1
|
Wang Z, Zhang Y, Xu C, Peng A, Qin H, Yao K. Advancements in age-related macular degeneration treatment: From traditional anti-VEGF to emerging therapies in gene, stem cell, and nanotechnology. Biochem Pharmacol 2025; 236:116902. [PMID: 40158818 DOI: 10.1016/j.bcp.2025.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/18/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Age-related macular degeneration (AMD) is the leading cause of central vision loss in older adults and is projected to affect approximately 400 million individuals worldwide by 2040. Its pathological characteristics include retinal extracellular deposits, such as drusen, which trigger photoreceptor degeneration and damage to the retinal pigment epithelium (RPE), resulting in irreversible vision loss. The pathogenesis of AMD involves genetic, environmental, and aging-related factors. Anti-vascular endothelial growth factor (anti-VEGF) therapy for wet AMD significantly inhibits choroidal neovascularization and delays visual deterioration. However, its high cost, frequent injections, and poor patient compliance limit application, and there remains no effective intervention for dry AMD. In recent years, emerging strategies, such as gene therapy, stem cell therapy, and nanotechnology-based drug delivery systems, offer hope for slowing disease progression by improving targeting, drug stability, and reducing treatment frequency. Nanoparticles, including polymeric and lipid systems, have shown promise for enhancing drug delivery and bioavailability, particularly for dry AMD, where existing therapies are inadequate. These strategies also have the potential to improve patient compliance. This review summarizes AMD epidemiology and examines the limitations of current therapies. It emphasizes the mechanisms and clinical advancements of gene therapy, stem cell therapy, and nanotechnology in AMD treatment. These emerging technologies offer promising opportunities for precision medicine and lay a solid foundation for the future development of multifaceted therapeutic strategies.
Collapse
Affiliation(s)
- Zhanfei Wang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yaqin Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Anna Peng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
2
|
Ong J, Selvam A, Driban M, Zarnegar A, Morgado Mendes Antunes Da Silva SI, Joy J, Rossi EA, Vande Geest JP, Sahel JA, Chhablani J. Characterizing Bruch's membrane: State-of-the-art imaging, computational segmentation, and biologic models in retinal disease and health. Prog Retin Eye Res 2025; 106:101358. [PMID: 40254245 DOI: 10.1016/j.preteyeres.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
The Bruch's membrane (BM) is an acellular, extracellular matrix that lies between the choroid and retinal pigment epithelium (RPE). The BM plays a critical role in retinal health, performing various functions including biomolecule diffusion and RPE support. The BM is also involved in many retinal diseases, and insights into BM dysfunction allow for further understanding of the pathophysiology of various chorioretinal pathologies. Thus, characterization of the BM serves as an important area of research to further understand its involvement in retinal disease. In this article, we provide a review of various advancements in characterizing and visualizing the BM. We provide an overview of the BM in retinal health, as well as changes observed in aging and disease. We then describe current state-of-the-art imaging modalities and advances to further visualize the BM including various types of optical coherence tomography imaging, near-infrared reflectance (NIR), and autofluorescence imaging and tissue matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). Following advances in imaging of the BM, we describe animal, cellular, and synthetic models that have been developed to further visualize the BM. Following this section, we provide an overview of deep learning in retinal imaging and describe advances in computational and artificial intelligence (AI) techniques to provide automated segmentation of the BM and BM opening. We conclude this section considering the clinical implications of these segmentation techniques. Ultimately, the diverse advances aimed to further characterize the BM may allow for deeper insights into the involvement of this critical structure in retinal health and disease.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, United States
| | - Amrish Selvam
- Illinois Eye and Ear Infirmary, University of Illinois College of Medicine, Chicago, IL, United States
| | - Matthew Driban
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, United States
| | - Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Jincy Joy
- Karunya Eye Hospital, Kottarakara, Kerala, India
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
3
|
Küçük E, Çoban Karataş M. Comparison of choroidal thickness and vascularity in patients with subretinal drusenoid deposits and large drusen using swept-source optical coherence tomography. Int Ophthalmol 2025; 45:94. [PMID: 40085312 DOI: 10.1007/s10792-025-03455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE The aim of this study is to assess the choroidal features in patients diagnosed with non-advanced age-related macular degeneration (AMD) using Swept-source Optical Coherence Tomography (SS-OCT) and compare the findings of those with subretinal drusenoid deposits (SDD) and those with large drusen. METHODS Individuals aged 50 years and above, presenting with either SDD or large drusen alongside non-advanced AMD, underwent a thorough ophthalmic assessment. OCT scans were acquired using SS-OCT. Choroidal thickness (CT) maps within the early treatment diabetic retinopathy study (ETDRS) subfields were obtained. Choroidal vascularity index (CVI) was obtained from a foveal horizontal OCT scan, and it was determined as the ratio of luminal area to the total choroidal area. The data obtained were compared between the groups. RESULTS Forty-three eyes of 27 patients with SDD and 40 eyes of 21 patients with large drusen were included in the study. The mean age was 72.0 ± 8.6 years in the SDD group and 71.3 ± 5.6 years in the large drusen group with no significant difference (p = 0.717). In the choroidal thickness maps CT and CT in all ETDRS subfields were significantly lower in SDD group compared to the large drusen group. CVI values were not significantly different between SDD (0.628 ± 0.18) and large drusen groups (0.629 ± 0.20) (p = 0.812). CONCLUSION Non-advanced AMD patients with SDD exhibited reduced choroidal thickness compared to those with large drusen. Choroidal vascularity index did not significantly differ, suggesting that choroidal thickness may play a more substantial role than vascularity changes in the pathogenesis of SDD.
Collapse
Affiliation(s)
- Erkut Küçük
- Ophthalmology Department, Faculty of Medicine, Niğde Ömer Halisdemir University, Bor Street, 51240, Niğde, Turkey.
| | - Müge Çoban Karataş
- Ophthalmology Department, Faculty of Medicine, Niğde Ömer Halisdemir University, Bor Street, 51240, Niğde, Turkey
| |
Collapse
|
4
|
Sadeghi E, Valsecchi N, Rahmanipour E, Ejlalidiz M, Hasan N, Vupparaboina KK, Ibrahim MN, Rasheed MA, Baek J, Iannetta D, Chhablani J. Choroidal biomarkers in age-related macular degeneration. Surv Ophthalmol 2025; 70:167-183. [PMID: 39426529 DOI: 10.1016/j.survophthal.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Age-related macular degeneration (AMD) is the leading cause of central visual impairment in the elderly. The exact pathophysiological mechanisms for AMD remain uncertain. Several studies suggest that choroidal abnormalities and alterations are critical in AMD progression. The transition from manual to automated segmentation and binarization techniques has resulted in accurate and precise measurements of different choroidal parameters. These qualitative and quantitative parameters, known as choroidal imaging biomarkers, have advanced from basic vertical subfoveal choroidal thickness to more intricate 3-dimensional choroidal reconstruction methods in the last decade. Therefore, a comprehensive evaluation of choroidal metrics may investigate valuable insights into AMD, potentially guiding the future development of customized therapeutic strategies and personalized patient care in AMD management. We describe the role of different choroidal biomarkers in evaluating patients with AMD and their contribution to management.
Collapse
Affiliation(s)
- Elham Sadeghi
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.
| | - Nicola Valsecchi
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Ophthalmology Unit, Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Elham Rahmanipour
- Immunology Research Center, Mashhad University of Medical Science, Mashhad, Iran.
| | - Mahsa Ejlalidiz
- Research Institute of Ophthalmology and Vision Science, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Nasiq Hasan
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.
| | | | | | | | - Jiwon Baek
- Department of Ophthalmology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea; Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Danilo Iannetta
- University of Rome La Sapienza Department of Organs of Sense, Rome, Italy.
| | - Jay Chhablani
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Gensheimer T, Veerman D, van Oosten EM, Segerink L, Garanto A, van der Meer AD. Retina-on-chip: engineering functional in vitro models of the human retina using organ-on-chip technology. LAB ON A CHIP 2025; 25:996-1014. [PMID: 39882574 DOI: 10.1039/d4lc00823e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The retina is a complex and highly metabolic tissue in the back of the eye essential for human vision. Retinal diseases can lead to loss of vision in early and late stages of life, significantly affecting patients' quality of life. Due to its accessibility for surgical interventions and its isolated nature, the retina is an attractive target for novel genetic therapies and stem cell-based regenerative medicine. Understanding disease mechanisms and evaluating new treatments require relevant and robust experimental models. Retina-on-chip models are microfluidic organ-on-chip systems based on human tissue that capture multi-cellular interactions and tissue-level functions in vitro. Various retina-on-chip models have been described in literature. Some of them capture basic retinal barrier functions while others replicate key events underlying vision. In addition, some of these cellular systems have also been used in studies to explore their added value in retinal disease modeling. Most existing retina-on-chip models capture limited aspects of the phenotypic complexity of human diseases. This limitation arises primarily from the challenges related to controlled recapitulation of retinal function, including the relevant multi-cellular interactions and functional read-outs. In this review, we provide an update on recent advancements in the field of retina-on-chip, and we discuss the biotechnical strategies to further enhance the physiological relevance of the models. We emphasize that developers and researchers should prioritize the incorporation of the full spectrum of retinal complexity to effectuate a direct impact of retina-on-chip models in disease modeling and development of therapeutic strategies.
Collapse
Affiliation(s)
- Tarek Gensheimer
- Applied Stem Cell Technologies Group, Department of Bioengineering Technologies, University of Twente, Enschede, The Netherlands.
| | - Devin Veerman
- Applied Stem Cell Technologies Group, Department of Bioengineering Technologies, University of Twente, Enschede, The Netherlands.
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Edwin M van Oosten
- Department of Pediatrics, Amalia Children's hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Loes Segerink
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Alejandro Garanto
- Department of Pediatrics, Amalia Children's hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andries D van der Meer
- Applied Stem Cell Technologies Group, Department of Bioengineering Technologies, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
6
|
Ebner LJA, Karademir D, Nötzli S, Wögenstein GM, Samardzija M, Grimm C. Oxygen-dependent alternative mRNA splicing and a cone-specific motor protein revealed by single-cell RNA sequencing in hypoxic retinas. Exp Eye Res 2025; 251:110190. [PMID: 39638278 DOI: 10.1016/j.exer.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Restricted oxygen supply in the aging eye may lead to hypoxic conditions in the outer retina and contribute not only to physiological aging but also to nonhereditary degenerative retinal diseases. To understand the hypoxic response of specific retinal cell types, we performed single-cell RNA sequencing of retinas isolated from mice exposed to hypoxia. Significantly upregulated expression of marker genes in hypoxic clusters confirmed a general transcriptional response to hypoxia. By focusing on the hypoxic response in photoreceptors, we identified and confirmed a kinesin motor protein (Kif4) that was specifically and strongly induced in hypoxic cones. In contrast, RNA-binding proteins Rbm3 and Cirbp were differentially expressed across clusters but demonstrated isoform switching in hypoxia. The resulting short variants of these gene transcripts are connected to epitranscriptomic regulation, a notion supported by the differential expression of writers, readers and erasers of m6A RNA methylations in the hypoxic retina. Our data indicate that retinal cells adapt to hypoxic conditions by adjusting their transcriptome at various levels including gene expression, alternative splicing and the epitranscriptome. Adaptational processes may be cell-type specific as exemplified by the cone-specific upregulation of Kif4 or general like alternative splicing of RNA binding proteins.
Collapse
Affiliation(s)
- Lynn J A Ebner
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Duygu Karademir
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Sarah Nötzli
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Gabriele M Wögenstein
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Marijana Samardzija
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
7
|
Khan AH, Mulfaul K. Choroidal macrophages in homeostasis, aging and age-related macular degeneration. Exp Eye Res 2025; 250:110159. [PMID: 39577606 DOI: 10.1016/j.exer.2024.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
With increasing age, the optimal functioning of the choroid is essential for efficient removal of waste products formed from photoreceptor renewal. A decline in regulatory elements of the immune system, termed immunosenescence, and the failure of para-inflammation to restore tissue homeostasis can result in the progression of healthy aging to sight-threatening inflammation of the choroid. Macrophages are uniquely situated between the innate and adaptive immune systems, with a high capacity for phagocytosis, recognition of complement components, as well as antigen presentation. In this review, we provide an overview of macrophages and their properties in the healthy choroid and cover the impact of aging, immunosenescence and inflammaging on the function of choroidal macrophages. We will discuss the impact of age on macrophage phenotype and behaviour in the pathophysiology of age-related macular degeneration.
Collapse
Affiliation(s)
- Adnan H Khan
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Kelly Mulfaul
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
8
|
Usoltseva AS, Litwin C, Lee M, Hill C, Cai J, Chen Y. Role of LIPIN 1 in regulating metabolic homeostasis in the retinal pigment epithelium. FASEB J 2024; 38:e70249. [PMID: 39673553 PMCID: PMC11809763 DOI: 10.1096/fj.202400981r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Dysregulated lipid metabolism, characterized by the accumulation of lipid deposits on Bruch's membrane and in drusen, is considered a key pathogenic event in age-related macular degeneration (AMD). The imbalance of lipid production, usage, and transport in local tissues, particularly in the retinal pigment epithelium (RPE), is increasingly recognized as crucial in AMD development. However, the molecular mechanisms governing lipid metabolism in the RPE remain elusive. LIPIN1, a multifunctional protein acting as both a modulator of transcription factors and a phosphatidate phosphatase (PAP1), is known to play important regulatory roles in lipid metabolism and related biological functions, such as inflammatory responses. While deficits in LIPIN1 have been linked to multiple diseases, its specific roles in the retina and RPE remain unclear. In this study, we investigated LIPIN1 in RPE integrity and function using a tissue-specific knockout animal model. The clinical and histological examinations revealed age-dependent degeneration in the RPE and the retina, along with impaired lipid metabolism. Bulk RNA sequencing indicated a disturbance in lipid metabolic pathways. Moreover, these animals exhibited inflammatory markers reminiscent of human AMD features, including deposition of IgG and C3d on Bruch's membrane. Collectively, our findings indicate that LIPIN1 is a critical component of the complex regulatory network of lipid homeostasis in the RPE. Disruption of LIPIN1-mediated regulation impaired lipid balance and contributed to AMD-related pathogenic changes.
Collapse
Affiliation(s)
- Anna S. Usoltseva
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Christopher Litwin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Michael Lee
- Department of College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Colton Hill
- Department of College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Jiyang Cai
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
| | - Yan Chen
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA 73104
- Dean McGee Eye Institute, Oklahoma City, OK, USA 73104
| |
Collapse
|
9
|
Modaresinejad M, Yang X, Mohammad Nezhady MA, Zhu T, Bajon E, Hou X, Tahiri H, Hardy P, Rivera JC, Lachapelle P, Chemtob S. Endoplasmic Reticulum Stress Delays Choroid Development in the HCAR1 Knockout Mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2382-2397. [PMID: 39332673 DOI: 10.1016/j.ajpath.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Abstract
The subretina, composed of the choroid and the retinal pigment epithelium (RPE), plays a critical role in proper vision. In addition to phagocytosis of photoreceptor debris, the RPE shuttles oxygen and nutrients to the neuroretina. For their own energy production, RPE cells mainly rely on lactate, a major by-product of glycolysis. Lactate, in turn, conveys most of its biological effects via the hydroxycarboxylic acid receptor 1 (HCAR1). Herein, the lactate-specific receptor, HCAR1, was found to be exclusively expressed in the RPE cells within the subretina, and Hcar1-/- mice exhibited a substantially thinner choroidal vasculature during development. Notably, the angiogenic properties of lactate on the choroid were impacted by the absence of Hcar1. HCAR1-deficient mice exhibited elevated endoplasmic reticulum stress along with eukaryotic translation initiation factor 2α phosphorylation, a significant decrease in the global protein translation rate, and a lower proliferation rate of choroidal vasculature. Strikingly, inhibition of the integrated stress response using an inhibitor that reverses the effect of eukaryotic translation initiation factor 2α phosphorylation restored protein translation and rescued choroidal thinning. These results provide evidence that lactate signalling via HCAR1 is important for choroidal development/angiogenesis and highlight the importance of this receptor in establishing mature vision.
Collapse
Affiliation(s)
- Monir Modaresinejad
- Program in Biomedical Science, Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada; Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Xiaojuan Yang
- School of Optometry, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada; Departments of Ophthalmology and Neurology-Neurosurgery, Research Institute of the McGill University Health Centre-Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Mohammad A Mohammad Nezhady
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada; Program in Molecular Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Tang Zhu
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Emmanuel Bajon
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Xin Hou
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Houda Tahiri
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Pierre Hardy
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - José C Rivera
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Pierre Lachapelle
- Departments of Ophthalmology and Neurology-Neurosurgery, Research Institute of the McGill University Health Centre-Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Sylvain Chemtob
- Program in Biomedical Science, Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada; Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada; School of Optometry, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Xu S, Li J, Long K, Wang W. Reactive Oxygen Species Responsive Supramolecular Prodrug Eyedrops for the Treatment of Choroidal Neovascularization. NANO LETTERS 2024; 24:14584-14593. [PMID: 39466057 DOI: 10.1021/acs.nanolett.4c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Choroidal neovascularization (CNV) represents a hallmark of neovascular fundus diseases, including age-related macular degeneration and diabetic retinopathy. Traditional eyedrops have encountered formidable challenges in treating CNV, primarily due to their extremely poor intraocular bioavailability and potential adverse off-target effects. Herein, an ocular-permeable supramolecular prodrug eyedrop (Di-DAS/P-PCD) has been developed for the on-demand delivery of antiangiogenic agents in the oxidative microenvironment of CNV. The eyedrop nanoformulation is composed of cell-penetrating peptide-modified PEGylated cyclodextrin (P-PCD) and reactive oxygen species (ROS)-sensitive antiangiogenic dasatinib prodrug Di-DAS. In a laser-induced CNV mouse model, daily instillation of Di-DAS/P-PCD has achieved remarkable penetration into the choroid and significantly suppressed CNV growth while exhibiting a good biocompatibility profile. Our results highlight the potential of the supramolecular prodrug eyedrops as a versatile approach for the targeted treatment of CNV and other neovascular eye disorders.
Collapse
Affiliation(s)
- Shuting Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Jia Li
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Kaiqi Long
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Motamed Shariati M, Khazaei S, Yaghoobi M. Choroidal vascularity index in health and systemic diseases: a systematic review. Int J Retina Vitreous 2024; 10:87. [PMID: 39558436 PMCID: PMC11575059 DOI: 10.1186/s40942-024-00607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The choroid, a highly vascular structure within the eye, is significantly influenced by various systemic conditions. The advent of enhanced depth optical coherence tomography has improved our ability to evaluate choroidal pathophysiology. The choroidal vascularity index (CVI), a noninvasive and reliable tool, serves as an effective means of assessing the choroidal vascular structure. Recent studies have increasingly focused on exploring CVI alterations under different systemic conditions. This study aims to provide a comprehensive summary of the latest research findings in this area. METHODS A systematic literature review was conducted on October 1, 2023, using two databases, MEDLINE (via PubMed) and Scopus. Search terms were tailored specifically for each database to ensure a thorough exploration of relevant literature. The studies identified were qualitatively assessed, with particular emphasis on outcomes related to CVI and choroidal thickness. RESULTS A total of 48 studies were included in the review, encompassing a diverse range of systemic conditions such as diabetes, central nervous system disorders, cardiovascular diseases, autoimmune disorders, and infectious diseases. Notable reductions in CVI were observed in diabetic retinopathy, autoimmune diseases, and neurodegenerative disorders. Additionally, the review highlighted variations in CVI values related to the severity of systemic diseases, indicating its potential use as a biomarker for disease progression. CONCLUSION This review highlights the significant correlation between variations in the choroidal vascularity index and diverse systemic conditions affecting hemodynamics. An enhanced understanding of CVI provides deeper insights into the pathophysiological mechanisms underlying these disorders and positions CVI as a promising biomarker for early detection and monitoring. Nevertheless, its clinical utility warrants careful assessment. Future research should address the potential limitations of CVI to fully capitalize on its diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Mehrdad Motamed Shariati
- Eye Research Center, Khatam Al-Anbia Eye Hospital, Mashhad University of Medical Sciences, Gharani Boulevard, Mashhad, Iran
| | - Sahel Khazaei
- Eye Research Center, Khatam Al-Anbia Eye Hospital, Mashhad University of Medical Sciences, Gharani Boulevard, Mashhad, Iran.
| | - Mariye Yaghoobi
- Eye Research Center, Khatam Al-Anbia Eye Hospital, Mashhad University of Medical Sciences, Gharani Boulevard, Mashhad, Iran
| |
Collapse
|
12
|
Kumar M, Trinh M, Zhang A, Wei X, Agrawal R, Nivison-Smith L. Age related grid-wise spatial analysis of choroidal parameters in well characterised healthy population. Sci Rep 2024; 14:26592. [PMID: 39496666 PMCID: PMC11535518 DOI: 10.1038/s41598-024-76844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Choroidal vascularity index (CVI) is an image-based metric applied to assess the choroid in disease but poorly explored in natural aging. In this retrospective cohort study, we assessed a single eye of 309 healthy individuals from 20 to 70 + years, and quantified spatial topography of total choroidal area (TCA), luminal area (LA), stromal area (SA) and CVI (LA: TCA) in cluster and standard retinal templates using a semi-automated approach. CVI was found to be greatest in the central vs. periphery (CVIcentral 67.08% [66.85-67.73] vs. CVIperiphery65.68% [65.32-66.01], p < 0.01). In this study, CVI also showed no significant change with age or physiological factors. Area parameters demonstrated greater magnitude in the central versus periphery but with a superior bias: TCAsuperior 0.227mm2 [0.223-0.233] vs. TCAinferior 0.207mm2 [0.201-0.213], p < 0.01.They also showed a linear decline with age (TCA:-0.00112 to -0.00169 mm2/year; LA: -0.00074 to -0.00112 mm2/year; SA: -0.00039 to -0.00056 mm2/year, p < 0.0001), with a higher rate of decline inferiorly (p < 0.001). This study demonstrates that CVI exhibits specific spatial differences across macula, independent of age. It further establishes a comprehensive, normative database of CVI and other choroidal angioarchitecture metrics which is a valuable resource for distinguishing pathological changes from normal age-related variations in future assessments of choroid-involving diseases.
Collapse
Affiliation(s)
- Meenakshi Kumar
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Centre for Eye Health, University of New South Wales, Sydney, 2052, Australia
| | - Matt Trinh
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Centre for Eye Health, University of New South Wales, Sydney, 2052, Australia
| | - Angela Zhang
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Xin Wei
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308433, Singapore
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore, Singapore
- Duke NUS Medical School, Singapore, Singapore
| | - Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
- Centre for Eye Health, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
13
|
Saeidian J, Azimi H, Azimi Z, Pouya P, Asadigandomani H, Riazi-Esfahani H, Hayati A, Daneshvar K, Khalili Pour E. Segmentation of choroidal area in optical coherence tomography images using a transfer learning-based conventional neural network: a focus on diabetic retinopathy and a literature review. BMC Med Imaging 2024; 24:281. [PMID: 39425019 PMCID: PMC11488256 DOI: 10.1186/s12880-024-01459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the effectiveness of DeepLabv3+with Squeeze-and-Excitation (DeepLabv3+SE) architectures for segmenting the choroid in optical coherence tomography (OCT) images of patients with diabetic retinopathy. METHODS A total of 300 B-scans were selected from 21 patients with mild to moderate diabetic retinopathy. Six DeepLabv3+SE variants, each utilizing a different pre-trained convolutional neural network (CNN) for feature extraction, were compared. Segmentation performance was assessed using the Jaccard index, Dice score (DSC), precision, recall, and F1-score. Binarization and Bland-Altman analysis were employed to evaluate the agreement between automated and manual measurements of choroidal area, luminal area (LA), and Choroidal Vascularity Index (CVI). RESULTS DeepLabv3+SE with EfficientNetB0 achieved the highest segmentation performance, with a Jaccard index of 95.47, DSC of 98.29, precision of 98.80, recall of 97.41, and F1-score of 98.10 on the validation set. Bland-Altman analysis indicated good agreement between automated and manual measurements of LA and CVI. CONCLUSIONS DeepLabv3+SE with EfficientNetB0 demonstrates promise for accurate choroid segmentation in OCT images. This approach offers a potential solution for automated CVI calculation in diabetic retinopathy patients. Further evaluation of the proposed method on a larger and more diverse dataset can strengthen its generalizability and clinical applicability.
Collapse
Affiliation(s)
- Jamshid Saeidian
- Faculty of Mathematical Sciences and Computer, Kharazmi University, No. 50, Taleghani Avenue, Tehran, Iran
| | - Hossein Azimi
- Faculty of Mathematical Sciences and Computer, Kharazmi University, No. 50, Taleghani Avenue, Tehran, Iran
| | - Zohre Azimi
- Department of Mathematics, Faculty of Science, Arak University, Arak, Iran
| | - Parnia Pouya
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Asadigandomani
- Retina Service, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Qazvin Street, Tehran, Iran
| | - Hamid Riazi-Esfahani
- Retina Service, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Qazvin Street, Tehran, Iran
| | - Alireza Hayati
- Students' Research Committee (SRC), Qazvin University of Medical Sciences, Qazvin, Iran
| | - Kimia Daneshvar
- Retina Service, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Qazvin Street, Tehran, Iran
| | - Elias Khalili Pour
- Retina Service, Farabi Eye Hospital, Tehran University of Medical Sciences, South Kargar Street, Qazvin Square, Qazvin Street, Tehran, Iran.
| |
Collapse
|
14
|
Guo Y, Xu N, Yan H, Li J, Huang L, Zhu L, Du W, Liu Z, Zhao M. Splice Variant of Retinal G-Protein-Coupled Receptor Deletion-Mediated Dysregulation of Autophagy Increases the Susceptibility to Age-Related Macular Degeneration-Like Defects. Ophthalmic Res 2024; 67:611-624. [PMID: 39406195 DOI: 10.1159/000541991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/30/2024] [Indexed: 11/14/2024]
Abstract
INTRODUCTION The splice variant of retinal G-protein-coupled receptor deletion (RGR-d) is a persistent component of drusen and may be involved in the pathogenesis of dry age-related macular degeneration (AMD). Increasing evidence has demonstrated the critical role of autophagy in AMD. In this study, we investigated whether RGR-d disrupts autophagy in early dry AMD in vivo and in vitro. METHODS Fundus imaging and fluoroscopy were performed on RGR-d mice created by multiplex gene editing. The retina microstructure was evaluated by performing hematoxylin and eosin (H&E) staining as well as transmission electron microscopy (TEM). Retinal function was assessed by full-field electroretinography (ERG). After lentivirus transfection and stimulation, the permeability, phagocytosis, and tight junctions of ARPE-19 cells were evaluated. Western blotting of ATG5, Beclin-1, LC3II/I, and P62 was performed to detect the changes in autophagy pathways. RESULTS Atrophy and patchy penetrating hyperfluorescent foci, consistent with early AMD-like defects, were observed in the fundus of 12-month-old RGR-d mice. H&E staining of retinal tissues indicated thinning of each layer of the retinal structure. H&E staining of retinal tissues indicated thinning of each layer of the retinal structure. TEM analysis showed some diffuse granular deposits. And the morphology of choroidal microvascular endothelial cells was degraded and distorted. The morphology of the photoreceptor outer segments showed structural damage, and Bruch's membrane was thickened. ERG indicated that the photoreceptor of RGR-d mice were dysfunctional. Changes in autophagy-related protein expression were observed in the retinal pigment epithelium and retinal neurepithelium, and autophagy regulation was decreased. Palmitic acid (PA) stimulation caused permeability, phagocytosis, and tight junction dysfunction in cells overexpressing RGR-d. Beclin-1 and LC3II/I expression levels were significantly decreased and that of P62 was elevated in RGR-d cells after PA stimulation. CONCLUSION RGR-d disrupts the autophagy pathway, causing the development of an early AMD-like pathophysiology.
Collapse
Affiliation(s)
- Yue Guo
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China,
- Eye Diseases and Optometry Institute, Beijing, China,
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China,
- College of Optometry, Peking University Health Science Center, Beijing, China,
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Huichao Yan
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jiarui Li
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Li Zhu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Wei Du
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Zhiming Liu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
15
|
Sheibani N, Song YS, Farnoodian M, Inampudi S, Hanna B, Wang S, Darjatmoko SR, Sorenson CM. Bim Expression Influences Choroidal Endothelial Cell Characteristics and Their Response to Therapeutic Intervention. Int J Mol Sci 2024; 25:10254. [PMID: 39408582 PMCID: PMC11476819 DOI: 10.3390/ijms251910254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
In the aging population, choroidal vessels grow through the Bruch's membrane, resulting in a loss of central vision due to choroidal neovascularization (CNV). During active neovascularization, CNV is associated with inappropriate levels of apoptosis in multiple cell types, including choroidal endothelial cells (ChECs). Bim is a pro-apoptotic member of the Bcl-2 family. It is essential for cell apoptosis due to exposure to drugs such as dexamethasone or decreased pro-survival factors, including vascular endothelial growth factor (VEGF). To better elucidate the cell autonomous contribution of Bim expression in the integrity and neovascularization of the choroidal vasculature, we isolated ChECs from wild-type and Bim-deficient (Bim-/-) mice. ChECs lacking Bim expression demonstrated increased expression of VEGF, osteopontin, and the inflammatory cytokines Rantes/Ccl5 and IL6. Bim-/- ChECs were more proliferative and demonstrated an increased capacity to undergo capillary morphogenesis. Anti-VEGF had a diminished capacity to disrupt capillary morphogenesis in Bim-/- ChECs. In vivo, utilizing the mouse laser photocoagulation model, anti-VEGF treatment mitigated CNV in wild-type but not Bim-/- mice. We also tested other modalities that are thought to not require the intrinsic death pathway for their function and showed that propranolol, anti-CTGF, and the TSP1-mimetic peptide ABT898 mitigated CNV in mice lacking Bim expression to varying degrees. Thus, in ChECs, Bim expression could impact the effectiveness of treatment modalities that require the intrinsic death pathway to mitigate CNV.
Collapse
Affiliation(s)
- Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (N.S.); (Y.-S.S.); (M.F.); (S.W.); (S.R.D.)
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (N.S.); (Y.-S.S.); (M.F.); (S.W.); (S.R.D.)
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mitra Farnoodian
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (N.S.); (Y.-S.S.); (M.F.); (S.W.); (S.R.D.)
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Samay Inampudi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.I.); (B.H.)
| | - Barbara Hanna
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.I.); (B.H.)
| | - Shoujian Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (N.S.); (Y.-S.S.); (M.F.); (S.W.); (S.R.D.)
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Soesiawati R. Darjatmoko
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (N.S.); (Y.-S.S.); (M.F.); (S.W.); (S.R.D.)
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Christine M. Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.I.); (B.H.)
| |
Collapse
|
16
|
Finzi A, Ottoboni S, Cellini M, Corcioni B, Gaudiano C, Fontana L. Color Doppler Imaging, Endothelin-1, Corneal Biomechanics and Scleral Rigidity in Asymmetric Age-Related Macular Degeneration. Clin Ophthalmol 2024; 18:2583-2591. [PMID: 39281979 PMCID: PMC11401527 DOI: 10.2147/opth.s479225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose Age-related macular degeneration (AMD) presents a multifaceted etiopathogenesis involving ischemic, inflammatory, and genetic components. This study investigates the correlation between ocular hemodynamics, scleral rigidity (SR), and plasma endothelin-1 (ET1) levels in treatment-naive patients with asymmetrical AMD. Patients and Methods This study included 20 treatment-naive patients (12 females and 8 males) with an average age of 76.4 ± 3.7 years, who presented with AMD with neovascular membrane formation (nAMD) in one eye, and intermediate grade 2 AMD (iAMD) in the other eye. The control group consisted of 20 healthy subjects (13 females and 7 males) with a mean age of 74.7 ± 3.9 years. All patients and healthy controls underwent color Doppler imaging (i) of the ophthalmic artery (OA), short posterior ciliary arteries (SPCAs), and central retinal artery (CRA); Plasma ET-1 levels were measured for all patients and healthy subjects. Corneal biomechanics were assessed using an Ocular Response Analyzer and two indices were obtained: corneal hysteresis (CH) and corneal resistance factor (CRF). Results Results showed reduced blood flow velocities and increased resistance indices in AMD eyes, particularly affecting the short posterior ciliary arteries. According to mechanical theory, ARMD eyes exhibited elevated scleral rigidity and corneal resistance factor compared to controls, with a notable rise in SR in neovascular AMD (nAMD) eyes. As per the chronic subacute inflammation theory, plasma ET-1 levels were significantly higher in AMD patients, correlating with abnormal SPCAs blood flow and increased resistance indices. Conclusion Findings suggest a multifactorial etiology of AMD involving an increase of ET-1 plasma levels with biomechanic damages of corneal and scleral tissue in nAMD.
Collapse
Affiliation(s)
- Alessandro Finzi
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simone Ottoboni
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mauro Cellini
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Beniamino Corcioni
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Caterina Gaudiano
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luigi Fontana
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
17
|
Zhao Q, Wei L, Chen Y. Detection of choroidal vascular features in diabetic patients without clinically visible diabetic retinopathy by optical coherence tomography angiography: A systemic review and meta-analysis. Surv Ophthalmol 2024:S0039-6257(24)00100-0. [PMID: 39214238 DOI: 10.1016/j.survophthal.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Researchers have explored choroidal features in the eyes of diabetic patients without clinically visible diabetic retinopathy (DM-NoDR) employing optical coherence tomography angiography (OCTA); however, the results are controversial. We systematically searched PubMed, Embase, and Ovid databases for OCTA studies comparing choroidal parameters between DM-NoDR eyes and healthy controls or nonproliferative diabetic retinopathy (NPDR) eyes. Outcomes included choriocapillaris (CC) perfusion density (PD), flow area (FA), and flow deficits (FD). 36 studies were finally included in the quantitative meta-analysis, involving 1908 DM-NoDR eyes, 792 NPDR eyes, and 1391 healthy control eyes. DM-NoDR eyes had significantly lower CC PD in the foveal region (P = 0.0005) and superior parafoveal region (P = 0.003) than healthy control eyes, but no significant difference was found in other parafoveal subregions (P > 0.05). DM-NoDR eyes were also associated with increased CC FD (P < 0.00001) and decreased CC FA (P < 0.0001) in whole OCTA images with a 3 × 3 mm2 field of view (FOV). Compared with all-stage NPDR eyes, DM-NoDR eyes had higher CC PD in the foveal region (P < 0.0001), parafoveal region (P < 0.00001), and the whole OCTA images with a 6 × 6 mm2 FOV (P < 0.00001). Early choroidal microvascular changes may precede clinically visible DR and can be detected early using OCTA in DM-NoDR eyes.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Linxin Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
18
|
Song J, Hu Y, Chen A, Yoo HS, Zawadzki RJ, Matsubara JA, Ju MJ. In vivo multi-contrast depth-resolved choroidal imaging of a mouse using polarization-diversity optical coherence tomography. OPTICS LETTERS 2024; 49:4314-4317. [PMID: 39090922 DOI: 10.1364/ol.529146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
The results of depth-resolved multi-contrast in vivo mouse choroidal imaging using a polarization-diversity optical coherence tomography (PD-OCT) system are presented. A selectively chosen depth of focus that was fine-tuned with a sensorless adaptive optics technique and a simple segmentation based on the degree of polarization uniformity signal visualizes the detailed features of a mouse choroid from the OCT angiography images. A comprehensive image analysis of the choroid revealed the distinctive pathological characteristics of the laser-induced choroidal neovascularization mouse.
Collapse
|
19
|
de Carlo Forest TE, Gill Z, Lisker-Cervantes A, Gnanaraj R, Grove N, Patnaik JL, Lynch AM, Palestine AG, Mathias M, Manoharan N, Mandava N. Association Between Quantitative and Qualitative Imaging Biomarkers and Geographic Atrophy Growth Rate. Am J Ophthalmol 2024; 264:168-177. [PMID: 38552931 PMCID: PMC11257804 DOI: 10.1016/j.ajo.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE Investigate associations between geographic atrophy (GA) growth rate and multimodal imaging biomarkers and patient demographics in patients with advanced non-neovascular age-related macular degeneration (nnAMD). DESIGN Prospective cohort study. METHODS One hundred twenty-one eyes of 66 patients with advanced nnAMD with GA enrolled in the University of Colorado AMD Registry from August 2014 to June 2021, with follow-up through June 2023. Multimodal images were reviewed by two graders for imaging biomarkers at enrollment. GA growth rate and square-root transformed (SQRT) GA growth rate were measured between enrollment and final visit. Associations between the outcome SQRT GA growth rate and imaging biomarkers, baseline GA lesions characteristics, and patient demographics were evaluated. RESULTS Average GA growth rate was 1.430 mm2/year and SQRT GA growth rate was 0.268 mm/year over a mean of 3.7 years. SQRT GA growth rate was positively associated with patient age (P = .010) and female sex (0.035), and negatively associated with body mass index (0.041). After adjustment for these demographic factors, SQRT GA growth rate was positively associated with presence of non-exudative subretinal fluid (P < .001), non-exudative subretinal hyperreflective material (P = .037), and incomplete retinal pigment epithelium and outer retina atrophy (P = .022), and negatively associated with subfoveal choroidal thickness (P = .031) and presence of retinal pseudocysts (P = .030). Larger baseline GA size at enrollment was associated with faster GA growth rate (P = .002) but not SQRT GA growth rate. CONCLUSIONS Select patient demographic factors and basic clinically-relevant imaging biomarkers were associated with GA growth rate. These biomarkers may guide patient selection when considering treating GA patients with novel therapeutics.
Collapse
Affiliation(s)
- Talisa E de Carlo Forest
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Zafar Gill
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andres Lisker-Cervantes
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ramya Gnanaraj
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nathan Grove
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer L Patnaik
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anne M Lynch
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alan G Palestine
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marc Mathias
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Niranjan Manoharan
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Naresh Mandava
- From the Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
20
|
Song MS, Kim YH, Oh J. Spatial Distribution of Hyperreflective Choroidal Foci in the Macula of Normal Eyes. Transl Vis Sci Technol 2024; 13:35. [PMID: 39172482 PMCID: PMC11346144 DOI: 10.1167/tvst.13.8.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose To investigate variations in the spatial distribution of hyperreflective foci in the choroid of the macula in normal eyes. Methods We included eyes with a normal fundus from patients who had undergone optical coherence tomography angiography, covering a 6-mm × 6-mm area centered on the fovea. The macular area was divided into nine sectors according to the modified Early Treatment of Diabetic Retinopathy Study grid. Hyperreflective choroidal foci (HCF) distribution, choriocapillaris vascular density, and choroidal stromal density were determined on en face images of the choroid in each sector. Results We included 35 eyes from 35 participants, with a mean age of 52.7 ± 16.8 years. The mean number and area fraction of HCF at the 5-mm macular area were 35.6 ± 7.8 foci/mm2 and 3.0% ± 0.7%, respectively. The number of HCF in the central circle (50.7 ± 20.9 foci/mm2) was greater than that in the inner (35.1 ± 13.0 foci/mm2) or outer rings (35.6 ± 6.5 foci/mm2) (P < 0.001, P < 0.001, respectively). The area fraction of HCF in the central circle (4.84% ± 3.36%) was greater than that in the inner (2.62% ± 1.17%; P < 0.001) or outer rings (3.12% ± 0.67%; P = 0.004). The HCF distribution did not significantly correlate with the choriocapillaris vascular density or choroidal stromal density in each sector. Conclusions HCF were more densely distributed in the macular center than in the pericentral or peripheral macular areas. Translational Relevance HCF measurement and spatial distribution could provide additional information for evaluating choroidal stromal characteristics.
Collapse
Affiliation(s)
- Myung-Sun Song
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Young Ho Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Jaeryung Oh
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Fei X, Jung S, Kwon S, Kim J, Corson TW, Seo SY. Challenges and opportunities of developing small-molecule therapies for age-related macular degeneration. Arch Pharm Res 2024; 47:538-557. [PMID: 38902481 PMCID: PMC11753178 DOI: 10.1007/s12272-024-01503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in senior adults. The disease can be categorized into two types: wet AMD and dry AMD. Wet AMD, also known as exudative or neovascular AMD, is less common but more severe than dry AMD and is responsible for 90% of the visual impairment caused by AMD and affects 20 million people worldwide. Current treatment options mainly involve biologics that inhibit the vascular endothelial growth factor or complement pathways. However, these treatments have limitations such as high cost, injection-related risks, and limited efficacy. Therefore, new therapeutic targets and strategies have been explored to improve the outcomes of patients with AMD. A promising approach is the use of small-molecule drugs that modulate different factors involved in AMD pathogenesis, such as tyrosine kinases and integrins. Small-molecule drugs offer advantages, such as oral administration, low cost, good penetration, and increased specificity for the treatment of wet and dry AMD. This review summarizes the current status and prospects of small-molecule drugs for the treatment of wet AMD. These advances are expected to support the development of effective and targeted treatments for patients with AMD.
Collapse
Affiliation(s)
- Xiang Fei
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Sooyun Jung
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Sangil Kwon
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Jiweon Kim
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Timothy W Corson
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea.
| |
Collapse
|
22
|
Song D, Ni Y, Zhou Y, Niu Y, Wang G, Lv B, Xie G, Liu G. Evaluation of choroid vascular layer thickness in wet age-related macular degeneration using artificial intelligence. Photodiagnosis Photodyn Ther 2024; 47:104218. [PMID: 38777310 DOI: 10.1016/j.pdpdt.2024.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE To facilitate the assessment of choroid vascular layer thickness in patients with wet age-related macular degeneration (AMD) using artificial intelligence (AI). METHODS We included 194 patients with wet AMD and 225 healthy participants. Choroid images were obtained using swept-source optical coherence tomography. The average Sattler layer-choriocapillaris complex thickness (SLCCT), Haller layer thickness (HLT), and choroidal thickness (CT) were auto-measured at 7 regions centered around the foveola using AI and subsequently compared between the 2 groups. RESULTS The SLCCT was lower in the AMD group than in the control group (P < 0.05). The HLT was significantly higher in the AMD group than in the control group at the Tparafovea and T-perifovea in the total population (P < 0.05) and in the ≤70-year subgroup (P < 0.05). The CT was higher in the AMD group than in the control group, particularly at the N-perifovea, T-perifovea, and T-parafovea in the ≤70-year subgroup; Interestingly, it was lower in the AMD group than in the control group at the Nparafovea, N-fovea, foveola, and T-fovea in the >70-year subgroup (P < 0.05). CONCLUSION This novel AI-based auto-measurement was more accurate, efficient, and detailed than manual measurements. SLCCT thinning was observed in wet AMD; however, CT changes depended on the interaction between HLT compensatory thickening and SLCCT thinning.
Collapse
Affiliation(s)
- Dan Song
- Department of Ophthalmology, Peking University International Hospital, No. 1 Shengmingyuan Road, Zhongguancun Life Science Park, Changping District, Beijing, China
| | - Yuan Ni
- Ping An Technology, 12F Building B, PingAn IFC, No.1-3 Xinyuan South Road, Beijing 100027 China
| | - Ying Zhou
- Department of Ophthalmology, Peking University International Hospital, No. 1 Shengmingyuan Road, Zhongguancun Life Science Park, Changping District, Beijing, China
| | - Yaqian Niu
- Department of Ophthalmology, Peking University International Hospital, No. 1 Shengmingyuan Road, Zhongguancun Life Science Park, Changping District, Beijing, China
| | - Guanzheng Wang
- Ping An Technology, 12F Building B, PingAn IFC, No.1-3 Xinyuan South Road, Beijing 100027 China
| | - Bin Lv
- Ping An Technology, 12F Building B, PingAn IFC, No.1-3 Xinyuan South Road, Beijing 100027 China
| | - Guotong Xie
- Ping An Technology, 12F Building B, PingAn IFC, No.1-3 Xinyuan South Road, Beijing 100027 China; Ping An Health Cloud Company Limited, 12F Building B, PingAn IFC, No. 1-3 Xinyuan South Road, Beijing 100027, China.
| | - Guangfeng Liu
- Department of Ophthalmology, Peking University International Hospital, No. 1 Shengmingyuan Road, Zhongguancun Life Science Park, Changping District, Beijing, China.
| |
Collapse
|
23
|
Liu W, Zhang C, Jiang F, Tan Y, Qin B. From theory to therapy: a bibliometric and visual study of stem cell advancements in age-related macular degeneration. Cytotherapy 2024; 26:616-631. [PMID: 38483361 DOI: 10.1016/j.jcyt.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND AIMS Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, offer groundbreaking therapeutic potential for degenerative diseases and cellular repair. Despite their significance, a comprehensive bibliometric analysis in this field, particularly in relation to age-related macular degeneration (AMD), is yet to be conducted. This study aims to map the foundational and emerging areas in stem cell and AMD research through bibliometric analysis. METHODS This study analyzed articles and reviews on stem cells and AMD from 2000 to 2022, sourced from the Web of Science Core Collection. We used VOSviewer and CiteSpace for analysis and visualization of data pertaining to countries, institutions, authors, journals, references and key words. Statistical analyses were conducted using R language and Microsoft Excel 365. RESULTS In total, 539 publications were included, indicating an increase in global literature on stem cells and AMD from 2000 to 2022. The USA was the leading contributor, with 239 papers and the highest H-index, also the USA had the highest average citation rate per article (59.82). Notably, 50% of the top 10 institutions were from the USA, with the University of California system being the most productive. Key authors included Masayo Takahashi, Michiko Mandai, Dennis Clegg, Pete J. Coffey, Boris Stanzel, and Budd A. Tucker. Investigative Ophthalmology & Visual Science published the majority of relevant papers (n = 27). Key words like "clinical trial," "stem cell therapy," "retinal organoid," and "retinal progenitor cells" were predominant. CONCLUSIONS Research on stem cells and AMD has grown significantly, highlighting the need for increased global cooperation. Current research prioritizes the relationship between "ipsc," "induced pluripotent stem cell," "cell culture," and "human embryonic stem cell." As stem cell culture and safety have advanced, focus has shifted to prognosis and complications post-transplantation, signifying the movement of stem cell research from labs to clinical settings.
Collapse
Affiliation(s)
| | | | | | - Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, China; Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha City, China.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China.
| |
Collapse
|
24
|
Chen X, Xu Y, Ju Y, Gu P. Metabolic Regulation of Endothelial Cells: A New Era for Treating Wet Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:5926. [PMID: 38892113 PMCID: PMC11172501 DOI: 10.3390/ijms25115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Wet age-related macular degeneration (wet AMD) is a primary contributor to visual impairment and severe vision loss globally, but the prevailing treatments are often unsatisfactory. The development of conventional treatment strategies has largely been based on the understanding that the angiogenic switch of endothelial cells (ECs) is mainly dictated by angiogenic growth factors. Even though treatments targeting vascular endothelial growth factor (VEGF), like ranibizumab, are widely administered, more than half of patients still exhibit inadequate or null responses, suggesting the involvement of other pathogenic mechanisms. With advances in research in recent years, it has become well recognized that EC metabolic regulation plays an active rather than merely passive responsive role in angiogenesis. Disturbances of these metabolic pathways may lead to excessive neovascularization in angiogenic diseases such as wet AMD, therefore targeted modulation of EC metabolism represents a promising therapeutic strategy for wet AMD. In this review, we comprehensively discuss the potential applications of EC metabolic regulation in wet AMD treatment from multiple perspectives, including the involvement of ECs in wet AMD pathogenesis, the major endothelial metabolic pathways, and novel therapeutic approaches targeting metabolism for wet AMD.
Collapse
Affiliation(s)
- Xirui Chen
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yang Xu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
25
|
Hilely A, Au A, Lee WK, Fogel Levin M, Zur D, Romero-Morales V, Santina A, Lee JS, Loewenstein A, Sarraf D. Pachyvitelliform maculopathy: an optical coherence tomography analysis of a novel entity. Br J Ophthalmol 2024; 108:753-759. [PMID: 37451830 DOI: 10.1136/bjo-2022-322553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE To describe the optical coherence tomography features of pachyvitelliform maculopathy (PVM), an acquired vitelliform lesion (AVL) associated with pachychoroid disease. METHODS This study was a retrospective, multicentre, observational analysis.Medical records and multimodal imaging were reviewed in all patients with pachychoroid disease and AVL. Visual acuity, central choroidal thickness (CCT), AVL dimensions, total choroidal area, luminal choroidal area, stromal choroidal area and choroidal vascular index were measured in all eyes with PVM and compared with normal age-matched control eyes. RESULTS Mean age of the PVM group (17 eyes of 17 patients) was 71.41 years. Average follow-up was 33.15 months. Baseline VA was 20/40 in the PVM group and declined to 20/100 (p=0.006). AVLs were all detected overlying pachyvessels with optical coherence tomography and were all hyperautofluorescent with fundus autofluorescent imaging. Mean CCT in the PVM group was significantly greater (352.35 µm) than the CCT in the control group (226.88 µm, p<0.001). Retinal pigment epithelium (RPE) disruption was present in 64.71% of eyes with PVM at baseline and 41.18% developed macular atrophy at the end of follow-up. CONCLUSIONS PVM, defined by the presence of AVL associated with pachychoroid features, is a distinct novel entity of the pachychoroid disease spectrum. This study suggests a possible pathogenesis of RPE dysfunction secondary to a thick choroid, leading to accumulation of undigested photoreceptor outer segments and AVL. Clinicians should be aware of this common cause of vitelliform lesions and the poor visual prognosis due to the high risk of atrophy development.
Collapse
Affiliation(s)
- Assaf Hilely
- Division of Ophthalmology, Tel Aviv Sourasky Medical Center affiliated to Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Adrian Au
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Won Ki Lee
- Department of Ophthalmology, Nune Eye Hospital, Seoul, Republic of Korea
| | - Miri Fogel Levin
- The Goldschleger Eye Insitute, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Dinah Zur
- Division of Ophthalmology, Tel Aviv Sourasky Medical Center affiliated to Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Veronica Romero-Morales
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ahmad Santina
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jong Suk Lee
- Department of Ophthalmology, Nune Eye Hospital, Seoul, Republic of Korea
| | - Anat Loewenstein
- Division of Ophthalmology, Tel Aviv Sourasky Medical Center affiliated to Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - David Sarraf
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Greater Los Angeles VA Healthcare Center, Los Angeles, California, USA
| |
Collapse
|
26
|
Wilke GA, Apte RS. Complement regulation in the eye: implications for age-related macular degeneration. J Clin Invest 2024; 134:e178296. [PMID: 38690727 PMCID: PMC11060743 DOI: 10.1172/jci178296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Careful regulation of the complement system is critical for enabling complement proteins to titrate immune defense while also preventing collateral tissue damage from poorly controlled inflammation. In the eye, this balance between complement activity and inhibition is crucial, as a low level of basal complement activity is necessary to support ocular immune privilege, a prerequisite for maintaining vision. Dysregulated complement activation contributes to parainflammation, a low level of inflammation triggered by cellular damage that functions to reestablish homeostasis, or outright inflammation that disrupts the visual axis. Complement dysregulation has been implicated in many ocular diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD). In the last two decades, complement activity has been the focus of intense investigation in AMD pathogenesis, leading to the development of novel therapeutics for the treatment of atrophic AMD. This Review outlines recent advances and challenges, highlighting therapeutic approaches that have advanced to clinical trials, as well as providing a general overview of the complement system in the posterior segment of the eye and selected ocular diseases.
Collapse
Affiliation(s)
- Georgia A. Wilke
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
- Department of Medicine, and
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Ogamino S, Yamamichi M, Sato K, Ishitani T. Dynamics of Wnt/β-catenin reporter activity throughout whole life in a naturally short-lived vertebrate. NPJ AGING 2024; 10:23. [PMID: 38684674 PMCID: PMC11059364 DOI: 10.1038/s41514-024-00149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Wnt/β-catenin signaling plays a major role in regulation of embryogenesis, organogenesis, and adult tissue homeostasis and regeneration. However, the roles played by Wnt/β-catenin and the spatiotemporal regulation of its activity throughout life, including during aging, are not fully understood. To address these issues, we introduced a Wnt/β-catenin signaling sensitive reporter into African turquoise killifish (Nothobranchius furzeri), a naturally ultra-short-lived fish that allows for the analysis of its whole life within a short period of time. Using this reporter killifish, we unraveled the previously unidentified dynamics of Wnt/β-catenin signaling during development and aging. Using the reporter strain, we detected Wnt/β-catenin activity in actively developing tissues as reported in previous reports, but also observed activation and attenuation of Wnt/β-catenin activity during embryonic reaggregation and diapause, respectively. During the aging process, the reporter was activated in the choroidal layer and liver, but its expression decreased in the kidneys. In addition, the reporter also revealed that aging disrupts the spatial regulation and intensity control of Wnt/β-catenin activity seen during fin regeneration, which interferes with precise regeneration. Thus, the employed reporter killifish is a highly useful model for investigating the dynamics of Wnt/β-catenin signaling during both the developmental and aging process.
Collapse
Affiliation(s)
- Shohei Ogamino
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Moeko Yamamichi
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ken Sato
- Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
28
|
Song Y, Liao Y, Liu T, Chen Y, Wang F, Zhou Z, Zhang W, Li J. Microglial repopulation restricts ocular inflammation and choroidal neovascularization in mice. Front Immunol 2024; 15:1366841. [PMID: 38711521 PMCID: PMC11070532 DOI: 10.3389/fimmu.2024.1366841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction Age-related macular degeneration (AMD) is a prevalent, chronic and progressive retinal degenerative disease characterized by an inflammatory response mediated by activated microglia accumulating in the retina. In this study, we demonstrate the therapeutically effects and the underlying mechanisms of microglial repopulation in the laser-induced choroidal neovascularization (CNV) model of exudative AMD. Methods The CSF1R inhibitor PLX3397 was used to establish a treatment paradigm for microglial repopulation in the retina. Neovascular leakage and neovascular area were examined by fundus fluorescein angiography (FFA) and immunostaining of whole-mount RPE-choroid-sclera complexes in CNV mice receiving PLX3397. Altered cellular senescence was measured by beta-galactosidase (SA-β-gal) activity and p16INK4a expression. The effect and mechanisms of repopulated microglia on leukocyte infiltration and the inflammatory response in CNV lesions were analyzed. Results We showed that ten days of the CSF1R inhibitor PLX3397 treatment followed by 11 days of drug withdrawal was sufficient to stimulate rapid repopulation of the retina with new microglia. Microglial repopulation attenuated pathological choroid neovascularization and dampened cellular senescence in CNV lesions. Repopulating microglia exhibited lower levels of activation markers, enhanced phagocytic function and produced fewer cytokines involved in the immune response, thereby ameliorating leukocyte infiltration and attenuating the inflammatory response in CNV lesions. Discussion The microglial repopulation described herein are therefore a promising strategy for restricting inflammation and choroidal neovascularization, which are important players in the pathophysiology of AMD.
Collapse
Affiliation(s)
- Yinting Song
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yuefeng Liao
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Tong Liu
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yanxian Chen
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- Experimental Ophthalmology, School of Optometry, The Hong Kong Polytechnic University, HongKong, Hong Kong SAR, China
| | - Fei Wang
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Zixia Zhou
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Weili Zhang
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Jinying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
29
|
Cui X, Buonfiglio F, Pfeiffer N, Gericke A. Aging in Ocular Blood Vessels: Molecular Insights and the Role of Oxidative Stress. Biomedicines 2024; 12:817. [PMID: 38672172 PMCID: PMC11048681 DOI: 10.3390/biomedicines12040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Acknowledged as a significant pathogenetic driver for numerous diseases, aging has become a focal point in addressing the profound changes associated with increasing human life expectancy, posing a critical concern for global public health. Emerging evidence suggests that factors influencing vascular aging extend their impact to choroidal and retinal blood vessels. The objective of this work is to provide a comprehensive overview of the impact of vascular aging on ocular blood vessels and related diseases. Additionally, this study aims to illuminate molecular insights contributing to vascular cell aging, with a particular emphasis on the choroid and retina. Moreover, innovative molecular targets operating within the domain of ocular vascular aging are presented and discussed.
Collapse
Affiliation(s)
- Xiuting Cui
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (N.P.)
| |
Collapse
|
30
|
KhalafAllah MT, Fuchs PA, Nugen F, El Hamdaoui M, Levy AM, Samuels BC, Grytz R. Heterogenous thinning of peripapillary tissues occurs early during high myopia development in juvenile tree shrews. Exp Eye Res 2024; 240:109824. [PMID: 38336167 PMCID: PMC11095113 DOI: 10.1016/j.exer.2024.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Myopia is an independent risk factor for glaucoma, but the link between both conditions remains unknown. Both conditions induce connective tissue remodeling at the optic nerve head (ONH), including the peripapillary tissues. The purpose of this study was to investigate the thickness changes of the peripapillary tissues during experimental high myopia development in juvenile tree shrews. Six juvenile tree shrews experienced binocular normal vision, while nine received monocular -10D lens treatment starting at 24 days of visual experience (DVE) to induce high myopia in one eye and the other eye served as control. Daily refractive and biometric measurements and weekly optical coherence tomography scans of the ONH were obtained for five weeks. Peripapillary sclera (Scl), choroid-retinal pigment epithelium complex (Ch-RPE), retinal nerve fiber layer (RNFL), and remaining retinal layers (RRL) were auto-segmented using a deep learning algorithm after nonlinear distortion correction. Peripapillary thickness values were quantified from 3D reconstructed segmentations. All lens-treated eyes developed high myopia (-9.8 ± 1.5 D), significantly different (P < 0.001) from normal (0.69 ± 0.45 D) and control eyes (0.76 ± 1.44 D). Myopic eyes showed significant thinning of all peripapillary tissues compared to both, normal and control eyes (P < 0.001). At the experimental end point, the relative thinning from baseline was heterogeneous across tissues and significantly more pronounced in the Scl (-8.95 ± 3.1%) and Ch-RPE (-16.8 ± 5.8%) when compared to the RNFL (-5.5 ± 1.6%) and RRL (-6.7 ± 1.8%). Furthermore, while axial length increased significantly throughout the five weeks of lens wear, significant peripapillary tissue thinning occurred only during the first week of the experiment (until a refraction of -2.5 ± 1.9 D was reached) and ceased thereafter. A sectorial analysis revealed no clear pattern. In conclusion, our data show that in juvenile tree shrews, experimental high myopia induces significant and heterogeneous thinning of the peripapillary tissues, where the retina seems to be protected from profound thickness changes as seen in Ch-RPE and Scl. Peripapillary tissue thinning occurs early during high myopia development despite continued progression of axial elongation. The observed heterogeneous thinning may contribute to the increased risk for pathological optic nerve head remodeling and glaucoma later in life.
Collapse
Affiliation(s)
- Mahmoud T KhalafAllah
- Vision Science Graduate Program, The University of Alabama at Birmingham, Birmingham, AL, United States; Department of Ophthalmology, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Preston A Fuchs
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Fred Nugen
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mustapha El Hamdaoui
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alexander M Levy
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rafael Grytz
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
31
|
Moir J, Kaufmann G, Rodriguez SH, Nourian N, Abdul Rasheed M, Vupparaboina KK, Chhablani J, Skondra D. Racial Differences in Choroidal Vascularity Index in Healthy Patients: Novel Insights. Ophthalmic Surg Lasers Imaging Retina 2024; 55:30-38. [PMID: 38189798 DOI: 10.3928/23258160-20231113-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND AND OBJECTIVE Choroidal vascularity index (CVI) measures the ratio of blood vessels in the choroid to the total choroidal area. We aimed to compare CVI between young Black and White patients without a history of ocular or systemic disease. PATIENTS AND METHODS We used a previously validated algorithm for shadow compensation and choroidal vessel binarization to measure CVI across the Early Treatment of Diabetic Retinopathy Study grid. RESULTS Black patients had a lower CVI (ß = -0.05, P < 0.001) compared to White patients. Choroidal volume or luminal volume did not significantly differ with respect to race, whereas there was a trend for Black patients to have a greater stromal volume (ß = 3.08, P = 0.01). CONCLUSIONS Black patients have a lower CVI than do White patients, likely due to a greater proportion of stromal volume. Further study of this parameter is warranted to validate the findings of this exploratory study. [Ophthalmic Surg Lasers Imaging Retina 2024;55:30-38.].
Collapse
|
32
|
Nashine S, Kenney MC. Effects of Humanin G (HNG) on angiogenesis and neurodegeneration markers in Age-related Macular Degeneration (AMD). Mitochondrion 2024; 74:101818. [PMID: 38029849 DOI: 10.1016/j.mito.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Advanced stages of Age-related Macular Degeneration (AMD) are characterized by retinal neurodegeneration and aberrant angiogenesis, and mitochondrial dysfunction contributes to the pathogenesis of AMD. In this study, we tested the hypothesis that Humanin G (HNG), a cytoprotective mitochondrial-derived peptide, positively regulates cell proliferation, cell death, and the protein levels of angiogenesis and neurodegeneration markers, in normal (control) and AMD RPE transmitochondrial cybrid cell lines. These normal and AMD RPE transmitochondrial cybrid cell lines had identical nuclei derived from mitochondria-deficient ARPE-19 cell line, but differed in mitochondrial DNA (mtDNA) content that was derived from clinically characterized AMD patients and normal (control) subjects. Cell lysates were extracted from untreated and HNG-treated AMD and normal (control) cybrid cell lines, and the Luminex XMAP multiplex assay was used to examine the protein levels of angiogenesis and neurodegeneration markers. Humanin G reduced Caspase-3/7-mediated apoptosis, improved cell proliferation, and normalized the protein levels of angiogenesis and neurodegeneration markers in AMD RPE cybrid cell lines, thereby suggesting Humanin G's positive regulatory role in AMD.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
33
|
Kundu A, Thomas AS, Mirzania D, Kim JS, Stinnett SS, Fekrat S. Acute, Treatment-Naïve Branch Retinal Vein Occlusion in Younger Individuals: Risk Factors and Clinical Outcomes. JOURNAL OF VITREORETINAL DISEASES 2024; 8:51-57. [PMID: 38223779 PMCID: PMC10786076 DOI: 10.1177/24741264231205378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Purpose: To compare the risk factors and clinical outcomes in patients younger than 50 years with acute, treatment-naïve branch retinal vein occlusion (BRVO) with outcomes in patients 50 years or older. Methods: Patients diagnosed with acute, treatment-naïve BRVO at Duke Eye Center over a 9.5-year period who had BRVO with onset 3 months or less before presentation, BRVO with macular involvement, and 12 months or more of follow-up were included. Demographic data, presenting clinical features, risk factors, treatment patterns, and clinical outcomes were extracted during a retrospective review of medical records. Results: Of 302 patients identified, 23 were younger than 50 years (younger group) and 279 were 50 years or older (older group). Compared with older patients, younger patients had similar rates of hypertension (P = .275), diabetes mellitus (P = 1.000), smokers (P = .787), and open-angle glaucoma (P = .628). The younger group had a lower rate of hyperlipidemia than the older group (35% vs 59%) (P = .028). The 2 groups had similar presenting logMAR visual acuities (VAs) in the BRVO eye (P = .131). At the final follow-up, younger patients had significantly better logMAR VA in the BRVO-affected eye than older patients (mean 0.51 ± 0.65 vs 1.01 ± 1.20) (P = .016). The 2 groups had similar treatment burdens at 1 year (P = .516) and at the final follow-up (P = .782). Conclusions: Younger patients with acute, treatment-naïve BRVO have similar risk factors and treatment patterns as older patients, except for a lower rate of hyperlipidemia. Younger patients with BRVO may have similar presenting VA as older BRVO patients but better final VA, suggesting that age may be a potential prognostic factor.
Collapse
Affiliation(s)
- Anita Kundu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | | | - Delaram Mirzania
- Kellogg Eye Center, University of Michigan Hospital, Ann Arbor, MI, USA
| | - Jane S. Kim
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Sandra S. Stinnett
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Sharon Fekrat
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
34
|
Manikandan SK, Logan A, Cerrada-Gimenez M, Fitzhenry L, Coffey L, Kaja S, Rani S. Immune System, Inflammation and Autoantigens in Wet Age-Related Macular Degeneration: Pathological Significance and Therapeutic Importance. Life (Basel) 2023; 13:2236. [PMID: 38137838 PMCID: PMC10744676 DOI: 10.3390/life13122236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023] Open
Abstract
Wet age-related macular degeneration (wAMD) is a chronic inflammation-associated neurodegenerative disease affecting the posterior part of the eye in the aging population. Aging results in the reduced functionality of cells and tissues, including the cells of the retina. Initiators of a chronic inflammatory and pathologic state in wAMD may be a result of the accumulation of inevitable metabolic injuries associated with the maintenance of tissue homeostasis from a young age to over 50. Apart from this, risk factors like smoking, genetic predisposition, and failure to repair the injuries that occur, alongside attempts to rescue the hypoxic outer retina may also contribute to the pathogenesis. Aging of the immune system (immunosenescence) and a compromised outer blood retinal barrier (BRB) result in the exposure of the privileged milieu of the retina to the systemic immune system, further increasing the severity of the disease. When immune-privileged sites like the retina are under pathological stress, certain age- and disease-related conditions may necessitate assistance from cells distant from the resident ones to help restore the functionality of the tissue. As a necessary part of tissue repair, inflammation is a major response to disease and recruits immune cells to the site of damage. We suspect that the specific reparative inflammatory responses are controlled by an autoantigen-T cell-mediated mechanism, a process that may be hindered in wAMD.
Collapse
Affiliation(s)
- Sreeraj Kuruppilakath Manikandan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Waterford Campus, X91 K0EK Waterford, Ireland; (S.K.M.); (L.F.)
| | - Ann Logan
- Department of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK;
| | | | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Waterford Campus, X91 K0EK Waterford, Ireland; (S.K.M.); (L.F.)
| | - Lee Coffey
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Waterford Campus, X91 K0EK Waterford, Ireland; (S.K.M.); (L.F.)
| | - Simon Kaja
- Departments of Ophthalmology, Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA
| | - Sweta Rani
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Waterford Campus, X91 K0EK Waterford, Ireland; (S.K.M.); (L.F.)
| |
Collapse
|
35
|
Niu Y, Xi Y, Jing Y, Zhou Z, Sun X, Zhang G, Yuan T, Chang T, Dou G. Endothelial Notch Signaling Regulates the Function of the Retinal Pigment Epithelial Barrier via EC Angiocrine Signaling. Antioxidants (Basel) 2023; 12:1979. [PMID: 38001832 PMCID: PMC10669439 DOI: 10.3390/antiox12111979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The outer blood-retina barrier (oBRB), comprises tightly connected retinal pigment epithelium (RPE) cells, Bruch's membrane, and choroid blood vessels, and is essential for retinal health and normal visual function. Disruption of the RPE barrier and its dysfunction can lead to retinal disorders such as age-related macular degeneration (AMD). In the present study, we investigated the essential role of choroid endothelial cells (ECs) in the RPE barrier formation process and its dysfunction. We discovered that ECs promoted RPE barrier formation through angiocrine signaling. Through blocking or activating endothelial Notch signaling and conducting experiments in vitro and in vivo, we confirmed that endothelial Notch signaling regulated the expression of heparin-binding epidermal growth factor (HBEGF) and consequently impacted the expression and activity of matrix metalloproteinases (MMP)-9 in RPE cells. This modulation influenced the RPE extracellular matrix deposition, tight junctions and RPE barrier function. In in vivo experiments, the intravitreal administration of recombinant HBEGF (r-HBEGF) alleviated the RPE barrier disruption induced by subretinal injection (SI) or laser treatment and also rescued RPE barrier disruption in endothelial Notch-deficient mice. Our results showed that the endothelial Notch signaling drove HBEGF expression through angiocrine signaling and effectively improved RPE barrier function by regulating the MMP-9 expression in RPE cells. It suggests that the modulation of Notch signaling in the choroidal endothelium may offer a novel therapeutic strategy for retinal degenerative diseases.
Collapse
Affiliation(s)
- Yali Niu
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
- College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Yixuan Xi
- College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Yutong Jing
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
| | - Ziyi Zhou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
| | - Xiaojia Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
| | - Guoheng Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
| | - Tianhao Yuan
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
| | - Tianfang Chang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Y.J.); (Z.Z.); (X.S.); (G.Z.); (T.Y.)
| |
Collapse
|
36
|
Latifi-Navid H, Barzegar Behrooz A, Jamehdor S, Davari M, Latifinavid M, Zolfaghari N, Piroozmand S, Taghizadeh S, Bourbour M, Shemshaki G, Latifi-Navid S, Arab SS, Soheili ZS, Ahmadieh H, Sheibani N. Construction of an Exudative Age-Related Macular Degeneration Diagnostic and Therapeutic Molecular Network Using Multi-Layer Network Analysis, a Fuzzy Logic Model, and Deep Learning Techniques: Are Retinal and Brain Neurodegenerative Disorders Related? Pharmaceuticals (Basel) 2023; 16:1555. [PMID: 38004422 PMCID: PMC10674956 DOI: 10.3390/ph16111555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of irreversible visual impairment in the elderly. The current management of nAMD is limited and involves regular intravitreal administration of anti-vascular endothelial growth factor (anti-VEGF). However, the effectiveness of these treatments is limited by overlapping and compensatory pathways leading to unresponsiveness to anti-VEGF treatments in a significant portion of nAMD patients. Therefore, a system view of pathways involved in pathophysiology of nAMD will have significant clinical value. The aim of this study was to identify proteins, miRNAs, long non-coding RNAs (lncRNAs), various metabolites, and single-nucleotide polymorphisms (SNPs) with a significant role in the pathogenesis of nAMD. To accomplish this goal, we conducted a multi-layer network analysis, which identified 30 key genes, six miRNAs, and four lncRNAs. We also found three key metabolites that are common with AMD, Alzheimer's disease (AD) and schizophrenia. Moreover, we identified nine key SNPs and their related genes that are common among AMD, AD, schizophrenia, multiple sclerosis (MS), and Parkinson's disease (PD). Thus, our findings suggest that there exists a connection between nAMD and the aforementioned neurodegenerative disorders. In addition, our study also demonstrates the effectiveness of using artificial intelligence, specifically the LSTM network, a fuzzy logic model, and genetic algorithms, to identify important metabolites in complex metabolic pathways to open new avenues for the design and/or repurposing of drugs for nAMD treatment.
Collapse
Affiliation(s)
- Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
- Departments of Ophthalmology and Visual Sciences and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3T 2N2, Canada;
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran;
| | - Maliheh Davari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Masoud Latifinavid
- Department of Mechatronic Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey;
| | - Narges Zolfaghari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Sepideh Taghizadeh
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran 1993893973, Iran;
| | - Golnaz Shemshaki
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore 570005, India;
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Seyed Shahriar Arab
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran;
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran 1666673111, Iran;
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
37
|
Ren C, Cui H, Bao X, Huang L, He S, Fong HKW, Zhao M. Proteopathy Linked to Exon-Skipping Isoform of RGR-Opsin Contributes to the Pathogenesis of Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2023; 64:41. [PMID: 37883094 PMCID: PMC10615142 DOI: 10.1167/iovs.64.13.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
Purpose Proteopathy is believed to contribute to age-related macular degeneration (AMD). Much research indicates that AMD begins in the retinal pigment epithelium (RPE), which is associated with formation of extracellular drusen, a clinical hallmark of AMD. Human RPE produces a drusen-associated abnormal protein, the exon Ⅵ-skipping splice isoform of retinal G protein-coupled receptor (RGR-d). In this study, we investigate the detrimental effects of RGR-d on cultured cells and mouse retina. Methods ARPE-19 cells were stably infected by lentivirus overexpressing RGR or RGR-d and were treated with MG132, sometimes combined with or without endoplasmic reticulum (ER) stress inducer, tunicamycin. RGR and RGR-d protein expression, degeneration pathway, and potential cytotoxicity were explored. Homozygous RGR-d mice aged 8 or 14 months were fed with a high-fat diet for 3 months and then subjected to ocular examination and histopathology experiments. Results We confirm that RGR-d is proteotoxic under various conditions. In ARPE-19 cells, RGR-d is misfolded and almost completely degraded via the ubiquitin-proteasome system. Unlike normal RGR, RGR-d increases ER stress, triggers the unfolded protein response, and exerts potent cytotoxicity. Aged RGR-d mice manifest disrupted RPE cell integrity, apoptotic photoreceptors, choroidal deposition of complement C3, and CD86+CD32+ proinflammatory cell infiltration into retina and RPE-choroid. Furthermore, the AMD-like phenotype of RGR-d mice can be aggravated by a high-fat diet. Conclusions Our study confirmed the pathogenicity of the RGR splice isoform and corroborated a significant role of proteopathy in AMD. These findings may contribute to greater comprehension of the multifactorial causes of AMD.
Collapse
Affiliation(s)
- Chi Ren
- Department of Ophthalmology, Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Haoran Cui
- Department of Ophthalmology, Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xuan Bao
- Department of Ophthalmology, Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Lvzhen Huang
- Department of Ophthalmology, Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Shikun He
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, United States
| | - Henry K. W. Fong
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, United States
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States
| | - Mingwei Zhao
- Department of Ophthalmology, Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| |
Collapse
|
38
|
Merle DA, Sen M, Armento A, Stanton CM, Thee EF, Meester-Smoor MA, Kaiser M, Clark SJ, Klaver CCW, Keane PA, Wright AF, Ehrmann M, Ueffing M. 10q26 - The enigma in age-related macular degeneration. Prog Retin Eye Res 2023; 96:101154. [PMID: 36513584 DOI: 10.1016/j.preteyeres.2022.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Despite comprehensive research efforts over the last decades, the pathomechanisms of age-related macular degeneration (AMD) remain far from being understood. Large-scale genome wide association studies (GWAS) were able to provide a defined set of genetic aberrations which contribute to disease risk, with the strongest contributors mapping to distinct regions on chromosome 1 and 10. While the chromosome 1 locus comprises factors of the complement system with well-known functions, the role of the 10q26-locus in AMD-pathophysiology remains enigmatic. 10q26 harbors a cluster of three functional genes, namely PLEKHA1, ARMS2 and HTRA1, with most of the AMD-associated genetic variants mapping to the latter two genes. High linkage disequilibrium between ARMS2 and HTRA1 has kept association studies from reliably defining the risk-causing gene for long and only very recently the genetic risk region has been narrowed to ARMS2, suggesting that this is the true AMD gene at this locus. However, genetic associations alone do not suffice to prove causality and one or more of the 14 SNPs on this haplotype may be involved in long-range control of gene expression, leaving HTRA1 and PLEKHA1 still suspects in the pathogenic pathway. Both, ARMS2 and HTRA1 have been linked to extracellular matrix homeostasis, yet their exact molecular function as well as their role in AMD pathogenesis remains to be uncovered. The transcriptional regulation of the 10q26 locus adds an additional level of complexity, given, that gene-regulatory as well as epigenetic alterations may influence expression levels from 10q26 in diseased individuals. Here, we provide a comprehensive overview on the 10q26 locus and its three gene products on various levels of biological complexity and discuss current and future research strategies to shed light on one of the remaining enigmatic spots in the AMD landscape.
Collapse
Affiliation(s)
- David A Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department of Ophthalmology, Medical University of Graz, 8036, Graz, Austria.
| | - Merve Sen
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Chloe M Stanton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Eric F Thee
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands; Department of Ophthalmology, Radboudumc, 6525EX, Nijmegen, Netherlands; Institute of Molecular and Clinical Ophthalmology Basel, CH-4031, Basel, Switzerland
| | - Pearse A Keane
- Institute for Health Research, Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
39
|
Rickabaugh E, Weatherston D, Harris TI, Jones JA, Vargis E. Engineering a Biomimetic In Vitro Model of Bruch's Membrane Using Hagfish Slime Intermediate Filament Proteins. ACS Biomater Sci Eng 2023; 9:5051-5061. [PMID: 37458693 DOI: 10.1021/acsbiomaterials.3c00411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Bruch's membrane resides in the subretinal tissue and regulates the flow of nutrients and waste between the retinal pigment epithelial (RPE) and vascular layers of the eye. With age, Bruch's membrane becomes thicker, stiffer, and less permeable, which impedes its function as a boundary layer in the subretina. These changes contribute to pathologies such as age-related macular degeneration (AMD). To better understand how aging in Bruch's membrane affects surrounding tissues and to determine the relationship between aging and disease, an in vitro model of Bruch's membrane is needed. An accurate model of Bruch's membrane must be a proteinaceous, semipermeable, and nonporous biomaterial with similar mechanical properties to in vivo conditions. Additionally, this model must support RPE cell growth. While models of subretinal tissue exist, they typically differ from in vivo Bruch's membrane in one or more of these properties. This study evaluates the capability of membranes created from recombinant hagfish intermediate filament (rHIF) proteins to accurately replicate Bruch's membrane in an in vitro model of the subretinal tissue. The physical characteristics of these rHIF membranes were evaluated using mechanical testing, permeability assays, brightfield microscopy, and scanning electron microscopy. The capacity of the membranes to support RPE cell culture was determined using brightfield and fluorescent microscopy, as well as immunocytochemical staining. This study demonstrates that rHIF protein membranes are an appropriate biomaterial to accurately mimic both healthy and aged Bruch's membrane for in vitro modeling of the subretinal tissue.
Collapse
Affiliation(s)
- Emilee Rickabaugh
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105 United States
| | - Dillon Weatherston
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105 United States
| | - Thomas I Harris
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, Utah 84322-5305, United States
| | - Justin A Jones
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, Utah 84322-5305, United States
| | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105 United States
| |
Collapse
|
40
|
Bansal A, Narnaware SH, Bawankule PK, Gupta R, Nagdeve R. Retro-mode: a newer insight into dry age-related macular degeneration (AMD). Lasers Med Sci 2023; 38:178. [PMID: 37552467 DOI: 10.1007/s10103-023-03845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
The purpose of this study is to study the role of retro-mode (RM) in early detection and to compare it with other preexisting available modalities on multimodal imaging system in dry AMD. A prospective observational cross-sectional study was done between November 2020 and October 2021 which included 409 eyes of 207 patients. For study purpose, eyes were divided into 3 groups according to the size and number of the drusen, viz, group 1: No AMD, group 2: early AMD and group 3: intermediate AMD which was further divided into 2 subgroups, viz, subgroup A: eyes with drusen size 63-125 μm and subgroup B: eyes with drusen size 125-250 μm. Patients with active or treated wet AMD, scarred choroidal neovascular membrane (CNVM), other maculopathies, other retinopathies, high myopia, trauma and glaucoma were excluded from the study. In cases of No AMD and early AMD, a number of drusens detected on RM were statistically not significant compared to fundus autofluorescence (FAF) and color photo (CF), but in intermediate AMD cases, it was statistically significant. While the area involved by drusens calculated by RM was statistically significant compared to both other modalities. When all modalities were compared with enhanced depth imaging-optical coherence tomography (EDI-OCT) at the choroid and chorio-capillary (CC) level and vessel density (VD) on optical coherence tomography angiography (OCTA) at the choroid, capillaries, deep retinal and superficial retinal plexus level; it was only RM which was found to be in sync with these proven modalities in terms of pattern and trend. In the present scenario, RM is found to be a better diagnostic modality in detecting early and a greater number of drusens with area of involvement than other existing modalities. Though superior, as found in this study, this mode cannot replace other modalities at present but only acts as a complementary investigation in early detection of this disease.
Collapse
Affiliation(s)
- Anju Bansal
- Sarakshi Netralaya, 19, Rajiv Nagar, Wardha Road, Nagpur, Maharashtra, 440025, India.
| | - Shilpi H Narnaware
- Sarakshi Netralaya, 19, Rajiv Nagar, Wardha Road, Nagpur, Maharashtra, 440025, India
| | - Prashant K Bawankule
- Sarakshi Netralaya, 19, Rajiv Nagar, Wardha Road, Nagpur, Maharashtra, 440025, India
| | - Richa Gupta
- Sarakshi Netralaya, 19, Rajiv Nagar, Wardha Road, Nagpur, Maharashtra, 440025, India
| | - Rakesh Nagdeve
- Sarakshi Netralaya, 19, Rajiv Nagar, Wardha Road, Nagpur, Maharashtra, 440025, India
| |
Collapse
|
41
|
Erturk A, Erogul O, Kasikci M. Optical Coherence Tomography Angiography Is a Useful Tool for Distinguishing Primary Raynaud's Phenomenon from Systemic Sclerosis and/or Very Early Disease of Systemic Sclerosis. Diagnostics (Basel) 2023; 13:2607. [PMID: 37568970 PMCID: PMC10417700 DOI: 10.3390/diagnostics13152607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
This cross-sectional study aimed to compare optical coherence tomography angiography (OCT-A) findings in patients with primary Raynaud's phenomenon (PRP; n = 22), very early disease of systemic sclerosis (VEDOSS; n = 19), and systemic sclerosis (SSc; 25 patients with limited cutaneous SSc (lcSSc) and 13 patients with diffuse cutaneous SSc (dcSSc)). Whole, parafoveal, and perifoveal superficial capillary plexus (SCP) vessel densities (VDs), deep capillary plexus VDs, and whole, inside, and peripapillary VDs were significantly higher in the PRP group (p < 0.001). In the lcSSc group, the FAZ perimeter was significantly higher than that in the VEDOSS group (p = 0.017). Retinal nerve fiber layer VDs were significantly lower in the lcSSc group than in the PRP and VEDOSS groups (p < 0.001). The whole and peripapillary optic disc VDs of the VEDOSS group were significantly higher than in the lcSSc group (p < 0.001). Whole SCP VDs (94.74% sensitivity, 100.00% specificity) and parafoveal SCP VDs (89.47% sensitivity, 100.00% specificity) showed the best performance in distinguishing patients with SSc from those with PRP. OCT-A seems to have potential diagnostic value in differentiating patients with PRP from patients with SSc and VEDOSS, and there is potential value in assessing prognostic roles, since findings from OCT-A images could be early indicators of retinal vascular injury long before overt SSc symptoms develop.
Collapse
Affiliation(s)
- Adem Erturk
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
| | - Ozgur Erogul
- Department of Ophthalmology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey;
| | - Murat Kasikci
- Department of Ophthalmology, Mugla Training and Research Hospital, Mugla 48000, Turkey;
| |
Collapse
|
42
|
Cui K, Tang X, Hu A, Fan M, Wu P, Lu X, Lin J, Yang F, Zhao X, Huang J, Yu S, Xu Y, Liang X. Therapeutic Benefit of Melatonin in Choroidal Neovascularization During Aging Through the Regulation of Senescent Macrophage/Microglia Polarization. Invest Ophthalmol Vis Sci 2023; 64:19. [PMID: 37578424 PMCID: PMC10431207 DOI: 10.1167/iovs.64.11.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose This study aimed to investigate the age-dependent anti-angiogenic capability of melatonin in choroidal neovascularization (CNV) and to explore the underlying molecular mechanisms. Methods In the present study, a laser-induced CNV model was established in both young (three months of age) and old (18 months of age) mice, and the size of CNV lesions and vascular leakage was detected by morphological and imaging examination. Next, Western blot and immunostaining were used to observe the levels of M2 markers, senescence-related markers, and molecules involved in IL-10/STAT3 pathway. Additionally, colivelin was used to study the effect of IL-10/STAT3 pathway activation on the expression of M2 markers and senescence-related markers by Western blot and immunostaining. Finally, the effects of colivelin on melatonin-induced reduction of CNV size and vascular leakage in mice at different ages were assessed using morphological and imaging examination. Results Our results revealed that aging promoted M2 macrophage/microglia polarization, and aggravated CNV and vascular leakage. Melatonin significantly inhibited the M2 polarization of senescent macrophage/microglia and reduced the CNV area and vascular leakage. Moreover, melatonin markedly suppressed IL-10/STAT3 pathway activation in the macrophage/microglia of old mice, and STAT3 activator colivelin reversed the suppressive effect of melatonin on M2 polarization of senescent macrophage/microglia and laser-induced CNV in old mice. Conclusions Our data demonstrated that melatonin significantly prevented the M2 polarization of senescent macrophage/microglia by inhibiting the IL-10/STAT3 pathway, and eventually attenuated senescence-associated CNV. These findings suggested that melatonin could serve as a promising therapeutic agent to treat CNV and other age-related ocular diseases.
Collapse
Affiliation(s)
- Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Andina Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, United States
| | - Peiqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fengmei Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinyu Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
43
|
Cho HJ, Jeon YJ, Yoon W, Lee J, Kim J, Kim CG, Kim JW. SUBRETINAL FLUID ASSOCIATED WITH DRUSENOID PIGMENT EPITHELIAL DETACHMENT. Retina 2023; 43:1274-1281. [PMID: 36996466 DOI: 10.1097/iae.0000000000003800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
PURPOSE To analyze the clinical characteristics of drusenoid pigment epithelial detachment (PED) with subretinal fluid (SRF) and to evaluate the impact of SRF on the long-term visual and anatomical outcomes. METHODS Forty-seven eyes with drusenoid PED (47 patients) who completed >24 months of follow-up were retrospectively analyzed. Intergroup comparisons of the visual and anatomical outcomes with and without SRF were made. RESULTS The mean duration of follow-up was 32.9 ± 18.7 months. The group with drusenoid PED with SRF (14 eyes) showed significantly higher PED height (468 ± 130 µ m vs. 313 ± 88 µ m, P < 0.001), larger PED diameter (2,328 ± 953 µ m vs. 1,227 ± 882 µ m, P < 0.001), and larger PED volume (1.88 ± 1.73 mm 3 vs. 1.12 ± 1.35 mm 3 , P = 0.021) than that in the group with drusenoid PED without SRF (33 eyes) at baseline. No significant intergroup difference was found regarding the best-corrected visual acuity at the final visit. In addition, the incidence of complete retinal pigment epithelial and outer retinal atrophy (cRORA; 21.4%) and the development of macular neovascularization (MNV; 7.1%) for the group with drusenoid PED with SRF showed no difference compared with those (39.4% for cRORA development and 9.1% for MNV development) with drusenoid PED without SRF. CONCLUSION The size, height, and volume of drusenoid PED were associated with the development of SRF. The SRF in drusenoid PED did not affect the visual prognosis or the development of macular atrophy during long-term follow-up.
Collapse
Affiliation(s)
- Han Joo Cho
- Kim's Eye Hospital, Konyang University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Kushwah N, Bora K, Maurya M, Pavlovich MC, Chen J. Oxidative Stress and Antioxidants in Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1379. [PMID: 37507918 PMCID: PMC10376043 DOI: 10.3390/antiox12071379] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress plays a crucial role in aging-related eye diseases, including age-related macular degeneration (AMD), cataracts, and glaucoma. With age, antioxidant reparative capacity decreases, and excess levels of reactive oxygen species produce oxidative damage in many ocular cell types underling age-related pathologies. In AMD, loss of central vision in the elderly is caused primarily by retinal pigment epithelium (RPE) dysfunction and degeneration and/or choroidal neovascularization that trigger malfunction and loss of photo-sensing photoreceptor cells. Along with various genetic and environmental factors that contribute to AMD, aging and age-related oxidative damage have critical involvement in AMD pathogenesis. To this end, dietary intake of antioxidants is a proven way to scavenge free radicals and to prevent or slow AMD progression. This review focuses on AMD and highlights the pathogenic role of oxidative stress in AMD from both clinical and experimental studies. The beneficial roles of antioxidants and dietary micronutrients in AMD are also summarized.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
45
|
Xuan M, Zhu Z, Jiang Y, Wang W, Zhang J, Xiong R, Shi D, Bulloch G, Zeng J, He M. Longitudinal Changes in Choroidal Structure Following Repeated Low-Level Red-Light Therapy for Myopia Control: Secondary Analysis of a Randomized Controlled Trial. Asia Pac J Ophthalmol (Phila) 2023; 12:377-383. [PMID: 37523429 DOI: 10.1097/apo.0000000000000618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/05/2023] [Indexed: 08/02/2023] Open
Abstract
PURPOSE Repeated low-level red-light (RLRL) therapy has been confirmed as a novel intervention for myopia control in children. This study aims to investigate longitudinal changes in choroidal structure in myopic children following 12-month RLRL treatment. MATERIALS AND METHODS The current study is a secondary analysis from a multicenter, randomized controlled trial (NCT04073238). Choroidal parameters were derived from baseline and follow-up swept-source optical coherence tomography scans taken at 1, 3, 6, and 12 months. These parameters included the luminal area (LA), stromal area (SA), total choroidal area (TCA; a combination of LA and SA), and choroidal vascularity index (CVI; ratio of LA to TCA), which were automatically measured by a validated custom choroidal structure assessment tool. RESULTS A total of 143 children (88.3% of all participants) with sufficient image quality were included in the analysis (n=67 in the RLRL and n=76 in the control groups). At the 12-month visit, all choroidal parameters increased in the RLRL group, with changes from baseline of 11.70×10 3 μm 2 (95% CI: 4.14-19.26×10 3 μm 2 ), 3.92×10 3 μm 2 (95% CI: 0.56-7.27×10 3 μm 2 ), 15.61×10 3 μm 2 (95% CI: 5.02-26.20×10 3 μm 2 ), and 0.21% (95% CI: -0.09% to 0.51%) for LA, SA, TCA, and CVI, respectively, whereas these parameters reduced in the control group. CONCLUSIONS Following RLRL therapy, the choroidal thickening was found to be accompanied by increases in both the vessel LA and SA, with the increase in LA being greater than that of SA. In the control group, with myopia progression, both the LA and SA decreased over time.
Collapse
Affiliation(s)
- Meng Xuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Zhuoting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Yu Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Ruilin Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Danli Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Gabriella Bulloch
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Faculty of Science, Medicine and Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Junwen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Scuderi L, Fragiotta S, Di Pippo M, Abdolrahimzadeh S. The Role of Diabetic Choroidopathy in the Pathogenesis and Progression of Diabetic Retinopathy. Int J Mol Sci 2023; 24:10167. [PMID: 37373315 DOI: 10.3390/ijms241210167] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic choroidopathy was first described on histopathological specimens of diabetic eyes. This alteration was characterized by the accumulation of PAS-positive material within the intracapillary stroma. Inflammation and polymorphonuclear neutrophils (PMNs) activation are crucial elements in choriocapillaris impairment. The evidence of diabetic choroidopathy in vivo was confirmed with multimodal imaging, which provides key quantitative and qualitative features to characterize the choroidal involvement. The choroid can be virtually affected in each vascular layer, from Haller's layer to the choriocapillaris. However, the damage on the outer retina and photoreceptor cells is essentially driven by a choriocapillaris deficiency, which can be assessed through optical coherence tomography angiography (OCTA). The identification of characteristic features of diabetic choroidopathy can be significant for understanding the potential pathogenic and prognostic implications in diabetic retinopathy.
Collapse
Affiliation(s)
- Luca Scuderi
- Department of Sense Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Serena Fragiotta
- Ophthalmology Unit, Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Sapienza University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy
- UOC Ophthalmology, Department of Surgical Areas, S.M. Goretti Hospital, 04100 Latina, Italy
| | - Mariachiara Di Pippo
- Ophthalmology Unit, Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Sapienza University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| | - Solmaz Abdolrahimzadeh
- Ophthalmology Unit, Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Sapienza University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy
- St. Andrea Hospital, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| |
Collapse
|
47
|
Benavente-Perez A. Evidence of vascular involvement in myopia: a review. Front Med (Lausanne) 2023; 10:1112996. [PMID: 37275358 PMCID: PMC10232763 DOI: 10.3389/fmed.2023.1112996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
The benign public perception of myopia (nearsightedness) as a visual inconvenience masks the severity of its sight-threatening consequences. Myopia is a significant risk factor for posterior pole conditions such as maculopathy, choroidal neovascularization and glaucoma, all of which have a vascular component. These associations strongly suggest that myopic eyes might experience vascular alterations prior to the development of complications. Myopic eyes are out of focus because they are larger in size, which in turn affects their overall structure and function, including those of the vascular beds. By reviewing the vascular changes that characterize myopia, this review aims to provide an understanding of the gross, cellular and molecular alterations identified at the structural and functional levels with the goal to provide an understanding of the latest evidence in the field of experimental and clinical myopia vascular research. From the evidence presented, we hypothesize that the interaction between excessive myopic eye growth and vascular alterations are tipping-points for the development of sight-threatening changes.
Collapse
|
48
|
Abdolrahimzadeh S, Di Pippo M, Sordi E, Cusato M, Lotery AJ. Subretinal drusenoid deposits as a biomarker of age-related macular degeneration progression via reduction of the choroidal vascularity index. Eye (Lond) 2023; 37:1365-1370. [PMID: 35739243 PMCID: PMC10169760 DOI: 10.1038/s41433-022-02134-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to analyse the role of the choroid in early age-related macular degeneration (AMD) by analysing choroidal vascularity index (CVI) in pure cohorts of patients with subretinal drusenoid deposits (SDD) or conventional drusen (CD). SUBJECTS/METHODS This was an observational cross-sectional study. Comprehensive ophthalmologic examination and multimodal imaging including fundus photography, autofluorescence, near infrared reflectance, and spectral domain optical coherence tomography (SDOCT) was performed. CVI processing was performed on a foveal horizontal SDOCT scan with binarization using Image J Image software and calculated as the ratio between luminal area (LA) and total area (TA). RESULTS Sixty-nine eyes of 69 participants were included; 23 eyes with SDD alone, 22 eyes with CD alone, and 24 control eyes of healthy age-matched subjects. CVI was significantly reduced in the SDD and CD group compared to controls (p = 0.0001). Post-hoc analysis revealed a significant reduction of CVI in the SDD versus the control group (p = 0.0002), in the CD versus the control group (p = 0.001), and in the SDD versus the CD group (p = 0.006). Covariance analysis showed a significant difference of LA (p = 0.033) but no significant difference of TA (p = 0.106) between the three groups. Direct comparison between CD and SDD showed a significant reduction of LA and TA in the SDD group. CONCLUSIONS CVI may have prognostic implications in early AMD. SDD is a biomarker of AMD progression and the mechanism for this could be via reduction of the CVI.
Collapse
Affiliation(s)
- Solmaz Abdolrahimzadeh
- Ophthalmology Unit, Neurosciences, Mental Health, and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy.
- St. Andrea Hospita, Via di Grottarossa 1035/1039, Rome, 00189, Italy.
| | - Mariachiara Di Pippo
- Ophthalmology Unit, Neurosciences, Mental Health, and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy
| | - Edoardo Sordi
- Ophthalmology Unit, Neurosciences, Mental Health, and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy
| | - Mattia Cusato
- Ophthalmology Unit, Neurosciences, Mental Health, and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy
| | - Andrew John Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
49
|
Krytkowska E, Grabowicz A, Safranow K, Machalińska A. Does the Presence of the Cilioretinal Artery Affect the Incidence, Clinical Picture and Progression of Age-Related Macular Degeneration? Diagnostics (Basel) 2023; 13:diagnostics13091593. [PMID: 37174984 PMCID: PMC10177825 DOI: 10.3390/diagnostics13091593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The aims of this study were to analyze the relationship between the presence of the cilioretinal artery (CRA) and the incidence, severity and progression of age-related macular degeneration (AMD) and to estimate the influence of the CRA on choroidal and retinal parameters. A total of 287 patients with AMD and 110 healthy controls were enrolled in the study. CRA occurrence was determined using color fundus images. AMD progression was assessed after 3 years. There was no difference in the incidence of CRA between the AMD and control groups (23.34% vs. 24.55%; p = 0.8). Lower-stage AMD was more frequently observed in eyes with the CRA than in eyes without the artery (p = 0.016). The CRA did not influence disease progression (p = 0.79). The CRA did not influence retinal and choroidal thickness and volume parameters or the retinal vessel caliber and functionality in either the AMD or control groups. There was no relationship between CRA presence and CFH Y402H and ARMS2 A69S risk variants. The results did not show a protective effect of the CRA on the incidence and progression of AMD. The CRA may affect the severity of AMD; however, the mechanism of this phenomenon is unclear.
Collapse
Affiliation(s)
- Elżbieta Krytkowska
- First Department of Ophthalmology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Aleksandra Grabowicz
- First Department of Ophthalmology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Machalińska
- First Department of Ophthalmology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
50
|
Khalili H, Kashkoli HH, Weyland DE, Pirkalkhoran S, Grabowska WR. Advanced Therapy Medicinal Products for Age-Related Macular Degeneration; Scaffold Fabrication and Delivery Methods. Pharmaceuticals (Basel) 2023; 16:620. [PMID: 37111377 PMCID: PMC10146656 DOI: 10.3390/ph16040620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Retinal degenerative diseases such as age-related macular degeneration (AMD) represent a leading cause of blindness, resulting in permanent damage to retinal cells that are essential for maintaining normal vision. Around 12% of people over the age of 65 have some form of retinal degenerative disease. Whilst antibody-based drugs have revolutionised treatment of neovascular AMD, they are only effective at an early stage and cannot prevent eventual progression or allow recovery of previously lost vision. Hence, there is a clear unmet need to find innovative treatment strategies to develop a long-term cure. The replacement of damaged retinal cells is thought to be the best therapeutic strategy for the treatment of patients with retinal degeneration. Advanced therapy medicinal products (ATMPs) are a group of innovative and complex biological products including cell therapy medicinal products, gene therapy medicinal products, and tissue engineered products. Development of ATMPs for the treatment of retinal degeneration diseases has become a fast-growing field of research because it offers the potential to replace damaged retinal cells for long-term treatment of AMD. While gene therapy has shown encouraging results, its effectiveness for treatment of retinal disease may be hampered by the body's response and problems associated with inflammation in the eye. In this mini-review, we focus on describing ATMP approaches including cell- and gene-based therapies for treatment of AMD along with their applications. We also aim to provide a brief overview of biological substitutes, also known as scaffolds, that can be used for delivery of cells to the target tissue and describe biomechanical properties required for optimal delivery. We describe different fabrication methods for preparing cell-scaffolds and explain how the use of artificial intelligence (AI) can aid with the process. We predict that combining AI with 3D bioprinting for 3D cell-scaffold fabrication could potentially revolutionise retinal tissue engineering and open up new opportunities for developing innovative platforms to deliver therapeutic agents to the target tissues.
Collapse
Affiliation(s)
- Hanieh Khalili
- School of Biomedical Science, University of West London, London W5 5RF, UK
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | | | | | - Sama Pirkalkhoran
- School of Biomedical Science, University of West London, London W5 5RF, UK
| | | |
Collapse
|