1
|
Jimenez Jaramillo C, Berman A, Fitzgerald J, Brady R, Adams T, Clement N. Neuropathologic Findings in Mowat-Wilson Syndrome at Autopsy, Including a Suprasellar Spindle Cell Lipoma. Pediatr Dev Pathol 2025:10935266251331266. [PMID: 40270440 DOI: 10.1177/10935266251331266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Mowat-Wilson Syndrome is an autosomal dominant disorder caused by de novo heterozygous mutations of ZEB2 on 2q22. It is characterized by developmental delay, Hirschsprung's disease, seizures, and a wide variety of malformations affecting the neurologic, cardiac, and genitourinary systems. Reports describing the findings of Mowat-Wilson Syndrome at autopsy are sparse. Case reports of suprasellar spindle cell lipomas are even rarer, a circumstance that contributes to uncertainty regarding their etiology as true neoplasms rather than congenital malformations. Here we report the gross, histopathologic, and molecular findings of a 4-year-old female with Mowat-Wilson Syndrome presenting with sepsis in the setting of otitis media and incidentally found to have a rare suprasellar spindle cell lipoma demonstrating loss of RB1 by immunohistochemistry, suggestive of a neoplastic etiology.
Collapse
Affiliation(s)
- Couger Jimenez Jaramillo
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Pathology, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Andrew Berman
- Department of Pathology, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Jesse Fitzgerald
- Department of Pathology, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Robert Brady
- Department of Pathology, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Thomas Adams
- Department of Pathology, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Nathan Clement
- Department of Pathology, San Antonio Military Medical Center, San Antonio, TX, USA
| |
Collapse
|
2
|
Ghalamkari S, Mianesaz H, Chitsaz A, Ghazavi M, Salehi M. Proband-Only Exome Sequencing for Intellectual Disability in Iran: Diagnostic Yield and Genetic Insights. Am J Med Genet A 2025; 197:e63915. [PMID: 39655768 DOI: 10.1002/ajmg.a.63915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 03/08/2025]
Abstract
Intellectual disability (ID) is a leading cause for referral to genetic services, with the most severe cases typically attributed to single genetic defects. This study aimed to evaluate the diagnostic yield of cost-effective proband-only exome sequencing for individuals diagnosed with ID within the Iranian population for the first time where a high rate of parental consanguinity exists. A total of 99 unrelated patients with ID were investigated by exome sequencing during 8 years. As a result, 43 pathogenic/likely pathogenic variants were identified in 40 patients, indicating a molecular diagnostic rate of 40.4% (40/99). The inclusion of five chromosomal copy number variations in the subsequent analysis increased the diagnostic rate of proband-only exome sequencing to 45.4% (45/99). Additionally, parental testing revealed five de novo variants. This contributed to a total diagnostic rate of 50.5% (50/99). In our study, proband-only exome sequencing achieved a remarkable diagnostic rate, identifying nearly half of the ID cases. This rate of diagnosis could be primarily attributed to prevalent consanguineous marriage in the Iranian population and the rare identification of de novo variants. With the ongoing advancements in neurogenetics, proband-only exome sequencing demonstrates significant potential as a future cost-effective diagnostic approach in Iran.
Collapse
Affiliation(s)
- Safoura Ghalamkari
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hamidreza Mianesaz
- Department of Human Genetics, Medical School, University of Debrecen, Debrecen, Hungary
| | - Ahmad Chitsaz
- Department of Neurology, Isfahan University of Medical Sciences Isfahan, Isfahan, Iran
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mansoor Salehi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Kablan A, Aru EE, Atar S, Gumus AA, İli EG, Kayhan G, Tekin K, Silan F. Expanding the Genetic and Phenotypic Spectrum of Mowat-Wilson Syndrome: A Study of 10 Turkish Patients With an Intrafamilial Recurrence Caused by First Intragenic Large Deletion. Am J Med Genet A 2025; 197:e63922. [PMID: 39526569 DOI: 10.1002/ajmg.a.63922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Mowat-Wilson syndrome (MWS) is a complex disorder caused by heterozygous ZEB2 gene variations creating haploinsufficiency. The main clinical features are evolving facial dysmorphism, intellectual disability, eye and brain malformations, and various organ anomalies. Our study examines 10 Turkish patients, who had clinical diagnosis, underwent evaluation, clinical investigations, and genetic tests in multiple tertiary centers across Türkiye, and were molecularly diagnosed with MWS. Molecular analysis with sequencing techniques alongside array testing unveiled disease-causing variations in addition to novel variants, including two siblings with recurrent multiexon deletion. Clinical presentations varied, featuring neurodevelopmental delay and characteristic facial traits and organ malformations across all cases, alongside less frequently reported manifestations such as laryngomalacia or rocker bottom feet in addition to new features such as macroorchidism and osteoporosis. Our findings expand the genetic and phenotypical spectrum of MWS, and hint at potential implications of gonadal mosaicism. While establishing clear genotype-phenotype correlations poses challenges, comprehensive genetic testing remains pivotal for precise diagnosis and management. The study highlights the complexity of MWS genetics, with potential implications of gonadal mosaicism on recurrence. Further research is needed to elucidate mechanisms driving phenotypic variability, potential hotspots, and mechanisms for recurrent variations. We report on the largest cohort with MWS from Türkiye.
Collapse
Affiliation(s)
- Ahmet Kablan
- Department of Medical Genetics, Ankara Etlik City Hospital, Ankara, Türkiye
- Department of Medical Genetics, Sanliurfa Training and Research Hospital, Sanliurfa, Türkiye
| | - Esma Ertürkmen Aru
- Department of Medical Genetics, Ankara Etlik City Hospital, Ankara, Türkiye
| | - Süleyman Atar
- Department of Medical Genetics, Sanliurfa Training and Research Hospital, Sanliurfa, Türkiye
| | - Aydeniz Aydin Gumus
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Türkiye
| | - Ezgi Gökpınar İli
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Türkiye
- Department of Medical Genetics, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Gulsum Kayhan
- Department of Medical Genetics, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Koray Tekin
- Department of Medical Genetics, Canakkale Onsekiz Mart University Faculty of Medicine, Canakkale, Türkiye
| | - Fatma Silan
- Department of Medical Genetics, Canakkale Onsekiz Mart University Faculty of Medicine, Canakkale, Türkiye
| |
Collapse
|
4
|
Kumar S, Fan X, Pattam H, Yan K, Liaw EJ, Ji J, Zaltz E, Song P, Jiang Y, Nishizaki Y, Higashi Y, Cai CL, Lu W. ZEB2 signaling is essential for ureteral smooth muscle cell differentiation and maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639741. [PMID: 40060690 PMCID: PMC11888343 DOI: 10.1101/2025.02.23.639741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Mowat-Wilson Syndrome (MWS) is a multiple congenital anomaly syndrome caused by mutations in the ZEB2, which plays a critical role in cell fate determination and differentiation during development. Congenital anomalies of the kidney and urinary tract (CAKUT) have been reported in MWS patients. However, the role of ZEB2 in urinary tract development and the cellular and molecular mechanism underlining the CAKUT phenotypes in MWS remains unknown. We performed ZEB2 protein expression analysis in the developing mouse ureter. We generated Zeb2 ureteral mesenchyme-specific conditional knockout mice by crossing Zeb2 floxed mice with Tbx18Cre mice (Zeb2 cKO) and analyzed the urinary tract phenotypes in Zeb2 cKO mice and wild-type littermate controls by gross and histological examination. Ureteral cellular and molecular phenotypes were studied using TAGLN, ACTA2, FOXD1, POSTN, CDH1, TBX18, and SOX9 ureteral cell-specific markers. We found that ZEB2 is expressed in TBX18+ ureteral mesenchymal cells during mouse ureter development. Deletion of Zeb2 in developing ureteral mesenchymal cells causes hydroureter and hydronephrosis phenotypes, leading to obstructive uropathy, kidney failure, and early mortality. Cellular and molecular marker analyses showed that the TAGLN+ACTA2+ ureteral smooth muscle cells (SMCs) layer is not formed in Zeb2 cKO mice at E15.5, but the FOXD1+ and POSTN+ tunica adventitia cells layer is significantly expanded compared to wild-type controls. CDH1+ urothelium cells are reduced considerably in the Zeb2 cKO ureters at E15.5. Mechanistically, we found that Zeb2 cKO mice have significantly decreased TBX18 expression but an increased SOX9 expression in the developing ureter at E14.5 and E15.5 compared to wild-type littermate controls. Our results show that ZEB2 is essential for ureter development by maintaining ureteral mesenchymal cell differentiation into normal ureteral SMCs. Our study also shed new light on the pathological mechanism underlying the developmental abnormalities of the urinary tract phenotypes in MWS patients.
Collapse
Affiliation(s)
- Sudhir Kumar
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Xueping Fan
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Harshita Pattam
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Kun Yan
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Easton Jinhun Liaw
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Jiayi Ji
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Emily Zaltz
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Paul Song
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Yuqiao Jiang
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Yuriko Nishizaki
- Laboratory of Biochemistry, Department of Health and Pharmaceutical Sciences, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
| | - Yujiro Higashi
- Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Chen-Leng Cai
- Center for Developmental and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Weining Lu
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| |
Collapse
|
5
|
Contrò G, Baroni MC, Caraffi SG, Napoli M, Artuso R, Giliberti A, Bargiacchi S, Mancano G, Traficante G, Mucciolo M, Radio FC, Cordeddu V, Mancini C, Bottillo I, Pirro FA, Bonati MT, Becker CC, Carli D, Mussa A, Gonzalez MIA, Ruiz-Arana IL, Kumps C, Maystadt I, Moortgat S, Peker A, Piccione M, Grammatico P, Rostomashvili N, Lévy J, Scala M, Capra V, Torella A, van Eyk C, Isidor B, Cogne B, Srivastava S, Quinlan A, Vaisfeld A, Licchetta L, Frattini D, Graziano C, Severi G, Bacchi I, Soliani L, Sherr EH, Argilli E, Goel H, De Luca C, Leonardi S, Brancati F, Faletra F, Mio C, Braibanti S, Gargano G, Fusco C, Novelli A, Tartaglia M, Garavelli L. CDK13-Related Disorder: Novel Insights From A Series of 27 Cases and Recommendations for Clinical Management. Clin Genet 2025. [PMID: 39971730 DOI: 10.1111/cge.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
In 2016, Sifrim and colleagues described the first group of patients carrying heterozygous pathogenic variants in CDK13 and sharing major clinical features mainly consisting of congenital heart defects, intellectual disability and peculiar facial features (Congenital Heart Defects, Dysmorphic Facial Features, and Intellectual Developmental Disorder; CHDFIDD, OMIM # 617360). This condition is generally referred to as CDK13-related disorder, and since then other reports have provided further clinical and molecular information. Here we describe a group of 27 previously unreported patients to more accurately profile the clinical spectrum associated with CDK13 variants, disclosing novel associated findings, such as complex craniosynostosis and variable skeletal features (e.g., cranio-cervical anomalies). We also focused on the ocular phenotype that appears to include bilateral congenital glaucoma, posterior embriotoxon, buphthalmos and Duane anomaly. Finally, we observed two cases of mother-to-daughter transmission. Our work clarifies some novel features of CHDFIDD, defines the differential diagnosis of this disorder, and provides recommendations for its clinical management.
Collapse
Affiliation(s)
- Gianluca Contrò
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Maria Chiara Baroni
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Manuela Napoli
- Neuroradiology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Rosangela Artuso
- Medical Genetics Unit, Meyer Children's Hospital IRCSS, Florence, Italy
| | | | - Sara Bargiacchi
- Medical Genetics Unit, Meyer Children's Hospital IRCSS, Florence, Italy
| | - Giorgia Mancano
- Medical Genetics Unit, Meyer Children's Hospital IRCSS, Florence, Italy
| | | | - Mafalda Mucciolo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Clementina Radio
- Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Viviana Cordeddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Cecilia Mancini
- Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Irene Bottillo
- Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Federica Anna Pirro
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Teresa Bonati
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Diana Carli
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | | | - Inge Lore Ruiz-Arana
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Camille Kumps
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique (IPG), Gosselies (Charleroi), Charleroi, Belgium
| | - Stephanie Moortgat
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique (IPG), Gosselies (Charleroi), Charleroi, Belgium
| | - Alp Peker
- Medicine Faculty Hospital, Department of Medical Genetics, Akdeniz University, Antalya, Türkiye
| | - Maria Piccione
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy
- Department of Health Promotion, Mother and Child Care, University of Palermo, Palermo, Italy
| | - Paola Grammatico
- Medical Genetics, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Nino Rostomashvili
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Jonathan Lévy
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Valeria Capra
- Genomics and Clinical Genetics, IRCCS Gaslini, Genoa, Italy
| | - Annalaura Torella
- Medical Genetics, Department of Precision Medicine, Università Degli Studi Della Campania 'Luigi Vanvitelli', Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Clare van Eyk
- Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | | | - Benjamin Cogne
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aisling Quinlan
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandro Vaisfeld
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Laura Licchetta
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, European Reference Network for Rare and Complex Epilepsies (EpiCARE), Bologna, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Giulia Severi
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Isabelle Bacchi
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Luca Soliani
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neuropsichiatria dell'Età Pediatrica, Bologna, Italy
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, California, USA
| | - Emanuela Argilli
- Department of Neurology, University of California, San Francisco, California, USA
| | - Himanshu Goel
- Hunter New England Local Health District, Waratah, Australia
| | - Chiara De Luca
- Human Genetics, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Leonardi
- Human Genetics, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Brancati
- Human Genetics, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Human Functional Genomics Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Roma, Rome, Italy
| | - Flavio Faletra
- Institute of Medical Genetics Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
- Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Catia Mio
- Institute of Medical Genetics Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Silvia Braibanti
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giancarlo Gargano
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
6
|
Hossain WA, St. Peter C, Lovell S, Rafi SK, Butler MG. ZEB2 Gene Pathogenic Variants Across Protein-Coding Regions and Impact on Clinical Manifestations: A Review. Int J Mol Sci 2025; 26:1307. [PMID: 39941075 PMCID: PMC11818587 DOI: 10.3390/ijms26031307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Mowat-Wilson syndrome (MWS) is a rare multi-system genetic disorder caused by variants in the Zinc Finger E-Box-Binding Homeobox 2 (ZEB2) gene. ZEB2 is an autosomal dominant gene containing ten exons within the canonical version transcript (Isoform: O60315-1). The ZEB2 gene encodes six functional domains and seven non-domain regions. This review provides a comprehensive summary of pathogenic variants and their associated MWS clinical characteristics, focusing on ZEB2 pathogenic variants, functional protein domains and non-domain regions with clinical features. A systematic literature search from 2001 to 2023 and of unpublished datasets found 191 individuals with reported clinical features and genotypic data. Genetic defects and clinical manifestations were examined that presumably impact on the structure and function of the ZEB2 gene, thereby causing multiple developmental defects with corresponding clinical presentation. This study found more nonsense ZEB2 variants observed within exon 8, which encodes four of the six protein domains: the CtBP-interacting domain (CID), homeodomain (HD), SMAD-binding domain (SMD or SBD) and part of the N-terminal zinc finger cluster (N-ZF), suggesting exon 8 plays a crucial role in this protein structure and function with multi-organ involvement. Exon 8 defects were found to be statistically more represented for gastrointestinal findings when compared to other exons, while frameshift defects were more often seen for the typical MWS face in non-domain protein regions. In contrast, nonsense or other types of variants in exons 3, 4 and 5 which encode only flanking non-domain regions were observed more often, compared with other exons excluding exon 8, to be specifically involved in the MWS facial gestalt, brain malformations, developmental delay and intellectual disability. Deleterious ZEB2 frameshift (45%) and nonsense (38%) gene variants were most often observed with deletions at 6% and missense at 5%. The genotype and clinical relationships in MWS can provide insights into prognosis, morbidity, clinical surveillance strategies and counseling of family members.
Collapse
Affiliation(s)
- Waheeda A. Hossain
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.A.H.); (C.S.P.); (S.K.R.)
| | - Caroline St. Peter
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.A.H.); (C.S.P.); (S.K.R.)
| | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66047, USA;
| | - Syed K. Rafi
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.A.H.); (C.S.P.); (S.K.R.)
| | - Merlin G. Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.A.H.); (C.S.P.); (S.K.R.)
| |
Collapse
|
7
|
Markand S, Kim S, Chrenek MA, Ferdous S, Priyadarshani P, Boatright JH, Nickerson JM. Temporal Regulation of Myopia and Inflammation-Associated Pathways in the Interphotoreceptor Retinoid-Binding Protein Knockout Mouse Model. Curr Eye Res 2025; 50:221-230. [PMID: 39314009 PMCID: PMC11774681 DOI: 10.1080/02713683.2024.2402317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Myopia is a complex disorder with etiology involving an interplay between several genetic and environmental factors. Interphotoreceptor retinoid-binding protein (IRBP) is found in the subretinal space and is crucial in the visual cycle. The interphotoreceptor retinoid-binding protein knockout mouse (IRBP KO) was established as a model system to understand myopia and retinal degeneration. The current study investigated genes associated with myopia, retinal homeostasis, and inflammation in IRBP KO. METHODS RNA from retinas of congenic IRBP KO and wild-type C57BL/6J (WT) mice at postnatal day 5 (P5), P40, and P213 were subjected to digital droplet PCR (ddPCR) using a Bio-Rad automated droplet generator and QX200 reader. Target genes were selected based on genome-wide association studies, animal models, myopia studies, and other genes associated with retinal homeostasis and inflammation. HPRT, a housekeeping gene, was used for normalization. An average expression ratio (target/HPRT) and standard deviation (SD) were calculated. ANOVA assessed statistical significance, and a p < 0.05 was considered significant. RESULTS The ddPCR data analysis indicated that numerous myopia and inflammation-associated genes were differentially regulated in IRBP KO retinas with distinct temporal variation (upregulated at P5, decreased at P40, and no change at P213 relative to WT). C1qa, Gjd2, Sntb1, and Vsx2 emerged as top genetic candidate pathways. Compared with WT, immunoblotting analysis of C1qa showed no significant differences at P5 but significantly increased protein levels at P7 in IRBP KOs. Vsx2 remained unaltered at P5 and P7 in KO when compared with WT. CONCLUSIONS Data analysis indicated significant contributions from C1q, Gjd2, Sntb1, and Vsx2 genes in IRBP deficiency.
Collapse
Affiliation(s)
- Shanu Markand
- Ophthalmology Department, Emory University, Atlanta, GA, USA
- Anatomy Department, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, USA
| | - Somin Kim
- Ophthalmology Department, Emory University, Atlanta, GA, USA
| | - Micah A Chrenek
- Ophthalmology Department, Emory University, Atlanta, GA, USA
| | - Salma Ferdous
- Ophthalmology Department, Emory University, Atlanta, GA, USA
| | | | - Jeffrey H. Boatright
- Ophthalmology Department, Emory University, Atlanta, GA, USA
- Rehab Center of Excellence, Atlanta VA Medical Center, Decatur, GA, United States
| | | |
Collapse
|
8
|
Kuroda Y, Naruto T, Kurosawa K. Subtle phenotypes of Mowat-Wilson syndrome in a patient with a novel ZEB2 C-ZF domain variant. Am J Med Genet A 2024; 194:e63822. [PMID: 39023215 DOI: 10.1002/ajmg.a.63822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Affiliation(s)
- Yukiko Kuroda
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Takuya Naruto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| |
Collapse
|
9
|
Cervantes-Salazar JL, Pérez-Hernández N, Calderón-Colmenero J, Rodríguez-Pérez JM, González-Pacheco MG, Villamil-Castañeda C, Rosas-Tlaque AA, Ortega-Zhindón DB. Genetic Insights into Congenital Cardiac Septal Defects-A Narrative Review. BIOLOGY 2024; 13:911. [PMID: 39596866 PMCID: PMC11592229 DOI: 10.3390/biology13110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Congenital heart diseases (CHDs) are a group of complex diseases characterized by structural and functional malformations during development in the human heart; they represent an important problem for public health worldwide. Within these malformations, septal defects such as ventricular (VSD) and atrial septal defects (ASD) are the most common forms of CHDs. Studies have reported that CHDs are the result of genetic and environmental factors. Here, we review and summarize the role of genetics involved in cardiogenesis and congenital cardiac septal defects. Moreover, treatment regarding these congenital cardiac septal defects is also addressed.
Collapse
Affiliation(s)
- Jorge L. Cervantes-Salazar
- Department of Pediatric Cardiac Surgery and Congenital Heart Disease, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (J.L.C.-S.); (A.A.R.-T.)
| | - Nonanzit Pérez-Hernández
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (N.P.-H.); (J.M.R.-P.); (C.V.-C.)
| | - Juan Calderón-Colmenero
- Department of Pediatric Cardiology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - José Manuel Rodríguez-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (N.P.-H.); (J.M.R.-P.); (C.V.-C.)
| | | | - Clara Villamil-Castañeda
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (N.P.-H.); (J.M.R.-P.); (C.V.-C.)
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Angel A. Rosas-Tlaque
- Department of Pediatric Cardiac Surgery and Congenital Heart Disease, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (J.L.C.-S.); (A.A.R.-T.)
- Dirección General de Calidad y Educación en Salud, Secretaría de Salud, Mexico City 06600, Mexico
| | - Diego B. Ortega-Zhindón
- Department of Pediatric Cardiac Surgery and Congenital Heart Disease, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (J.L.C.-S.); (A.A.R.-T.)
- Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
10
|
Turovskaya MV, Gavrish MS, Tarabykin VS, Babaev AA. Overexpression of BDNF Suppresses the Epileptiform Activity in Cortical Neurons of Heterozygous Mice with a Transcription Factor Sip1 Deletion. Int J Mol Sci 2024; 25:10537. [PMID: 39408863 PMCID: PMC11476396 DOI: 10.3390/ijms251910537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Since genetic mutations during brain development play a significant role in the genesis of epilepsy, and such genetically determined epilepsies are the most difficult to treat, there is a need to study the mechanisms of epilepsy development with deletions of various transcription factors. We utilized heterozygous mice (Sip1wt/fl) with a neuronal deletion of the transcription factor Sip1 (Smad interacting protein 1) in the cerebral cortex. These mice are characterized by cognitive impairment and are prone to epilepsy. It is known that the brain-derived neurotrophic factor (BDNF) has a neuroprotective effect in various neurodegenerative diseases. Therefore, we created and applied an adeno-associated construct carrying the BDNF sequence selectively in neurons. Using in vitro and in vivo research models, we were able to identify a key gen, the disruption of whose expression accompanies the deletion of Sip1 and contributes to hyperexcitation of neurons in the cerebral cortex. Overexpression of BDNF in cortical neurons eliminated epileptiform activity in neurons obtained from heterozygous Sip1 mice in a magnesium-free model of epileptiform activity (in vitro). Using PCR analysis, it was possible to identify correlations in the expression profile of genes encoding key proteins responsible for neurotransmission and neuronal survival. The effects of BDNF overexpression on the expression profiles of these genes were also revealed. Using BDNF overexpression in cortical neurons of heterozygous Sip1 mice, it was possible to achieve 100% survival in the pilocarpine model of epilepsy. At the level of gene expression in the cerebral cortex, patterns were established that may be involved in the protection of brain cells from epileptic seizures and the restoration of cognitive functions in mice with Sip1 deletion.
Collapse
Affiliation(s)
- Maria V. Turovskaya
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, 603022 Nizhny Novgorod, Russia; (M.S.G.); (A.A.B.)
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya st. building 3, 142290 Pushchino, Russia
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, 603022 Nizhny Novgorod, Russia; (M.S.G.); (A.A.B.)
| | - Viktor S. Tarabykin
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alexei A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, 603022 Nizhny Novgorod, Russia; (M.S.G.); (A.A.B.)
| |
Collapse
|
11
|
Caraffi SG, van der Laan L, Rooney K, Trajkova S, Zuntini R, Relator R, Haghshenas S, Levy MA, Baldo C, Mandrile G, Lauzon C, Cordelli DM, Ivanovski I, Fetta A, Sukarova E, Brusco A, Pavinato L, Pullano V, Zollino M, McConkey H, Tartaglia M, Ferrero GB, Sadikovic B, Garavelli L. Identification of the DNA methylation signature of Mowat-Wilson syndrome. Eur J Hum Genet 2024; 32:619-629. [PMID: 38351292 PMCID: PMC11153515 DOI: 10.1038/s41431-024-01548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 06/07/2024] Open
Abstract
Mowat-Wilson syndrome (MOWS) is a rare congenital disease caused by haploinsufficiency of ZEB2, encoding a transcription factor required for neurodevelopment. MOWS is characterized by intellectual disability, epilepsy, typical facial phenotype and other anomalies, such as short stature, Hirschsprung disease, brain and heart defects. Despite some recognizable features, MOWS rarity and phenotypic variability may complicate its diagnosis, particularly in the neonatal period. In order to define a novel diagnostic biomarker for MOWS, we determined the genome-wide DNA methylation profile of DNA samples from 29 individuals with confirmed clinical and molecular diagnosis. Through multidimensional scaling and hierarchical clustering analysis, we identified and validated a DNA methylation signature involving 296 differentially methylated probes as part of the broader MOWS DNA methylation profile. The prevalence of hypomethylated CpG sites agrees with the main role of ZEB2 as a transcriptional repressor, while differential methylation within the ZEB2 locus supports the previously proposed autoregulation ability. Correlation studies compared the MOWS cohort with 56 previously described DNA methylation profiles of other neurodevelopmental disorders, further validating the specificity of this biomarker. In conclusion, MOWS DNA methylation signature is highly sensitive and reproducible, providing a useful tool to facilitate diagnosis.
Collapse
Grants
- MNESYS (PE0000006) Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20203P8C3X Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- FOE 2020 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- RCR-2022-23682289 Ministero della Salute (Ministry of Health, Italy)
- PNRR-MR1-2022-12376811 Ministero della Salute (Ministry of Health, Italy)
- OGI-188 Ontario Genomics Institute (OGI)
- Ministero dell'Istruzione, dell'Universit&#x00E0; e della Ricerca (Ministry of Education, University and Research)
Collapse
Affiliation(s)
| | - Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Roberta Zuntini
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Chiara Baldo
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giorgia Mandrile
- Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, University of Torino, 10043, Orbassano (Torino), Italy
| | - Carolyn Lauzon
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Duccio Maria Cordelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, 40139, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Ivan Ivanovski
- Institute of Medical Genetics, University of Zürich, Zürich, Switzerland
| | - Anna Fetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, 40139, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Elena Sukarova
- Department of Endocrinology and Genetics, University Clinic for Pediatric Diseases, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, 1000, Skopje, Republic of North Macedonia
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Verdiana Pullano
- Department of Medical Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Marcella Zollino
- Institute of Genomic Medicine, Department of Life Sciences and Public Health, 'Sacro Cuore' Catholic University of Rome, 00168, Rome, Italy
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | - Bekim Sadikovic
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42122, Reggio Emilia, Italy.
| |
Collapse
|
12
|
Babunovska M, Cepreganova Cangovska T, Kuzmanovski I, Noveski P, Plaseska-Karanfilska D, Cvetkovska E. Novel Variant ANKRD11 Gene Mutation Associated With Drug-Resistant Epilepsy in KBG Syndrome Phenotype. Pediatr Neurol 2024; 155:51-54. [PMID: 38593730 DOI: 10.1016/j.pediatrneurol.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Affiliation(s)
- Marija Babunovska
- Faculty of Medicine, University Clinic for Neurology, Ss. Cyril and Methodius University, Skopje, North Macedonia.
| | | | - Igor Kuzmanovski
- Faculty of Medicine, University Clinic for Neurology, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Predrag Noveski
- Research Centre for Genetic Engineering and Biotechnology Georgi D. Efremov, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology Georgi D. Efremov, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Emilija Cvetkovska
- Faculty of Medicine, University Clinic for Neurology, Ss. Cyril and Methodius University, Skopje, North Macedonia
| |
Collapse
|
13
|
Chatzi D, Kyriakoudi SA, Dermitzakis I, Manthou ME, Meditskou S, Theotokis P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J Clin Med 2024; 13:2223. [PMID: 38673496 PMCID: PMC11050951 DOI: 10.3390/jcm13082223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neurocristopathies (NCPs) encompass a spectrum of disorders arising from issues during the formation and migration of neural crest cells (NCCs). NCCs undergo epithelial-mesenchymal transition (EMT) and upon key developmental gene deregulation, fetuses and neonates are prone to exhibit diverse manifestations depending on the affected area. These conditions are generally rare and often have a genetic basis, with many following Mendelian inheritance patterns, thus making them perfect candidates for precision medicine. Examples include cranial NCPs, like Goldenhar syndrome and Axenfeld-Rieger syndrome; cardiac-vagal NCPs, such as DiGeorge syndrome; truncal NCPs, like congenital central hypoventilation syndrome and Waardenburg syndrome; and enteric NCPs, such as Hirschsprung disease. Additionally, NCCs' migratory and differentiating nature makes their derivatives prone to tumors, with various cancer types categorized based on their NCC origin. Representative examples include schwannomas and pheochromocytomas. This review summarizes current knowledge of diseases arising from defects in NCCs' specification and highlights the potential of precision medicine to remedy a clinical phenotype by targeting the genotype, particularly important given that those affected are primarily infants and young children.
Collapse
Affiliation(s)
| | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (S.A.K.); (I.D.); (M.E.M.); (S.M.)
| |
Collapse
|
14
|
Zhoulideh Y, Joolideh J. Mowat-Wilson syndrome: unraveling the complexities of diagnosis, treatment, and symptom management. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:40. [DOI: 10.1186/s43042-024-00517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/21/2024] [Indexed: 01/05/2025] Open
Abstract
AbstractMowat-Wilson syndrome can be mentioned as one of the most severe and, at the same time, rare genetic abnormalities. The inheritance pattern of this disorder is an autosomal dominant pattern. In this disease, the ZEB2 gene becomes abnormal. The severity of the disease and associated signs and symptoms can vary widely but may include distinct facial features, developmental delay, intellectual disability, and Hirschsprung. MWS treatment may vary based on the specific symptoms that appear in each individual. This review will examine the gene involved in this disease, phenotype, clinical manifestations, ways of diagnosis, and treatment of this disease.
Collapse
|
15
|
Lin LC, Wen WH, Chen PT. Congenital tracheal stenosis in Mowat-Wilson syndrome with nonsense mutation of ZEB2 gene. Pediatr Neonatol 2024; 65:202-203. [PMID: 37980276 DOI: 10.1016/j.pedneo.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 11/20/2023] Open
Affiliation(s)
- Lun-Chin Lin
- Department of Pediatrics, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Wan-Hsin Wen
- Department of Pediatrics, Cardinal Tien Hospital, New Taipei City, Taiwan; School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Peir-Taur Chen
- Department of Pediatrics, Cardinal Tien Hospital, New Taipei City, Taiwan; Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, Taiwan; School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
16
|
St. Peter C, Hossain WA, Lovell S, Rafi SK, Butler MG. Mowat-Wilson Syndrome: Case Report and Review of ZEB2 Gene Variant Types, Protein Defects and Molecular Interactions. Int J Mol Sci 2024; 25:2838. [PMID: 38474085 PMCID: PMC10932183 DOI: 10.3390/ijms25052838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Mowat-Wilson syndrome (MWS) is a rare genetic neurodevelopmental congenital disorder associated with various defects of the zinc finger E-box binding homeobox 2 (ZEB2) gene. The ZEB2 gene is autosomal dominant and encodes six protein domains including the SMAD-binding protein, which functions as a transcriptional corepressor involved in the conversion of neuroepithelial cells in early brain development and as a mediator of trophoblast differentiation. This review summarizes reported ZEB2 gene variants, their types, and frequencies among the 10 exons of ZEB2. Additionally, we summarized their corresponding encoded protein defects including the most common variant, c.2083 C>T in exon 8, which directly impacts the homeodomain (HD) protein domain. This single defect was found in 11% of the 298 reported patients with MWS. This review demonstrates that exon 8 encodes at least three of the six protein domains and accounts for 66% (198/298) of the variants identified. More than 90% of the defects were due to nonsense or frameshift changes. We show examples of protein modeling changes that occurred as a result of ZEB2 gene defects. We also report a novel pathogenic variant in exon 8 in a 5-year-old female proband with MWS. This review further explores other genes predicted to be interacting with the ZEB2 gene and their predicted gene-gene molecular interactions with protein binding effects on embryonic multi-system development such as craniofacial, spine, brain, kidney, cardiovascular, and hematopoiesis.
Collapse
Affiliation(s)
- Caroline St. Peter
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (C.S.P.); (W.A.H.); (S.K.R.)
| | - Waheeda A. Hossain
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (C.S.P.); (W.A.H.); (S.K.R.)
| | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66047, USA;
| | - Syed K. Rafi
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (C.S.P.); (W.A.H.); (S.K.R.)
| | - Merlin G. Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (C.S.P.); (W.A.H.); (S.K.R.)
| |
Collapse
|
17
|
Hernández-Marrero D, Junaidi RM, Lyons CJ. Unilateral progressive anterior iris adhesions in Mowat-Wilson syndrome: a new ocular finding. J AAPOS 2024; 28:103807. [PMID: 38218547 DOI: 10.1016/j.jaapos.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 01/15/2024]
Abstract
Ocular associations in Mowat-Wilson syndrome (MWS) are rare. Those involving the anterior segment are scarce in the literature. We describe a child with genetic confirmation of MWS that presented with acquired onset of unilateral anterior iris adhesions with no known trauma.
Collapse
Affiliation(s)
- Dayra Hernández-Marrero
- Department of Ophthalmology, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Radwan M Junaidi
- Department of Ophthalmology, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Christopher J Lyons
- Department of Ophthalmology, British Columbia Children's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
18
|
Larsen LA, Hitz MP. Human Genetics of Atrial Septal Defect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:467-480. [PMID: 38884726 DOI: 10.1007/978-3-031-44087-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Although atrial septal defects (ASD) can be subdivided based on their anatomical location, an essential aspect of human genetics and genetic counseling is distinguishing between isolated and familiar cases without extracardiac features and syndromic cases with the co-occurrence of extracardiac abnormalities, such as developmental delay. Isolated or familial cases tend to show genetic alterations in genes related to important cardiac transcription factors and genes encoding for sarcomeric proteins. By contrast, the spectrum of genes with genetic alterations observed in syndromic cases is diverse. Currently, it points to different pathways and gene networks relevant to the dysregulation of cardiomyogenesis and ASD pathogenesis. Therefore, this chapter reflects the current knowledge and highlights stable associations observed in human genetics studies. It gives an overview of the different types of genetic alterations in these subtypes, including common associations based on genome-wide association studies (GWAS), and it highlights the most frequently observed syndromes associated with ASD pathogenesis.
Collapse
Affiliation(s)
- Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marc-Phillip Hitz
- Institute of Medical Genetics, University Medicine Oldenburg, Oldenburg, Germany.
- Department for Paediatric Cardiology, University Hospital Kiel, Kiel, Germany.
| |
Collapse
|
19
|
Wang H, Wang Z, Ji T, Tai J, Jiang Q. Novel STAMBP mutations in a Chinese girl with rare symptoms of microcephaly-capillary malformation syndrome and Mowat-Wilson syndrome. Heliyon 2023; 9:e22989. [PMID: 38058451 PMCID: PMC10696234 DOI: 10.1016/j.heliyon.2023.e22989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/02/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
Microcephaly-capillary malformation syndrome (MIC-CAP) and Mowat-Wilson syndrome (MWS) are both rare hereditary diseases with several overlapping symptoms. We here report a Chinese patient simultaneously affected by MIC-CAP and MWS, presenting with moderate anaemia because of repeated, unilateral refractory epistaxis. The girl was initially diagnosed with MWS after discovery of a pathogenic nonsense mutation in ZEB2. Starting from the age of 3 years old, the child experienced repeated epistaxis on the right side without obvious incentive or trauma. The bleeding was quite difficult to stop and her hemoglobin dropped from 124 g/L to 64 g/L in three months. Both coagulation disorders and allergic rhinitis were excluded by extensive workup and experimental therapeutics. Retrospective genetic analysis revealed that she carried two novel compound heterozygous mutations in STAMBP (c.610T > C: p.Ser204Pro and c.945C > G: p.Asn315Lys). This case report demonstrates a rare presentation of MIC-CAP in the pediatric population and enriches the variant spectrum of STAMBP.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pediatrics, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zhan Wang
- Department of Otolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Jun Tai
- Department of Otolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
20
|
Buijsse N, Jansen FE, Ockeloen CW, van Kempen MJA, Zeidler S, Willemsen MH, Scarano E, Monticone S, Zonneveld‐Huijssoon E, Low KJ, Bayat A, Sisodiya SM, Samanta D, Lesca G, de Jong D, Giltay JC, Verbeek NE, Kleefstra T, Brilstra EH, Vlaskamp DRM. Epilepsy is an important feature of KBG syndrome associated with poorer developmental outcome. Epilepsia Open 2023; 8:1300-1313. [PMID: 37501353 PMCID: PMC10690702 DOI: 10.1002/epi4.12799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE The aim of this study was to describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype-phenotype correlation. METHODS We collected data on patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an "epilepsy group" or "non-epilepsy group". Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. RESULTS We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1%, RR 4.6 [95% CI 1.7-13.1]). Seizure onset in patients with KBG syndrome occurred at a median age of 4 years (range 12 months - 20 years), and the majority had generalized onset seizures (57.7%) with tonic-clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling the criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least 1 year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥2 ASM). No genotype-phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. SIGNIFICANCE Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significantly poorer neurodevelopmental outcome compared with those without epilepsy. Clinicians should consider KBG syndrome as a causal etiology of epilepsy and be aware of the poorer neurodevelopmental outcome in individuals with epilepsy.
Collapse
Affiliation(s)
- Nathan Buijsse
- Department of Medical GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Floor E. Jansen
- Department of Pediatric Neurology, Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Charlotte W. Ockeloen
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Shimriet Zeidler
- Department of Clinical GeneticsErasmus Medical CenterRotterdamThe Netherlands
| | | | - Emanuela Scarano
- Department of PediatricsSt. Orsola‐Malpighi HospitalBolognaItaly
| | - Sonia Monticone
- Department of PediatricsAzienda Ospedaliero Universitaria Maggiore della CaritàNovaraItaly
| | | | - Karen J. Low
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS trustUniversity of BristolBristolUK
| | - Allan Bayat
- Department for Genetics and Personalized MedicineDanish Epilepsy CentreDianalundDenmark
- Institute for Regional Health ServicesUniversity of Southern DenmarkOdenseDenmark
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of Neurology and Chalfont Centre for EpilepsyChalfont St PeterUK
| | - Debopam Samanta
- Child Neurology Section, Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Gaetan Lesca
- Department of GeneticsUniversity Hospitals of LyonLyonFrance
| | - Danielle de Jong
- Department of NeurologyAcademic Center for Epileptology Kempenhaeghe/MUMC+HeezeThe Netherlands
| | - Jaqcues C. Giltay
- Department of Medical GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Nienke E. Verbeek
- Department of Medical GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Tjitske Kleefstra
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Eva H. Brilstra
- Department of Medical GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | |
Collapse
|
21
|
Charney RM, Prasad MS, Juan-Sing C, Patel LJ, Hernandez JC, Wu J, García-Castro MI. Mowat-Wilson syndrome factor ZEB2 controls early formation of human neural crest through BMP signaling modulation. Stem Cell Reports 2023; 18:2254-2267. [PMID: 37890485 PMCID: PMC10679662 DOI: 10.1016/j.stemcr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Mowat-Wilson syndrome is caused by mutations in ZEB2, with patients exhibiting characteristics indicative of neural crest (NC) defects. We examined the contribution of ZEB2 to human NC formation using a model based on human embryonic stem cells. We found ZEB2 to be one of the earliest factors expressed in prospective human NC, and knockdown revealed a role for ZEB2 in establishing the NC state while repressing pre-placodal and non-neural ectoderm genes. Examination of ZEB2 N-terminal mutant NC cells demonstrates its requirement for the repression of enhancers in the NC gene network and proper NC cell terminal differentiation into osteoblasts and peripheral neurons and neuroglia. This ZEB2 mutation causes early misexpression of BMP signaling ligands, which can be rescued by the attenuation of BMP. Our findings suggest that ZEB2 regulates early human NC specification by modulating proper BMP signaling and further elaborate the molecular defects underlying Mowat-Wilson syndrome.
Collapse
Affiliation(s)
- Rebekah M Charney
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Maneeshi S Prasad
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Czarina Juan-Sing
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Lipsa J Patel
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jacqueline C Hernandez
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Martín I García-Castro
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
22
|
Liu WL, Li F, Chen W, Liu L, Cheng HJ, He ZX, Ai R. "Liu-Liang-Chung" syndrome with multiple congenital anomalies and the distinctive craniofacial features caused by dominant ZEB2 gene gain mutation. BMC Pediatr 2023; 23:480. [PMID: 37735378 PMCID: PMC10512491 DOI: 10.1186/s12887-023-04314-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Contiguous gene gain syndrome including entire ZEB2 may be a novel syndrome. In the past, there were no easily distinct and recognizable features as a guide for precise clinical and genetic diagnosis of the syndrome. CASE PRESENTATION We report a novel case with the syndrome with a novel de novo 22.16 Mb duplication at 2q21.2-q24.1. The syndrome is characterized by multiple anomalies including the same typical craniofacial phenotype that is entirely different from Mowat-Wilson syndrome (MWS), and other quite similar features of MWS consisting of development delay, congenital heart disease, abdominal abnormalities, urogenital abnormalities, behavioral problems and so on, in which the distinctive craniofacial features can be more easily recognized. CONCLUSIONS Contiguous gene gain syndrome including entire ZEB2 characterized with similar multiple congenital anomalies of MWS and the distinctive craniofacial features is mainly caused by large 2q22 repeats including ZEB2 leading to dominant singe ZEB2 gene gain mutation, which is recommended to be named "Liu-Liang-Chung" syndrome. We diagnose this novel syndrome to distinguish it from MWS. Some variable additional features in the syndrome including remarkable growth and development retardation and protruding ears were recognized for the first time.
Collapse
Affiliation(s)
- Wei-Liang Liu
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Fang Li
- Department of Ophthalmology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Wei Chen
- Department of Ophthalmology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Lu Liu
- Department of Ophthalmology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Hai-Jian Cheng
- Beijing Kangso Medical Laboratory Co., Ltd, Beijing, 100195, China
| | - Zhi-Xu He
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Rong Ai
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
23
|
Han X, Zhang Q, Wang C, Han B. Clinical Characteristics and Novel ZEB2 Gene Mutation Analysis of Three Chinese Patients with Mowat-Wilson Syndrome. Pharmgenomics Pers Med 2023; 16:777-783. [PMID: 37641719 PMCID: PMC10460601 DOI: 10.2147/pgpm.s414161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Purpose Mowat-Wilson syndrome (MWS) is an autosomal dominant disease caused by a pathogenic variant of the ZEB2 gene. The main clinical manifestations include special facial features, Hirschsprung disease (HSCR), global developmental delay and other congenital malformations. Here, we summarize the clinical characteristics and genetic mutation analysis of three Chinese patients with MWS. Patients and Methods The clinical characteristics of the patients were monitored and the treatment effect was followed up. DNA was extracted from peripheral blood and analyzed by sequencing. Whole exome sequencing was then performed. Results Three novel ZEB2 gene mutations were identified in 3 patients (c.1147_1150dupGAAC, p.Q384Rfs*7, c.1137_1146del TAGTATGTCT, p.S380Nfs *13 and c.2718delT, p.A907Lfs*23). They all had special facial features, intellectual disability, developmental delay, microcephaly, structural brain abnormalities and other symptoms. After long-term regular rehabilitation treatment, the development quotient of each functional area of the patient was slightly improved. Conclusion Our study expanded the mutation spectrum of ZEB2 and enriched our understanding of the clinical features of MWS. It also shows that long-term standardized treatment is of great significance for the prognosis of patients.
Collapse
Affiliation(s)
- Xiao Han
- Department of Pediatrics, Jining First People’s Hospital, Jining, Shandong, 272011, People’s Republic of China
| | - Qianjuan Zhang
- Department of Children’s Medical Rehabilitation Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250001, People’s Republic of China
| | - Chengcheng Wang
- Department of Pediatric Surgery, Jining First People’s Hospital, Jining, Shandong, 272011, People’s Republic of China
| | - Bingjuan Han
- Department of Children’s Health Prevention, The Second Children & Women’s Healthcare of Jinan City, Jinan, Shandong, 271100, People’s Republic of China
| |
Collapse
|
24
|
Güleray Lafcı N, Karaosmanoglu B, Taskiran EZ, Simsek-Kiper PO, Utine GE. Mutated Transcripts of ZEB2 Do Not Undergo Nonsense-Mediated Decay in Mowat-Wilson Syndrome. Mol Syndromol 2023; 14:258-265. [PMID: 37323203 PMCID: PMC10267494 DOI: 10.1159/000528769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/16/2022] [Indexed: 12/03/2023] Open
Abstract
Introduction Mowat-Wilson syndrome (MWS) is an autosomal-dominant complex developmental disorder characterized by distinctive facial appearance, intellectual disability, epilepsy, and various clinically heterogeneous abnormalities reminiscent of neurocristopathies. MWS is caused by haploinsufficiency of ZEB2 due to heterozygous point mutations and copy number variations. Case Presentation We report on two unrelated affected individuals with novel ZEB2indel mutations, molecularly confirming the diagnosis of MWS. Quantitative real-time polymerase chain reaction (PCR) for the comparison of total transcript levels and allele-specific quantitative real-time PCR were also performed and demonstrated that the truncating mutations did not lead to nonsense-mediated decay as expected. Conclusion ZEB2 encodes a multifunctional pleiotropic protein. Novel mutations in ZEB2 should be reported in order that genotype-phenotype correlations might be established in this clinically heterogeneous syndrome. Further cDNA and protein studies may help elucidate the underlying pathogenetic mechanisms of MWS since nonsense-mediated RNA decay was found to be absent in only a few studies including this study.
Collapse
Affiliation(s)
- Naz Güleray Lafcı
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Beren Karaosmanoglu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ekim Z. Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Pelin Ozlem Simsek-Kiper
- Department of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gülen Eda Utine
- Department of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
25
|
Birkhoff JC, Korporaal AL, Brouwer RWW, Nowosad K, Milazzo C, Mouratidou L, van den Hout MCGN, van IJcken WFJ, Huylebroeck D, Conidi A. Zeb2 DNA-Binding Sites in Neuroprogenitor Cells Reveal Autoregulation and Affirm Neurodevelopmental Defects, Including in Mowat-Wilson Syndrome. Genes (Basel) 2023; 14:genes14030629. [PMID: 36980900 PMCID: PMC10048071 DOI: 10.3390/genes14030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Functional perturbation and action mechanism studies have shown that the transcription factor Zeb2 controls cell fate decisions, differentiation, and/or maturation in multiple cell lineages in embryos and after birth. In cultured embryonic stem cells (ESCs), Zeb2’s mRNA/protein upregulation is necessary for the exit from primed pluripotency and for entering general and neural differentiation. We edited mouse ESCs to produce Flag-V5 epitope-tagged Zeb2 protein from one endogenous allele. Using chromatin immunoprecipitation coupled with sequencing (ChIP-seq), we mapped 2432 DNA-binding sites for this tagged Zeb2 in ESC-derived neuroprogenitor cells (NPCs). A new, major binding site maps promoter-proximal to Zeb2 itself. The homozygous deletion of this site demonstrates that autoregulation of Zeb2 is necessary to elicit the appropriate Zeb2-dependent effects in ESC-to-NPC differentiation. We have also cross-referenced all the mapped Zeb2 binding sites with previously obtained transcriptome data from Zeb2 perturbations in ESC-derived NPCs, GABAergic interneurons from the ventral forebrain of mouse embryos, and stem/progenitor cells from the post-natal ventricular-subventricular zone (V-SVZ) in mouse forebrain, respectively. Despite the different characteristics of each of these neurogenic systems, we found interesting target gene overlaps. In addition, our study also contributes to explaining developmental disorders, including Mowat-Wilson syndrome caused by ZEB2 deficiency, and also other monogenic syndromes.
Collapse
Affiliation(s)
- Judith C. Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Anne L. Korporaal
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Rutger W. W. Brouwer
- Center for Biomics-Genomics, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Karol Nowosad
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
- The Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Claudia Milazzo
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Lidia Mouratidou
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | | | - Wilfred F. J. van IJcken
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Center for Biomics-Genomics, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-10-7043169
| |
Collapse
|
26
|
Kumar S, Fan X, Rasouly HM, Sharma R, Salant DJ, Lu W. ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis. JCI Insight 2023; 8:e158418. [PMID: 36445780 PMCID: PMC9870089 DOI: 10.1172/jci.insight.158418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
FOXD1+ cell-derived stromal cells give rise to pericytes and fibroblasts that support the kidney vasculature and interstitium but are also major precursors of myofibroblasts. ZEB2 is a SMAD-interacting transcription factor that is expressed in developing kidney stromal progenitors. Here we show that Zeb2 is essential for normal FOXD1+ stromal progenitor development. Specific conditional knockout of mouse Zeb2 in FOXD1+ stromal progenitors (Zeb2 cKO) leads to abnormal interstitial stromal cell development, differentiation, and kidney fibrosis. Immunofluorescent staining analyses revealed abnormal expression of interstitial stromal cell markers MEIS1/2/3, CDKN1C, and CSPG4 (NG2) in newborn and 3-week-old Zeb2-cKO mouse kidneys. Zeb2-deficient FOXD1+ stromal progenitors also took on a myofibroblast fate that led to kidney fibrosis and kidney failure. Cell marker studies further confirmed that these myofibroblasts expressed pericyte and resident fibroblast markers, including PDGFRβ, CSPG4, desmin, GLI1, and NT5E. Notably, increased interstitial collagen deposition associated with loss of Zeb2 in FOXD1+ stromal progenitors was accompanied by increased expression of activated SMAD1/5/8, SMAD2/3, SMAD4, and AXIN2. Thus, our study identifies a key role of ZEB2 in maintaining the cell fate of FOXD1+ stromal progenitors during kidney development, whereas loss of ZEB2 leads to differentiation of FOXD1+ stromal progenitors into myofibroblasts and kidney fibrosis.
Collapse
|
27
|
Gorchkhanova ZK, Nikolaeva EA, Pivovarova AM, Bochenkov SV, Belousova ED. Difficulties in the differential diagnosis of Angelman’s syndrome. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2023. [DOI: 10.21508/1027-4065-2022-67-6-113-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Angelman syndrome is a rare neurogenetic disease caused by the loss of the function of the maternal allele of the UBE3A gene on chromosome 15 (site 15q11.2–q13) and is characterized by severe mental retardation, lack of speech, epilepsy, microcephaly and a characteristic facial phenotype with a unique behavior in the form of frequent laughter. The combination of microcephaly, epilepsy, speechlessness and mental retardation poses a problem for differential diagnosis with many genetic diseases presenting with similar symptoms. Epileptic encephalopathy due to CDKL5 gene mutation and Rett syndrome have the greatest similarity. The hallmark of Angelman syndrome are laughter attacks and specific EEG changes. The authors have presented a table of the differential diagnosis of Angelman syndrome with some phenotypically similar genetic syndromes, indicating the most significant distinguishing features, which should facilitate for the pediatrician and neurologist the diagnostic path of establishing the correct diagnosis.
Collapse
Affiliation(s)
- Z. K. Gorchkhanova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| | - E. A. Nikolaeva
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| | - A. M. Pivovarova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| | - S. V. Bochenkov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| | - E. D. Belousova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| |
Collapse
|
28
|
First Case Report of Developmental Bilateral Cataract with a Novel Mutation in the ZEB2 Gene Observed in Mowat-Wilson Syndrome. Medicina (B Aires) 2023; 59:medicina59010101. [PMID: 36676725 PMCID: PMC9864246 DOI: 10.3390/medicina59010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Mowat-Wilson syndrome (MWS) is extremely rare multisystemic autosomal dominant disorder caused by mutations in the Zinc Finger E-Box Binding Homeobox 2 (ZEB2) gene. Ocular pathologies are one of the symptoms that appear in the clinical picture of MWS individuals, but not many have been described so far. Pathologies such as optic nerve or retinal epithelium atrophy, iris or optic disc coloboma as well as congenital cataracts have been most frequently described until now. Therefore, we would like to report the first case of bilateral developmental cataract in a 9-year-old girl with MWS who underwent successful cataract surgery with intraocular lens implantation. Case Presentation: A 9-year-old girl, diagnosed with p.Gln694Ter mutation in ZEB2 gene and suspicion of MWS was referred to the Children's Outpatient Ophthalmology Clinic for ophthalmological evaluation. Her previous assessments revealed abnormalities of the optic nerve discs. The patient was diagnosed with atrophy of the optic nerves, convergent strabismus, and with-the-rule astigmatism. One year later, during the follow-up visit, the patient was presented with decreased visual acuity (VA), developmental total cataract in the right eye and a developmental partial cataract in the left eye. This resulted in decreased VA confirmed by deteriorated responses in visual evoked potential (VEP) test. The girl underwent a two-stage procedure of cataract removal, first of one eye and then of the other eye with artificial lens implants. In the 2 years following the operation, no complications were observed and, most remarkably, VA improved significantly. Conclusions: The ZEB2 gene is primarily responsible for encoding the Smad interaction protein 1 (SIP1), which is involved in the proper development of various eye components. When mutated, it results in multilevel abnormalities, also in the proper lens formation, that prevent the child from normal vision development. This typically results in the formation of congenital cataracts in children with MWS syndrome, however, our case shows that it also leads to the formation of developmental cataracts. This is presumably due to the effect of the lack of SIP1 on other genes, altering their downstream expression and is a novel insight into the importance of the SIP1 in the occurrence of ocular pathologies. To the best of our knowledge, this is the first case of bilateral developmental cataract in the context of MWS. Moreover, a novel mutation (p.Gln694Ter) in the ZEB2 gene was found corresponding to this syndrome entity. This report allows us to gain a more comprehensive insight into the genetic spectrum and the corresponding phenotypic features in MWS syndrome patients.
Collapse
|
29
|
Wu L, Wang J, Wang L, Xu Q, Zhou B, Zhang Z, Li Q, Wang H, Han L, Jiang Q, Wang L. Physical, language, neurodevelopment and phenotype-genotype correlation of Chinese patients with Mowat-Wilson syndrome. Front Genet 2022; 13:1016677. [PMID: 36406119 PMCID: PMC9669270 DOI: 10.3389/fgene.2022.1016677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Background: To report detailed knowledge about the clinical manifestations, genetic spectrum as well as physical, language, neurodevelopment features and genotype-phenotype correlations of Chinese patients with Mowat-Wilson syndrome (MWS). Methods: We retrospectively collected and analyzed clinical data for twenty-two patients with molecularly confirmed diagnoses. We used Gesell Developmental Schedules (GDS) to assess their neurodevelopment and the Diagnostic Receptive and Expressive Assessment of Mandarin-Infant & Toddler (DREAM-IT) to evaluate their language ability and compared the data with the two types of underlying pathogenic variations. Results: The height and weight of all patients were below the 75th percentile, and microcephaly was observed in 16 of 22 patients (72.7%). Four patients carrying chromosome deletions encompassing the ZEB2 gene were more severely affected. All MWS patients exhibited better performance in cognitive play and social communication than in receptive and expressive language. In the receptive language area, the types of words that children with MWS understood most were nouns, followed by adjectives and verbs. Conclusion: This study delineated the phenotypic spectrum of the largest MWS cohort in China and provided comprehensive profiling of their physical, language, neurodevelopment features and genotype-phenotype correlations.
Collapse
Affiliation(s)
- Lihua Wu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Jianhong Wang
- Department of Child Health Care, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Lei Wang
- Department of Child Health Care, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Qi Xu
- Department of Child Health Care, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Bo Zhou
- Department of Child Health Care, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Zhen Zhang
- Department of General Surgery, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Qi Li
- Department of General Surgery, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Hui Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Lu Han
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
- Institute of Basic Medicine, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
- *Correspondence: Qian Jiang, ; Lin Wang,
| | - Lin Wang
- Department of Child Health Care, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
- *Correspondence: Qian Jiang, ; Lin Wang,
| |
Collapse
|
30
|
Pachajoa H, Gomez-Pineda E, Giraldo-Ocampo S, Lores J. Mowat-Wilson Syndrome as a Differential Diagnosis in Patients with Congenital Heart Defects and Dysmorphic Facies. Pharmgenomics Pers Med 2022; 15:913-918. [PMID: 36345475 PMCID: PMC9636884 DOI: 10.2147/pgpm.s380908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
Mowat-Wilson syndrome is a rare, autosomal dominant neurodevelopmental disorder characterized by distinctive facial gestalt and intellectual disability that is often associated with microcephaly, seizures and multiple congenital anomalies, mainly heart defects. More than 350 patients and 180 genetic variants in the ZEB2 gene, have been reported with an estimated frequency of 1 per 70,000 births. Here we report a Colombian female patient with facial gestalt, intellectual disability, microcephaly, congenital heart defects, hypothyroidism and middle ear defect associated with the nonsense pathogenic variant c.2761C>T (p.Arg921Ter) in the ZEB2 gene. This case contributes to the understanding of the clinical complications and the natural history of this complex and clinically heterogeneous disorder but also to the awareness that patients with heart congenital defects and dysmorphic facies may present an underlying genetic disorder.
Collapse
Affiliation(s)
- Harry Pachajoa
- Genetics Division, Fundación Valle del Lili, Cali, Colombia
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia
- Correspondence: Harry Pachajoa, Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia, Tel +57 5552334 ext 7653, Email
| | - Eidith Gomez-Pineda
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
| | | | - Juliana Lores
- Genetics Division, Fundación Valle del Lili, Cali, Colombia
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia
| |
Collapse
|
31
|
Schuster J, Klar J, Khalfallah A, Laan L, Hoeber J, Fatima A, Sequeira VM, Jin Z, Korol SV, Huss M, Nordgren A, Anderlid BM, Gallant C, Birnir B, Dahl N. ZEB2 haploinsufficient Mowat-Wilson syndrome induced pluripotent stem cells show disrupted GABAergic transcriptional regulation and function. Front Mol Neurosci 2022; 15:988993. [PMID: 36353360 PMCID: PMC9637781 DOI: 10.3389/fnmol.2022.988993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 07/30/2023] Open
Abstract
Mowat-Wilson syndrome (MWS) is a severe neurodevelopmental disorder caused by heterozygous variants in the gene encoding transcription factor ZEB2. Affected individuals present with structural brain abnormalities, speech delay and epilepsy. In mice, conditional loss of Zeb2 causes hippocampal degeneration, altered migration and differentiation of GABAergic interneurons, a heterogeneous population of mainly inhibitory neurons of importance for maintaining normal excitability. To get insights into GABAergic development and function in MWS we investigated ZEB2 haploinsufficient induced pluripotent stem cells (iPSC) of MWS subjects together with iPSC of healthy donors. Analysis of RNA-sequencing data at two time points of GABAergic development revealed an attenuated interneuronal identity in MWS subject derived iPSC with enrichment of differentially expressed genes required for transcriptional regulation, cell fate transition and forebrain patterning. The ZEB2 haploinsufficient neural stem cells (NSCs) showed downregulation of genes required for ventral telencephalon specification, such as FOXG1, accompanied by an impaired migratory capacity. Further differentiation into GABAergic interneuronal cells uncovered upregulation of transcription factors promoting pallial and excitatory neurons whereas cortical markers were downregulated. The differentially expressed genes formed a neural protein-protein network with extensive connections to well-established epilepsy genes. Analysis of electrophysiological properties in ZEB2 haploinsufficient GABAergic cells revealed overt perturbations manifested as impaired firing of repeated action potentials. Our iPSC model of ZEB2 haploinsufficient GABAergic development thus uncovers a dysregulated gene network leading to immature interneurons with mixed identity and altered electrophysiological properties, suggesting mechanisms contributing to the neuropathogenesis and seizures in MWS.
Collapse
Affiliation(s)
- Jens Schuster
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Ayda Khalfallah
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Loora Laan
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Jan Hoeber
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Ambrin Fatima
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Velin Marita Sequeira
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Zhe Jin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sergiy V. Korol
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mikael Huss
- Wallenberg Long-Term Bioinformatics Support, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Britt Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Gallant
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Bryndis Birnir
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| |
Collapse
|
32
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
33
|
Goyal M, Faruq M, Gupta A, Shrivastava D, Shamim U. Deletion of 2q22.2q22.3 in Mowat–Wilson Syndrome: A Case Report and Review of the Literature. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1749670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Mowat–Wilson syndrome (MWS; Online Mendelian Inheritance in Man #235730) is a rare disorder characterized by developmental delay, severe intellectual disability, distinctive facial dysmorphism, and multiple associated abnormalities caused by mutation or deletion of ZEB2 gene. Here we report a 13 months old boy with characteristic facial features of MWS, global developmental delay, peculiar behavior, microcephaly, and hypospadias. Array comparative genomic hybridization (CGH) revealed a 5.7-Mb deletion of 2q22.2q22.3 region. The deletion contains 10 genes, including LRP1B, KYNU, ARHGAP15, GTDC1, ZEB2, ZEB2-AS1, TEX41, MBD5, ORC4, and ACVR2A. Our case shows the utility of array CGH in identifying such complex phenotype.
Collapse
Affiliation(s)
- Manisha Goyal
- Centre of Rare Diseases, Department of Pediatrics, SMS Medical College, Jaipur Rajasthan, India
| | - Mohammed Faruq
- Department of Genomics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashok Gupta
- Centre of Rare Diseases, Department of Pediatrics, SMS Medical College, Jaipur Rajasthan, India
| | - Divya Shrivastava
- Department of Life sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Uzma Shamim
- Department of Genomics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
34
|
Liu F, Wu Y, Li Z, Wan R. Identification of MMACHC and ZEB2 mutations causing coexistent cobalamin C disease and Mowat-Wilson syndrome in a 2-year-old girl. Clin Chim Acta 2022; 533:31-39. [PMID: 35709987 DOI: 10.1016/j.cca.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022]
Abstract
Cobalamin C (cblC) disease and Mowat-Wilson syndrome (MWS) are rare hereditary diseases. To date, there have been no reports of people suffering from these two genetic diseases, or whether there is any correlation between the two diseases. We reported a 2-year-old girl with both cblC disease and MWS. The patient initially manifested as slow weight gain, hypotonia, broad nasal bridge, high forehead, high palate arch, ear crease, patent ductus arteriosus, atrial and ventricular septal defect and bilateral mild ventriculomegaly in the neonatal period. However, as the baby grew older, the typical facial features became more prominent, and overall developmental delays were noted at the subsequent follow-up, with the motor and cognitive development significantly lagging behind that of other children of the same age. At 26 days old, laboratory tests revealed remarkably elevated levels of serum homocysteine, C3/C2 and urine organic acid. Whole-exome sequencing detected compound heterozygous variants in MMACHC, including one previously reported mutation [c.609G > A (p.W203X) and a novel missense mutation[ c.643 T > C (p.Y215H)]. The computer simulations of the protein structure analysis of the novel missense mutation showed the variant p.Y215H replaced a neutral amino acid with a strongly basic lysine, which broken the local structure by changing the carbon chain skeleton and decreasing the interaction with adjacent amino acid. This is expected to damage the utilization of vitamin B12 and influence the synthesis of AdoCbl and MeCbl, contributing to its pathogenicity. Thus, clinical and genetic examinations confirmed the cblC disease. Another heterozygous variant in ZEB2 [NM_014795; loss1(exon:2-10)(all); 127901 bp] was detected by whole-exome sequencing. The heterozygous 3.04 Mb deletion in EB2 [GRCH37]del(2)(q22.2q22.3) (chr2:142237964-145274917) was also confirmed by genome-wide copy number variations (CNVs) scan, which was pathogenic and led to the diagnosis of Mowat-Wilson syndrome. The biochemical indicators associated with cblC disease in the patient were well controlled after treatment with vitamin B12 and betaine. Here, a patient with coexisting cblC disease and MWS caused by different pathogenic genes was reported, which enriched the clinical research on these two rare genetic diseases.
Collapse
Affiliation(s)
- Fang Liu
- Department of Pediatrics, the 980th Hospital of the People's Liberation Army Joint Service Support Force (Bethune International Peace Hospital), Shijiazhuang 050082, Hebei, China.
| | - Yuanyuan Wu
- Department of Genetics and Reproduction, the 980th Hospital of the People's Liberation Army Joint Service Support Force (Bethune International Peace Hospital), Shijiazhuang 050082, Hebei, China
| | - Zhi Li
- Department of Pediatrics, the 980th Hospital of the People's Liberation Army Joint Service Support Force (Bethune International Peace Hospital), Shijiazhuang 050082, Hebei, China
| | - Ruihua Wan
- Department of Pediatrics, the 980th Hospital of the People's Liberation Army Joint Service Support Force (Bethune International Peace Hospital), Shijiazhuang 050082, Hebei, China
| |
Collapse
|
35
|
Fu Y, Xu W, Wang Q, Lin Y, He P, Liu Y, Yuan H. Three Novel De Novo ZEB2 Variants Identified in Three Unrelated Chinese Patients With Mowat-Wilson Syndrome and A Systematic Review. Front Genet 2022; 13:853183. [PMID: 35646055 PMCID: PMC9134118 DOI: 10.3389/fgene.2022.853183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: ZEB2 gene mutations or deletions cause Mowat-Wilson syndrome (MWS), which is characterized by distinctive facial features, global developmental delay, intellectual disability, epilepsy, friendly and happy personalities, congenital heart disease, Hirschsprung disease and multiple congenital anomalies. Currently, more than 300 MWS patients have been described in the literature, and nearly 280 variants in ZEB2 have been identified. Methods: In this study, we report three unrelated Chinese patients presenting multiple congenital anomalies that were consistent with those of MWS. Whole-exome sequencing (WES) was used to identify the causative variants. Results: WES identified two novel de novo frameshift variants in ZEB2 (NM_014795.4:c.2136delC, p. Lys713Serfs*3 and c.2740delG, p. Gln914Argfs*16) in patients 1 and 2, respectively, and a novel de novo splicing variant in ZEB2 (NM_014795.4:c.808-2delA) in patient 3, all of which were confirmed by Sanger sequencing. Next, we systematically reviewed the clinical characteristics of Chinese and Caucasian MWS patients. We revealed a higher incidence of constipation in Chinese MWS patients compared to that previously reported in Caucasian cohorts, while the incidence of Hirschsprung disease and happy demeanor was lower in Chinese MWS patients and that epilepsy in Chinese MWS patients could be well-controlled compared to that in Caucasian MWS individuals. Conclusion: Our study expanded the mutation spectrum of ZEB2 and enriched our understanding of the clinical characteristics of MWS. Definitive genetic diagnosis is beneficial for the genetic counseling and clinical management of individuals with MWS.
Collapse
Affiliation(s)
- Youqing Fu
- Affiliated Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan, China
| | - Wanfang Xu
- Affiliated Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan, China
| | - Qingming Wang
- Affiliated Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan, China
- Dongguan Institute of Reproductive and Genetic Research, Dongguan, China
| | - Yangyang Lin
- Affiliated Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan, China
| | - Peiqing He
- Affiliated Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan, China
- Dongguan Institute of Reproductive and Genetic Research, Dongguan, China
| | - Yanhui Liu
- Affiliated Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan, China
- Dongguan Institute of Reproductive and Genetic Research, Dongguan, China
| | - Haiming Yuan
- Affiliated Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan, China
- Dongguan Institute of Reproductive and Genetic Research, Dongguan, China
| |
Collapse
|
36
|
Musaad W, Lyons A, Allen N, Letshwiti J. Mowat-Wilson syndrome presenting with Shone's complex cardiac anomaly. BMJ Case Rep 2022; 15:e246913. [PMID: 35140087 PMCID: PMC8830215 DOI: 10.1136/bcr-2021-246913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/04/2022] Open
Abstract
A female infant, who was diagnosed antenatally with complex heart disease, confirmed to be Shone's complex postnatally, underwent bilateral pulmonary artery banding, patent ductus arteriosus stent insertion and balloon aortic valvuloplasty soon after birth. She was found to have bilateral megaureters, left hydronephrosis and asplenia. She was on lifelong prophylactic antibiotics and extra vaccines. She had two episodes of pseudo-obstruction of the small bowel, but barium follow-through was normal. She also had a large bowel obstruction and work-up for Hirschsprung disease confirmed the diagnosis. It was noticed that she had developmental delay and hypotonia, together with subtle dysmorphism. She also had failure to thrive and difficulty feeding. Exome sequencing revealed a diagnosis of Mowat-Wilson syndrome (MWS). This case shows a previously undescribed association of Shone's complex, a complex left-sided obstructive heart defect, and MWS. It also highlights the usefulness of trio-exome sequencing in detecting such rare mutations.
Collapse
Affiliation(s)
- Walaa Musaad
- Paediatrics, Galway University Hospitals, Galway, Ireland
| | - Aisling Lyons
- Paediatrics, Galway University Hospitals, Galway, Ireland
| | - Nicholas Allen
- Paediatrics, Galway University Hospitals, Galway, Ireland
| | | |
Collapse
|
37
|
Positive selection in noncoding genomic regions of vocal learning birds is associated with genes implicated in vocal learning and speech functions in humans. Genome Res 2021; 31:2035-2049. [PMID: 34667117 PMCID: PMC8559704 DOI: 10.1101/gr.275989.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022]
Abstract
Vocal learning, the ability to imitate sounds from conspecifics and the environment, is a key component of human spoken language and learned song in three independently evolved avian groups—oscine songbirds, parrots, and hummingbirds. Humans and each of these three bird clades exhibit specialized behavioral, neuroanatomical, and brain gene expression convergence related to vocal learning, speech, and song. To understand the evolutionary basis of vocal learning gene specializations and convergence, we searched for and identified accelerated genomic regions (ARs), a marker of positive selection, specific to vocal learning birds. We found avian vocal learner-specific ARs, and they were enriched in noncoding regions near genes with known speech functions or brain gene expression specializations in humans and vocal learning birds, including FOXP2, NEUROD6, ZEB2, and MEF2C, and near genes with major neurodevelopmental functions, including NR2F1, NRP2, and BCL11B. We also found enrichment near the SFARI class S genes associated with syndromic vocal communication forms of autism spectrum disorders. These findings reveal strong candidate noncoding regions near genes for the evolutionary adaptations that distinguish vocal learning species from their close vocal nonlearning relatives and provide further evidence of molecular convergence between birdsong and human spoken language.
Collapse
|
38
|
Ricci E, Fetta A, Garavelli L, Caraffi S, Ivanovski I, Bonanni P, Accorsi P, Giordano L, Pantaleoni C, Romeo A, Arena A, Bonetti S, Boni A, Chiarello D, Di Pisa V, Epifanio R, Faravelli F, Finardi E, Fiumara A, Grioni D, Mammi I, Negrin S, Osanni E, Raviglione F, Rivieri F, Rizzi R, Savasta S, Tarani L, Zanotta N, Dormi A, Vignoli A, Canevini M, Cordelli DM. Further delineation and long-term evolution of electroclinical phenotype in Mowat Wilson Syndrome. A longitudinal study in 40 individuals. Epilepsy Behav 2021; 124:108315. [PMID: 34619538 DOI: 10.1016/j.yebeh.2021.108315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Epilepsy is a main feature of Mowat Wilson Syndrome (MWS), a congenital malformation syndrome caused by ZEB2 variants. The aim of this study was to investigate the long-term evolution of the electroclinical phenotype of MWS in a large population. METHODS Forty-individuals with a genetically confirmed diagnosis were enrolled. Three age groups were identified (t1 = 0-4; t2 = 5-12; t3 = >13 years); clinical data and EEG records were collected, analyzed, and compared for age group. Video-EEG recorded seizures were reviewed. RESULTS Thirty-six of 40 individuals had epilepsy, of whom 35/35 aged >5 years. Almost all (35/36) presented focal seizures at onset (mean age at onset 3.4 ± 2.3 SD) that persisted, reduced in frequency, in 7/22 individuals after the age of 13. Absences occurred in 22/36 (mean age at onset 7.2 ± 0.9 SD); no one had absences before 6 and over 16 years old. Paroxysmal interictal abnormalities in sleep also followed an age-dependent evolution with a significant increase in frequency at school age (p = 0.002) and a reduction during adolescence (p = 0.008). Electrical Status Epilepticus during Sleep occurred in 14/36 (13/14 aged 5-13 years old at onset). Seven focal seizure ictal video-EEGs were collected: all were long-lasting and more visible clinical signs were often preceded by prolonged electrical and/or subtle (erratic head and eye orientation) seizures. Valproic acid was confirmed as the most widely used and effective drug, followed by levetiracetam. CONCLUSIONS Epilepsy is a major sign of MWS with a characteristic, age-dependent, electroclinical pattern. Improvement with adolescence/adulthood is usually observed. Our data strengthen the hypothesis of a GABAergic transmission imbalance underlying ZEB2-related epilepsy.
Collapse
Affiliation(s)
- Emilia Ricci
- Child Neuropsychiatry Unit, Epilepsy Center, San Paolo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Anna Fetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Sant'Orsola Hospital, University of Bologna, Bologna, Italy.
| | - Livia Garavelli
- Medical Genetics Unit, Department of Mother and Child, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Caraffi
- Medical Genetics Unit, Department of Mother and Child, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Ivan Ivanovski
- Insitut für Medizinische Genetik, Universität Zürich, Zürich, Switzerland
| | - Paolo Bonanni
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS Eugenio Medea, Conegliano, Treviso, Italy
| | - Patrizia Accorsi
- Child Neurology and Psychiatry Unit, Spedali Civili Brescia, Brescia, Italy
| | - Lucio Giordano
- Child Neurology and Psychiatry Unit, Spedali Civili Brescia, Brescia, Italy
| | - Chiara Pantaleoni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonino Romeo
- Pediatric Neurology Unit and Epilepsy Center, 'Fatebenefratelli e Oftalmico' Hospital, Milan, Italy
| | - Alessia Arena
- Department of Clinical and Experimental Medicine, Regional Referral Center for Inborn Errors Metabolism, Pediatric Clinic, University of Catania, Catania, Italy
| | - Silvia Bonetti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy
| | - Antonella Boni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy
| | - Daniela Chiarello
- Department of Neurosciences, Center for Epilepsy Surgery "C. Munari,", Niguarda Hospital, Milan, Italy
| | - Veronica Di Pisa
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Roberta Epifanio
- Clinical Neurophysiology Unit, IRCCS E Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Francesca Faravelli
- Clinical Genetics, NE Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Erica Finardi
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Agata Fiumara
- Department of Clinical and Experimental Medicine, Regional Referral Center for Inborn Errors Metabolism, Pediatric Clinic, University of Catania, Catania, Italy
| | - Daniele Grioni
- Child Neurophysiological Unit, San Gerardo Hospital, Monza, Italy
| | - Isabella Mammi
- Medical Genetics Unit, Dolo General Hospital, Venezia, Italy
| | - Susanna Negrin
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS Eugenio Medea, Conegliano, Treviso, Italy
| | - Elisa Osanni
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS Eugenio Medea, Conegliano, Treviso, Italy
| | | | | | - Romana Rizzi
- Neurology Unit Department of Neuro-Motor Diseases Local Health Authority of Reggio Emilia-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | | | - Luigi Tarani
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Zanotta
- Clinical Neurophysiology Unit, IRCCS E Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Ada Dormi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy
| | - Aglaia Vignoli
- Child Neuropsychiatry Unit, ASST Grande Ospedale Metropolitano Niguarda, Department of Health Sciences, University of Milan, Milan, Italy
| | - Mariapaola Canevini
- Child Neuropsychiatry Unit, Epilepsy Center, San Paolo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Duccio M Cordelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
39
|
Panov J, Kaphzan H. Angelman Syndrome and Angelman-like Syndromes Share the Same Calcium-Related Gene Signatures. Int J Mol Sci 2021; 22:9870. [PMID: 34576033 PMCID: PMC8469403 DOI: 10.3390/ijms22189870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Angelman-like syndromes are a group of neurodevelopmental disorders that entail clinical presentation similar to Angelman Syndrome (AS). In our previous study, we showed that calcium signaling is disrupted in AS, and we identified calcium-target and calcium-regulating gene signatures that are able to differentiate between AS and their controls in different models. In the herein study, we evaluated these sets of calcium-target and calcium-regulating genes as signatures of AS-like and non-AS-like syndromes. We collected a number of RNA-seq datasets of various AS-like and non-AS-like syndromes and performed Principle Component Analysis (PCA) separately on the two sets of signature genes to visualize the distribution of samples on the PC1-PC2 plane. In addition to the evaluation of calcium signature genes, we performed differential gene expression analyses to identify calcium-related genes dysregulated in each of the studied syndromes. These analyses showed that the calcium-target and calcium-regulating signatures differentiate well between AS-like syndromes and their controls. However, in spite of the fact that many of the non-AS-like syndromes have multiple differentially expressed calcium-related genes, the calcium signatures were not efficient classifiers for non-AS-like neurodevelopmental disorders. These results show that features based on clinical presentation are reflected in signatures derived from bioinformatics analyses and suggest the use of bioinformatics as a tool for classification.
Collapse
Affiliation(s)
| | - Hanoch Kaphzan
- Laboratory for Neurobiology of Psychiatric Disorders, Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel;
| |
Collapse
|
40
|
Wei L, Han X, Li X, Han B, Nie W. A Chinese Boy with Mowat-Wilson Syndrome Caused by a 10 bp Deletion in the ZEB2 Gene. Pharmgenomics Pers Med 2021; 14:1041-1045. [PMID: 34466018 PMCID: PMC8396371 DOI: 10.2147/pgpm.s320128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Mowat–Wilson syndrome (MWS) is a rare complex malformation syndrome which is characterized by typical facial dysmorphism, moderate to severe intellectual disability, global developmental delay, and multiple congenital anomalies. Here, we summarize the clinical characteristics and gene mutation analysis of a Chinese boy with MWS. Patients and Methods The clinical features of the patient were monitored. DNA extracted from peripheral blood was subjected to sequencing analysis. Then, the whole-exome sequencing was performed. Results A novel deletion mutation (c.1137_1146del TAGTATGTCT) was identified in exon 8 of the ZEB2 gene. The deletion mutation was predicted to produce a truncated protein (p.S380Nfs*13), resulting in haploinsufficiency. The patient presented with short stature, microcephaly, congenital heart defects, cryptorchidism, corpus callosum agenesis, global developmental delay, and intellectual disability. Furthermore, he demonstrated bilateral sensorineural hearing loss. This manifestation is less common in MWS. It is first reported in Chinese patients with MWS. Clinical follow-up showed that the facial features of MWS developed with time. The facial features of the patient were not obvious except for the uplifted ear lobes at the age of 3 months. At the age of 22 months, the facial characteristics of the patient included ocular hypertelorism, frontal bossing, rounded nasal tip, sparse eyebrows, prominent chin, widely spaced teeth, and uplifted ear lobes with a central depression. Conclusion A novel deletion mutation of the ZEB2 gene was identified. This work contributes to expanding the mutation spectra of MWS. Our results may reflect the variability of the phenotype in MWS. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/42u1gY-Rn7Y
Collapse
Affiliation(s)
- Lin Wei
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan Maternal and Child Care Hospital, Jinan, 250001, Shandong Province, People's Republic of China
| | - Xiao Han
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Xue Li
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan Maternal and Child Care Hospital, Jinan, 250001, Shandong Province, People's Republic of China
| | - Bingjuan Han
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan Maternal and Child Care Hospital, Jinan, 250001, Shandong Province, People's Republic of China
| | - Wenying Nie
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan Maternal and Child Care Hospital, Jinan, 250001, Shandong Province, People's Republic of China
| |
Collapse
|
41
|
Birkhoff JC, Brouwer RWW, Kolovos P, Korporaal AL, Bermejo-Santos A, Boltsis I, Nowosad K, van den Hout MCGN, Grosveld FG, van IJcken WFJ, Huylebroeck D, Conidi A. Targeted chromatin conformation analysis identifies novel distal neural enhancers of ZEB2 in pluripotent stem cell differentiation. Hum Mol Genet 2021; 29:2535-2550. [PMID: 32628253 PMCID: PMC7471508 DOI: 10.1093/hmg/ddaa141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
The transcription factor zinc finger E-box binding protein 2 (ZEB2) controls embryonic and adult cell fate decisions and cellular maturation in many stem/progenitor cell types. Defects in these processes in specific cell types underlie several aspects of Mowat–Wilson syndrome (MOWS), which is caused by ZEB2 haplo-insufficiency. Human ZEB2, like mouse Zeb2, is located on chromosome 2 downstream of a ±3.5 Mb-long gene-desert, lacking any protein-coding gene. Using temporal targeted chromatin capture (T2C), we show major chromatin structural changes based on mapping in-cis proximities between the ZEB2 promoter and this gene desert during neural differentiation of human-induced pluripotent stem cells, including at early neuroprogenitor cell (NPC)/rosette state, where ZEB2 mRNA levels increase significantly. Combining T2C with histone-3 acetylation mapping, we identified three novel candidate enhancers about 500 kb upstream of the ZEB2 transcription start site. Functional luciferase-based assays in heterologous cells and NPCs reveal co-operation between these three enhancers. This study is the first to document in-cis Regulatory Elements located in ZEB2’s gene desert. The results further show the usability of T2C for future studies of ZEB2 REs in differentiation and maturation of multiple cell types and the molecular characterization of newly identified MOWS patients that lack mutations in ZEB2 protein-coding exons.
Collapse
Affiliation(s)
- Judith C Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Rutger W W Brouwer
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Center for Biomics, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Anne L Korporaal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Ana Bermejo-Santos
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Ilias Boltsis
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Karol Nowosad
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| | - Mirjam C G N van den Hout
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Center for Biomics, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Center for Biomics, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven B-3000, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| |
Collapse
|
42
|
Birkhoff JC, Huylebroeck D, Conidi A. ZEB2, the Mowat-Wilson Syndrome Transcription Factor: Confirmations, Novel Functions, and Continuing Surprises. Genes (Basel) 2021; 12:1037. [PMID: 34356053 PMCID: PMC8304685 DOI: 10.3390/genes12071037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
After its publication in 1999 as a DNA-binding and SMAD-binding transcription factor (TF) that co-determines cell fate in amphibian embryos, ZEB2 was from 2003 studied by embryologists mainly by documenting the consequences of conditional, cell-type specific Zeb2 knockout (cKO) in mice. In between, it was further identified as causal gene causing Mowat-Wilson Syndrome (MOWS) and novel regulator of epithelial-mesenchymal transition (EMT). ZEB2's functions and action mechanisms in mouse embryos were first addressed in its main sites of expression, with focus on those that helped to explain neurodevelopmental and neural crest defects seen in MOWS patients. By doing so, ZEB2 was identified in the forebrain as the first TF that determined timing of neuro-/gliogenesis, and thereby also the extent of different layers of the cortex, in a cell non-autonomous fashion, i.e., by its cell-intrinsic control within neurons of neuron-to-progenitor paracrine signaling. Transcriptomics-based phenotyping of Zeb2 mutant mouse cells have identified large sets of intact-ZEB2 dependent genes, and the cKO approaches also moved to post-natal brain development and diverse other systems in adult mice, including hematopoiesis and various cell types of the immune system. These new studies start to highlight the important adult roles of ZEB2 in cell-cell communication, including after challenge, e.g., in the infarcted heart and fibrotic liver. Such studies may further evolve towards those documenting the roles of ZEB2 in cell-based repair of injured tissue and organs, downstream of actions of diverse growth factors, which recapitulate developmental signaling principles in the injured sites. Evident questions are about ZEB2's direct target genes, its various partners, and ZEB2 as a candidate modifier gene, e.g., in other (neuro)developmental disorders, but also the accurate transcriptional and epigenetic regulation of its mRNA expression sites and levels. Other questions start to address ZEB2's function as a niche-controlling regulatory TF of also other cell types, in part by its modulation of growth factor responses (e.g., TGFβ/BMP, Wnt, Notch). Furthermore, growing numbers of mapped missense as well as protein non-coding mutations in MOWS patients are becoming available and inspire the design of new animal model and pluripotent stem cell-based systems. This review attempts to summarize in detail, albeit without discussing ZEB2's role in cancer, hematopoiesis, and its emerging roles in the immune system, how intense ZEB2 research has arrived at this exciting intersection.
Collapse
Affiliation(s)
- Judith C. Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
- Department of Development and Regeneration, Unit Stem Cell and Developmental Biology, Biomedical Sciences Group, KU Leuven, 3000 Leuven, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
| |
Collapse
|
43
|
Cordelli DM, Di Pisa V, Fetta A, Garavelli L, Maltoni L, Soliani L, Ricci E. Neurological Phenotype of Mowat-Wilson Syndrome. Genes (Basel) 2021; 12:genes12070982. [PMID: 34199024 PMCID: PMC8305916 DOI: 10.3390/genes12070982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 02/01/2023] Open
Abstract
Mowat-Wilson Syndrome (MWS) (OMIM # 235730) is a rare disorder due to ZEB2 gene defects (heterozygous mutation or deletion). The ZEB2 gene is a widely expressed regulatory gene, extremely important for the proper prenatal development. MWS is characterized by a specific facial gestalt and multiple musculoskeletal, cardiac, gastrointestinal, and urogenital anomalies. The nervous system involvement is extensive and constitutes one of the main features in MWS, heavily affecting prognosis and life quality of affected individuals. This review aims to comprehensively organize and discuss the neurological and neurodevelopmental phenotype of MWS. First, we will describe the role of ZEB2 in the formation and development of the nervous system by reviewing the preclinical studies in this regard. ZEB2 regulates the neural crest cell differentiation and migration, as well as in the modulation of GABAergic transmission. This leads to different degrees of structural and functional impairment that have been explored and deepened by various authors over the years. Subsequently, the different neurological aspects of MWS (head and brain malformations, epilepsy, sleep disorders, and enteric and peripheral nervous system involvement, as well as developmental, cognitive, and behavioral features) will be faced one at a time and extensively examined from both a clinical and etiopathogenetic point of view, linking them to the ZEB2 related pathways.
Collapse
Affiliation(s)
- Duccio Maria Cordelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
- Correspondence:
| | - Veronica Di Pisa
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
| | - Anna Fetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
| | - Livia Garavelli
- Medical Genetics Unit, Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Lucia Maltoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
| | - Luca Soliani
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
| | - Emilia Ricci
- Child Neuropsychiatry Unit, Epilepsy Center, San Paolo Hospital, Department of Health Sciences, University of Milan, 20142 Milan, Italy;
| |
Collapse
|
44
|
Şenbil N, Arslan Z, Sayın Kocakap DB, Bilgili Y. A Case Report of a Prenatally Missed Mowat-Wilson Syndrome With Isolated Corpus Callosum Agenesis. Child Neurol Open 2021; 8:2329048X211006511. [PMID: 33997095 PMCID: PMC8072816 DOI: 10.1177/2329048x211006511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Mowat-Wilson syndrome (MWS) is an autosomal dominant genetic disorder caused by ZEB2 gene mutations, manifesting with unique facial characteristics, moderate to severe intellectual problems, and congenital malformations as Hirschsprung disease, genital and ophthalmological anomalies, and congenital cardiac anomalies. Herein, a case of 1-year-old boy with isolated agenesis of corpus callosum (IACC) in the prenatal period is presented. He was admitted postnatally with Hirschsprung disease (HSCR), hypertelorism, uplifted earlobes, deeply set eyes, frontal bossing, oval-shaped nasal tip, ''M'' shaped upper lip, opened mouth and prominent chin, and developmental delay. Hence, MWS was primarily considered and confirmed by the ZEB2 gene mutation analysis. His karyotype was normal. He had a history of having a prenatally terminated brother with similar features. Antenatally detected IACC should prompt a detailed investigation including karyotype and microarray; even if they are normal then whole exome sequencing (WES) should be done.
Collapse
Affiliation(s)
- Nesrin Şenbil
- Department of pediatric neurology, Kırıkkale University Faculty of Medicine, Kırıkkale, Turkey
| | - Zeynep Arslan
- Department of pediatrics, Kırıkkale Unıversity Faculty of Medicine, Kırıkkale, Turkey
| | | | - Yasemin Bilgili
- Department of Radiology, Kırıkkale University Faculty of Medicine, Kırıkkale, Turkey
| |
Collapse
|
45
|
Frith K, Munier CML, Hastings L, Mowat D, Wilson M, Seddiki N, Macintosh R, Kelleher AD, Gray P, Zaunders JJ. The Role of ZEB2 in Human CD8 T Lymphocytes: Clinical and Cellular Immune Profiling in Mowat-Wilson Syndrome. Int J Mol Sci 2021; 22:ijms22105324. [PMID: 34070208 PMCID: PMC8158478 DOI: 10.3390/ijms22105324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
The Zeb2 gene encodes a transcription factor (ZEB2) that acts as an important immune mediator in mice, where it is expressed in early-activated effector CD8 T cells, and limits effector differentiation. Zeb2 homozygous knockout mice have deficits in CD8 T cells and NK cells. Mowat–Wilson syndrome (MWS) is a rare genetic disease resulting from heterozygous mutations in ZEB2 causing disease by haploinsufficiency. Whether ZEB2 exhibits similar expression patterns in human CD8 T cells is unknown, and MWS patients have not been comprehensively studied to identify changes in CD8 lymphocytes and NK cells, or manifestations of immunodeficiency. By using transcriptomic assessment, we demonstrated that ZEB2 is expressed in early-activated effector CD8 T cells of healthy human volunteers following vaccinia inoculation and found evidence of a role for TGFß-1/SMAD signaling in these cells. A broad immunological assessment of six genetically diagnosed MWS patients identified two patients with a history of recurrent sinopulmonary infections, one of whom had recurrent oral candidiasis, one with lymphopenia, two with thrombocytopenia and three with detectable anti-nuclear antibodies. Immunoglobulin levels, including functional antibody responses to protein and polysaccharide vaccination, were normal. The MWS patients had a significantly lower CD8 T cell subset as % of lymphocytes, compared to healthy controls (median 16.4% vs. 25%, p = 0.0048), and resulting increased CD4:CD8 ratio (2.6 vs. 1.8; p = 0.038). CD8 T cells responded normally to mitogen stimulation in vitro and memory CD8 T cells exhibited normal proportions of subsets with important tissue-specific homing markers and cytotoxic effector molecules. There was a trend towards a decrease in the CD8 T effector memory subset (3.3% vs. 5.9%; p = 0.19). NK cell subsets were normal. This is the first evidence that ZEB2 is expressed in early-activated human effector CD8 T cells, and that haploinsufficiency of ZEB2 in MWS patients had a slight effect on immune function, skewing T cells away from CD8 differentiation. To date there is insufficient evidence to support an immunodeficiency occurring in MWS patients.
Collapse
Affiliation(s)
- Katie Frith
- Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.H.); (D.M.); (R.M.); (P.G.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence: (K.F.); (C.M.L.M.); (J.J.Z.)
| | - C. Mee Ling Munier
- The Kirby Institute for Infection and Immunity in Society, UNSW Sydney, Sydney, NSW 2052, Australia;
- Correspondence: (K.F.); (C.M.L.M.); (J.J.Z.)
| | - Lucy Hastings
- Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.H.); (D.M.); (R.M.); (P.G.)
| | - David Mowat
- Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.H.); (D.M.); (R.M.); (P.G.)
| | - Meredith Wilson
- Department of Clinical Genetics, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia;
| | - Nabila Seddiki
- INSERM U955 Eq16, Vaccine Research Institute and Université Paris Est Créteil, F-94010 Créteil, France;
| | - Rebecca Macintosh
- Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.H.); (D.M.); (R.M.); (P.G.)
| | - Anthony D. Kelleher
- The Kirby Institute for Infection and Immunity in Society, UNSW Sydney, Sydney, NSW 2052, Australia;
- Centre for Applied Medical Research, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| | - Paul Gray
- Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.H.); (D.M.); (R.M.); (P.G.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - John James Zaunders
- The Kirby Institute for Infection and Immunity in Society, UNSW Sydney, Sydney, NSW 2052, Australia;
- Centre for Applied Medical Research, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
- Correspondence: (K.F.); (C.M.L.M.); (J.J.Z.)
| |
Collapse
|
46
|
Jakubiak A, Szczałuba K, Badura-Stronka M, Kutkowska-Kaźmierczak A, Jakubiuk-Tomaszuk A, Chilarska T, Pilch J, Braun-Walicka N, Castaneda J, Wołyńska K, Wiśniewska M, Kugaudo M, Bielecka M, Pesz K, Wierzba J, Latos-Bieleńska A, Obersztyn E, Krajewska-Walasek M, Śmigiel R. Clinical characteristics of Polish patients with molecularly confirmed Mowat-Wilson syndrome. J Appl Genet 2021; 62:477-485. [PMID: 33982229 PMCID: PMC8357696 DOI: 10.1007/s13353-021-00636-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 11/26/2022]
Abstract
Mowat-Wilson syndrome is a rare neurodevelopmental disorder caused by pathogenic variants in the ZEB2 gene, intragenic deletions of the ZEB2 gene, and microdeletions in the critical chromosomal region 2q22-23, where the ZEB2 gene is located. Mowat-Wilson syndrome is characterized by typical facial features that change with the age, severe developmental delay with intellectual disability, and multiple congenital abnormalities. The authors describe the clinical and genetic aspects of 28th patients with Mowat-Wilson syndrome diagnosed in Poland. Characteristic dysmorphic features, psychomotor retardation, intellectual disability, and congenital anomalies were present in all cases. The incidence of most common congenital anomalies (heart defect, Hirschsprung disease, brain defects) was similar to presented in literature. Epilepsy was less common compared to previously reported cases. Although the spectrum of disorders in patients with Mowat-Wilson syndrome is wide, knowledge of characteristic dysmorphic features awareness of accompanying abnormalities, especially intellectual disability, improves detection of the syndrome.
Collapse
Affiliation(s)
- Aleksandra Jakubiak
- Department of Paediatrics, Division of Paediatric Propaedeutics and Rare Disorders, Medical University, Wroclaw, Poland.
| | | | | | | | - Anna Jakubiuk-Tomaszuk
- Department of Neurology and Children Rehabilitation, Medical University, Bialystok, Poland
- Medical Genetics Unit, Mastermed Medical Center, Bialystok, Poland
| | - Tatiana Chilarska
- Department of Genetics, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Jacek Pilch
- Department of Paediatric Neurology, Medical University of Silesia, Katowice, Poland
| | | | - Jennifer Castaneda
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | | | - Monika Kugaudo
- Department of Children and Adolescent Psychiatry, University Clinical Centre, Paediatric Teaching Clinical Hospital, Warsaw, Poland
| | - Monika Bielecka
- Department of Pharmaceutical Biotechnology, Medical University, Wroclaw, Poland
| | - Karolina Pesz
- Department of Genetics, Medical University, Wroclaw, Poland
| | - Jolanta Wierzba
- Department of Internal and Paediatric Nursing, Institute of Nursing and Midwifery, Medical University Gdansk, Gdansk, Poland
| | | | - Ewa Obersztyn
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | - Robert Śmigiel
- Department of Paediatrics, Division of Paediatric Propaedeutics and Rare Disorders, Medical University, Wroclaw, Poland
| |
Collapse
|
47
|
Refaat K, Helmy N, Elawady M, El Ruby M, Kamel A, Mekkawy M, Ashaat E, Eid O, Mohamed A, Rady M. Interstitial Deletion of 2q22.2q22.3 Involving the Entire ZEB2 Gene in a Case of Mowat-Wilson Syndrome. Mol Syndromol 2021; 12:87-95. [PMID: 34012377 DOI: 10.1159/000513313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023] Open
Abstract
Mowat-Wilson syndrome (MWS) is a rare autosomal dominant syndrome characterized by dysmorphic features, mental retardation, and congenital heart disease (CHD). MWS results from microdeletions of chromosome 2q23 or de novo SNVs involving the ZEB2 gene. Here, we report on an Egyptian MWS patient diagnosed by chromosomal microarray (CMA). A 1-year-old male child was referred to the CHD clinic, National Research Centre, presenting with dysmorphic features and CHD. The patient was referred to the human cytogenetics department for cytogenetic analysis and for screening of subtelomere rearrangements and microdeletion loci, using MLPA, and all revealed normal results. CMA revealed an interstitial 2.27-Mb microdeletion in chromosome 2q, involving the entire ZEB2 gene and other genes. This study emphasizes the significance of CMA in the detection of microdeletions/microduplications and as a screening tool in cases presenting with CHD and extracardiac manifestations. MWS should be suspected in patients presenting with the characteristic facial dysmorphism, developmental delay, seizures, Hirschsprung disease, and congenital heart anomalies, especially those involving the pulmonary arteries or pulmonary valves. It is recommended to include the ZEB2 locus in the MLPA microdeletions probes.
Collapse
Affiliation(s)
- Khaled Refaat
- Division of Human Genetics and Genome Research, Department of Human Cytogenetics, National Research Centre, Cairo, Egypt
| | - Nivine Helmy
- Division of Human Genetics and Genome Research, Department of Human Cytogenetics, National Research Centre, Cairo, Egypt
| | - Mohamed Elawady
- Department of Community Medicine and Public Health, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona El Ruby
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Alaa Kamel
- Division of Human Genetics and Genome Research, Department of Human Cytogenetics, National Research Centre, Cairo, Egypt
| | - Mona Mekkawy
- Division of Human Genetics and Genome Research, Department of Human Cytogenetics, National Research Centre, Cairo, Egypt
| | - Engy Ashaat
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Ola Eid
- Division of Human Genetics and Genome Research, Department of Human Cytogenetics, National Research Centre, Cairo, Egypt
| | - Amal Mohamed
- Division of Human Genetics and Genome Research, Department of Human Cytogenetics, National Research Centre, Cairo, Egypt
| | - Mervat Rady
- Department of Community Medicine and Public Health, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
48
|
Long P, Wang Q, Zhang Y, Zhu X, Yu K, Jiang H, Liu X, Zhou M, Yuan Y, Liu K, Jiang J, Zhang X, He M, Guo H, Chen W, Yuan J, Cheng L, Liang L, Wu T. Profile of copper-associated DNA methylation and its association with incident acute coronary syndrome. Clin Epigenetics 2021; 13:19. [PMID: 33499918 PMCID: PMC7839231 DOI: 10.1186/s13148-021-01004-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/04/2021] [Indexed: 01/17/2023] Open
Abstract
Background Acute coronary syndrome (ACS) is a cardiac emergency with high mortality. Exposure to high copper (Cu) concentration has been linked to ACS. However, whether DNA methylation contributes to the association between Cu and ACS is unclear. Methods We measured methylation level at > 485,000 cytosine-phosphoguanine sites (CpGs) of blood leukocytes using Human Methylation 450 Bead Chip and conducted a genome-wide meta-analysis of plasma Cu in a total of 1243 Chinese individuals. For plasma Cu-related CpGs, we evaluated their associations with the expression of nearby genes as well as major cardiovascular risk factors. Furthermore, we examined their longitudinal associations with incident ACS in the nested case-control study. Results We identified four novel Cu-associated CpGs (cg20995564, cg18608055, cg26470501 and cg05825244) within a 5% false discovery rate (FDR). DNA methylation level of cg18608055, cg26470501, and cg05825244 also showed significant correlations with expressions of SBNO2, BCL3, and EBF4 gene, respectively. Higher DNA methylation level at cg05825244 locus was associated with lower high-density lipoprotein cholesterol level and higher C-reactive protein level. Furthermore, we demonstrated that higher cg05825244 methylation level was associated with increased risk of ACS (odds ratio [OR], 1.23; 95% CI 1.02–1.48; P = 0.03). Conclusions We identified novel DNA methylation alterations associated with plasma Cu in Chinese populations and linked these loci to risk of ACS, providing new insights into the regulation of gene expression by Cu-related DNA methylation and suggesting a role for DNA methylation in the association between copper and ACS. ![]()
Collapse
Affiliation(s)
- Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Qiuhong Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Yizhi Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Xiaoyan Zhu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China.,Suzhou Center for Disease Prevention and Control, Suzhou, China
| | - Kuai Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Haijing Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Xuezhen Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Jing Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China
| | - Longxian Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, 430030, Hubei, China.
| |
Collapse
|
49
|
McKnight I, Hart C, Park IH, Shim JW. Genes causing congenital hydrocephalus: Their chromosomal characteristics of telomere proximity and DNA compositions. Exp Neurol 2021; 335:113523. [PMID: 33157092 PMCID: PMC7750280 DOI: 10.1016/j.expneurol.2020.113523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/10/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023]
Abstract
Congenital hydrocephalus (CH) is caused by genetic mutations, but whether factors impacting human genetic mutations are disease-specific remains elusive. Given two factors associated with high mutation rates, we reviewed how many disease-susceptible genes match with (i) proximity to telomeres or (ii) high adenine and thymine (A + T) content in human CH as compared to other disorders of the central nervous system (CNS). We extracted genomic information using a genome data viewer. Importantly, 98 of 108 genes causing CH satisfied (i) or (ii), resulting in >90% matching rate. However, such a high accordance no longer sustained as we checked two factors in Alzheimer's disease (AD) and/or familial Parkinson's disease (fPD), resulting in 84% and 59% matching, respectively. A disease-specific matching of telomere proximity or high A + T content predicts causative genes of CH much better than neurodegenerative diseases and other CNS conditions, likely due to sufficient number of known causative genes (n = 108) and precise determination and classification of the genotype and phenotype. Our analysis suggests a need for identifying genetic basis of both factors before human clinical studies, to prioritize putative genes found in preclinical models into the likely (meeting at least one) and more likely candidate (meeting both), which predisposes human genes to mutations.
Collapse
Affiliation(s)
- Ian McKnight
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA
| | - Christoph Hart
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA
| | - In-Hyun Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Joon W Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
50
|
Ayyildiz Emecen D, Isik E, Utine GE, Simsek-Kiper PO, Atik T, Ozkinay F. Clinical and Molecular Spectrum of Four Patients Diagnosed with Mowat-Wilson Syndrome. Mol Syndromol 2020; 11:296-301. [PMID: 33510600 PMCID: PMC7802445 DOI: 10.1159/000511609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/11/2020] [Indexed: 11/19/2022] Open
Abstract
Mowat-Wilson syndrome (MWS) is a rare autosomal dominant syndrome characterized by distinctive facial features, congenital heart defects, Hirschsprung disease, genitourinary anomalies, various structural brain anomalies, and intellectual disability. Pathogenic mutations that result in haploinsufficiency in the ZEB2 gene cause MWS. In this study, we aimed to evaluate the clinical features and molecular analysis results of 4 MWS patients. All patients were examined by an expert clinical geneticist. Dysmorphological abnormalities were recorded. Data including demographic, clinical, and laboratory findings were obtained from hospital records. ZEB2 gene analysis was performed using a Sanger sequencing method. All patients had typical facial features of MWS such as widely spaced eyes, broad eyebrows with a medial flare, low-hanging columella, prominent or pointed chin, open-mouth expression, and uplifted earlobes. Four different heterozygous mutations were identified; 2 mutations were frameshift (c.246_247delGGinsC, c.980_980delG), 1 was nonsense (c.2083C>T), and 1 was splice site (c.808-2A>G). Two of them (c.246_247delGGinsC, c.980_980delG) have not been previously reported in the literature. By defining 2 novel mutations, this study contributes to the molecular spectrum of MWS, while also providing a further insight for genetic counseling. It also demonstrates the importance of dysmorphological examination in clinical diagnosis.
Collapse
Affiliation(s)
- Durdugul Ayyildiz Emecen
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Esra Isik
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Gulen E. Utine
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Pelin O. Simsek-Kiper
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tahir Atik
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ferda Ozkinay
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|