Center of Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
47
|
Li Y, Wu Z, Jin Y, Wu A, Cao M, Sun K, Jia X, Chen M. Analysis of hippocampal gene expression profile of Alzheimer's disease model rats using genome chip bioinformatics. Neural Regen Res 2015; 7:332-40. [PMID: 25774171 PMCID: PMC4350114 DOI: 10.3969/j.issn.1673-5374.2012.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 12/20/2011] [Indexed: 02/06/2023] Open
Abstract
In this study, an Alzheimer's disease model was established in rats through stereotactic injection of condensed amyloid beta 1–40 into the bilateral hippocampus, and the changes of gene expression profile in the hippocampus of rat models and sham-operated rats were compared by genome expression profiling analysis. Results showed that the expression of 50 genes was significantly up-regulated (fold change ≥ 2), while 21 genes were significantly down-regulated in the hippocampus of Alzheimer's disease model rats (fold change ≤ 0.5) compared with the sham-operation group. The differentially expressed genes are involved in many functions, such as brain nerve system development, neuronal differentiation and functional regulation, cellular growth, differentiation and apoptosis, synaptogenesis and plasticity, inflammatory and immune responses, ion channels/transporters, signal transduction, cell material/energy metabolism. Our findings indicate that several genes were abnormally expressed in the metabolic and signal transduction pathways in the hippocampus of amyloid beta 1–40-induced rat model of Alzheimer's disease, thereby affecting the hippocampal and brain functions.
Collapse
Affiliation(s)
- Yinghong Li
- First Affiliated Hospital of Shenzhen University/Second People's Hospital of Shenzhen City, Shenzhen 518035, Guangdong Province, China
| | - Zhengzhi Wu
- First Affiliated Hospital of Shenzhen University/Second People's Hospital of Shenzhen City, Shenzhen 518035, Guangdong Province, China ; Second Clinical Medical College of Jinan University/Shenzhen Institute of Geriatrics, Shenzhen 518020, Guangdong Province, China
| | - Yu Jin
- First Affiliated Hospital of Shenzhen University/Second People's Hospital of Shenzhen City, Shenzhen 518035, Guangdong Province, China
| | - Anmin Wu
- First Affiliated Hospital of Shenzhen University/Second People's Hospital of Shenzhen City, Shenzhen 518035, Guangdong Province, China
| | - Meiqun Cao
- Second Clinical Medical College of Jinan University/Shenzhen Institute of Geriatrics, Shenzhen 518020, Guangdong Province, China
| | - Kehuan Sun
- First Affiliated Hospital of Shenzhen University/Second People's Hospital of Shenzhen City, Shenzhen 518035, Guangdong Province, China
| | - Xiuqin Jia
- First Affiliated Hospital of Shenzhen University/Second People's Hospital of Shenzhen City, Shenzhen 518035, Guangdong Province, China
| | - Manyin Chen
- First Affiliated Hospital of Shenzhen University/Second People's Hospital of Shenzhen City, Shenzhen 518035, Guangdong Province, China
| |
Collapse
|
48
|
Animal Models of Spinocerebellar Ataxia Type 1. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Mohan RD, Abmayr SM, Workman JL. The expanding role for chromatin and transcription in polyglutamine disease. Curr Opin Genet Dev 2014; 26:96-104. [PMID: 25108806 DOI: 10.1016/j.gde.2014.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 06/22/2014] [Accepted: 06/25/2014] [Indexed: 11/28/2022]
Abstract
Nine genetic diseases arise from expansion of CAG repeats in seemingly unrelated genes. They are referred to as polyglutamine (polyQ) diseases due to the presence of elongated glutamine tracts in the corresponding proteins. The pathologic consequences of polyQ expansion include progressive spinal, cerebellar, and neural degeneration. These pathologies are not identical, however, suggesting that disruption of protein-specific functions is crucial to establish and maintain each disease. A closer examination of protein function reveals that several act as regulators of gene expression. Here we examine the roles these proteins play in regulating gene expression, discuss how polyQ expansion may disrupt these functions to cause disease, and speculate on the neural specificity of perturbing ubiquitous gene regulators.
Collapse
Affiliation(s)
- Ryan D Mohan
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA
| | - Susan M Abmayr
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA.
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA.
| |
Collapse
|
50
|
Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sánchez I. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. CEREBELLUM (LONDON, ENGLAND) 2014; 13:269-302. [PMID: 24307138 PMCID: PMC3943639 DOI: 10.1007/s12311-013-0539-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.
Collapse
Affiliation(s)
- A Matilla-Dueñas
- Health Sciences Research Institute Germans Trias i Pujol (IGTP), Ctra. de Can Ruti, Camí de les Escoles s/n, Badalona, Barcelona, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|