1
|
Patouillat L, Hambuckers A, Adi Subrata S, Garigliany M, Brotcorne F. Zoonotic pathogens in wild Asian primates: a systematic review highlighting research gaps. Front Vet Sci 2024; 11:1386180. [PMID: 38993279 PMCID: PMC11238137 DOI: 10.3389/fvets.2024.1386180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction Ongoing global changes, including natural land conversion for agriculture and urbanization, modify the dynamics of human-primate contacts, resulting in increased zoonotic risks. Although Asia shelters high primate diversity and experiences rapid expansion of human-primate contact zones, there remains little documentation regarding zoonotic surveillance in the primates of this region. Methods Using the PRISMA guidelines, we conducted a systematic review to compile an inventory of zoonotic pathogens detected in wild Asian primates, while highlighting the coverage of primate species, countries, and pathogen groups surveyed, as well as the diagnostic methods used across the studies. Moreover, we compared the species richness of pathogens harbored by primates across diverse types of habitats classified according to their degree of anthropization (i.e., urban vs. rural vs. forest habitats). Results and discussion Searches of Scopus, PubMed, and the Global Mammal Parasite Database yielded 152 articles on 39 primate species. We inventoried 183 pathogens, including 63 helminthic gastrointestinal parasites, two blood-borne parasites, 42 protozoa, 45 viruses, 30 bacteria, and one fungus. Considering each study as a sample, species accumulation curves revealed no significant differences in specific richness between habitat types for any of the pathogen groups analyzed. This is likely due to the insufficient sampling effort (i.e., a limited number of studies), which prevents drawing conclusive findings. This systematic review identified several publication biases, particularly the uneven representation of host species and pathogen groups studied, as well as a lack of use of generic diagnostic methods. Addressing these gaps necessitates a multidisciplinary strategy framed in a One Health approach, which may facilitate a broader inventory of pathogens and ultimately limit the risk of cross-species transmission at the human-primate interface. Strengthening the zoonotic surveillance in primates of this region could be realized notably through the application of more comprehensive diagnostic techniques such as broad-spectrum analyses without a priori selection.
Collapse
Affiliation(s)
- Laurie Patouillat
- SPHERES, Primatology and Tropical Ecology Group, Faculty of Sciences, University of Liège, Liège, Belgium
- FARAH, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Alain Hambuckers
- SPHERES, Primatology and Tropical Ecology Group, Faculty of Sciences, University of Liège, Liège, Belgium
| | - Sena Adi Subrata
- Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mutien Garigliany
- FARAH, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Fany Brotcorne
- SPHERES, Primatology and Tropical Ecology Group, Faculty of Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Ortiz-Cam L, Jones-Engel L, Mendoza P, Castillo-Neyra R. Association between seroprevalence of measles virus in monkeys and degree of human-monkey contact in Bangladesh. One Health 2023; 17:100571. [PMID: 37332882 PMCID: PMC10272506 DOI: 10.1016/j.onehlt.2023.100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Measles infections can cause significant morbidity and mortality in human and monkey populations. The endemicity of measles in human populations and viral circulation within populations of free-living monkeys may have important repercussions for potential zoonotic transmission events and for the long-term health of monkey populations. Yet, there has not yet been a rigorous investigation of the dynamics of measles transmission where human and monkey populations coexist. In this study, to determine the difference in seroprevalence of the measles virus across different contexts of human-monkey contact, we analyzed serum samples collected from 56 apparently healthy Macaca mulatta monkeys who occupied diverse contexts, with different degrees of human-monkey contact, in Bangladesh. This is the first report of measles virus seroprevalence in monkeys in Bangladesh. We found a clear association between measles virus seropositivity in monkeys and the context in which they interact with humans. Seroprevalence was the lowest in wild areas (0.0%) and increased in shrines (4.8%), urban areas (5.9%), and was highest among monkeys who are used as performance animals (50.0%). This work suggests that a One Health approach informed by local interspecies transmission dynamics is necessary to develop strategies that both improve measles vaccination coverage, achieve long-term surveillance in monkey populations, and prevent measles spillback to monkeys. This approach aims to inform conservation efforts and protect the long-term health of human and monkey populations.
Collapse
Affiliation(s)
- Lizzie Ortiz-Cam
- National Forest and Wildlife Service (SERFOR), Lima, Peru
- School of Veterinary Medicine and Zoothecnic, Cayetano Heredia Peruvian University, Lima, Peru
- School of Public Health and Administration, Cayetano Heredia Peruvian University, Lima, Peru
| | - Lisa Jones-Engel
- People for the Ethical Treatment of Animals (PETA), Norfolk, VA, USA
| | - Patricia Mendoza
- Neotropical Primate Conservation, Lima, Peru
- Department of Biology, Missouri University, St Louis, USA
| | - Ricardo Castillo-Neyra
- School of Public Health and Administration, Cayetano Heredia Peruvian University, Lima, Peru
- Department of Biostatistics, Epidemiology and Informatics at University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
3
|
Shanta IS, Luby SP, Hossain K, Heffelfinger JD, Kilpatrick AM, Haider N, Rahman T, Chakma S, Ahmed SSU, Sharker Y, Pulliam JRC, Kennedy ED, Gurley ES. Human Exposure to Bats, Rodents and Monkeys in Bangladesh. ECOHEALTH 2023; 20:53-64. [PMID: 37099204 PMCID: PMC10131556 DOI: 10.1007/s10393-023-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 06/11/2023]
Abstract
Bats, rodents and monkeys are reservoirs for emerging zoonotic infections. We sought to describe the frequency of human exposure to these animals and the seasonal and geographic variation of these exposures in Bangladesh. During 2013-2016, we conducted a cross-sectional survey in a nationally representative sample of 10,002 households from 1001 randomly selected communities. We interviewed household members about exposures to bats, rodents and monkeys, including a key human-bat interface-raw date palm sap consumption. Respondents reported observing rodents (90%), bats (52%) and monkeys (2%) in or around their households, although fewer reported direct contact. The presence of monkeys around the household was reported more often in Sylhet division (7%) compared to other divisions. Households in Khulna (17%) and Rajshahi (13%) were more likely to report drinking date palm sap than in other divisions (1.5-5.6%). Date palm sap was mostly consumed during winter with higher frequencies in January (16%) and February (12%) than in other months (0-5.6%). There was a decreasing trend in drinking sap over the three years. Overall, we observed substantial geographic and seasonal patterns in human exposure to animals that could be sources of zoonotic disease. These findings could facilitate targeting emerging zoonoses surveillance, research and prevention efforts to areas and seasons with the highest levels of exposure.
Collapse
Affiliation(s)
- Ireen Sultana Shanta
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.
| | | | - Kamal Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | | | - Najmul Haider
- The Royal Veterinary College, University of London, London, UK
| | - Taifur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Shovon Chakma
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Syed Sayeem Uddin Ahmed
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Yushuf Sharker
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- University of Florida, Gainesville, USA
| | - Juliet R C Pulliam
- South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Erin D Kennedy
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emily S Gurley
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| |
Collapse
|
4
|
Rahman MK, Hassan MM, Islam S, Rostal MK, Uddin MH, Hagan E, Samad MA, Flora MS, Epstein JH, Islam A. Characterization and epidemiology of antimicrobial resistance patterns of Salmonella spp. and Staphylococcus spp. in free-ranging rhesus macaque ( Macaca mulatta) at high-risk interfaces with people and livestock in Bangladesh. Front Vet Sci 2023; 10:1103922. [PMID: 36793381 PMCID: PMC9922862 DOI: 10.3389/fvets.2023.1103922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a growing global health threat for humans and animals. Environmental contamination of antimicrobials from human and domestic animal feces has been linked to AMR in wildlife populations, including rhesus macaques. This study aimed to describe the eco-epidemiology of AMR within Salmonella and Staphylococcus species isolated from rhesus macaques. Methods We followed macaque groups for 4 h per day (2 days) to observe the direct and indirect contact rate and type between macaques and people and livestock. We collected 399 freshly defecated, non-invasive fecal samples from macaques at seven sites in Bangladesh in January-June 2017. Bacterial isolation and identification were conducted using culture, biochemical characteristics, and polymerase chain reaction (PCR). An antimicrobial susceptibility test (AST) for 12 antimicrobials for each organism was conducted using the Kirby-Bauer disc diffusion method. Results The overall prevalence of Salmonella spp. and Staphylococcus spp. in rhesus macaques was 5% (n = 18; 95% CI: 3-7%) and 16% (n = 64; 95% CI: 13-20%), respectively. All the isolated Salmonella spp. and most of the Staphylococcus spp. (95%; 61/64; 95% CI: 86.9-99%) were resistant to at least one antimicrobial. The odds of a fecal sample having antimicrobial-resistant Salmonella spp (OR = 6.6; CI: 0.9-45.8, P = 0.05) and Staphylococcus spp. (OR = 5.6; CI: 1.2-26, P = 0.02) were significantly higher in samples collected at peri-urban sites than those collected at rural and urban sites. Salmonella spp. were most frequently resistant to tetracycline (89%), azithromycin (83%), sulfamethoxazole-trimethoprim (50%), and nalidixic acid (44%). Staphylococcus spp. were found to be highly resistant to ampicillin (93%), methicillin (31%), clindamycin (26%), and rifampicin (18%). Both bacterial species produced colonies with multidrug resistance to up to seven antimicrobials. Direct and indirect contact rates (within 20 m for at least 15 min) and resource sharing between macaques and people were higher in urban sites, while macaque-livestock contact rates were higher in rural sites. Discussion The study shows that resistant microorganisms are circulating in rhesus macaque, and direct and indirect contact with humans and livestock might expand the resistant organisms.
Collapse
Affiliation(s)
- Md. Kaisar Rahman
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh,Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh,EcoHealth Alliance, New York, NY, United States,School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh,Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| | - Shariful Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh,EcoHealth Alliance, New York, NY, United States
| | | | - Md. Helal Uddin
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Emily Hagan
- EcoHealth Alliance, New York, NY, United States
| | - Mohammed Abdus Samad
- Antimicrobial Resistance Action Center (ARAC), Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Meerjady Sabrina Flora
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh,Directorate General of Health Services, Dhaka, Bangladesh
| | | | - Ariful Islam
- EcoHealth Alliance, New York, NY, United States,*Correspondence: Ariful Islam ✉
| |
Collapse
|
5
|
Comparison of a Genotype 1 and a Genotype 2 Macaque Foamy Virus env Gene Indicates Distinct Infectivity and Cell-Cell Fusion but Similar Tropism and Restriction of Cell Entry by Interferon-Induced Transmembrane Proteins. Viruses 2023; 15:v15020262. [PMID: 36851478 PMCID: PMC9960098 DOI: 10.3390/v15020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Foamy viruses (FVs) are naturally found in many different animals and also in primates with the notable exception of humans, but zoonotic infections are common. In several species, two different envelope (env) gene sequence clades or genotypes exist. We constructed a simian FV (SFV) clone containing a reporter gene cassette. In this background, we compared the env genes of the SFVmmu-DPZ9524 (genotype 1) and of the SFVmmu_R289hybAGM (genotype 2) isolates. SFVmmu_R289hybAGM env-driven infection was largely resistant to neutralization by SFVmmu-DPZ9524-neutralizing sera. While SFVmmu_R289hybAGM env consistently effected higher infectivity and cell-cell fusion, we found no differences in the cell tropism conferred by either env across a range of different cells. Infection by both viruses was weakly and non-significantly enhanced by simultaneous knockout of interferon-induced transmembrane proteins (IFITMs) 1, 2, and 3 in A549 cells, irrespective of prior interferon stimulation. Infection was modestly reduced by recombinant overexpression of IFITM3, suggesting that the SFV entry step might be weakly restricted by IFITM3 under some conditions. Overall, our results suggest that the different env gene clades in macaque foamy viruses induce genotype-specific neutralizing antibodies without exhibiting overt differences in cell tropism, but individual env genes may differ significantly with regard to fitness.
Collapse
|
6
|
Shano S, Islam A, Hagan E, Rostal MK, Martinez S, Al Shakil A, Hasan M, Francisco L, Husain MM, Rahman M, Flora MS, Miller M, Daszak P, Epstein JH. Environmental Change and Zoonotic Disease Risk at Human-Macaque Interfaces in Bangladesh. ECOHEALTH 2021; 18:487-499. [PMID: 34748109 PMCID: PMC8573309 DOI: 10.1007/s10393-021-01565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/08/2021] [Indexed: 05/11/2023]
Abstract
Anthropogenic land-use changes increase the frequency of interactions and habitat overlap between humans and macaques which play an important role in zoonotic disease transmission. This exploratory qualitative study aimed to examine connections between land-use change and macaque-human interactions and assess the chance of zoonotic disease transmission. We conducted ethnographic interviews and focus group discussions in Old Dhaka, Madaripur, and Chandpur, Bangladesh. Participants reported significant anthropogenic landscape transformations leading to increased human-macaque contact in the study areas. Participants also reported that all three sites underwent substantial landscape alteration from natural or agricultural land to a human-altered environment with roads, commercial, and residential buildings. Participants noted that the disappearance of forestland appeared to increase the macaque dependence on backyard fruit trees. Where rivers and ponds were filled to support local construction, macaques were also observed as becoming more dependent upon human water sources. These changed may help expanding the macaques' foraging areas, and they appear to be invading new areas where people are not culturally habituated to living with them. In response, many residents reported reacting aggressively toward the macaques, which they believed led to more bites and scratches. However, other respondents accepted the presence of macaques around their homes. Few participants considered macaques to be a source of disease transmission. This study revealed that local environmental changes, deforestation, urban expansion, construction, and water bodies' disappearance are linked to increasing human-macaque interactions. Understanding these interactions is critical to develop successful mitigation interventions at interfaces with a high risk for viral disease spillover.
Collapse
Affiliation(s)
- Shahanaj Shano
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka-1212, Dhaka, Bangladesh
- EcoHealth Alliance, New York, NY, 10001, USA
| | | | - Emily Hagan
- EcoHealth Alliance, New York, NY, 10001, USA
| | | | | | - Abdullah Al Shakil
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka-1212, Dhaka, Bangladesh
- EcoHealth Alliance, New York, NY, 10001, USA
| | - Moushumi Hasan
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka-1212, Dhaka, Bangladesh
- EcoHealth Alliance, New York, NY, 10001, USA
| | - Leilani Francisco
- EcoHealth Alliance, New York, NY, 10001, USA
- Henry M. Jackson Foundation, Bethesda, MD, 20817, USA
| | - Mushtuq M Husain
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka-1212, Dhaka, Bangladesh
| | - Mahmudur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka-1212, Dhaka, Bangladesh
| | - Meerjady S Flora
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka-1212, Dhaka, Bangladesh
| | - Maureen Miller
- EcoHealth Alliance, New York, NY, 10001, USA
- Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | | | | |
Collapse
|
7
|
Nandi JS, Rathore SS, Mathur BR. Transmission of infectious viruses in the natural setting at human-animal interface. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2021; 2:100008. [PMID: 34250513 PMCID: PMC8256691 DOI: 10.1016/j.crviro.2021.100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022]
Abstract
Most viral pathogens causing epidemics and pandemics are zoonotic, emerging from wildlife reservoirs like SARS CoV2 causing the global Covid-19 pandemic, although animal origin of this virus remains a mystery. Cross-species transmission of pathogens from animals to humans is known as zoonosis. However, pathogens are also transmitted from humans to animals in regions where there is a close interaction between animals and humans by 'reverse transmission' (anthroponosis). Molecular evidence for the transmission of two zoonotic RNA viruses at the human-monkey interface in Rajasthan forests is presented here: a) the apathogenic Simian Foamy Viruses (SFV), and b): Influenza A viruses (IAV)-like virus, etiologic agent for human flu infecting wild Indian rhesus monkeys inhabiting Rajasthan forests. The data provide critical information on ecology and evolution of viruses of Public Health relevance. During replication, viral genomes mutate along the transmission route to adapt to the new hosts, generating new variants that are likely to have properties different from the founder viruses. Wild Indian monkeys are under-sampled for monitoring infectious diseases mainly because of the difficulties with sample collection. Monkeys are perceived as religious icons by the Hindus in India. It is extremely difficult to obtain permission from the Forest and Wildlife Department government authorities to collect wild simian blood samples for surveillance of infectious diseases caused by viral pathogens. Reducing animal-human contact and affordable vaccination are two relevant anti-viral strategies to counteract the spread of infectious zoonotic pathogens. Genbank Accession numbers: Indian SFVmac: ADN94420, IAV like virus: MZ298601.
Collapse
Affiliation(s)
| | - Shravan Singh Rathore
- Senior Wildlife Veterinarian, Machiya Biological Park, Post Office Saran Nagar Jodhpur, 342015, India
| | - Bajrang Raj Mathur
- Veterinary Expert, Government Veterinary Services, 6, Kamla Nehru Nagar, 1B1, Jodhpur, 342001, Rajasthan, India
| |
Collapse
|
8
|
Lappan S, Malaivijitnond S, Radhakrishna S, Riley EP, Ruppert N. The human-primate interface in the New Normal: Challenges and opportunities for primatologists in the COVID-19 era and beyond. Am J Primatol 2020; 82:e23176. [PMID: 32686188 PMCID: PMC7404331 DOI: 10.1002/ajp.23176] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/23/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
The emergence of SARS-CoV-2 in late 2019 and human responses to the resulting COVID-19 pandemic in early 2020 have rapidly changed many aspects of human behavior, including our interactions with wildlife. In this commentary, we identify challenges and opportunities at human-primate interfaces in light of COVID-19, focusing on examples from Asia, and make recommendations for researchers working with wild primates to reduce zoonosis risk and leverage research opportunities. First, we briefly review the evidence for zoonotic origins of SARS-CoV-2 and discuss risks of zoonosis at the human-primate interface. We then identify challenges that the pandemic has caused for primates, including reduced nutrition, increased intraspecific competition, and increased poaching risk, as well as challenges facing primatologists, including lost research opportunities. Subsequently, we highlight opportunities arising from pandemic-related lockdowns and public health messaging, including opportunities to reduce the intensity of problematic human-primate interfaces, opportunities to reduce the risk of zoonosis between humans and primates, opportunities to reduce legal and illegal trade in primates, new opportunities for research on human-primate interfaces, and opportunities for community education. Finally, we recommend specific actions that primatologists should take to reduce contact and aggression between humans and primates, to reduce demand for primates as pets, to reduce risks of zoonosis in the context of field research, and to improve understanding of human-primate interfaces. Reducing the risk of zoonosis and promoting the well-being of humans and primates at our interfaces will require substantial changes from "business as usual." We encourage primatologists to help lead the way.
Collapse
Affiliation(s)
- Susan Lappan
- Department of AnthropologyAppalachian State UniversityBooneNorth Carolina
- School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia
| | - Suchinda Malaivijitnond
- National Primate Research Center of ThailandChulalongkorn UniversityKaeng KhoiSaraburiThailand
- Department of Biology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
| | - Sindhu Radhakrishna
- National Institute of Advanced StudiesIndian Institute of ScienceBengaluruIndia
| | - Erin P. Riley
- Department of AnthropologySan Diego State UniversitySan DiegoCalifornia
| | - Nadine Ruppert
- School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia
| |
Collapse
|
9
|
Genome Analysis and Replication Studies of the African Green Monkey Simian Foamy Virus Serotype 3 Strain FV2014. Viruses 2020; 12:v12040403. [PMID: 32268512 PMCID: PMC7232438 DOI: 10.3390/v12040403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 01/23/2023] Open
Abstract
African green monkey (AGM) spumaretroviruses have been less well-studied than other simian foamy viruses (SFVs). We report the biological and genomic characterization of SFVcae_FV2014, which was the first foamy virus isolated from an African green monkey (AGM) and was found to be serotype 3. Infectivity studies in various cell lines from different species (mouse, dog, rhesus monkey, AGM, and human) indicated that like other SFVs, SFVcae_FV2014 had broad species and cell tropism, and in vitro cell culture infection resulted in cytopathic effect (CPE). In Mus dunni (a wild mouse fibroblast cell line), MDCK (Madin-Darby canine kidney cell line), FRhK-4 (a fetal rhesus kidney cell line), and MRC-5 (a human fetal lung cell line), SFVcae_FV2014 infection was productive resulting in CPE, and had delayed or similar replication kinetics compared with SFVmcy_FV21 and SFVmcy_FV34[RF], which are two Taiwanese macaque isolates, designated as serotypes 1 and 2, respectively. However, in Vero (AGM kidney cell line) and A549 (a human lung carcinoma cell line), the replication kinetics of SFVcae_FV2014 and the SFVmcy viruses were discordant: In Vero, SFVcae_FV2014 showed rapid replication kinetics and extensive CPE, and a persistent infection was seen in A549, with delayed, low CPE, which did not progress even upon extended culture (day 55). Nucleotide sequence analysis of the assembled SFVcae_FV2014 genome, obtained by high-throughput sequencing, indicated an overall 80–90% nucleotide sequence identity with SFVcae_LK3, the only available full-length genome sequence of an AGM SFV, and was distinct phylogenetically from other AGM spumaretroviruses, corroborating previous results based on analysis of partial env sequences. Our study confirmed that SFVcae_FV2014 and SFVcae_LK3 are genetically distinct AGM foamy virus (FV) isolates. Furthermore, comparative infectivity studies of SFVcae_FV2014 and SFVmcy isolates showed that although SFVs have a wide host range and cell tropism, regulation of virus replication is complex and depends on the virus strain and cell-specific factors.
Collapse
|
10
|
Aiewsakun P. Avian and serpentine endogenous foamy viruses, and new insights into the macroevolutionary history of foamy viruses. Virus Evol 2020; 6:vez057. [PMID: 31942244 PMCID: PMC6955096 DOI: 10.1093/ve/vez057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study reports and characterises two novel distinct lineages of foamy viruses (FVs) in the forms of endogenous retroviruses (ERVs). Several closely related elements were found in the genome of oriental stork (Ciconia boyciana) and other was found in the genome of spine-bellied sea snake (Hydrophis hardwickii), designated ERV-Spuma.N-Cbo (where 'N' runs from one to thirteen) and ERV-Spuma.1-Hha, respectively. This discovery of avian and serpentine endogenous FVs adds snakes, and perhaps more crucially, birds to the list of currently known hosts of FVs, in addition to mammals, reptiles, amphibians, and fish. This indicates that FVs are, or at least were, capable of infecting all major lineages of vertebrates. Moreover, together with other FVs, phylogenetic analyses showed that both of them are most closely related to mammalian FVs. Further examination revealed that reptilian FVs form a deep paraphyletic group that is basal to mammalian and avian FVs, suggesting that there were multiple ancient FV cross-class transmissions among their hosts. Evolutionary timescales of various FV lineages were estimated in this study, in particular, the timescales of reptilian FVs and that of the clade of mammalian, avian, and serpentine FVs. This was accomplished by using the recently established time-dependent rate phenomenon models, inferred using mainly the knowledge of the co-speciation history between FVs and mammals. It was found that the estimated timescales matched very well with those of reptiles. Combined with the observed phylogenetic patterns, these results suggested that FVs likely co-speciated with ancient reptilian animals, but later jumped to a protomammal and/or a bird, which ultimately gave rise to mammalian and avian FVs. These results contribute to our understanding of FV emergence, specifically the emergence of mammalian and avian FVs, and provide new insights into how FVs co-evolved with their non-mammalian vertebrate hosts in the distant past.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,Center of Microbial Genomics (CENMIG), Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
11
|
Primate Infectious Disease Ecology: Insights and Future Directions at the Human-Macaque Interface. THE BEHAVIORAL ECOLOGY OF THE TIBETAN MACAQUE 2020. [PMCID: PMC7123869 DOI: 10.1007/978-3-030-27920-2_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Global population expansion has increased interactions and conflicts between humans and nonhuman primates over shared ecological space and resources. Such ecological overlap, along with our shared evolutionary histories, makes human-nonhuman primate interfaces hot spots for the acquisition and transmission of parasites. In this chapter, we bring to light the importance of human-macaque interfaces in particular as hot spots for infectious disease ecological and epidemiological assessments. We first outline the significance and broader objectives behind research related to the subfield of primate infectious disease ecology and epidemiology. We then reveal how members of the genus Macaca, being among the most socioecologically flexible and invasive of all primate taxa, live under varying degrees of overlap with humans in anthropogenic landscapes. Thus, human-macaque interfaces may favor the bidirectional exchange of parasites. We then review studies that have isolated various types of parasites at human-macaque interfaces, using information from the Global Mammal Parasite Database (GMPD: http://www.mammalparasites.org/). Finally, we elaborate on avenues through which the implementation of both novel conceptual frameworks (e.g., Coupled Systems, One Health) and quantitative network-based approaches (e.g., social and bipartite networks, agent-based modeling) may potentially address some of the critical gaps in our current knowledge of infectious disease ecology at human-primate interfaces.
Collapse
|
12
|
Islam A, Hossain ME, Haider N, Rostal MK, Mukharjee SK, Ferdous J, Miah M, Rahman M, Daszak P, Rahman MZ, Epstein JH. Molecular characterization of group A rotavirus from rhesus macaques (Macaca mulatta) at human-wildlife interfaces in Bangladesh. Transbound Emerg Dis 2019; 67:956-966. [PMID: 31765042 DOI: 10.1111/tbed.13431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/29/2023]
Abstract
Group A rotavirus (RVA) is an important cause of diarrhoea in people, especially children, and animals globally. Due to the segmented nature of the RVA genome, animal RVA strains have the potential to adapt to the human host through reassortment with other co-infecting human viruses. Macaques share food and habitat with people, resulting in close interaction between these two species. This study aimed to detect and characterize RVA in rhesus macaques (Macaca mulatta) in Bangladesh. Faecal samples (N = 454) were collected from apparently healthy rhesus macaques from nine different sites in Bangladesh between February and March 2013. The samples were tested by one-step, real-time, reverse transcriptase-polymerase chain reaction (PCR). Four percent of samples (n = 20; 95% CI 2.7%-6.7%) were positive for RVA. RVA positive samples were further characterized by nucleotide sequence analysis of two structural protein gene fragments, VP4 (P genotype) and VP7 (G genotype). G3, G10, P[3] and P[15] genotypes were identified and were associated as G3P[3], G3P[15] and G10P[15]. The phylogenetic relationship between macaque RVA strains from this study and previously reported human strains indicates possible transmission between humans and macaques in Bangladesh. To our knowledge, this is the first report of detection and characterization of rotaviruses in rhesus macaques in Bangladesh. These data will not only aid in identifying viral sharing between macaques, human and other animals, but will also improve the development of mitigation measures for the prevention of future rotavirus outbreaks.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY, USA.,Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong, Vic., Australia
| | - Mohammad Enayet Hossain
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Najmul Haider
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | | | - Sanjoy Kumar Mukharjee
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jinnat Ferdous
- EcoHealth Alliance, New York, NY, USA.,Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Mojnu Miah
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mustafizur Rahman
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Mohammed Ziaur Rahman
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | |
Collapse
|
13
|
Olival KJ, Latinne A, Islam A, Epstein JH, Hersch R, Engstrand RC, Gurley ES, Amato G, Luby SP, Daszak P. Population genetics of fruit bat reservoir informs the dynamics, distribution and diversity of Nipah virus. Mol Ecol 2019; 29:970-985. [PMID: 31652377 DOI: 10.1111/mec.15288] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022]
Abstract
The structure and connectivity of wildlife host populations may influence zoonotic disease dynamics, evolution and therefore spillover risk to people. Fruit bats in the genus Pteropus, or flying foxes, are the primary natural reservoir for henipaviruses-a group of emerging paramyxoviruses that threaten livestock and public health. In Bangladesh, Pteropus medius is the reservoir for Nipah virus-and viral spillover has led to human fatalities nearly every year since 2001. Here, we use mitochondrial DNA and nuclear microsatellite markers to measure the population structure, demographic history and phylogeography of P. medius in Bangladesh. We combine this with a phylogeographic analysis of all known Nipah virus sequences and strains currently available to better inform the dynamics, distribution and evolutionary history of Nipah virus. We show that P. medius is primarily panmictic, but combined analysis of microsatellite and morphological data shows evidence for differentiation of two populations in eastern Bangladesh, corresponding to a divergent strain of Nipah virus also found in bats from eastern Bangladesh. Our demographic analyses indicate that a large, expanding population of flying foxes has existed in Bangladesh since the Late Pleistocene, coinciding with human population expansion in South Asia, suggesting repeated historical spillover of Nipah virus likely occurred. We present the first evidence of mitochondrial introgression, or hybridization, between P. medius and flying fox species found in South-East Asia (P. vampyrus and P. hypomelanus), which may help to explain the distribution of Nipah virus strains across the region.
Collapse
Affiliation(s)
| | | | | | | | - Rebecca Hersch
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Rachel C Engstrand
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | | | - George Amato
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | | | | |
Collapse
|
14
|
Aiewsakun P, Richard L, Gessain A, Mouinga-Ondémé A, Vicente Afonso P, Katzourakis A. Modular nature of simian foamy virus genomes and their evolutionary history. Virus Evol 2019; 5:vez032. [PMID: 31636999 PMCID: PMC6795992 DOI: 10.1093/ve/vez032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among all known retroviruses, foamy viruses (FVs) have the most stable virus–host co-speciation history, co-diverging in concert with their vertebrate hosts for hundreds of millions of years. However, detailed molecular analyses indicate that different parts of their genome might have different evolutionary histories. While their polymerase gene displays a robust and straightforward virus–host co-speciation pattern, the evolutionary history of their envelope (env) gene, is much more complicated. Here, we report eleven new FV env sequences in two mandrill populations in Central Africa, geographically separated by the Ogooué River into the North and the South populations. Phylogenetic reconstruction of the polymerase gene shows that the two virus populations are distinct, and each contains two variants of env genes co-existing with one another. The distinction between the two env variants can be mapped to the surface domain, flanked by two recombination hotspots, as previously reported for chimpanzee and gorilla FVs. Our analyses suggest that the two env variants originated during the diversification of Old World monkeys and apes, ∼30 million years ago. We also show that this env gene region forms two phylogenetically distinct clades, each displaying a host co-divergence and geographical separation pattern, while the rest of the genome of the two strains is phylogenetically indistinguishable in each of the host-specific groups. We propose possible evolutionary mechanisms to explain the modular nature of the FV genome.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Léa Richard
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, UMR3569 CNRS, Paris, France.,Université Paris Diderot - Paris7, Sorbonne Paris Cité, Paris, France
| | - Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Augustin Mouinga-Ondémé
- Unité des Infections Rétrovirales et Pathologies Associées, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Philippe Vicente Afonso
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| |
Collapse
|
15
|
Shankar A, Sibley SD, Goldberg TL, Switzer WM. Molecular Analysis of the Complete Genome of a Simian Foamy Virus Infecting Hylobates pileatus (pileated gibbon) Reveals Ancient Co-Evolution with Lesser Apes. Viruses 2019; 11:E605. [PMID: 31277268 PMCID: PMC6669568 DOI: 10.3390/v11070605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023] Open
Abstract
Foamy viruses (FVs) are complex retroviruses present in many mammals, including nonhuman primates, where they are called simian foamy viruses (SFVs). SFVs can zoonotically infect humans, but very few complete SFV genomes are available, hampering the design of diagnostic assays. Gibbons are lesser apes widespread across Southeast Asia that can be infected with SFV, but only two partial SFV sequences are currently available. We used a metagenomics approach with next-generation sequencing of nucleic acid extracted from the cell culture of a blood specimen from a lesser ape, the pileated gibbon (Hylobates pileatus), to obtain the complete SFVhpi_SAM106 genome. We used Bayesian analysis to co-infer phylogenetic relationships and divergence dates. SFVhpi_SAM106 is ancestral to other ape SFVs with a divergence date of ~20.6 million years ago, reflecting ancient co-evolution of the host and SFVhpi_SAM106. Analysis of the complete SFVhpi_SAM106 genome shows that it has the same genetic architecture as other SFVs but has the longest recorded genome (13,885-nt) due to a longer long terminal repeat region (2,071 bp). The complete sequence of the SFVhpi_SAM106 genome fills an important knowledge gap in SFV genetics and will facilitate future studies of FV infection, transmission, and evolutionary history.
Collapse
Affiliation(s)
- Anupama Shankar
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Samuel D Sibley
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA.
| |
Collapse
|
16
|
An Immunodominant and Conserved B-Cell Epitope in the Envelope of Simian Foamy Virus Recognized by Humans Infected with Zoonotic Strains from Apes. J Virol 2019; 93:JVI.00068-19. [PMID: 30894477 DOI: 10.1128/jvi.00068-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/13/2019] [Indexed: 11/20/2022] Open
Abstract
Cross-species transmission of simian foamy viruses (SFVs) from nonhuman primates (NHPs) to humans is currently ongoing. These zoonotic retroviruses establish lifelong persistent infection in their human hosts. SFV are apparently nonpathogenic in vivo, with ubiquitous in vitro tropism. Here, we aimed to identify envelope B-cell epitopes that are recognized following a zoonotic SFV infection. We screened a library of 169 peptides covering the external portion of the envelope from the prototype foamy virus (SFVpsc_huHSRV.13) for recognition by samples from 52 Central African hunters (16 uninfected and 36 infected with chimpanzee, gorilla, or Cercopithecus SFV). We demonstrate the specific recognition of peptide N96-V110 located in the leader peptide, gp18LP Forty-three variant peptides with truncations, alanine substitutions, or amino acid changes found in other SFV species were tested. We mapped the epitope between positions 98 and 108 and defined six amino acids essential for recognition. Most plasma samples from SFV-infected humans cross-reacted with sequences from apes and Old World monkey SFV species. The magnitude of binding to peptide N96-V110 was significantly higher for samples of individuals infected with a chimpanzee or gorilla SFV than those infected with a Cercopithecus SFV. In conclusion, we have been the first to define an immunodominant B-cell epitope recognized by humans following zoonotic SFV infection.IMPORTANCE Foamy viruses are the oldest known retroviruses and have been mostly described to be nonpathogenic in their natural animal hosts. SFVs can be transmitted to humans, in whom they establish persistent infection, like the simian lenti- and deltaviruses that led to the emergence of two major human pathogens, human immunodeficiency virus type 1 and human T-lymphotropic virus type 1. This is the first identification of an SFV-specific B-cell epitope recognized by human plasma samples. The immunodominant epitope lies in gp18LP, probably at the base of the envelope trimers. The NHP species the most genetically related to humans transmitted SFV strains that induced the strongest antibody responses. Importantly, this epitope is well conserved across SFV species that infect African and Asian NHPs.
Collapse
|
17
|
Lambert C, Couteaudier M, Gouzil J, Richard L, Montange T, Betsem E, Rua R, Tobaly-Tapiero J, Lindemann D, Njouom R, Mouinga-Ondémé A, Gessain A, Buseyne F. Potent neutralizing antibodies in humans infected with zoonotic simian foamy viruses target conserved epitopes located in the dimorphic domain of the surface envelope protein. PLoS Pathog 2018; 14:e1007293. [PMID: 30296302 PMCID: PMC6193739 DOI: 10.1371/journal.ppat.1007293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/18/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022] Open
Abstract
Human diseases of zoonotic origin are a major public health problem. Simian foamy viruses (SFVs) are complex retroviruses which are currently spilling over to humans. Replication-competent SFVs persist over the lifetime of their human hosts, without spreading to secondary hosts, suggesting the presence of efficient immune control. Accordingly, we aimed to perform an in-depth characterization of neutralizing antibodies raised by humans infected with a zoonotic SFV. We quantified the neutralizing capacity of plasma samples from 58 SFV-infected hunters against primary zoonotic gorilla and chimpanzee SFV strains, and laboratory-adapted chimpanzee SFV. The genotype of the strain infecting each hunter was identified by direct sequencing of the env gene amplified from the buffy coat with genotype-specific primers. Foamy virus vector particles (FVV) enveloped by wild-type and chimeric gorilla SFV were used to map the envelope region targeted by antibodies. Here, we showed high titers of neutralizing antibodies in the plasma of most SFV-infected individuals. Neutralizing antibodies target the dimorphic portion of the envelope protein surface domain. Epitopes recognized by neutralizing antibodies have been conserved during the cospeciation of SFV with their nonhuman primate host. Greater neutralization breadth in plasma samples of SFV-infected humans was statistically associated with smaller SFV-related hematological changes. The neutralization patterns provide evidence for persistent expression of viral proteins and a high prevalence of coinfection. In conclusion, neutralizing antibodies raised against zoonotic SFV target immunodominant and conserved epitopes located in the receptor binding domain. These properties support their potential role in restricting the spread of SFV in the human population.
Collapse
Affiliation(s)
- Caroline Lambert
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Cellule Pasteur, Université Paris Diderot, Institut Pasteur, Paris, France
| | - Mathilde Couteaudier
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Julie Gouzil
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Léa Richard
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Cellule Pasteur, Université Paris Diderot, Institut Pasteur, Paris, France
| | - Thomas Montange
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Edouard Betsem
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
- University of Yaounde I, Yaounde, Cameroon
| | - Réjane Rua
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Joelle Tobaly-Tapiero
- CNRS UMR 7212, INSERM U944, Institut Universitaire d’Hématologie, Hôpital Saint-Louis, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Richard Njouom
- Laboratoire de Virologie, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Augustin Mouinga-Ondémé
- Unité de Rétrovirologie, Centre International de Recherche Médicale de Franceville, Franceville, Gabon
| | - Antoine Gessain
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Florence Buseyne
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Pinto-Santini DM, Stenbak CR, Linial ML. Foamy virus zoonotic infections. Retrovirology 2017; 14:55. [PMID: 29197389 PMCID: PMC5712078 DOI: 10.1186/s12977-017-0379-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foamy viruses (FV) are ancient complex retroviruses that differ from orthoretroviruses such as human immunodeficiency virus (HIV) and murine leukemia virus (MLV) and comprise a distinct subfamily of retroviruses, the Spumaretrovirinae. FV are ubiquitous in their natural hosts, which include cows, cats, and nonhuman primates (NHP). FV are transmitted mainly through saliva and appear nonpathogenic by themselves, but they may increase morbidity of other pathogens in coinfections. CONCLUSIONS This review summarizes and discusses what is known about FV infection of natural hosts. It also emphasizes what is known about FV zoonotic infections A large number of studies have revealed that the FV of NHP, simian foamy viruses (SFV), are transmitted to humans who interact with infected NHP. SFV from a variety of NHP establish persistent infection in humans, while bovine foamy virus and feline foamy virus rarely or never do. The possibility of FV recombination and mutation leading to pathogenesis is considered. Since humans can be infected by SFV, a seemingly nonpathogenic virus, there is interest in using SFV vectors for human gene therapy. In this regard, detailed understanding of zoonotic SFV infection is highly relevant.
Collapse
Affiliation(s)
| | | | - Maxine L. Linial
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., A3-205, Seattle, WA 98109 USA
| |
Collapse
|
19
|
Complete Genome Sequence of a Naturally Occurring Simian Foamy Virus Isolate from Rhesus Macaque (SFVmmu_K3T). GENOME ANNOUNCEMENTS 2017; 5:5/33/e00827-17. [PMID: 28818911 PMCID: PMC5604784 DOI: 10.1128/genomea.00827-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The full-length genome sequence of a simian foamy virus (SFVmmu_K3T), isolated from a rhesus macaque (Macaca mulatta), was obtained using high-throughput sequencing. SFVmmu_K3T consisted of 12,983 bp and had a genomic organization similar to that of other SFVs, with long terminal repeats (LTRs) and open reading frames for Gag, Pol, Env, Tas, and Bet.
Collapse
|
20
|
Reid MJC, Switzer WM, Schillaci MA, Klegarth AR, Campbell E, Ragonnet-Cronin M, Joanisse I, Caminiti K, Lowenberger CA, Galdikas BMF, Hollocher H, Sandstrom PA, Brooks JI. Bayesian inference reveals ancient origin of simian foamy virus in orangutans. INFECTION GENETICS AND EVOLUTION 2017; 51:54-66. [PMID: 28274887 DOI: 10.1016/j.meegid.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/25/2017] [Accepted: 03/03/2017] [Indexed: 02/08/2023]
Abstract
Simian foamy viruses (SFVs) infect most nonhuman primate species and appears to co-evolve with its hosts. This co-evolutionary signal is particularly strong among great apes, including orangutans (genus Pongo). Previous studies have identified three distinct orangutan SFV clades. The first of these three clades is composed of SFV from P. abelii from Sumatra, the second consists of SFV from P. pygmaeus from Borneo, while the third clade is mixed, comprising an SFV strain found in both species of orangutan. The existence of the mixed clade has been attributed to an expansion of P. pygmaeus into Sumatra following the Mount Toba super-volcanic eruption about 73,000years ago. Divergence dating, however, has yet to be performed to establish a temporal association with the Toba eruption. Here, we use a Bayesian framework and a relaxed molecular clock model with fossil calibrations to test the Toba hypothesis and to gain a more complete understanding of the evolutionary history of orangutan SFV. As with previous studies, our results show a similar three-clade orangutan SFV phylogeny, along with strong statistical support for SFV-host co-evolution in orangutans. Using Bayesian inference, we date the origin of orangutan SFV to >4.7 million years ago (mya), while the mixed species clade dates to approximately 1.7mya, >1.6 million years older than the Toba super-eruption. These results, combined with fossil and paleogeographic evidence, suggest that the origin of SFV in Sumatran and Bornean orangutans, including the mixed species clade, likely occurred on the mainland of Indo-China during the Late Pliocene and Calabrian stage of the Pleistocene, respectively.
Collapse
Affiliation(s)
- Michael J C Reid
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada; Department of Anthropology, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada.
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Michael A Schillaci
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada.
| | - Amy R Klegarth
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Anthropology, University of Washington, Seattle, WA 98105, USA.
| | - Ellsworth Campbell
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Manon Ragonnet-Cronin
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, United Kingdom
| | - Isabelle Joanisse
- National HIV & Retrovirology Laboratories, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kyna Caminiti
- Centre for Biosecurity, Public Health Agency of Canada, 100 Colonnade Road, Ottawa, Ontario, Canada.
| | - Carl A Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Birute Mary F Galdikas
- Department of Archaeology, Simon Fraser University, Burnaby, British Columbia, Canada; Orangutan Foundation International, 824 S. Wellesley Ave., Los Angeles, CA 90049, USA
| | - Hope Hollocher
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Paul A Sandstrom
- National HIV & Retrovirology Laboratories, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Ontario, Canada.
| | - James I Brooks
- National HIV & Retrovirology Laboratories, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; The Ottawa Hospital, Division of Infectious Diseases, Department of Medicine, University of Ottawa, 1053 Carling Ave., Ottawa, ONK1Y 4E9, Canada
| |
Collapse
|
21
|
Hasan MK, Feeroz MM, Jones-Engel L, Engel GA, Akhtar S, Kanthaswamy S, Smith DG. Performing monkeys of Bangladesh: characterizing their source and genetic variation. Primates 2016; 57:221-30. [PMID: 26758818 DOI: 10.1007/s10329-015-0508-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
The acquisition and training of monkeys to perform is a centuries-old tradition in South Asia, resulting in a large number of rhesus macaques kept in captivity for this purpose. The performing monkeys are reportedly collected from free-ranging populations, and may escape from their owners or may be released into other populations. In order to determine whether this tradition involving the acquisition and movement of animals has influenced the population structure of free-ranging rhesus macaques in Bangladesh, we first characterized the source of these monkeys. Biological samples from 65 performing macaques collected between January 2010 and August 2013 were analyzed for genetic variation using 716 base pairs of mitochondrial DNA. Performing monkey sequences were compared with those of free-ranging rhesus macaque populations in Bangladesh, India and Myanmar. Forty-five haplotypes with 116 (16 %) polymorphic nucleotide sites were detected among the performing monkeys. As for the free-ranging rhesus population, most of the substitutions (89 %) were transitions, and no indels (insertion/deletion) were observed. The estimate of the mean number of pair-wise differences for the performing monkey population was 10.1264 ± 4.686, compared to 14.076 ± 6.363 for the free-ranging population. Fifteen free-ranging rhesus macaque populations were identified as the source of performing monkeys in Bangladesh; several of these populations were from areas where active provisioning has resulted in a large number of macaques. The collection of performing monkeys from India was also evident.
Collapse
Affiliation(s)
- M Kamrul Hasan
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis (UC Davis), Davis, CA, 95616, USA. .,Department of Zoology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh.
| | - M Mostafa Feeroz
- Department of Zoology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Lisa Jones-Engel
- National Primate Research Center, University of Washington, Seattle, WA, 98195, USA
| | - Gregory A Engel
- National Primate Research Center, University of Washington, Seattle, WA, 98195, USA
| | - Sharmin Akhtar
- Department of Zoology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Sree Kanthaswamy
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis (UC Davis), Davis, CA, 95616, USA.,Department of Environmental Toxicology, University of California Davis, Davis, CA, USA
| | - David Glenn Smith
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis (UC Davis), Davis, CA, 95616, USA
| |
Collapse
|
22
|
Karlsson EA, Small CT, Freiden P, Feeroz MM, Matsen FA, San S, Hasan MK, Wang D, Jones-Engel L, Schultz-Cherry S. Non-Human Primates Harbor Diverse Mammalian and Avian Astroviruses Including Those Associated with Human Infections. PLoS Pathog 2015; 11:e1005225. [PMID: 26571270 PMCID: PMC4646697 DOI: 10.1371/journal.ppat.1005225] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Astroviruses (AstVs) are positive sense, single-stranded RNA viruses transmitted to a wide range of hosts via the fecal-oral route. The number of AstV-infected animal hosts has rapidly expanded in recent years with many more likely to be discovered because of the advances in viral surveillance and next generation sequencing. Yet no study to date has identified human AstV genotypes in animals, although diverse AstV genotypes similar to animal-origin viruses have been found in children with diarrhea and in one instance of encephalitis. Here we provide important new evidence that non-human primates (NHP) can harbor a wide variety of mammalian and avian AstV genotypes, including those only associated with human infection. Serological analyses confirmed that >25% of the NHP tested had antibodies to human AstVs. Further, we identified a recombinant AstV with parental relationships to known human AstVs. Phylogenetic analysis suggests AstVs in NHP are on average evolutionarily much closer to AstVs from other animals than are AstVs from bats, a frequently proposed reservoir. Our studies not only demonstrate that human astroviruses can be detected in NHP but also suggest that NHP are unique in their ability to support diverse AstV genotypes, further challenging the paradigm that astrovirus infection is species-specific.
Collapse
Affiliation(s)
- Erik A Karlsson
- Department of Infectious Disease, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Christopher T Small
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Pamela Freiden
- Department of Infectious Disease, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - MM Feeroz
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - Frederick A Matsen
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sorn San
- National Veterinary Research Institute, Phnom Penh, Cambodia
| | - M Kamrul Hasan
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - David Wang
- Department of Pathology & Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Lisa Jones-Engel
- University of Washington, National Primate Research Center, Seattle, Washington, United States of America
| | - Stacey Schultz-Cherry
- Department of Infectious Disease, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
23
|
Cocirculation of Two env Molecular Variants, of Possible Recombinant Origin, in Gorilla and Chimpanzee Simian Foamy Virus Strains from Central Africa. J Virol 2015; 89:12480-91. [PMID: 26446599 DOI: 10.1128/jvi.01798-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Simian foamy virus (SFV) is a ubiquitous retrovirus in nonhuman primates (NHPs) that can be transmitted to humans, mostly through severe bites. In the past few years, our laboratory has identified more than 50 hunters from central Africa infected with zoonotic SFVs. Analysis of the complete sequences of five SFVs obtained from these individuals revealed that env was the most variable gene. Furthermore, recombinant SFV strains, some of which involve sequences in the env gene, were recently identified. Here, we investigated the variability of the env genes of zoonotic SFV strains and searched for possible recombinants. We sequenced the complete env gene or its surface glycoprotein region (SU) from DNA amplified from the blood of (i) a series of 40 individuals from Cameroon or Gabon infected with a gorilla or chimpanzee foamy virus (FV) strain and (ii) 1 gorilla and 3 infected chimpanzees living in the same areas as these hunters. Phylogenetic analyses revealed the existence of two env variants among both the gorilla and chimpanzee FV strains that were present in zoonotic and NHP strains. These variants differ greatly (>30% variability) in a 753-bp-long region located in the receptor-binding domain of SU, whereas the rest of the gene is very conserved. Although the organizations of the Env protein sequences are similar, the potential glycosylation patterns differ between variants. Analysis of recombination suggests that the variants emerged through recombination between different strains, although all parental strains could not be identified. IMPORTANCE SFV infection in humans is a great example of a zoonotic retroviral infection that has not spread among human populations, in contrast to human immunodeficiency viruses (HIVs) and human T-lymphotropic viruses (HTLVs). Recombination was a major mechanism leading to the emergence of HIV. Here, we show that two SFV molecular envelope gene variants circulate among ape populations in Central Africa and that both can be transmitted to humans. These variants differ greatly in the SU region that corresponds to the part of the Env protein in contact with the environment. These variants may have emerged through recombination between SFV strains infecting different NHP species.
Collapse
|
24
|
A Seminomadic Population in Bangladesh with Extensive Exposure to Macaques Does Not Exhibit High Levels of Zoonotic Simian Foamy Virus Infection. J Virol 2015; 89:7414-6. [PMID: 25926651 DOI: 10.1128/jvi.01065-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 01/15/2023] Open
Abstract
Simian foamy viruses (SVF) are ubiquitous in nonhuman primates (NHP). SFV can be zoonotically transmitted to humans who either work with or live commensally with NHP. We analyzed the blood of 45 Bangladeshi performing monkey owners (an ethnic group called the Bedey) for SFV infection. Surprisingly, a PCR assay failed to detect SFV infection in any of these participants. This is in contrast to our previously reported infection rate of about 5% among Bangladeshi villagers.
Collapse
|
25
|
Rua R, Gessain A. Origin, evolution and innate immune control of simian foamy viruses in humans. Curr Opin Virol 2015; 10:47-55. [PMID: 25698621 PMCID: PMC7185842 DOI: 10.1016/j.coviro.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 12/23/2022]
Abstract
Simian foamy viruses (SFV) are transmitted to humans after contact, mainly bites, with infected monkeys and apes. Contexts of transmission include mainly hunting activities and monkeys’ sympatry. In humans, active immune response probably explains SFV latency in blood and saliva. It is a model of restriction of retroviral emergence after cross-species transmission.
Most viral pathogens that have emerged in humans have originated from various animal species. Emergence is a multistep process involving an initial spill-over of the infectious agent into single individuals and its subsequent dissemination into the human population. Similar to simian immunodeficiency viruses and simian T lymphotropic viruses, simian foamy viruses (SFV) are retroviruses that are widespread among non-human primates and can be transmitted to humans, giving rise to a persistent infection, which seems to be controlled in the case of SFV. In this review, we present current data on the discovery, cross-species transmission, and molecular evolution of SFV in human populations initially infected and thus at risk for zoonotic emergence.
Collapse
Affiliation(s)
- Rejane Rua
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, 28 Rue du Dr. Roux, 75015 Paris, France; Département de Virologie, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris, Cedex 15, France; CNRS, UMR369, 28 Rue du Dr. Roux, F-75015 Paris, France; Université Paris Diderot, Cellule Pasteur, Paris, France.
| | - Antoine Gessain
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, 28 Rue du Dr. Roux, 75015 Paris, France; Département de Virologie, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris, Cedex 15, France; CNRS, UMR369, 28 Rue du Dr. Roux, F-75015 Paris, France
| |
Collapse
|
26
|
Hasan MK, Feeroz MM, Jones-Engel L, Engel GA, Kanthaswamy S, Smith DG. Diversity and molecular phylogeny of mitochondrial DNA of rhesus macaques (Macaca mulatta) in Bangladesh. Am J Primatol 2014; 76:1094-104. [PMID: 24810278 DOI: 10.1002/ajp.22296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/26/2014] [Accepted: 04/01/2014] [Indexed: 11/06/2022]
Abstract
While studies of rhesus macaques (Macaca mulatta) in the eastern (e.g., China) and western (e.g., India) parts of their geographic range have revealed major genetic differences that warrant the recognition of two different subspecies, little is known about genetic characteristics of rhesus macaques in the transitional zone extending from eastern India and Bangladesh through the northern part of Indo-China, the probable original homeland of the species. We analyzed genetic variation of 762 base pairs of mitochondrial DNA from 86 fecal swab samples and 19 blood samples from 25 local populations of rhesus macaque in Bangladesh collected from January 2010 to August 2012. These sequences were compared with those of rhesus macaques from India, China, and Myanmar. Forty-six haplotypes defined by 200 (26%) polymorphic nucleotide sites were detected. Estimates of gene diversity, expected heterozygosity, and nucleotide diversity for the total population were 0.9599 ± 0.0097, 0.0193 ± 0.0582, and 0.0196 ± 0.0098, respectively. A mismatch distribution of paired nucleotide differences yielded a statistically significantly negative value of Tajima's D, reflecting a population that rapidly expanded after the terminal Pleistocene. Most haplotypes throughout regions of Bangladesh, including an isolated region in the southwestern area (Sundarbans), clustered with haplotypes assigned to the minor haplogroup Ind-2 from India reflecting an east to west dispersal of rhesus macaques to India. Haplotypes from the southeast region of Bangladesh formed a cluster with those from Myanmar, and represent the oldest rhesus macaque haplotypes of Bangladesh. These results are consistent with the hypothesis that rhesus macaques first entered Bangladesh from the southeast, probably from Indo-China, then dispersed westward throughout eastern and central India.
Collapse
Affiliation(s)
- M Kamrul Hasan
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis (UC Davis), California
| | | | | | | | | | | |
Collapse
|
27
|
Matsen FA, Small CT, Soliven K, Engel GA, Feeroz MM, Wang X, Craig KL, Hasan MK, Emerman M, Linial ML, Jones-Engel L. A novel Bayesian method for detection of APOBEC3-mediated hypermutation and its application to zoonotic transmission of simian foamy viruses. PLoS Comput Biol 2014; 10:e1003493. [PMID: 24586139 PMCID: PMC3937129 DOI: 10.1371/journal.pcbi.1003493] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/16/2014] [Indexed: 02/07/2023] Open
Abstract
Simian Foamy Virus (SFV) can be transmitted from non-human primates (NHP) to humans. However, there are no documented cases of human to human transmission, and significant differences exist between infection in NHP and human hosts. The mechanism for these between-host differences is not completely understood. In this paper we develop a new Bayesian approach to the detection of APOBEC3-mediated hypermutation, and use it to compare SFV sequences from human and NHP hosts living in close proximity in Bangladesh. We find that human APOBEC3G can induce genetic changes that may prevent SFV replication in infected humans in vivo.
Collapse
Affiliation(s)
- Frederick A. Matsen
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Christopher T. Small
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Khanh Soliven
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Gregory A. Engel
- University of Washington, Seattle, Washington, United States of America
- Swedish Medical Center, Seattle, Washington, United States of America
| | | | - Xiaoxing Wang
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Karen L. Craig
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | - Michael Emerman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Maxine L. Linial
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lisa Jones-Engel
- University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
28
|
Abstract
Foamy viruses (FV) are complex retroviruses that naturally infect all nonhuman primates (NHP) studied to date. Zoonotic transmission of Old World NHP simian foamy viruses (SFV) has been documented, leading to nonpathogenic persistent infections. To date, there have been no reports concerning zoonotic transmission of New World monkey (NWM) SFV to humans and resulting infection. In this study, we developed a Western blot assay to detect antibodies to NWM SFV, a nested PCR assay to detect NWM SFV DNA, and a β-galactosidase-containing indicator cell line to assay replication of NWM SFV. Using these tools, we analyzed the plasma and blood of 116 primatologists, of whom 69 had reported exposures to NWM. While 8 of the primatologists tested were seropositive for SFV from a NWM, the spider monkey, none had detectable levels of viral DNA in their blood. We found that SFV isolated from three different species of NWM replicated in some, but not all, human cell lines. From our data, we conclude that while humans exposed to NWM SFV produce antibodies, there is no evidence for long-term viral persistence.
Collapse
|
29
|
Simian foamy virus infection of rhesus macaques in Bangladesh: relationship of latent proviruses and transcriptionally active viruses. J Virol 2013; 87:13628-39. [PMID: 24109214 DOI: 10.1128/jvi.01989-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Simian foamy viruses (SFV) are complex retroviruses that are ubiquitous in nonhuman primates (NHP) and are zoonotically transmitted to humans, presumably through NHP saliva, by licking, biting, and other behaviors. We have studied SFV in free-ranging rhesus macaques in Bangladesh. It has been previously shown that SFV in immunocompetent animals replicates to detectable levels only in superficial epithelial cells of the oral mucosa, although latent proviruses are found in most, if not all, tissues. In this study, we compare DNA sequences from latent SFV proviruses found in blood cells of 30 Bangladesh rhesus macaques to RNA sequences of transcriptionally active SFV from buccal swabs obtained from the same animals. Viral strains, defined by differences in SFV gag sequences, from buccal mucosal specimens overlapped with those from blood samples in 90% of animals. Thus, latent proviruses in peripheral blood mononuclear cells (PBMC) are, to a great extent, representative of viruses likely to be transmitted to other hosts. The level of SFV RNA in buccal swabs varied greatly between macaques, with increasing amounts of viral RNA in older animals. Evidence of APOBEC3-induced mutations was found in gag sequences derived from the blood and oral mucosa.
Collapse
|
30
|
Engel GA, Small CT, Soliven K, Feeroz MM, Wang X, Kamrul Hasan M, Oh G, Rabiul Alam SM, Craig KL, Jackson DL, Matsen Iv FA, Linial ML, Jones-Engel L. Zoonotic simian foamy virus in Bangladesh reflects diverse patterns of transmission and co-infection. Emerg Microbes Infect 2013; 2:e58. [PMID: 26038489 PMCID: PMC3820988 DOI: 10.1038/emi.2013.60] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 12/21/2022]
Abstract
Simian foamy viruses (SFVs) are ubiquitous in non-human primates (NHPs). As in all retroviruses, reverse transcription of SFV leads to recombination and mutation. Because more humans have been shown to be infected with SFV than with any other simian borne virus, SFV is a potentially powerful model for studying the virology and epidemiology of viruses at the human/NHP interface. In Asia, SFV is likely transmitted to humans through macaque bites and scratches that occur in the context of everyday life. We analyzed multiple proviral sequences from the SFV gag gene from both humans and macaques in order to characterize retroviral transmission at the human/NHP interface in Bangladesh. Here we report evidence that humans can be concurrently infected with multiple SFV strains, with some individuals infected by both an autochthonous SFV strain as well as a strain similar to SFV found in macaques from another geographic area. These data, combined with previous results, suggest that both human-facilitated movement of macaques leading to the introduction of non-resident strains of SFV and retroviral recombination in macaques contribute to SFV diversity among humans in Bangladesh.
Collapse
Affiliation(s)
- Gregory A Engel
- National Primate Research Center, University of Washington , Seattle, WA 98195, USA ; Department of Family Medicine, Swedish Medical Center , Seattle, WA 98122, USA
| | - Christopher T Small
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle, WA 98109, USA
| | - Khanh Soliven
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center , Seattle, WA 98109, USA
| | - Mostafa M Feeroz
- Department of Zoology, Jahangirnagar University , Savar, Dhaka-1342, Bangladesh
| | - Xiaoxing Wang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center , Seattle, WA 98109, USA
| | - M Kamrul Hasan
- Department of Zoology, Jahangirnagar University , Savar, Dhaka-1342, Bangladesh
| | - Gunwha Oh
- National Primate Research Center, University of Washington , Seattle, WA 98195, USA
| | - S M Rabiul Alam
- Department of Zoology, Jahangirnagar University , Savar, Dhaka-1342, Bangladesh
| | - Karen L Craig
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center , Seattle, WA 98109, USA
| | - Dana L Jackson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center , Seattle, WA 98109, USA
| | - Frederick A Matsen Iv
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle, WA 98109, USA
| | - Maxine L Linial
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center , Seattle, WA 98109, USA
| | - Lisa Jones-Engel
- National Primate Research Center, University of Washington , Seattle, WA 98195, USA
| |
Collapse
|
31
|
Mouinga-Ondémé A, Kazanji M. Simian foamy virus in non-human primates and cross-species transmission to humans in Gabon: an emerging zoonotic disease in central Africa? Viruses 2013; 5:1536-52. [PMID: 23783811 PMCID: PMC3717720 DOI: 10.3390/v5061536] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/09/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022] Open
Abstract
It is now known that all human retroviruses have a non-human primate counterpart. It has been reported that the presence of these retroviruses in humans is the result of interspecies transmission. Several authors have described the passage of a simian retrovirus, simian foamy virus (SFV), from primates to humans. To better understand this retroviral “zoonosis” in natural settings, we evaluated the presence of SFV in both captive and wild non-human primates and in humans at high risk, such as hunters and people bitten by a non-human primate, in Gabon, central Africa. A high prevalence of SFV was found in blood samples from non-human primates and in bush meat collected across the country. Mandrills were found to be highly infected with two distinct strains of SFV, depending on their geographical location. Furthermore, samples collected from hunters and non-human primate laboratory workers showed clear, extensive cross-species transmission of SFV. People who had been bitten by mandrills, gorillas and chimpanzees had persistent SFV infection with low genetic drift. Thus, SFV is presumed to be transmitted from non-human primates mainly through severe bites, involving contact between infected saliva and blood. In this review, we summarize and discuss our five-year observations on the prevalence and dissemination of SFV in humans and non-human primates in Gabon.
Collapse
Affiliation(s)
- Augustin Mouinga-Ondémé
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; E-Mail:
| | - Mirdad Kazanji
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon; E-Mail:
- Institut Pasteur de Bangui, Bangui BP 923, Central African Republic
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +236-21-61-0866; Fax: +236-21-61-0109
| |
Collapse
|