1
|
Dar NJ, Currais A, Taguchi T, Andrews N, Maher P. Cannabinol (CBN) alleviates age-related cognitive decline by improving synaptic and mitochondrial health. Redox Biol 2025; 84:103692. [PMID: 40412024 DOI: 10.1016/j.redox.2025.103692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025] Open
Abstract
Age-related cognitive decline and neurodegenerative diseases, such as Alzheimer's disease, represent major global health challenges, particularly with an aging population. Mitochondrial dysfunction appears to play a central role in the pathophysiology of these conditions by driving redox dysregulation and impairing cellular energy metabolism. Despite extensive research, effective therapeutic options remain limited. Cannabinol (CBN), a cannabinoid previously identified as a potent inhibitor of oxytosis/ferroptosis through mitochondrial modulation, has demonstrated promising neuroprotective effects. In cell culture, CBN targets mitochondria, preserving mitochondrial membrane potential, enhancing antioxidant defenses and regulating bioenergetic processes. However, the in vivo therapeutic potential of CBN, particularly in aging models, has not been thoroughly explored. To address this gap, this study investigated the effects of CBN on age-associated cognitive decline and metabolic dysfunction using the SAMP8 mouse model of accelerated aging. Our results show that CBN significantly improves spatial learning and memory, with more pronounced cognitive benefits observed in female mice. These cognitive improvements are accompanied by sex-specific changes in metabolic parameters, such as enhanced oxygen consumption and energy expenditure. Mechanistically, CBN modulates key regulators of mitochondrial dynamics, including mitofusin 2 (MFN2) and dynamin-related protein 1 (DRP1), while upregulating markers of mitochondrial biogenesis including mitochondrial transcription factor A (TFAM) and translocase of outer mitochondrial membrane 20 (TOM20). Additionally, CBN upregulates key synaptic proteins involved in vesicle trafficking and postsynaptic signaling suggesting that it enhances synaptic function and neurotransmission, further reinforcing its neuroprotective effects. This study provides in vivo evidence supporting CBN's potential to mitigate age-related cognitive and metabolic dysfunction, with notable sex-specific effects, highlighting its promise for neurodegenerative diseases and cognitive decline.
Collapse
Affiliation(s)
- Nawab John Dar
- Department of Cellular Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Antonio Currais
- Department of Cellular Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Taketo Taguchi
- Department of Cellular Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nick Andrews
- Behaviour Testing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Pamela Maher
- Department of Cellular Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
2
|
Zhang C, Xie S, Malek M. SNAP-25: A biomarker of synaptic loss in neurodegeneration. Clin Chim Acta 2025; 571:120236. [PMID: 40058720 DOI: 10.1016/j.cca.2025.120236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Synaptic dysfunction is one of the most important markers of neurodegenerative diseases, which contribute to cognitive decline and the loss of neurons. Synaptosomal-associated protein 25 (SNAP-25) is a member of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which plays a significant role in the exocytosis of synaptic vesicles and the release of neurotransmitters. Recent studies have shown that expression levels of SNAP-25 are altered in various neurodegenerative disorders, including Alzheimer's disease (AD), Huntington's disease (HD), and Creutzfeldt-Jakob disease (CJD). These investigations led to the consideration of SNAP-25 as a potential biomarker of synaptic degeneration. Understanding the role of SNAP-25 in neurodegeneration will aid in early diagnosis, disease monitoring, and therapeutic development, and will also provide new insights into synaptic dysfunction as a main feature of neurodegenerative diseases. Therefore, this paper explores the physiological role of SNAP-25, its involvement in synaptic pathology, and the implications of its dysregulation in neurodegenerative conditions, such as AD, HD, and CJD. Literature regarding cerebrospinal fluid (CSF) SNAP-25 levels as a diagnostic marker were reviewed and its applications in detecting the progression of the disease have been discussed. Additionally, the limitations of SNAP-25 as a biomarker, including variability across studies and the need for further validation have been addressed.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Neurology, Tiantai People's Hospital of Zhejiang Province, Tiantai Branch of Zhejiang Provincial People's Hospital, Hangzhou Medical College, Taizhou, Zhejiang 317200, China.
| | - Shanshan Xie
- Xinjiang Key Laboratory of Mental Development and Learning Science, Xinjiang Normal University, Urumqi, Xinjiang 830000, China
| | - Melika Malek
- Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Huang Z, Yao W, He W, Pan J, Chai W, Wang B, Jia Z, Fan X, Wang W, Zhang W. Moniezia benedeni drives the SNAP-25 expression of the enteric nerves in sheep's small intestine. BMC Vet Res 2024; 20:283. [PMID: 38956647 PMCID: PMC11218246 DOI: 10.1186/s12917-024-04140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The neuroimmune network plays a crucial role in regulating mucosal immune homeostasis within the digestive tract. Synaptosome-associated protein 25 (SNAP-25) is a presynaptic membrane-binding protein that activates ILC2s, initiating the host's anti-parasitic immune response. METHODS To investigate the effect of Moniezia benedeni (M. benedeni) infection on the distribution of SNAP-25 in the sheep's small intestine, the recombinant plasmid pET-28a-SNAP-25 was constructed and expressed in BL21, yielding the recombinant protein. Then, the rabbit anti-sheep SNAP-25 polyclonal antibody was prepared and immunofluorescence staining was performed with it. The expression levels of SNAP-25 in the intestines of normal and M. benedeni-infected sheep were detected by ELISA. RESULTS The results showed that the SNAP-25 recombinant protein was 29.3 KDa, the titer of the prepared immune serum reached 1:128,000. It was demonstrated that the rabbit anti-sheep SNAP-25 polyclonal antibody could bind to the natural protein of sheep SNAP-25 specifically. The expression levels of SNAP-25 in the sheep's small intestine revealed its primary presence in the muscular layer and lamina propria, particularly around nerve fibers surrounding the intestinal glands. Average expression levels in the duodenum, jejunum, and ileum were 130.32 pg/mg, 185.71 pg/mg, and 172.68 pg/mg, respectively. Under conditions of M. benedeni infection, the spatial distribution of SNAP-25-expressing nerve fibers remained consistent, but its expression level in each intestine segment was increased significantly (P < 0.05), up to 262.02 pg/mg, 276.84 pg/mg, and 326.65 pg/mg in the duodenum, jejunum, and ileum, and it was increased by 101.06%, 49.07%, and 89.16% respectively. CONCLUSIONS These findings suggest that M. benedeni could induce the SNAP-25 expression levels in sheep's intestinal nerves significantly. The results lay a foundation for further exploration of the molecular mechanism by which the gastrointestinal nerve-mucosal immune network perceives parasites in sheep.
Collapse
Affiliation(s)
- Zhen Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenzhu Chai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baoshan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhitao Jia
- People's Government of Heisongyi Township, Wuwei, 733000, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Serrano GE, Walker J, Nelson C, Glass M, Arce R, Intorcia A, Cline MP, Nabaty N, Acuña A, Huppert Steed A, Sue LI, Belden C, Choudhury P, Reiman E, Atri A, Beach TG. Correlation of Presynaptic and Postsynaptic Proteins with Pathology in Alzheimer's Disease. Int J Mol Sci 2024; 25:3130. [PMID: 38542104 PMCID: PMC10970005 DOI: 10.3390/ijms25063130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/28/2024] Open
Abstract
Synaptic transmission is essential for nervous system function and the loss of synapses is a known major contributor to dementia. Alzheimer's disease dementia (ADD) is characterized by synaptic loss in the mesial temporal lobe and cerebral neocortex, both of which are brain areas associated with memory and cognition. The association of synaptic loss and ADD was established in the late 1980s, and it has been estimated that 30-50% of neocortical synaptic protein is lost in ADD, but there has not yet been a quantitative profiling of different synaptic proteins in different brain regions in ADD from the same individuals. Very recently, positron emission tomography (PET) imaging of synapses is being developed, accelerating the focus on the role of synaptic loss in ADD and other conditions. In this study, we quantified the densities of two synaptic proteins, the presynaptic protein Synaptosome Associated Protein 25 (SNAP25) and the postsynaptic protein postsynaptic density protein 95 (PSD95) in the human brain, using enzyme-linked immunosorbent assays (ELISA). Protein was extracted from the cingulate gyrus, hippocampus, frontal, primary visual, and entorhinal cortex from cognitively unimpaired controls, subjects with mild cognitive impairment (MCI), and subjects with dementia that have different levels of Alzheimer's pathology. SNAP25 is significantly reduced in ADD when compared to controls in the frontal cortex, visual cortex, and cingulate, while the hippocampus showed a smaller, non-significant reduction, and entorhinal cortex concentrations were not different. In contrast, all brain areas showed lower PSD95 concentrations in ADD when compared to controls without dementia, although in the hippocampus, this failed to reach significance. Interestingly, cognitively unimpaired cases with high levels of AD pathology had higher levels of both synaptic proteins in all brain regions. SNAP25 and PSD95 concentrations significantly correlated with densities of neurofibrillary tangles, amyloid plaques, and Mini Mental State Examination (MMSE) scores. Our results suggest that synaptic transmission is affected by ADD in multiple brain regions. The differences were less marked in the entorhinal cortex and the hippocampus, most likely due to a ceiling effect imposed by the very early development of neurofibrillary tangles in older people in these brain regions.
Collapse
Affiliation(s)
- Geidy E. Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (J.W.); (R.A.); (A.I.); (M.P.C.); (N.N.); (A.A.); (A.H.S.)
| | - Jessica Walker
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (J.W.); (R.A.); (A.I.); (M.P.C.); (N.N.); (A.A.); (A.H.S.)
| | - Courtney Nelson
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (J.W.); (R.A.); (A.I.); (M.P.C.); (N.N.); (A.A.); (A.H.S.)
| | - Michael Glass
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (J.W.); (R.A.); (A.I.); (M.P.C.); (N.N.); (A.A.); (A.H.S.)
| | - Richard Arce
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (J.W.); (R.A.); (A.I.); (M.P.C.); (N.N.); (A.A.); (A.H.S.)
| | - Anthony Intorcia
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (J.W.); (R.A.); (A.I.); (M.P.C.); (N.N.); (A.A.); (A.H.S.)
| | - Madison P. Cline
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (J.W.); (R.A.); (A.I.); (M.P.C.); (N.N.); (A.A.); (A.H.S.)
| | - Natalie Nabaty
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (J.W.); (R.A.); (A.I.); (M.P.C.); (N.N.); (A.A.); (A.H.S.)
| | - Amanda Acuña
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (J.W.); (R.A.); (A.I.); (M.P.C.); (N.N.); (A.A.); (A.H.S.)
| | - Ashton Huppert Steed
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (J.W.); (R.A.); (A.I.); (M.P.C.); (N.N.); (A.A.); (A.H.S.)
| | - Lucia I. Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (J.W.); (R.A.); (A.I.); (M.P.C.); (N.N.); (A.A.); (A.H.S.)
| | - Christine Belden
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, AZ 85351, USA (P.C.)
| | - Parichita Choudhury
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, AZ 85351, USA (P.C.)
| | - Eric Reiman
- The Banner Alzheimer’s Institute, Phoenix, AZ 85006, USA
| | - Alireza Atri
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, AZ 85351, USA (P.C.)
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (J.W.); (R.A.); (A.I.); (M.P.C.); (N.N.); (A.A.); (A.H.S.)
| |
Collapse
|
5
|
Dósa Z, Nieto-Gonzalez JL, Elfving B, Hougaard KS, Holm MM, Wegener G, Jensen K. Reduction in hippocampal GABAergic transmission in a low birth weight rat model of depression. Acta Neuropsychiatr 2023; 35:315-327. [PMID: 36896595 DOI: 10.1017/neu.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Prenatal stress is believed to increase the risk of developing neuropsychiatric disorders, including major depression. Adverse genetic and environmental impacts during early development, such as glucocorticoid hyper-exposure, can lead to changes in the foetal brain, linked to mental illnesses developed in later life. Dysfunction in the GABAergic inhibitory system is associated with depressive disorders. However, the pathophysiology of GABAergic signalling is poorly understood in mood disorders. Here, we investigated GABAergic neurotransmission in the low birth weight (LBW) rat model of depression. Pregnant rats, exposed to dexamethasone, a synthetic glucocorticoid, during the last week of gestation, yielded LBW offspring showing anxiety- and depressive-like behaviour in adulthood. Patch-clamp recordings from dentate gyrus granule cells in brain slices were used to examine phasic and tonic GABAA receptor-mediated currents. The transcriptional levels of selected genes associated with synaptic vesicle proteins and GABAergic neurotransmission were investigated. The frequency of spontaneous inhibitory postsynaptic currents (sIPSC) was similar in control and LBW rats. Using a paired-pulse protocol to stimulate GABAergic fibres impinging onto granule cells, we found indications of decreased probability of GABA release in LBW rats. However, tonic GABAergic currents and miniature IPSCs, reflecting quantal vesicle release, appeared normal. Additionally, we found elevated expression levels of two presynaptic proteins, Snap-25 and Scamp2, components of the vesicle release machinery. The results suggest that altered GABA release may be an essential feature in the depressive-like phenotype of LBW rats.
Collapse
Affiliation(s)
- Zita Dósa
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Mai Marie Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Pharmaceutical Research Center of Excellence, North-West University, Potchefstroom, South Africa
| | - Kimmo Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
6
|
Zhang J, Hou S, Chi XQ, Shan HF, Li XW, Zhang QJ, Wang JL, Kang CB. Role of SNAP25 on the occurrence and development of eosinophilic gastritis. Medicine (Baltimore) 2023; 102:e34377. [PMID: 37478220 PMCID: PMC10662829 DOI: 10.1097/md.0000000000034377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023] Open
Abstract
Eosinophilic gastritis is characterized by gastrointestinal symptoms accompanied by peripheral eosinophilia. This study aims to explore the association between eosinophilic gastritis and Synaptosome Associated Protein 25 (SNAP25), and provide a new direction for the diagnosis and treatment of eosinophilic gastritis. GSE54043 was downloaded from the gene expression omnibus database. Differentially expressed genes (DEGs) were screened. The functions of common DEGs were annotated by Database for Annotation, Visualization and Integrated Discovery and Metascape. The protein-protein interaction network of common DEGs was obtained by Search Tool for the Retrieval of Interacting Genes and visualized by Cytoscape. Significant modules were identified from the protein-protein interaction network. A total of 186 patients with eosinophilic gastritis were recruited. The clinical data were recorded and the expression levels of CPE, SST, PCSK2, SNAP25, and SYT4 were detected. Pearson chi-square test and Spearman correlation coefficient were used to analyze the relationship between eosinophilic gastritis and related parameters. Univariate and multivariate Logistic regression were used for further analysis. 353 DEGs were presented. The top 10 genes screened by cytoHubb were shown, and Veen diagram figured out 5 mutual genes. Pearson's chi-square test showed that SNAP25 (P < .001) was significantly associated with eosinophilic gastritis. Spearman correlation coefficient showed a significant correlation between eosinophilic gastritis and SNAP25 (ρ = -0.569, P < .001). Univariate logistic regression analysis showed that SNAP25 (OR = 0.046, 95% CI: 0.018-0.116, P < .001) was significantly associated with eosinophilic gastritis. Multivariate logistic regression analysis showed that SNAP25 (OR = 0.024, 95% CI: 0.007-0.075, P < .001) was significantly associated with eosinophilic gastritis. The low expression of SNAP25 gene in eosinophilic gastritis is associated with a higher risk of eosinophilic gastritis.
Collapse
Affiliation(s)
- Jie Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Shiyang Hou
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xiao-qian Chi
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Hai-feng Shan
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xiao-wei Li
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qi-jun Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jin-lei Wang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chun-bo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
7
|
ATM rules neurodevelopment and glutamatergic transmission in the hippocampus but not in the cortex. Cell Death Dis 2022; 13:616. [PMID: 35842432 PMCID: PMC9288428 DOI: 10.1038/s41419-022-05038-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Interest in the function of ataxia-telangiectasia-mutated protein (ATM) is extensively growing as evidenced by preclinical studies that continuously link ATM with new intracellular pathways. Here, we exploited Atm+/- and Atm-/- mice and demonstrate that cognitive defects are rescued by the delivery of the antidepressant Fluoxetine (Fluox). Fluox increases levels of the chloride intruder NKCC1 exclusively at hippocampal level suggesting an ATM context-specificity. A deeper investigation of synaptic composition unveils increased Gluk-1 and Gluk-5 subunit-containing kainate receptors (KARs) levels in the hippocampus, but not in the cortex, of Atm+/- and Atm-/- mice. Analysis of postsynaptic fractions and confocal studies indicates that KARs are presynaptic while in vitro and ex vivo electrophysiology that are fully active. These changes are (i) linked to KCC2 activity, as the KCC2 blockade in Atm+/- developing neurons results in reduced KARs levels and (ii) developmental regulated. Indeed, the pharmacological inhibition of ATM kinase in adults produces different changes as identified by RNA-seq investigation. Our data display how ATM affects both inhibitory and excitatory neurotransmission, extending its role to a variety of neurological and psychiatric disorders.
Collapse
|
8
|
Leung E, Lau EW, Liang A, de Dios C, Suchting R, Östlundh L, Masdeu JC, Fujita M, Sanches M, Soares JC, Selvaraj S. Alterations in brain synaptic proteins and mRNAs in mood disorders: a systematic review and meta-analysis of postmortem brain studies. Mol Psychiatry 2022; 27:1362-1372. [PMID: 35022529 DOI: 10.1038/s41380-021-01410-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022]
Abstract
The pathophysiological mechanisms underlying bipolar (BD) and major depressive disorders (MDD) are multifactorial but likely involve synaptic dysfunction and dysregulation. There are multiple synaptic proteins but three synaptic proteins, namely SNAP-25, PSD-95, and synaptophysin, have been widely studied for their role in synaptic function in human brain postmortem studies in BD and MDD. These studies have yielded contradictory results, possibly due to the small sample size and sourcing material from different cortical regions of the brain. We performed a systematic review and meta-analysis to understand the role of these three synaptic proteins and other synaptic proteins, messenger RNA (mRNA) and their regional localizations in BD and MDD. A systematic literature search was conducted and the review is reported in accordance with the MOOSE Guidelines. Meta-analysis was performed to compare synaptic marker levels between BD/MDD groups and controls separately. 1811 papers were identified in the literature search and screened against the preset inclusion and exclusion criteria. A total of 72 studies were screened in the full text, of which 47 were identified as eligible to be included in the systematic review. 24 of these 47 papers were included in the meta-analysis. The meta-analysis indicated that SNAP-25 protein levels were significantly lower in BD. On average, PSD-95 mRNA levels were lower in BD, and protein levels of SNAP-25, PSD-95, and syntaxin were lower in MDD. Localization analysis showed decreased levels of PSD-95 protein in the frontal cortex. We found specific alterations in synaptic proteins and RNAs in both BD and MDD. The review was prospectively registered online in PROSPERO international prospective register of systematic reviews, registration no. CRD42020196932.
Collapse
Affiliation(s)
- Edison Leung
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ethan W Lau
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andi Liang
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Constanza de Dios
- Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Robert Suchting
- Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Linda Östlundh
- The National Medical Library, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Joseph C Masdeu
- Houston Methodist Neurological Institute, Houston, TX, USA.,Weill Cornell Medicine, New York, NY, USA
| | - Masahiro Fujita
- Weill Cornell Medicine, New York, NY, USA.,PET Core Facility, Houston Methodist Research Insitute, Houston, TX, USA
| | - Marsal Sanches
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sudhakar Selvaraj
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
9
|
Chen S, Alhassen W, Vakil Monfared R, Vachirakorntong B, Nauli SM, Baldi P, Alachkar A. Dynamic Changes of Brain Cilia Transcriptomes across the Human Lifespan. Int J Mol Sci 2021; 22:10387. [PMID: 34638726 PMCID: PMC8509004 DOI: 10.3390/ijms221910387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
Almost all brain cells contain primary cilia, antennae-like microtubule sensory organelles, on their surface, which play critical roles in brain functions. During neurodevelopmental stages, cilia are essential for brain formation and maturation. In the adult brain, cilia play vital roles as signaling hubs that receive and transduce various signals and regulate cell-to-cell communications. These distinct roles suggest that cilia functions, and probably structures, change throughout the human lifespan. To further understand the age-dependent changes in cilia roles, we identified and analyzed age-dependent patterns of expression of cilia's structural and functional components across the human lifespan. We acquired cilia transcriptomic data for 16 brain regions from the BrainSpan Atlas and analyzed the age-dependent expression patterns using a linear regression model by calculating the regression coefficient. We found that 67% of cilia transcripts were differentially expressed genes with age (DEGAs) in at least one brain region. The age-dependent expression was region-specific, with the highest and lowest numbers of DEGAs expressed in the ventrolateral prefrontal cortex and hippocampus, respectively. The majority of cilia DEGAs displayed upregulation with age in most of the brain regions. The transcripts encoding cilia basal body components formed the majority of cilia DEGAs, and adjacent cerebral cortices exhibited large overlapping pairs of cilia DEGAs. Most remarkably, specific α/β-tubulin subunits (TUBA1A, TUBB2A, and TUBB2B) and SNAP-25 exhibited the highest rates of downregulation and upregulation, respectively, across age in almost all brain regions. α/β-tubulins and SNAP-25 expressions are known to be dysregulated in age-related neurodevelopmental and neurodegenerative disorders. Our results support a role for the high dynamics of cilia structural and functional components across the lifespan in the normal physiology of brain circuits. Furthermore, they suggest a crucial role for cilia signaling in the pathophysiological mechanisms of age-related psychiatric/neurological disorders.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA; (S.C.); (P.B.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
| | - Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Benjamin Vachirakorntong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA; (S.C.); (P.B.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
| | - Amal Alachkar
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| |
Collapse
|
10
|
Huang Q, Lian C, Dong Y, Zeng H, Liu B, Xu N, He Z, Guo H. SNAP25 Inhibits Glioma Progression by Regulating Synapse Plasticity via GLS-Mediated Glutaminolysis. Front Oncol 2021; 11:698835. [PMID: 34490096 PMCID: PMC8416623 DOI: 10.3389/fonc.2021.698835] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Neuronal activity regulated by synaptic communication exerts an important role in tumorigenesis and progression in brain tumors. Genes for soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) annotated with the function ‘vesicle’ about synaptic connectivity were identified, and synaptosomal-associated protein 25 (SNAP25), one of those proteins, was found to have discrepant expression levels in neuropathies. However, the specific mechanism and prognostic value of SNAP25 during glioma progression remain unclear. Methods Using RNA sequencing data from The Cancer Genome Atlas (TCGA) database, the differential synaptosis-related genes between low grade glioma (LGG) and glioblastoma (GBM) were identified as highly correlated. Cox proportional hazards regression analysis and survival analysis were used to differentiate the outcome of low- and high-risk patients, and the Chinese Glioma Genome Atlas (CGGA) cohort was used for validation of the data set. RT-qPCR, western blot, and immunohistochemistry assays were performed to examine the expression level of SNAP25 in glioma cells and samples. Functional assays were performed to identify the effects of SNAP25 knockdown and overexpression on cell viability, migration, and invasion. Liquid chromatography-high resolution mass spectrometry (LC-MS)-based metabolomics approach was presented for identifying crucial metabolic disturbances in glioma cells. In situ mouse xenograft model was used to investigate the role of SNAP25 in vivo. Then, an immunofluorescence assay of the xenograft tissue was applied to evaluate the expression of the neuronal dendron formation marker-Microtubule Associated Protein 2 (MAP2). Results SNAP25 was decreased in level of expression in glioma tissues and cell lines, and low-level SNAP25 indicated an unfavorable prognosis of glioma patients. SNAP25 inhibited cell proliferation, migration, invasion and fostered glutamine metabolism of glioma cells, exerting a tumor suppressor role. Overexpressed SNAP25 exerted a lower expression level of MAP2, indicating poor neuronal plasticity and connectivity. SNAP25 could regulate glutaminase (GLS)-mediated glutaminolysis, and GLS knockdown could rescue the anti-tumor effect of SNAP25 in glioma cells. Moreover, upregulated SNAP25 also decreased tumor volume and prolonged the overall survival (OS) of the xenograft mouse. Conclusion SNAP25, a tumor suppressor inhibited carcinogenesis of glioma via limiting glutamate metabolism by regulating GLS expression, as well as inhibiting dendritic formation, which could be considered as a novel molecular therapeutic target for glioma.
Collapse
Affiliation(s)
- Qiongzhen Huang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Department of Neurosurgery, Guangzhou, China
| | - Changlin Lian
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Department of Neurosurgery, Guangzhou, China
| | - Yaoyuan Dong
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Department of Neurosurgery, Guangzhou, China
| | - Huijun Zeng
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Department of Neurosurgery, Guangzhou, China
| | - Boyang Liu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Department of Neurosurgery, Guangzhou, China
| | - Ningbo Xu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Department of Neurosurgery, Guangzhou, China
| | - Zhenyan He
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Department of Neurosurgery, Guangzhou, China
| | - Hongbo Guo
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Department of Neurosurgery, Guangzhou, China
| |
Collapse
|
11
|
Benitez DP, Jiang S, Wood J, Wang R, Hall CM, Peerboom C, Wong N, Stringer KM, Vitanova KS, Smith VC, Joshi D, Saito T, Saido TC, Hardy J, Hanrieder J, De Strooper B, Salih DA, Tripathi T, Edwards FA, Cummings DM. Knock-in models related to Alzheimer's disease: synaptic transmission, plaques and the role of microglia. Mol Neurodegener 2021; 16:47. [PMID: 34266459 PMCID: PMC8281661 DOI: 10.1186/s13024-021-00457-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
Background Microglia are active modulators of Alzheimer’s disease but their role in relation to amyloid plaques and synaptic changes due to rising amyloid beta is unclear. We add novel findings concerning these relationships and investigate which of our previously reported results from transgenic mice can be validated in knock-in mice, in which overexpression and other artefacts of transgenic technology are avoided. Methods AppNL-F and AppNL-G-F knock-in mice expressing humanised amyloid beta with mutations in App that cause familial Alzheimer’s disease were compared to wild type mice throughout life. In vitro approaches were used to understand microglial alterations at the genetic and protein levels and synaptic function and plasticity in CA1 hippocampal neurones, each in relationship to both age and stage of amyloid beta pathology. The contribution of microglia to neuronal function was further investigated by ablating microglia with CSF1R inhibitor PLX5622. Results Both App knock-in lines showed increased glutamate release probability prior to detection of plaques. Consistent with results in transgenic mice, this persisted throughout life in AppNL-F mice but was not evident in AppNL-G-F with sparse plaques. Unlike transgenic mice, loss of spontaneous excitatory activity only occurred at the latest stages, while no change could be detected in spontaneous inhibitory synaptic transmission or magnitude of long-term potentiation. Also, in contrast to transgenic mice, the microglial response in both App knock-in lines was delayed until a moderate plaque load developed. Surviving PLX5266-depleted microglia tended to be CD68-positive. Partial microglial ablation led to aged but not young wild type animals mimicking the increased glutamate release probability in App knock-ins and exacerbated the App knock-in phenotype. Complete ablation was less effective in altering synaptic function, while neither treatment altered plaque load. Conclusions Increased glutamate release probability is similar across knock-in and transgenic mouse models of Alzheimer’s disease, likely reflecting acute physiological effects of soluble amyloid beta. Microglia respond later to increased amyloid beta levels by proliferating and upregulating Cd68 and Trem2. Partial depletion of microglia suggests that, in wild type mice, alteration of surviving phagocytic microglia, rather than microglial loss, drives age-dependent effects on glutamate release that become exacerbated in Alzheimer’s disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00457-0.
Collapse
Affiliation(s)
- Diana P Benitez
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Shenyi Jiang
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Ludwig Maximilians Universitat, Munich, Germany
| | - Jack Wood
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Rui Wang
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chloe M Hall
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Carlijn Peerboom
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Natalie Wong
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Katie M Stringer
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Karina S Vitanova
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Victoria C Smith
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Centre for Doctoral Training at the Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK
| | - Dhaval Joshi
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Department of Psychology, University of Cambridge, Cambridge, UK
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Wako-shi, Saitama, 351-0198, Japan.,Department of Neurocognitive Science, Institute of Brain Science, Nagoya City, University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Wako-shi, Saitama, 351-0198, Japan
| | - John Hardy
- Dementia Research Institute, University College London, Gower Street, London, WC1E 6BT, UK.,Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK.,UCL Movement Disorders Centre, University College London, London, UK.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Bart De Strooper
- Dementia Research Institute, University College London, Gower Street, London, WC1E 6BT, UK.,VIB Center for Brain & Disease Research, 3000, Leuven, KU, Belgium.,Department of Neurosciences, Leuven Brain Institute, 3000, Leuven, Belgium
| | - Dervis A Salih
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Dementia Research Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Takshashila Tripathi
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Frances A Edwards
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK. .,Institute of Healthy Ageing, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Damian M Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK. .,Dementia Research Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
12
|
Fan F, Yao D, Yan P, Jiang X, Hu J. MicroRNA-744-5p inhibits glioblastoma malignancy by suppressing replication factor C subunit 2. Oncol Lett 2021; 22:608. [PMID: 34188710 PMCID: PMC8227640 DOI: 10.3892/ol.2021.12869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor, accounting for ~57% of all gliomas and 48% of all malignant primary central nervous system tumors in the United States. Abnormal expression of the replication factor C subunit 2 (RFC2) gene and microRNA (miR)-744-5p is associated with tumorigenic characteristics, including cellular proliferation, migration and invasiveness. However, the mechanism underlying the interaction between miR-744-5p and RFC2 in GBM remains unknown. Reverse transcription-quantitative (RT-q) PCR analysis of RFC2 and miR-744-5p was performed using GBM tumor tissues and cells, and the association between miR-744-5p and RFC2 was determined by dual-luciferase reporter assay. Cell Counting Kit 8, 5-bromo-2-deoxyuridine (BrdU), wound-healing and cellular adhesion assays, as well as the detection of caspase-3 activity and western blotting were used to detect cellular proliferation, migration and adhesion, caspase-3 activity, and Bax and Bcl-2 protein expression, respectively, in GBM cells. The results of the present study demonstrated that RFC2 expression was increased in GBM tissues and cell lines. Overexpression of RFC2 promoted cellular proliferation, migration, adhesion and an increase in Bcl-2 protein levels, and suppressed cellular caspase-3 activity and Bax protein expression, while silencing RFC2 resulted in the opposite effect. The effects of miR-744-5p inhibition were similar to those of RFC2 overexpression. Moreover, miR-744-5p was found to target RFC2 in GBM cells, and inhibiting the expression of RFC2 suppressed GBM tumorigenesis. In conclusion, the present study demonstrated that miR-744-5p targets RFC2 and suppresses the progression of GBM by repressing cellular proliferation, migration and Bcl-2 protein expression, and effectively promoting caspase-3 activity and Bax protein expression. These findings suggest a new target for the clinical treatment and improved prognosis of patients with GBM in the future.
Collapse
Affiliation(s)
- Fei Fan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dongxiao Yao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Pengfei Yan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jie Hu
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Jiangan, Wuhan, Hubei 430010, P.R. China
| |
Collapse
|
13
|
Association between SNAP25 and human glioblastoma multiform: a comprehensive bioinformatic analysis. Biosci Rep 2021; 40:224371. [PMID: 32412599 PMCID: PMC7284326 DOI: 10.1042/bsr20200516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Glioblastoma multiforme (GBM) is a most common aggressive malignant brain tumor. In recent years, targeted therapy has been increasingly applied in GBM treatment. Methods: In the present study, GSE22866 was downloaded from gene expression omnibus (GEO). The genomic and clinical data were obtained from TCGA. The differentially expressed genes (DEGs) were identified and functional analysis was performed using clusterprofiler. Then, the co-expression network for the DEGs was established using the “WGCNA” package. Next, the protein–protein interaction (PPI) was assessed using Search Tool for the Retrieval of Interacting Genes Database (STRING) and hub modules in Cytoscape were screened. The Venn diagram was plotted to showcase the overlapped hub DEGs in PPI network and TCGA. Univariate and multivariate Cox proportional hazards regression analyses were performed to predict the risk score of each patient. Validations of the hub gene were completed in other databases. Results: Functional analysis of the DEGs verified the involvement of DEGs in growth factor binding and gated channel activity. Among the 10 GBM-related modules, the red one displayed the strongest tie with GBM. VAMP2 was filtered out as the most intimate protein. The PPI network and TCGA were comprehensively analyzed. Finally, SNAP25 was identified as a real hub gene positively correlated with GBM prognosis. The result was validated by GEPIA, ONCOMINE database and qRT-PCR. Conclusions: SNAP25 might act as a GBM suppressor and a biomarker in GBM treatment.
Collapse
|
14
|
Chen F, Chen H, Chen Y, Wei W, Sun Y, Zhang L, Cui L, Wang Y. Dysfunction of the SNARE complex in neurological and psychiatric disorders. Pharmacol Res 2021; 165:105469. [PMID: 33524541 DOI: 10.1016/j.phrs.2021.105469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
The communication between neurons constitutes the basis of all neural activities, and synaptic vesicle exocytosis is the fundamental biological event that mediates most communication between neurons in the central nervous system. The SNARE complex is the core component of the protein machinery that facilitates the fusion of synaptic vesicles with presynaptic terminals and thereby the release of neurotransmitters. In synapses, each release event is dependent on the assembly of the SNARE complex. In recent years, basic research on the SNARE complex has provided a clearer understanding of the mechanism underlying the formation of the SNARE complex and its role in vesicle formation. Emerging evidence indicates that abnormal expression or dysfunction of the SNARE complex in synapse physiology might contribute to abnormal neurotransmission and ultimately to synaptic dysfunction. Clinical research using postmortem tissues suggests that SNARE complex dysfunction is correlated with various neurological diseases, and some basic research has also confirmed the important role of the SNARE complex in the pathology of these diseases. Genetic and pharmacogenetic studies suggest that the SNARE complex and individual proteins might represent important molecular targets in neurological disease. In this review, we summarize the recent progress toward understanding the SNARE complex in regulating membrane fusion events and provide an update of the recent discoveries from clinical and basic research on the SNARE complex in neurodegenerative, neuropsychiatric, and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huiyi Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Lu Zhang
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiao tong University, Xi'an, China.
| |
Collapse
|
15
|
Ca 2+ Dyshomeostasis Disrupts Neuronal and Synaptic Function in Alzheimer's Disease. Cells 2020; 9:cells9122655. [PMID: 33321866 PMCID: PMC7763805 DOI: 10.3390/cells9122655] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ homeostasis is essential for multiple neuronal functions and thus, Ca2+ dyshomeostasis can lead to widespread impairment of cellular and synaptic signaling, subsequently contributing to dementia and Alzheimer's disease (AD). While numerous studies implicate Ca2+ mishandling in AD, the cellular basis for loss of cognitive function remains under investigation. The process of synaptic degradation and degeneration in AD is slow, and constitutes a series of maladaptive processes each contributing to a further destabilization of the Ca2+ homeostatic machinery. Ca2+ homeostasis involves precise maintenance of cytosolic Ca2+ levels, despite extracellular influx via multiple synaptic Ca2+ channels, and intracellular release via organelles such as the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) and IP3R, lysosomes via transient receptor potential mucolipin channel (TRPML) and two pore channel (TPC), and mitochondria via the permeability transition pore (PTP). Furthermore, functioning of these organelles relies upon regulated inter-organelle Ca2+ handling, with aberrant signaling resulting in synaptic dysfunction, protein mishandling, oxidative stress and defective bioenergetics, among other consequences consistent with AD. With few effective treatments currently available to mitigate AD, the past few years have seen a significant increase in the study of synaptic and cellular mechanisms as drivers of AD, including Ca2+ dyshomeostasis. Here, we detail some key findings and discuss implications for future AD treatments.
Collapse
|
16
|
TSPAN5 Enriched Microdomains Provide a Platform for Dendritic Spine Maturation through Neuroligin-1 Clustering. Cell Rep 2020; 29:1130-1146.e8. [PMID: 31665629 PMCID: PMC6899445 DOI: 10.1016/j.celrep.2019.09.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/09/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
Tetraspanins are a class of evolutionarily conserved transmembrane proteins with 33 members identified in mammals that have the ability to organize specific membrane domains, named tetraspanin-enriched microdomains (TEMs). Despite the relative abundance of different tetraspanins in the CNS, few studies have explored their role at synapses. Here, we investigate the function of TSPAN5, a member of the tetraspanin superfamily for which mRNA transcripts are found at high levels in the mouse brain. We demonstrate that TSPAN5 is localized in dendritic spines of pyramidal excitatory neurons and that TSPAN5 knockdown induces a dramatic decrease in spine number because of defects in the spine maturation process. Moreover, we show that TSPAN5 interacts with the postsynaptic adhesion molecule neuroligin-1, promoting its correct surface clustering. We propose that membrane compartmentalization by tetraspanins represents an additional mechanism for regulating excitatory synapses. TSPAN5 is expressed in pyramidal neurons and localizes mainly to dendritic spines TSPAN5 interacts with neuroligin-1 and promotes its clustering TSPAN5-neuroligin-1 complex is fundamental for dendritic spine maturation
Collapse
|
17
|
Page KC, Anday EK. Dietary Exposure to Excess Saturated Fat During Early Life Alters Hippocampal Gene Expression and Increases Risk for Behavioral Disorders in Adulthood. Front Neurosci 2020; 14:527258. [PMID: 33013310 PMCID: PMC7516040 DOI: 10.3389/fnins.2020.527258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose Maternal and postnatal diets result in long-term changes in offspring brain and behavior; however, the key mediators of these developmental changes are not well-defined. In this study, we investigated the impact of maternal and post-weaning high-fat diets on gene expression of key components mediating hippocampal synaptic efficacy. In addition, we evaluated the risk for impaired stress-coping and anxiety-like behaviors in adult offspring exposed to obesogenic diets during early life. Methods Dams were fed a control (C) or high-fat (HF) diet prior to mating, pregnancy, and lactation. Male offspring from control chow and high-fat fed dams were weaned to control chow or HF diets. The forced swim test (FST) and the elevated-plus maze (EPM) were used to detect stress-coping and anxiety-like behavior, respectively. Real-time RT-PCR and ELISA were used to analyze hippocampal expression of genes mediating synaptic function. Results Animals fed a HF diet post-weaning spent more time immobile in the FST. Swimming time was reduced in response to both maternal and post-weaning HF diets. Both maternal and post-weaning HF diets contributed to anxiety-like behavior in animals exposed to the EPM. Maternal and post-weaning HF diets were associated with a significant decrease in mRNA and protein expression for hippocampal GDNF, MAP2, SNAP25, and synaptophysin. Hippocampal mRNA expression of key serotonergic and glutamatergic receptors also exhibited differential responses to maternal and post-weaning HF diets. Hippocampal serotonergic receptor 5HT1A mRNA was reduced in response to both the maternal and post-weaning diet, whereas, 5HT2A receptor mRNA expression was increased in response to the maternal HF diet. The glutamate AMPA receptor subunit, GluA1, mRNA expression was significantly reduced in response to both diets, whereas no change was detected in GluA2 subunit mRNA expression. Conclusion These data demonstrate that the expression of genes mediating synaptic function are differentially affected by maternal and post-weaning high-fat diets. The post-weaning high-fat diet clearly disturbs both behavior and gene expression. In addition, although the transition to control diet at weaning partially compensates for the adverse effects of the maternal HF diet, the negative consequence of the maternal HF diet is exacerbated by continuing the high-fat diet post-weaning. We present evidence to support the claim that these dietary influences increase the risk for anxiety and impaired stress-coping abilities in adulthood.
Collapse
Affiliation(s)
- Kathleen C Page
- Department of Biology, Bucknell University, Lewisburg, PA, United States
| | - Endla K Anday
- College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
18
|
Disabling Gβγ-SNAP-25 interaction in gene-targeted mice results in enhancement of long-term potentiation at Schaffer collateral-CA1 synapses in the hippocampus. Neuroreport 2020; 30:695-699. [PMID: 31095110 DOI: 10.1097/wnr.0000000000001258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Three SNARE proteins, SNAP-25, syntaxin 1A, and VAMP2 or synaptobrevin 2, constitute the minimal functional machinery needed for the regulated secretion of neurotransmitters. Dynamic changes in the regulated release of neurotransmitters are associated with the induction of long-term plasticity at central synapses. In-vitro studies have validated the C-terminus of SNAP-25 as a target for inhibitory Gi/o-coupled G-protein coupled receptors at a number of synapses. The physiological consequences of the interaction between Gi/o proteins and SNAP-25 in the context of activity-dependent long-term synaptic plasticity are not well understood. Here, we report direct ex-vivo evidence of the involvement of the C-terminus of SNAP-25 in inducing long-term potentiation of synaptic strength at Schaffer collateral-CA1 synapses using a gene-targeted mouse model with truncated C-terminus (carboxyl terminus) of SNAP-25. It has been shown previously that truncation of the three extreme C-terminal residues in SNAP-25[INCREMENT]3 homozygote mice reduces its interaction with the inhibitory Gβγ subunits two-fold. In in-vitro hippocampal slices, we show that these SNAP-25[INCREMENT]3 mice express significantly larger magnitude of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses.
Collapse
|
19
|
Wang J, Xu W, Kong Y, Huang J, Ding Z, Deng M, Guo Q, Zou W. SNAP-25 Contributes to Neuropathic Pain by Regulation of VGLuT2 Expression in Rats. Neuroscience 2019; 423:86-97. [PMID: 31705888 DOI: 10.1016/j.neuroscience.2019.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/23/2022]
Abstract
Synaptosomal-associated protein 25 (SNAP-25) plays an important role in neuropathic pain. However, the underlying mechanism is largely unknown. Vesicular glutamate transporter 2 (VGluT2) is an isoform of vesicular glutamate transporters that controls the storage and release of glutamate. In the present study, we found the expression levels of VGluT2 correlated with the upregulation of SNAP-25 in the spinal cord of rats following chronic constriction injury (CCI)-induced neuropathic pain. Cleavage of SNAP-25 by Botulinum toxin A (BoNT/A) attenuated mechanical allodynia, downregulated the expression of VGluT2 and reduced glutamate release. Overexpression of VGluT2 abolished the antinociceptive effect of BoNT/A. Upregulation of SNAP-25 in naive rats increased VGluT2 expression and induced pain-responsive behaviors. In pheochromocytoma (PC12) cells, the expression of VGluT2 was also depended on SNAP-25 dysregulation. Moreover, we found VGluT2 was involved in SNAP-25-mediated regulation of astrocyte expression and activation of the PKA/p-CREB pathway mediated the upregulation of SNAP-25 in neuropathic pain. The findings of our study indicate that VGluT2 contributes to the effect of SNAP-25 in maintaining the development of neuropathic pain and suggests a novel mechanism underlying SNAP-25 regulation of neuropathic pain.
Collapse
Affiliation(s)
- Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Xu
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, China
| | - Yan Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiangju Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
20
|
Öhrfelt A, Brinkmalm A, Dumurgier J, Zetterberg H, Bouaziz-Amar E, Hugon J, Paquet C, Blennow K. A Novel ELISA for the Measurement of Cerebrospinal Fluid SNAP-25 in Patients with Alzheimer’s Disease. Neuroscience 2019; 420:136-144. [DOI: 10.1016/j.neuroscience.2018.11.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 11/16/2022]
|
21
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
22
|
Casati M, Costa AS, Capitanio D, Ponzoni L, Ferri E, Agostini S, Lori E. The Biological Foundations of Sarcopenia: Established and Promising Markers. Front Med (Lausanne) 2019; 6:184. [PMID: 31457015 PMCID: PMC6700259 DOI: 10.3389/fmed.2019.00184] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, the progressive loss of muscle mass and strength, is one of the major health issues in older adults, given its high prevalence accompanied by huge clinical and socioeconomic implications. Age-related changes in skeletal muscle can be attributed to mechanisms both directly and indirectly related to muscle homeostasis. Indeed, a wide spectrum of age-related modifications in the organism was shown to play a key role in the pathogenesis of sarcopenia. Not surprisingly, sarcopenia has sometimes been indicated as a syndrome stemming from the aging process, and not as univocal standalone disease. Due to the multidimensionality of sarcopenia, a single biomarker approach is not enough to explain the biology of this condition. The aim of this review is to suggest innovative and promising sarcopenia markers investigating the link between skeletal muscle and brain. Indeed, as a neurological origin of sarcopenia has been hypothesized, a new perspective on sarcopenia biomarkers may focus on the dysfunction of the neuromuscular junctions (NMJs). The core SNARE synaptosomal-associated protein of 25 kDa (SNAP25) accumulates in the plasma membrane of nerve terminals at NMJs and regulates exocytosis at peripheral and central synapses. Interestingly, mice studies have shown that SNAP25 affects the neuromuscular function. SNARE complex and, in particular, SNAP25 may represent a promising pathway to explore the molecular and cellular mechanisms regulating muscular homeostasis and concur at profiling the sarcopenia biological background.
Collapse
Affiliation(s)
- Martina Casati
- Geriatric Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Elisa Lori
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Vontell R, Supramaniam VG, Davidson A, Thornton C, Marnerides A, Holder-Espinasse M, Lillis S, Yau S, Jansson M, Hagberg HE, Rutherford MA. Post-mortem Characterisation of a Case With an ACTG1 Variant, Agenesis of the Corpus Callosum and Neuronal Heterotopia. Front Physiol 2019; 10:623. [PMID: 31231230 PMCID: PMC6558385 DOI: 10.3389/fphys.2019.00623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/02/2019] [Indexed: 01/02/2023] Open
Abstract
Cytoplasmic Actin Gamma 1 (ACTG1) gene variant are autosomal dominant and can cause CNS anomalies (Baraitser Winter Malformation Syndrome; BWMS). ACTG1 anomalies in offspring include agenesis of the corpus callosum (ACC) and neuronal heterotopia which are ectopic nodules of nerve cells that failed to migrate appropriately. Subcortical and periventricular neuronal heterotopia have been described previously in association with ACC. In this case report, we investigated a neonatal brain with an ACTG1 gene variant and a phenotype of ACC, and neuronal heterotopia (ACC-H) which was diagnosed on antenatal MR imaging and was consistent with band heterotopia seen on post-mortem brain images. Histologically clusters of neurons were seen in both the subcortical and periventricular white matter (PVWM) brain region that coincided with impaired abnormalities in glial formation. Immunohistochemistry was performed on paraffin-embedded brain tissue blocks from this case with ACTG1 variant and an age-matched control. Using tissue sections from the frontal lobe, we examined the distribution of neuronal cells (HuC/HuD, calretinin, and parvalbumin), growth cone (drebrin), and synaptic proteins (synaptophysin and SNAP-25). Additionally, we investigated how the ACTG1 variant altered astroglia (nestin, GFAP, vimentin); oligodendroglia (OLIG2) and microglia (Iba-1) in the corpus callosum, cortex, caudal ganglionic eminence, and PVWM. As predicted in the ACTG1 variant case, we found a lack of midline radial glia and glutamatergic fibers. We also found disturbances in the cortical region, in glial cells and a lack of extracellular matrix components in the ACTG1 variant. The caudal ganglionic eminence and the PVWM regions in the ACTG1 variant lacked several cellular components that were identified in a control case. Within the neuronal heterotopia, we found evidence of glutamatergic and GABAergic neurons with apparent synaptic connections. The data presented from this case study with BWMS with variants in the ACTG1 gene provides insight as to the composition of neuronal heterotopia, and how disturbances of important migratory signals may dramatically affect ongoing brain development.
Collapse
Affiliation(s)
- Regina Vontell
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Veena G. Supramaniam
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Alice Davidson
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Claire Thornton
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Andreas Marnerides
- Department of Cellular Pathology, Guy’s and St Thomas’ NHS Foundation Trust, St Thomas’ Hospital, London, United Kingdom
| | - Muriel Holder-Espinasse
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Suzanne Lillis
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Shu Yau
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Mattias Jansson
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Henrik E. Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
- Perinatal Center, Department of Physiology and Neuroscience – Department of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mary A. Rutherford
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St Thomas’ Hospital, London, United Kingdom
| |
Collapse
|
24
|
Raja MK, Preobraschenski J, Del Olmo-Cabrera S, Martinez-Turrillas R, Jahn R, Perez-Otano I, Wesseling JF. Elevated synaptic vesicle release probability in synaptophysin/gyrin family quadruple knockouts. eLife 2019; 8:40744. [PMID: 31090538 PMCID: PMC6519982 DOI: 10.7554/elife.40744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/18/2019] [Indexed: 01/05/2023] Open
Abstract
Synaptophysins 1 and 2 and synaptogyrins 1 and 3 constitute a major family of synaptic vesicle membrane proteins. Unlike other widely expressed synaptic vesicle proteins such as vSNAREs and synaptotagmins, the primary function has not been resolved. Here, we report robust elevation in the probability of release of readily releasable vesicles with both high and low release probabilities at a variety of synapse types from knockout mice missing all four family members. Neither the number of readily releasable vesicles, nor the timing of recruitment to the readily releasable pool was affected. The results suggest that family members serve as negative regulators of neurotransmission, acting directly at the level of exocytosis to dampen connection strength selectively when presynaptic action potentials fire at low frequency. The widespread expression suggests that chemical synapses may play a frequency filtering role in biological computation that is more elemental than presently envisioned. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Mathan K Raja
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain
| | - Julia Preobraschenski
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Isabel Perez-Otano
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain.,Institute for Neurosciences CSIC-UMH, San Juan de Alicante, Spain
| | - John F Wesseling
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain.,Institute for Neurosciences CSIC-UMH, San Juan de Alicante, Spain
| |
Collapse
|
25
|
SNAP-25 isoforms differentially regulate synaptic transmission and long-term synaptic plasticity at central synapses. Sci Rep 2019; 9:6403. [PMID: 31024034 PMCID: PMC6484009 DOI: 10.1038/s41598-019-42833-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/09/2019] [Indexed: 01/08/2023] Open
Abstract
SNAP-25 exists as two developmentally regulated alternatively spliced isoforms, SNAP-25a and SNAP-25b. We explored the function of SNAP-25a and SNAP-25b at Schaffer collateral-CA1 synapses in hippocampus using 4-week-old wild-type (WT) and SNAP-25b-deficient (MT) mice. Characterizing the protein expression of individual SNAP-25 isoforms revealed that WT females had higher levels of SNAP-25a than WT males, suggesting a sex-dependent delay of the alternative splicing switch from SNAP-25a to SNAP-25b. MT mice expressed normal levels of total SNAP-25, Syntaxin 1A and SNAP-47 in the hippocampus, but females expressed lower levels of VAMP2. Electrophysiological recordings in in vitro hippocampal slices revealed significantly reduced magnitude of LTP in MT mice. We also found reduction in paired-pulse facilitation after induction of LTP in WT males, but not in WT females, possibly related to the difference in SNAP-25a/SNAP-25b ratios, suggesting that the splicing switch may play a sex-specific role in LTP-associated increases in presynaptic release probability. Basal synaptic transmission measured in input-output relations revealed that the ability to discriminate between the intensity of presynaptic stimuli was affected in SNAP-25b-deficient mice. Learning in a behavioural paradigm of active-avoidance was impaired in MT mice, strengthening the conclusion that SNAP-25b is important for cognitive performance by altering activity-dependent synaptic plasticity.
Collapse
|
26
|
Li D, Jing D, Liu Z, Chen Y, Huang F, Behnisch T. Enhanced Expression of Secreted α-Klotho in the Hippocampus Alters Nesting Behavior and Memory Formation in Mice. Front Cell Neurosci 2019; 13:133. [PMID: 31001090 PMCID: PMC6454015 DOI: 10.3389/fncel.2019.00133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
The klotho gene family consists of α-, β-, and γ-Klotho, which encode type I single-pass transmembrane proteins with large extracellular domains. α-Klotho exists as a full-length membrane-bound and as a soluble form after cleavage of the extracellular domain. Due to gene splicing, a short extracellular Klotho form can be expressed and secreted. Inactivation of α-Klotho leads to a phenotype that resembles accelerated aging, as the expression level of the α-Klotho protein in the hippocampal formation of mice decreases with age. Here, we show that intrahippocampal viral expression of secreted human α-Klotho alters social behavior and memory formation. Interestingly, overexpression of secreted human α-Klotho in the CA1 changed the nest-building behavior and improved object recognition, object location and passive avoidance memory. Moreover, α-Klotho overexpression increased hippocampal synaptic transmission in response to standardized stimulation strengths, altered paired-pulse facilitation of synaptic transmission, and enhanced activity-dependent synaptic plasticity. These results indicate that memory formation benefits from an augmented level of secreted α-Klotho.
Collapse
Affiliation(s)
- Dongxue Li
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Dongqing Jing
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ziyang Liu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ying Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Fang Huang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Thomas Behnisch
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
27
|
SNAP-25 in Major Psychiatric Disorders: A Review. Neuroscience 2019; 420:79-85. [PMID: 30790667 DOI: 10.1016/j.neuroscience.2019.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 01/10/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Synaptosomal Associated Protein-25 kilodaltons (SNAP-25) is an integral member of the SNARE complex. This complex is essential for calcium-triggered synaptic vesicular fusion and release of neurotransmitters into the synaptic cleft. In addition to neurotransmission, SNAP-25 is associated with insulin release, the regulation of intracellular calcium, and neuroplasticity. Because of SNAP-25's varied and crucial biological roles, the consequences of changes in this protein can be seen in both the central nervous system and the periphery. In this review, we will look at the published literature from human genetic, postmortem, and animal studies involving SNAP-25. The accumulated data indicate that SNAP-25 may be linked with some symptoms associated with a variety of psychiatric disorders. These disorders include bipolar disorder, schizophrenia, major depressive disorder, attention deficit hyperactivity disorder, autism, alcohol use disorder, and dementia. There are also data suggesting SNAP-25 may be involved with non-psychiatric seizures and metabolic disorders. We believe investigation of SNAP-25 is important for understanding both normal behavior and some aspects of the pathophysiology of behavior seen with psychiatric disorders. The wealth of information from both animal and human studies on SNAP-25 offers an excellent opportunity to use a bi-directional research approach. Hypotheses generated from genetically manipulated mice can be directly tested in human postmortem tissue, and, conversely, human genetic and postmortem findings can improve and validate animal models for psychiatric disorders.
Collapse
|
28
|
Pozzi D, Corradini I, Matteoli M. The Control of Neuronal Calcium Homeostasis by SNAP-25 and its Impact on Neurotransmitter Release. Neuroscience 2018; 420:72-78. [PMID: 30476527 DOI: 10.1016/j.neuroscience.2018.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023]
Abstract
The process of neurotransmitter release is central to the control of cell-to-cell communication in brain. SNAP-25 is a component of the SNARE complex, which, together with syntaxin-1 and synaptobrevin, mediates synaptic vesicle fusion with the plasma membrane. The genetic ablation of the protein or its proteolytic cleavage by botulinum neurotoxins results in a complete block of synaptic transmission. In the last years, several evidences have indicated that SNAP-25 also plays additional modulatory roles in neurotransmission through the control of voltage-gated calcium channels and presynaptic calcium ion concentration. Consistently, reduced levels of the protein affect presynaptic calcium homeostasis and result in pathologically enhanced glutamate exocytosis. The SNAP-25-dependent alterations of synaptic calcium dynamics may have direct impact on the development of neuropsychiatric disorders where the Snap-25 gene has been found to be involved.
Collapse
Affiliation(s)
- Davide Pozzi
- Humanitas University, Via Rita Levi Montalcini, 4, 20090 Pieve Emanuele, Milano, Italy; IRCCS Humanitas, via Manzoni 56, 20089 Rozzano, Italy.
| | - Irene Corradini
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milano, Italy
| | - Michela Matteoli
- Humanitas University, Via Rita Levi Montalcini, 4, 20090 Pieve Emanuele, Milano, Italy; IRCCS Humanitas, via Manzoni 56, 20089 Rozzano, Italy.
| |
Collapse
|
29
|
Ren Z, Yu J, Wu Z, Si W, Li X, Liu Y, Zhou J, Deng R, Chen D. MicroRNA-210-5p Contributes to Cognitive Impairment in Early Vascular Dementia Rat Model Through Targeting Snap25. Front Mol Neurosci 2018; 11:388. [PMID: 30483048 PMCID: PMC6243094 DOI: 10.3389/fnmol.2018.00388] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Vascular dementia (VD) is the most common form of dementia in elderly people. However, little is understood about the role of microRNAs (miRNAs) involved in cognitive impairment in early VD. Here, a VD model induced by chronic cerebral ischemia and fetal bovine serum (FBS)-free cell model that detects synapse formation was established to investigate the function of miRNAs in early VD. The microarray analysis and real-time reverse transcription polymerase chain reaction (RT-PCR) showed that miR-210-5p increased significantly in the hippocampus of rats with 4 weeks of ischemia. The VD model rats also displayed significant cognitive deficits and synaptic loss. The overexpression of miR-210-5p decreased the synaptic number in primary hippocampal neurons, whereas specific suppression of miR-210-5p resulted in the formation of more synapses. Additionally, intracerebroventricular (ICV) injection of miR-210-5p agomir to VD rats aggravated phenotypes of cognitive impairment and synaptic loss. These VD-induced phenotypes were effectively attenuated by miR-210-5p antagomir. Moreover, bioinformatic prediction revealed that synaptosomal-associated protein of 25 KDa (Snap25) mRNA is targeted by miR-210-5p. The miR-210-5p decreased the luciferase activities of 3’ untranslated region (3’UTR) of Snap25 mRNA. Mutation of predicted miR-210-5p binding sites in the 3’ UTR of Snap25 mRNA abolished the miR-210-5p-induced decrease in luciferase activity. Western blot and immunofluorescence staining confirmed that miR-210-5p targets Snap25. Finally, RT-quantitative PCR (qPCR) and immunofluorescence staining detected that miR-210-5p agomir downregulated Snap25 expression in the cornu ammonis1 (CA1) region of hippocampi in VD rats, whereas miR-210-5p antagomir upregulated Snap25 expression. Altogether, miR-210-5p contributes to cognitive impairment in chronic ischemia-induced VD model through the regulation of Snap25 expression, which potentially provides an opportunity to develop a new therapeutic strategy for VD.
Collapse
Affiliation(s)
- Zhenxing Ren
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junlong Yu
- College of Basic Medicine, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zimei Wu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenwen Si
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianqian Li
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqing Liu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhong Zhou
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rudong Deng
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
30
|
Gandaglia A, Brivio E, Carli S, Palmieri M, Bedogni F, Stefanelli G, Bergo A, Leva B, Cattaneo C, Pizzamiglio L, Cicerone M, Bianchi V, Kilstrup-Nielsen C, D’Annessa I, Di Marino D, D’Adamo P, Antonucci F, Frasca A, Landsberger N. A Novel Mecp2Y120D Knock-in Model Displays Similar Behavioral Traits But Distinct Molecular Features Compared to the Mecp2-Null Mouse Implying Precision Medicine for the Treatment of Rett Syndrome. Mol Neurobiol 2018; 56:4838-4854. [DOI: 10.1007/s12035-018-1412-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 10/27/2022]
|
31
|
von Wilmsdorff M, Manthey F, Bouvier ML, Staehlin O, Falkai P, Meisenzahl-Lechner E, Schmitt A, Gebicke-Haerter PJ. Effects of haloperidol and clozapine on synapse-related gene expression in specific brain regions of male rats. Eur Arch Psychiatry Clin Neurosci 2018; 268:555-563. [PMID: 29404686 DOI: 10.1007/s00406-018-0872-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/24/2018] [Indexed: 01/22/2023]
Abstract
We investigated the effects of clozapine and haloperidol, drugs that are widely used in the treatment of schizophrenia, on gene expression in six cortical and subcortical brain regions of adult rats. Drug treatments started at postnatal day 85 and continued over a 12-week period. Ten animals received haloperidol (1 mg/kg bodyweight) and ten received clozapine (20 mg/kg bodyweight) orally each day. Ten control rats received no drugs. The ten genes selected for this study did not belong to the dopaminergic or serotoninergic systems, which are typically targeted by the two substances, but coded for proteins of the cytoskeleton and proteins belonging to the synaptic transmitter release machinery. Quantitative real-time PCR was performed in the prelimbic cortex, cingulate gyrus (CG1) and caudate putamen and in the hippocampal cornu ammonis 1 (CA1), cornu ammonis 3 (CA3) and dentate gyrus. Results show distinct patterns of gene expression under the influence of the two drugs, but also distinct gene regulations dependent on the brain regions. Haloperidol-medicated animals showed statistically significant downregulation of SNAP-25 in CA3 (p = 0.0134) and upregulation of STX1A in CA1 (p = 0.0133) compared to controls. Clozapine-treated animals showed significant downregulation of SNAP-25 in CG1 (p = 0.0013). Our results clearly reveal that the drugs' effects are different between brain regions. These effects are possibly indirectly mediated through feedback mechanisms by proteins targeted by the drugs, but direct effects of haloperidol or clozapine on mechanisms of gene expression cannot be excluded.
Collapse
Affiliation(s)
- Martina von Wilmsdorff
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Fabian Manthey
- Department of Psychiatry and Psychotherapy, Alexianer Krefeld GmbH, Krefeld, Germany
| | - Marie-Luise Bouvier
- Laboratory of Brain Morphology, Department of Psychiatry and Psychotherapy, LVR Klinikum, Heinrich-Heine-University, Bergische Landstr.2, 40629, Düsseldorf, Germany.
| | | | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians-University (LMU) Munich, Munich, Germany
| | - Eva Meisenzahl-Lechner
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians-University (LMU) Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Peter J Gebicke-Haerter
- Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
- Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
32
|
Corradini I, Focchi E, Rasile M, Morini R, Desiato G, Tomasoni R, Lizier M, Ghirardini E, Fesce R, Morone D, Barajon I, Antonucci F, Pozzi D, Matteoli M. Maternal Immune Activation Delays Excitatory-to-Inhibitory Gamma-Aminobutyric Acid Switch in Offspring. Biol Psychiatry 2018; 83:680-691. [PMID: 29146047 DOI: 10.1016/j.biopsych.2017.09.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/03/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND The association between maternal infection and neurodevelopmental defects in progeny is well established, although the biological mechanisms and the pathogenic trajectories involved have not been defined. METHODS Pregnant dams were injected intraperitoneally at gestational day 9 with polyinosinic:polycytidylic acid. Neuronal development was assessed by means of electrophysiological, optical, and biochemical analyses. RESULTS Prenatal exposure to polyinosinic:polycytidylic acid causes an imbalanced expression of the Na+-K+-2Cl- cotransporter 1 and the K+-Cl- cotransporter 2 (KCC2). This results in delayed gamma-aminobutyric acid switch and higher susceptibility to seizures, which endures up to adulthood. Chromatin immunoprecipitation experiments reveal increased binding of the repressor factor RE1-silencing transcription (also known as neuron-restrictive silencer factor) to position 509 of the KCC2 promoter that leads to downregulation of KCC2 transcription in prenatally exposed offspring. Interleukin-1 receptor type I knockout mice, which display braked immune response and no brain cytokine elevation upon maternal immune activation, do not display KCC2/Na+-K+-2Cl- cotransporter 1 imbalance when implanted in a wild-type dam and prenatally exposed. Notably, pretreatment of pregnant dams with magnesium sulfate is sufficient to prevent the early inflammatory state and the delay in excitatory-to-inhibitory switch associated to maternal immune activation. CONCLUSIONS We provide evidence that maternal immune activation hits a key neurodevelopmental process, the excitatory-to-inhibitory gamma-aminobutyric acid switch; defects in this switch have been unequivocally linked to diseases such as autism spectrum disorder or epilepsy. These data open the avenue for a safe pharmacological treatment that may prevent the neurodevelopmental defects caused by prenatal immune activation in a specific pregnancy time window.
Collapse
Affiliation(s)
- Irene Corradini
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Institute of Neuroscience - National Research Council, Milan, Italy
| | - Elisa Focchi
- Institute of Neuroscience - National Research Council, Milan, Italy; Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Rasile
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Hunimed University, Rozzano, Italy
| | - Raffaella Morini
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy
| | - Genni Desiato
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; University of Milano-Bicocca, Milan, Italy
| | - Romana Tomasoni
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy
| | - Michela Lizier
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Institute for Genetic and Biomedical Research - National Research Council, Milan, Italy
| | - Elsa Ghirardini
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Riccardo Fesce
- Hunimed University, Rozzano, Italy; Neuroscience Center, Dipartimento di Scienze Teoriche e Applicate, Insubria University, Busto Arsizio, Italy
| | - Diego Morone
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy
| | | | - Flavia Antonucci
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Davide Pozzi
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Hunimed University, Rozzano, Italy
| | - Michela Matteoli
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Institute of Neuroscience - National Research Council, Milan, Italy.
| |
Collapse
|
33
|
Brain-Specific SNAP-25 Deletion Leads to Elevated Extracellular Glutamate Level and Schizophrenia-Like Behavior in Mice. Neural Plast 2017; 2017:4526417. [PMID: 29318050 PMCID: PMC5727794 DOI: 10.1155/2017/4526417] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/31/2017] [Accepted: 10/15/2017] [Indexed: 12/21/2022] Open
Abstract
Several studies have associated reduced expression of synaptosomal-associated protein of 25 kDa (SNAP-25) with schizophrenia, yet little is known about its role in the illness. In this paper, a forebrain glutamatergic neuron-specific SNAP-25 knockout mouse model was constructed and studied to explore the possible pathogenetic role of SNAP-25 in schizophrenia. We showed that SNAP-25 conditional knockout (cKO) mice exhibited typical schizophrenia-like phenotype. A significantly elevated extracellular glutamate level was detected in the cerebral cortex of the mouse model. Compared with Ctrls, SNAP-25 was dramatically reduced by about 60% both in cytoplasm and in membrane fractions of cerebral cortex of cKOs, while the other two core members of SNARE complex: Syntaxin-1 (increased ~80%) and Vamp2 (increased ~96%) were significantly increased in cell membrane part. Riluzole, a glutamate release inhibitor, significantly attenuated the locomotor hyperactivity deficits in cKO mice. Our findings provide in vivo functional evidence showing a critical role of SNAP-25 dysfunction on synaptic transmission, which contributes to the developmental of schizophrenia. It is suggested that a SNAP-25 cKO mouse, a valuable model for schizophrenia, could address questions regarding presynaptic alterations that contribute to the etiopathophysiology of SZ and help to consummate the pre- and postsynaptic glutamatergic pathogenesis of the illness.
Collapse
|
34
|
D'Erchia AM, Gallo A, Manzari C, Raho S, Horner DS, Chiara M, Valletti A, Aiello I, Mastropasqua F, Ciaccia L, Locatelli F, Pisani F, Nicchia GP, Svelto M, Pesole G, Picardi E. Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS. Sci Rep 2017; 7:10046. [PMID: 28855684 PMCID: PMC5577269 DOI: 10.1038/s41598-017-10488-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
ALS is a devastating and debilitating human disease characterized by the progressive death of upper and lower motor neurons. Although much effort has been made to elucidate molecular determinants underlying the onset and progression of the disorder, the causes of ALS remain largely unknown. In the present work, we have deeply sequenced whole transcriptome from spinal cord ventral horns of post-mortem ALS human donors affected by the sporadic form of the disease (which comprises ~90% of the cases but which is less investigated than the inherited form of the disease). We observe 1160 deregulated genes including 18 miRNAs and show that down regulated genes are mainly of neuronal derivation while up regulated genes have glial origin and tend to be involved in neuroinflammation or cell death. Remarkably, we find strong deregulation of SNAP25 and STX1B at both mRNA and protein levels suggesting impaired synaptic function through SNAP25 reduction as a possible cause of calcium elevation and glutamate excitotoxicity. We also note aberrant alternative splicing but not disrupted RNA editing.
Collapse
Affiliation(s)
- Anna Maria D'Erchia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Angela Gallo
- Department of Pediatric Oncohaematology, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Caterina Manzari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Susanna Raho
- Department of Pediatric Oncohaematology, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - David S Horner
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Matteo Chiara
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Alessio Valletti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Italia Aiello
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Francesca Mastropasqua
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Loredana Ciaccia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Franco Locatelli
- Department of Pediatric Oncohaematology, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Francesco Pisani
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), Viale Medaglie D'Oro 305, 00136, Rome, Italy.,Center of Excellence in Comparative Genomics, University of Bari, Piazza Umberto I, 70121, Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy. .,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy. .,National Institute of Biostructures and Biosystems (INBB), Viale Medaglie D'Oro 305, 00136, Rome, Italy. .,Center of Excellence in Comparative Genomics, University of Bari, Piazza Umberto I, 70121, Bari, Italy.
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy. .,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy. .,National Institute of Biostructures and Biosystems (INBB), Viale Medaglie D'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
35
|
SNAP-25 phosphorylation at Ser187 regulates synaptic facilitation and short-term plasticity in an age-dependent manner. Sci Rep 2017; 7:7996. [PMID: 28801590 PMCID: PMC5554206 DOI: 10.1038/s41598-017-08237-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/10/2017] [Indexed: 11/18/2022] Open
Abstract
Neurotransmitter release is mediated by the SNARE complex, but the role of its phosphorylation has scarcely been elucidated. Although PKC activators are known to facilitate synaptic transmission, there has been a heated debate on whether PKC mediates facilitation of neurotransmitter release through phosphorylation. One of the SNARE proteins, SNAP-25, is phosphorylated at the residue serine-187 by PKC, but its physiological significance has been unclear. To examine these issues, we analyzed mutant mice lacking the phosphorylation of SNAP-25 serine-187 and found that they exhibited reduced release probability and enhanced presynaptic short-term plasticity, suggesting that not only the release process, but also the dynamics of synaptic vesicles was regulated by the phosphorylation. Furthermore, it has been known that the release probability changes with development, but the precise mechanism has been unclear, and we found that developmental changes in release probability of neurotransmitters were regulated by the phosphorylation. These results indicate that SNAP-25 phosphorylation developmentally facilitates neurotransmitter release but strongly inhibits presynaptic short-term plasticity via modification of the dynamics of synaptic vesicles in presynaptic terminals.
Collapse
|
36
|
Abstract
Three neurodegenerative diseases [Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD)] have many characteristics like pathological mechanisms and genes. In this sense some researchers postulate that these diseases share the same alterations and that one alteration in a specific protein triggers one of these diseases. Analyses of gene expression may shed more light on how to discover pathways, pathologic mechanisms associated with the disease, biomarkers and potential therapeutic targets. In this review, we analyze four microarrays related to three neurodegenerative diseases. We will systematically examine seven genes (CHN1, MDH1, PCP4, RTN1, SLC14A1, SNAP25 and VSNL1) that are altered in the three neurodegenerative diseases. A network was built and used to identify pathways, miRNA and drugs associated with ALS, AD and PD using Cytoscape software an interaction network based on the protein interactions of these genes. The most important affected pathway is PI3K-Akt signalling. Thirteen microRNAs (miRNA-19B1, miRNA-107, miRNA-124-1, miRNA-124-2, miRNA-9-2, miRNA-29A, miRNA-9-3, miRNA-328, miRNA-19B2, miRNA-29B2, miRNA-124-3, miRNA-15A and miRNA-9-1) and four drugs (Estradiol, Acetaminophen, Resveratrol and Progesterone) for new possible treatments were identified.
Collapse
Affiliation(s)
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
37
|
Noor A, Zahid S. A review of the role of synaptosomal-associated protein 25 (SNAP-25) in neurological disorders. Int J Neurosci 2016; 127:805-811. [DOI: 10.1080/00207454.2016.1248240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aneeqa Noor
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
38
|
Epigenetic Regulation of SNAP25 Prevents Progressive Glutamate Excitotoxicty in Hypoxic CA3 Neurons. Mol Neurobiol 2016; 54:6133-6147. [PMID: 27699604 DOI: 10.1007/s12035-016-0156-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/22/2016] [Indexed: 01/31/2023]
Abstract
Exposure to global hypoxia and ischemia has been reported to cause neurodegeneration in the hippocampus with CA3 neurons. This neuronal damage is progressive during the initial phase of exposure but maintains a plateau on prolonged exposure. The present study on Sprague Dawley rats aimed at understanding the underlying molecular and epigenetic mechanisms that lead to hypoxic adaptation of CA3 neurons on prolonged exposure to a global hypoxia. Our results show stagnancy in neurodegeneration in CA3 region beyond 14 days of chronic exposure to hypobaria simulating an altitude of 25,000 ft. Despite increased synaptosomal glutamate and higher expression of NR1 subunit of NMDA receptors, we observed decrease in post-synaptic density and accumulation of synaptic vesicles at the pre-synaptic terminals. Molecular investigations involving western blot and real-time PCR showed duration-dependent decrease in the expression of SNAP-25 resulting in reduced vesicular docking and synaptic remodeling. ChIP assays for epigenetic factors showed decreased expression of H3K9Ac and H3K14Ac resulting in SNAP-25 promoter silencing during prolonged hypoxia. Administration of sodium butyrate, a non-specific HDAC inhibitor, during 21 days hypoxic exposure prevented SNAP-25 downregulation but increased CA3 neurodegeneration. This epigenetic regulation of SNAP-25 promoter was independent of increased DNMT3b expression and promoter methylation. Our findings provide a novel insight into epigenetic factors-mediated synaptic remodeling to prevent excitotoxic neurodegeneration on prolonged exposure to global hypobaric hypoxia.
Collapse
|
39
|
Toft-Bertelsen TL, Ziomkiewicz I, Houy S, Pinheiro PS, Sørensen JB. Regulation of Ca2+ channels by SNAP-25 via recruitment of syntaxin-1 from plasma membrane clusters. Mol Biol Cell 2016; 27:3329-3341. [PMID: 27605709 PMCID: PMC5170865 DOI: 10.1091/mbc.e16-03-0184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
SNAP-25 regulates Ca2+ channels in an unknown manner. Endogenous and exogenous SNAP-25 inhibit Ca2+ currents indirectly by recruiting syntaxin-1 from clusters on the plasma membrane, thereby making it available for Ca2+ current inhibition. Thus the cell can regulate Ca2+ influx by expanding or contracting syntaxin-1 clusters. SNAP-25 regulates Ca2+ channels, with potentially important consequences for diseases involving an aberrant SNAP-25 expression level. How this regulation is executed mechanistically remains unknown. We investigated this question in mouse adrenal chromaffin cells and found that SNAP-25 inhibits Ca2+ currents, with the B-isoform being more potent than the A-isoform, but not when syntaxin-1 is cleaved by botulinum neurotoxin C. In contrast, syntaxin-1 inhibits Ca2+ currents independently of SNAP-25. Further experiments using immunostaining showed that endogenous or exogenous SNAP-25 expression recruits syntaxin-1 from clusters on the plasma membrane, thereby increasing the immunoavailability of syntaxin-1 and leading indirectly to Ca2+ current inhibition. Expression of Munc18-1, which recruits syntaxin-1 within the exocytotic pathway, does not modulate Ca2+ channels, whereas overexpression of the syntaxin-binding protein Doc2B or ubMunc13-2 increases syntaxin-1 immunoavailability and concomitantly down-regulates Ca2+ currents. Similar findings were obtained upon chemical cholesterol depletion, leading directly to syntaxin-1 cluster dispersal and Ca2+ current inhibition. We conclude that clustering of syntaxin-1 allows the cell to maintain a high syntaxin-1 expression level without compromising Ca2+ influx, and recruitment of syntaxin-1 from clusters by SNAP-25 expression makes it available for regulating Ca2+ channels. This mechanism potentially allows the cell to regulate Ca2+ influx by expanding or contracting syntaxin-1 clusters.
Collapse
Affiliation(s)
- Trine Lisberg Toft-Bertelsen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Iwona Ziomkiewicz
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Sébastien Houy
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Paulo S Pinheiro
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jakob B Sørensen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
40
|
Abstract
Schizophrenia is a serious psychiatric illness which is experienced by about 1 % of individuals worldwide and has a debilitating impact on perception, cognition, and social function. Over the years, several models/hypotheses have been developed which link schizophrenia to dysregulations of the dopamine, glutamate, and serotonin receptor pathways. An important segment of these pathways that have been extensively studied for the pathophysiology of schizophrenia is the presynaptic neurotransmitter release mechanism. This set of molecular events is an evolutionarily well-conserved process that involves vesicle recruitment, docking, membrane fusion, and recycling, leading to efficient neurotransmitter delivery at the synapse. Accumulated evidence indicate dysregulation of this mechanism impacting postsynaptic signal transduction via different neurotransmitters in key brain regions implicated in schizophrenia. In recent years, after ground-breaking work that elucidated the operations of this mechanism, research efforts have focused on the alterations in the messenger RNA (mRNA) and protein expression of presynaptic neurotransmitter release molecules in schizophrenia and other neuropsychiatric conditions. In this review article, we present recent evidence from schizophrenia human postmortem studies that key proteins involved in the presynaptic release mechanism are dysregulated in the disorder. We also discuss the potential impact of dysfunctional presynaptic neurotransmitter release on the various neurotransmitter systems implicated in schizophrenia.
Collapse
Affiliation(s)
- Chijioke N Egbujo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Duncan Sinclair
- Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Olbrich K, Costard L, Möser CV, Syhr KMJ, King-Himmelreich TS, Wolters MC, Schmidtko A, Geisslinger G, Niederberger E. Cleavage of SNAP-25 ameliorates cancer pain in a mouse model of melanoma. Eur J Pain 2016; 21:101-111. [PMID: 27301493 DOI: 10.1002/ejp.904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cancer pain is associated with increased pain sensitivity to noxious (hyperalgesia) and normally innocuous (allodynia) stimuli due to activation of nociceptors by tumour-derived mediators or tumour infiltration of nerves. The pain sensitization is accompanied by modifications in gene expression, but specifically regulated genes are largely unknown. The 25 kDa synaptosomal-associated protein (SNAP-25) is involved in chemical neurotransmission at the synaptic cleft. Its inhibition by Botulinum neurotoxin A (BoNT/A) has been associated with antinociceptive effects in migraine, inflammatory and neuropathic pain. However, its potential to reduce tumour-associated pain remains to be clarified. METHODS We applied a melanoma model of tumour pain in C57BL/6 mice and investigated SNAP-25 expression and regulation by qRT-PCR, Western Blot and immunofluorescence as well as tumour-associated mechanical allodynia with and without BoNT/A treatment. RESULTS We found increased SNAP-25 expression in the dorsal root ganglia and the sciatic nerve. Intraplantar injection of BoNT/A induced the cleavage of SNAP-25 in these tissues and was associated with decreased mechanical allodynia after therapeutic treatment at early and late stages of tumour pain while the tumour size was not affected. CONCLUSIONS Our data indicate that SNAP-25 plays a role in tumour pain but has no influence on the initiation and progression of skin cancer. Its cleavage inhibits the development of allodynia in the mouse melanoma model and might be useful as new therapeutic approach for the treatment of cancer pain. WHAT DOES THIS STUDY ADD?: SNAP-25 is differentially regulated during melanoma-induced tumour pain. Its cleavage by BoNT/A might be a suitable therapeutic option for tumour pain patients since tumour-associated pain can be strongly and significantly reduced after preventive and therapeutic BoNT/A treatment, respectively.
Collapse
Affiliation(s)
- K Olbrich
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - L Costard
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - C V Möser
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - K M J Syhr
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - T S King-Himmelreich
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - M C Wolters
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - A Schmidtko
- Institut für Pharmakologie und Toxikologie, Universität Witten/Herdecke, Zentrum für Biomedizinische Ausbildung und Forschung, Witten, Germany
| | - G Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - E Niederberger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
42
|
NOS1 and SNAP25 polymorphisms are associated with Attention-Deficit/Hyperactivity Disorder symptoms in adults but not in children. J Psychiatr Res 2016; 75:75-81. [PMID: 26821215 DOI: 10.1016/j.jpsychires.2016.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/05/2015] [Accepted: 01/15/2016] [Indexed: 01/01/2023]
Abstract
Several investigations documented that Attention-Deficit/Hyperactivity Disorder (ADHD) is better conceptualized as a dimensional disorder. At the same time, the disorder seems to have different neurobiological underpinnings and phenotypic presentation in children compared to adults. Neurodevelopmental genes could explain, at least partly these differences. The aim of the present study was to examine possible associations between polymorphisms in SNAP25, MAP1B and NOS1 genes and ADHD symptoms in Brazilian samples of children/adolescents and adults with ADHD. The youth sample consisted of 301 patients whereas the adult sample comprises 485 individuals with ADHD. Diagnoses of ADHD and comorbidities were based on the Diagnostic and Statistical Manual of Mental Disorders-4th edition criteria. The Swanson, Nolan and Pelham Scale-Version IV (SNAP-IV) was applied by psychiatrists blinded to genotype. The total SNAP-IV scores were compared between genotypes. Impulsivity SNAP-IV scores were also compared according to NOS1 genotypes. Adult patients homozygous for the C allele at SNAP25 rs8636 showed significantly higher total SNAP-IV scores (F = 11.215; adjusted P-value = 0.004). Impulsivity SNAP-IV scores were also significantly different according to NOS1 rs478597 polymorphisms in adults with ADHD (F = 6.282; adjusted P-value = 0.026). These associations were not observed in children and adolescents with ADHD. These results suggest that SNAP25 and NOS1 genotypes influence ADHD symptoms only in adults with ADHD. Our study corroborates previous evidences for differences in the genetic contribution to adult ADHD compared with childhood ADHD.
Collapse
|
43
|
Antonucci F, Corradini I, Fossati G, Tomasoni R, Menna E, Matteoli M. SNAP-25, a Known Presynaptic Protein with Emerging Postsynaptic Functions. Front Synaptic Neurosci 2016; 8:7. [PMID: 27047369 PMCID: PMC4805587 DOI: 10.3389/fnsyn.2016.00007] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/07/2016] [Indexed: 12/27/2022] Open
Abstract
A hallmark of synaptic specializations is their dependence on highly organized complexes of proteins that interact with each other. The loss or modification of key synaptic proteins directly affects the properties of such networks, ultimately impacting synaptic function. SNAP-25 is a component of the SNARE complex, which is central to synaptic vesicle exocytosis, and, by directly interacting with different calcium channels subunits, it negatively modulates neuronal voltage-gated calcium channels, thus regulating intracellular calcium dynamics. The SNAP-25 gene has been associated with distinct brain diseases, including Attention Deficit Hyperactivity Disorder (ADHD), schizophrenia and bipolar disorder, indicating that the protein may act as a shared biological substrate among different "synaptopathies". The mechanisms by which alterations in SNAP-25 may concur to these psychiatric diseases are still undefined, although alterations in neurotransmitter release have been indicated as potential causative processes. This review summarizes recent work showing that SNAP-25 not only controls exo/endocytic processes at the presynaptic terminal, but also regulates postsynaptic receptor trafficking, spine morphogenesis, and plasticity, thus opening the possibility that SNAP-25 defects may contribute to psychiatric diseases by impacting not only presynaptic but also postsynaptic functions.
Collapse
Affiliation(s)
- Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano Milan, Italy
| | - Irene Corradini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di MilanoMilan, Italy; Istituto di Neuroscienze, Centro Nazionale RicercheMilan, Italy
| | - Giuliana Fossati
- Humanitas Clinical and Research Center, IRCCS Rozzano Rozzano, Italy
| | - Romana Tomasoni
- Humanitas Clinical and Research Center, IRCCS Rozzano Rozzano, Italy
| | - Elisabetta Menna
- Istituto di Neuroscienze, Centro Nazionale RicercheMilan, Italy; Humanitas Clinical and Research Center, IRCCS RozzanoRozzano, Italy
| | - Michela Matteoli
- Istituto di Neuroscienze, Centro Nazionale RicercheMilan, Italy; Humanitas Clinical and Research Center, IRCCS RozzanoRozzano, Italy
| |
Collapse
|
44
|
Crawford DC, Kavalali ET. Molecular underpinnings of synaptic vesicle pool heterogeneity. Traffic 2015; 16:338-64. [PMID: 25620674 DOI: 10.1111/tra.12262] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Indexed: 12/31/2022]
Abstract
Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.
Collapse
Affiliation(s)
- Devon C Crawford
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | | |
Collapse
|
45
|
Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C. The evolving spectrum ofPRRT2-associated paroxysmal diseases. Brain 2015; 138:3476-95. [DOI: 10.1093/brain/awv317] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/30/2015] [Indexed: 02/01/2023] Open
|
46
|
Melamine Alters Glutamatergic Synaptic Transmission of CA3-CA1 Synapses Presynaptically Through Autophagy Activation in the Rat Hippocampus. Neurotox Res 2015; 29:135-42. [PMID: 26530910 DOI: 10.1007/s12640-015-9570-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 10/22/2022]
Abstract
Melamine is an industrial chemical that can cause central nervous system disorders including excitotoxicity and cognitive impairment. Its illegal use in powdered baby formula was the focus of a milk scandal in China in 2008. One of our previous studies showed that melamine impaired glutamatergic transmission in rat hippocampal CA1 pyramidal cells. However, the underlying mechanism of action of melamine is unclear, and it is unknown if the CA3-CA1 pathway is directly involved. In the present study, a whole-cell patch-clamp technique was employed to investigate the effect of melamine on the hippocampal CA3-CA1 pathway in vitro. Both the evoked excitatory postsynaptic current (eEPSC) and the paired-pulse ratio (PPR) were recorded. Furthermore, we examined whether autophagy was involved in glutamatergic transmission alterations induced by melamine. Our data showed that melamine significantly increased the amplitude of eEPSCs in a dose-dependent manner. Inhibition of the N-methyl-D-aspartic acid receptor did not prevent the increase in eEPSC amplitude. In addition, the PPR was remarkably decreased by a melamine concentration of 5 × 10(-5) g/mL. It was found that autophagy could be activated by melamine and an autophagy inhibitor, 3-MA, prevented the melamine-induced increase in eEPSC amplitude. Overall, our results show that melamine presynaptically alters glutamatergic synaptic transmission of hippocampal CA3-CA1 synapses in vitro and this is likely associated with autophagy alteration.
Collapse
|
47
|
Kunieda K, Tsutsuki H, Ida T, Kishimoto Y, Kasamatsu S, Sawa T, Goshima N, Itakura M, Takahashi M, Akaike T, Ihara H. 8-Nitro-cGMP Enhances SNARE Complex Formation through S-Guanylation of Cys90 in SNAP25. ACS Chem Neurosci 2015. [PMID: 26221773 DOI: 10.1021/acschemneuro.5b00196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nitrated guanine nucleotide 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) generated by reactive oxygen/nitrogen species causes protein S-guanylation. However, the mechanism of 8-nitro-cGMP formation and its protein targets in the normal brain have not been identified. Here, we investigated 8-nitro-cGMP generation and protein S-guanylation in the rodent brain. Immunohistochemistry indicated that 8-nitro-cGMP was produced by neurons, such as pyramidal cells and interneurons. Using liquid chromatography-tandem mass spectrometry, we determined endogenous 8-nitro-cGMP levels in the brain as 2.92 ± 0.10 pmol/mg protein. Based on S-guanylation proteomics, we identified several S-guanylated neuronal proteins, including SNAP25 which is a core member of the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) complex. SNAP25 post-translational modification including palmitoylation, phosphorylation, and oxidation, are known to regulate neurotransmission. Our results demonstrate that S-guanylation of SNAP25 enhanced the stability of the SNARE complex, which was further promoted by Ca(2+)-dependent activation of neuronal nitric oxide synthase. Using site-directed mutagenesis, we identified SNAP25 cysteine 90 as the main target of S-guanylation which enhanced the stability of the SNARE complex. The present study revealed a novel target of redox signaling via protein S-guanylation in the nervous system and provided the first substantial evidence of 8-nitro-cGMP function in the nervous system.
Collapse
Affiliation(s)
- Kohei Kunieda
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Hiroyasu Tsutsuki
- Department
of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tomoaki Ida
- Department
of Environmental Health Sciences and Molecular Toxicology, Graduate
School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| | - Yusuke Kishimoto
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Shingo Kasamatsu
- Department
of Environmental Health Sciences and Molecular Toxicology, Graduate
School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| | - Tomohiro Sawa
- Department
of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoki Goshima
- Quantitative
Proteomics Team, Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Makoto Itakura
- Department
of Biochemistry, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masami Takahashi
- Department
of Biochemistry, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Takaaki Akaike
- Department
of Environmental Health Sciences and Molecular Toxicology, Graduate
School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| | - Hideshi Ihara
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| |
Collapse
|
48
|
Niere F, Namjoshi S, Song E, Dilly GA, Schoenhard G, Zemelman BV, Mechref Y, Raab-Graham KF. Analysis of Proteins That Rapidly Change Upon Mechanistic/Mammalian Target of Rapamycin Complex 1 (mTORC1) Repression Identifies Parkinson Protein 7 (PARK7) as a Novel Protein Aberrantly Expressed in Tuberous Sclerosis Complex (TSC). Mol Cell Proteomics 2015; 15:426-44. [PMID: 26419955 DOI: 10.1074/mcp.m115.055079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 01/05/2023] Open
Abstract
Many biological processes involve the mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Thus, the challenge of deciphering mTORC1-mediated functions during normal and pathological states in the central nervous system is challenging. Because mTORC1 is at the core of translation, we have investigated mTORC1 function in global and regional protein expression. Activation of mTORC1 has been generally regarded to promote translation. Few but recent works have shown that suppression of mTORC1 can also promote local protein synthesis. Moreover, excessive mTORC1 activation during diseased states represses basal and activity-induced protein synthesis. To determine the role of mTORC1 activation in protein expression, we have used an unbiased, large-scale proteomic approach. We provide evidence that a brief repression of mTORC1 activity in vivo by rapamycin has little effect globally, yet leads to a significant remodeling of synaptic proteins, in particular those proteins that reside in the postsynaptic density. We have also found that curtailing the activity of mTORC1 bidirectionally alters the expression of proteins associated with epilepsy, Alzheimer's disease, and autism spectrum disorder-neurological disorders that exhibit elevated mTORC1 activity. Through a protein-protein interaction network analysis, we have identified common proteins shared among these mTORC1-related diseases. One such protein is Parkinson protein 7, which has been implicated in Parkinson's disease, yet not associated with epilepsy, Alzheimers disease, or autism spectrum disorder. To verify our finding, we provide evidence that the protein expression of Parkinson protein 7, including new protein synthesis, is sensitive to mTORC1 inhibition. Using a mouse model of tuberous sclerosis complex, a disease that displays both epilepsy and autism spectrum disorder phenotypes and has overactive mTORC1 signaling, we show that Parkinson protein 7 protein is elevated in the dendrites and colocalizes with the postsynaptic marker postsynaptic density-95. Our work offers a comprehensive view of mTORC1 and its role in regulating regional protein expression in normal and diseased states.
Collapse
Affiliation(s)
- Farr Niere
- From the ‡Center for Learning and Memory, University of Texas, Austin, 1 University Station C7000, Texas 78712; §Institute for Cell and Molecular Biology, University of Texas, Austin, Texas; ¶Institute for Neuroscience, University of Texas, Austin, Texas; ‖Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas
| | - Sanjeev Namjoshi
- From the ‡Center for Learning and Memory, University of Texas, Austin, 1 University Station C7000, Texas 78712; §Institute for Cell and Molecular Biology, University of Texas, Austin, Texas
| | - Ehwang Song
- **Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409
| | - Geoffrey A Dilly
- From the ‡Center for Learning and Memory, University of Texas, Austin, 1 University Station C7000, Texas 78712; §Institute for Cell and Molecular Biology, University of Texas, Austin, Texas; ¶Institute for Neuroscience, University of Texas, Austin, Texas
| | - Grant Schoenhard
- ‡‡Pain Therapeutics, Inc., 7801 N Capital of Texas Hwy, #260, Austin, Texas 78731
| | - Boris V Zemelman
- From the ‡Center for Learning and Memory, University of Texas, Austin, 1 University Station C7000, Texas 78712; §Institute for Cell and Molecular Biology, University of Texas, Austin, Texas; ¶Institute for Neuroscience, University of Texas, Austin, Texas
| | - Yehia Mechref
- **Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409
| | - Kimberly F Raab-Graham
- From the ‡Center for Learning and Memory, University of Texas, Austin, 1 University Station C7000, Texas 78712; §Institute for Cell and Molecular Biology, University of Texas, Austin, Texas; ¶Institute for Neuroscience, University of Texas, Austin, Texas; ‖Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas; ‡‡Pain Therapeutics, Inc., 7801 N Capital of Texas Hwy, #260, Austin, Texas 78731
| |
Collapse
|
49
|
Fattorini G, Antonucci F, Menna E, Matteoli M, Conti F. Co-expression of VGLUT1 and VGAT sustains glutamate and GABA co-release and is regulated by activity in cortical neurons. J Cell Sci 2015; 128:1669-73. [PMID: 25749864 DOI: 10.1242/jcs.164210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/26/2015] [Indexed: 02/02/2023] Open
Abstract
In adult neocortex, VGLUT1 (also known as SLC17A7), the main glutamate vesicular transporter, and VGAT (also known as SLC32A1), the γ-aminobutyric acid (GABA) vesicular transporter, are co-expressed in a subset of axon terminals forming both symmetric and asymmetric synapses, where they are sorted into the same vesicles. However, the functional consequence of this colocalization in cortical neurons has not been clarified. Here, we tested the hypothesis that cortical axon terminals co-expressing VGLUT1 and VGAT can evoke simultaneously monosynaptic glutamate and GABA responses, and investigated whether the amount of terminals co-expressing VGLUT1 and VGAT is affected by perturbations of excitation-inhibition balance. In rat primary cortical neurons, we found that a proportion of synaptic and autaptic responses were indeed sensitive to consecutive application of selective glutamate and GABAA receptor blockers. These 'mixed' synapses exhibited paired-pulse depression. Notably, reducing the activity of the neuronal network by treatment with glutamate receptor antagonists decreased the amount of 'mixed' synapses, whereas reducing spontaneous inhibition by treatment with bicuculline increased them. These synapses might contribute to homeostatic regulation of excitation-inhibition balance.
Collapse
Affiliation(s)
- Giorgia Fattorini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy Center for Neurobiology of Aging, INRCA IRCCS, 60121 Ancona, Italy
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy CNR Institute of Neuroscience, 20129 Milano, Italy
| | - Elisabetta Menna
- CNR Institute of Neuroscience, 20129 Milano, Italy Istituto Clinico Humanitas, IRCCS, 20089 Rozzano (Milano), Italy
| | - Michela Matteoli
- CNR Institute of Neuroscience, 20129 Milano, Italy Istituto Clinico Humanitas, IRCCS, 20089 Rozzano (Milano), Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy Center for Neurobiology of Aging, INRCA IRCCS, 60121 Ancona, Italy Fondazione di Medicina Molecolare, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
50
|
Fossati G, Morini R, Corradini I, Antonucci F, Trepte P, Edry E, Sharma V, Papale A, Pozzi D, Defilippi P, Meier JC, Brambilla R, Turco E, Rosenblum K, Wanker EE, Ziv NE, Menna E, Matteoli M. Reduced SNAP-25 increases PSD-95 mobility and impairs spine morphogenesis. Cell Death Differ 2015; 22:1425-36. [PMID: 25678324 DOI: 10.1038/cdd.2014.227] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 10/22/2014] [Accepted: 11/26/2014] [Indexed: 12/24/2022] Open
Abstract
Impairment of synaptic function can lead to neuropsychiatric disorders collectively referred to as synaptopathies. The SNARE protein SNAP-25 is implicated in several brain pathologies and, indeed, brain areas of psychiatric patients often display reduced SNAP-25 expression. It has been recently found that acute downregulation of SNAP-25 in brain slices impairs long-term potentiation; however, the processes through which this occurs are still poorly defined. We show that in vivo acute downregulation of SNAP-25 in CA1 hippocampal region affects spine number. Consistently, hippocampal neurons from SNAP-25 heterozygous mice show reduced densities of dendritic spines and defective PSD-95 dynamics. Finally, we show that, in brain, SNAP-25 is part of a molecular complex including PSD-95 and p140Cap, with p140Cap being capable to bind to both SNAP-25 and PSD-95. These data demonstrate an unexpected role of SNAP-25 in controlling PSD-95 clustering and open the possibility that genetic reductions of the protein levels - as occurring in schizophrenia - may contribute to the pathology through an effect on postsynaptic function and plasticity.
Collapse
Affiliation(s)
- G Fossati
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy
| | - R Morini
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy
| | - I Corradini
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Istituto di Neuroscienze del CNR, Milano 20129, Italy
| | - F Antonucci
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Istituto di Neuroscienze del CNR, Milano 20129, Italy
| | - P Trepte
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine (MDC), Berlin 13125, Germany
| | - E Edry
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Adult Brain (CGMB), Haifa University, Haifa, Israel
| | - V Sharma
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Adult Brain (CGMB), Haifa University, Haifa, Israel
| | - A Papale
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute and University, Milano 20132, Italy
| | - D Pozzi
- Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy
| | - P Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10124, Italy
| | - J C Meier
- 1] RNA Editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany [2] TU Braunschweig, Zoological Institute, Division of Cell Biology and Cell Physiology, Braunschweig, Germany
| | - R Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute and University, Milano 20132, Italy
| | - E Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10124, Italy
| | - K Rosenblum
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Adult Brain (CGMB), Haifa University, Haifa, Israel
| | - E E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine (MDC), Berlin 13125, Germany
| | - N E Ziv
- Network Biology Labs and Faculty of Medicine, Technion, 33000 Haifa, Israel
| | - E Menna
- 1] Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy [2] Istituto di Neuroscienze del CNR, Milano 20129, Italy
| | - M Matteoli
- 1] Department of Biotechnology and Translational Medicine, University of Milan, Milano 20129, Italy [2] Humanitas Clinical and Research Center, Laboratory of Pharmacology and Brain Pathology, Via Manzoni 56, Rozzano, 20089 Milano, Italy
| |
Collapse
|