1
|
Del Corpo O, Goguen RP, Malard CMG, Daher A, Colby-Germinario S, Scarborough RJ, Gatignol A. A U1i RNA that Enhances HIV-1 RNA Splicing with an Elongated Recognition Domain Is an Optimal Candidate for Combination HIV-1 Gene Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:815-830. [PMID: 31734561 PMCID: PMC6861678 DOI: 10.1016/j.omtn.2019.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/27/2019] [Accepted: 10/12/2019] [Indexed: 11/30/2022]
Abstract
U1 interference (U1i) RNAs can be designed to correct splicing defects and target pathogenic RNA, such as HIV-1 RNA. In this study, we show that U1i RNAs that enhance HIV-1 RNA splicing are more effective at inhibiting HIV-1 production compared to top U1i RNAs that inhibit polyadenylation of HIV-1 RNA. A U1i RNA was also identified targeting a site upstream of the first splice acceptor site in the Gag coding region that was effective at inhibiting HIV-1 production. U1-T6, which enhanced HIV-1 RNA splicing, was superior to an antiviral short hairpin RNA (shRNA) currently in clinical trials. To increase specificity, the recognition domain of U1-T6 was elongated by 3–6 nt. The elongated molecules inhibited HIV-1 production from different HIV-1 strains, including one with a mismatch in the target site. These results suggest that lengthening the recognition domain can enhance the specificity of U1i RNAs for their intended target sites while at the same time allowing them to tolerate single mismatch mutations. Overall, our results demonstrate that U1-T6 with an elongated recognition domain inhibits HIV-1 production and has both the efficacy and specificity to be a promising candidate for HIV-1 gene therapy.
Collapse
Affiliation(s)
- Olivier Del Corpo
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 0G4, Canada
| | - Ryan P Goguen
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 0G4, Canada
| | - Camille M G Malard
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 0G4, Canada
| | - Aïcha Daher
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada
| | | | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 0G4, Canada.
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 0G4, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 0G4, Canada.
| |
Collapse
|
2
|
Tsukamoto T. Gene Therapy Approaches to Functional Cure and Protection of Hematopoietic Potential in HIV Infection. Pharmaceutics 2019; 11:E114. [PMID: 30862061 PMCID: PMC6470728 DOI: 10.3390/pharmaceutics11030114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022] Open
Abstract
Although current antiretroviral drug therapy can suppress the replication of human immunodeficiency virus (HIV), a lifelong prescription is necessary to avoid viral rebound. The problem of persistent and ineradicable viral reservoirs in HIV-infected people continues to be a global threat. In addition, some HIV-infected patients do not experience sufficient T-cell immune restoration despite being aviremic during treatment. This is likely due to altered hematopoietic potential. To achieve the global eradication of HIV disease, a cure is needed. To this end, tremendous efforts have been made in the field of anti-HIV gene therapy. This review will discuss the concepts of HIV cure and relative viral attenuation and provide an overview of various gene therapy approaches aimed at a complete or functional HIV cure and protection of hematopoietic functions.
Collapse
Affiliation(s)
- Tetsuo Tsukamoto
- Department of Immunology, Kindai University Faculty of Medicine, Osaka 5898511, Japan.
| |
Collapse
|
3
|
Tian Y, Jin L, Zhang W, Ya Z, Cheng Y, Zhao H. AMF siRNA treatment of keloid through inhibition signaling pathway of RhoA/ROCK1. Genes Dis 2018; 6:185-192. [PMID: 31193978 PMCID: PMC6545443 DOI: 10.1016/j.gendis.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 01/11/2023] Open
Abstract
A keloid (KD) is a benign dermal fibrotic tumor. Treatment of KDs is challenging and the recurrence rate is high; thus, there is an unmet need to explore new target sites and new treatment methods. As a tumor-associated cytokine, autocrine motility factor (AMF) can effectively stimulate the random and directional movement of cells. We first found that AMF was overexpressed in keloid fibroblasts (KFs) and the proliferation and migration of KFs were promoted by AMF stimulation. After treatment with Y-27632, RhoA kinase inhibitor, the proliferation and migration capacity of KFs declined significantly, and type I collagen protein, active RhoA and ROCK1 also were downregulated. In addition, a KD transplantation model was established under the skin of nude mice, with KD intramural injection AMF siRNA, we found that the weight of the KD was smaller than in the control group (P < 0.05), KD tissue sections stained by HE and Masson showed that fibers became loose and the blood vessels were visibly reduced. In conclusion, AMF siRNA is expected to be a novel strategy to treat KD by inhibiting signaling pathway of RhoA/ROCK1.
Collapse
Affiliation(s)
- Yi Tian
- Department of Plastic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lan Jin
- Department of Plastic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Wenhong Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zumeng Ya
- Department of Plastic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hongyun Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
4
|
Kwarteng A, Ahuno ST, Kwakye-Nuako G. The therapeutic landscape of HIV-1 via genome editing. AIDS Res Ther 2017; 14:32. [PMID: 28705213 PMCID: PMC5513397 DOI: 10.1186/s12981-017-0157-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022] Open
Abstract
Current treatment for HIV-1 largely relies on chemotherapy through the administration of antiretroviral drugs. While the search for anti-HIV-1 vaccine remain elusive, the use of highly active antiretroviral therapies (HAART) have been far-reaching and has changed HIV-1 into a manageable chronic infection. There is compelling evidence, including several side-effects of ARTs, suggesting that eradication of HIV-1 cannot depend solely on antiretrovirals. Gene therapy, an expanding treatment strategy, using RNA interference (RNAi) and programmable nucleases such as meganuclease, zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins (CRISPR-Cas9) are transforming the therapeutic landscape of HIV-1. TALENS and ZFNS are structurally similar modular systems, which consist of a FokI endonuclease fused to custom-designed effector proteins but have been largely limited, particularly ZFNs, due to their complexity and cost of protein engineering. However, the newly developed CRISPR-Cas9 system, consists of a single guide RNA (sgRNA), which directs a Cas9 endonuclease to complementary target sites, and serves as a superior alternative to the previous protein-based systems. The techniques have been successfully applied to the development of better HIV-1 models, generation of protective mutations in endogenous/host cells, disruption of HIV-1 genomes and even reactivating latent viruses for better detection and clearance by host immune response. Here, we focus on gene editing-based HIV-1 treatment and research in addition to providing perspectives for refining these techniques.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), PMB, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), PMB, Kumasi, Ghana
| | - Godwin Kwakye-Nuako
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
5
|
Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas. Biochem Soc Trans 2016; 44:1355-1365. [DOI: 10.1042/bst20160060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 01/02/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection can be effectively controlled by potent antiviral drugs, but this never results in a cure. The patient should therefore take these drugs for the rest of his/her life, which can cause drug-resistance and adverse effects. Therefore, more durable therapeutic strategies should be considered, such as a stable gene therapy to protect the target T cells against HIV-1 infection. The development of potent therapeutic regimens based on the RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats (CRISPR-Cas) mechanisms will be described, which can be delivered by lentiviral vectors. These mechanisms attack different forms of the viral genome, the RNA and DNA, respectively, but both mechanisms act in a strictly sequence-specific manner. Early RNAi experiments demonstrated profound virus inhibition, but also indicated that viral escape is possible. Such therapy failure can be prevented by the design of a combinatorial RNAi attack on the virus and this gene therapy is currently being tested in a preclinical humanized mouse model. Recent CRISPR-Cas studies also document robust virus inhibition, but suggest a novel viral escape route that is induced by the cellular nonhomologous end joining DNA repair pathway, which is activated by CRISPR-Cas-induced DNA breaks. We will compare these two approaches for durable HIV-1 suppression and discuss the respective advantages and disadvantages. The potential for future clinical applications will be described.
Collapse
|
6
|
Nejati A, Shahmahmoodi S, Arefian E, Shoja Z, Marashi SM, Tabatabaie H, Mollaei-Kandelous Y, Soleimani M, Nategh R. Efficient inhibition of human immunodeficiency virus replication using novel modified microRNA-30a targeting 3'-untranslated region transcripts. Exp Ther Med 2016; 11:1833-1838. [PMID: 27168813 PMCID: PMC4840495 DOI: 10.3892/etm.2016.3121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022] Open
Abstract
RNA interference (RNAi)-based gene therapy is currently considered to be a combinatorial anti-human immunodeficiency virus-1 (HIV-1) therapy. Although artificial polycistronic microRNAs (miRs) can reduce HIV-1 escape mutant variants, this approach may increase the risk of side effects. The present study aimed to optimize the efficiency of anti-HIV RNAi gene therapy in order to reduce the cell toxicity induced by multi-short hairpin RNA expression. An artificial miR-30a-3'-untranslated region (miR-3-UTR) obtained from a single RNA polymerase II was used to simultaneously target all viral transcripts. The results of the present study demonstrated that HIV-1 replication was significantly inhibited in the cells with the miR-3-UTR construct, suggesting that miR-3'-UTR may serve as a promising tool for RNAi-based gene therapy in the treatment of HIV-1.
Collapse
Affiliation(s)
- Ahmad Nejati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran 14716-13151, Iran
| | - Shohreh Shahmahmoodi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran 14716-13151, Iran
| | - Ehsan Arefian
- Biotechnology Center, College of Science, University of Tehran, Tehran 14176-14411, Iran; Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran 19977-75555, Iran
| | - Zabihollah Shoja
- Virology Department, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Sayed-Mahdi Marashi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran 14716-13151, Iran
| | - Hamideh Tabatabaie
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran 14716-13151, Iran
| | | | - Masoud Soleimani
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran 19977-75555, Iran; Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Rakhshandeh Nategh
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran 14716-13151, Iran
| |
Collapse
|
7
|
Spanevello F, Calistri A, Del Vecchio C, Mantelli B, Frasson C, Basso G, Palù G, Cavazzana M, Parolin C. Development of Lentiviral Vectors Simultaneously Expressing Multiple siRNAs Against CCR5, vif and tat/rev Genes for an HIV-1 Gene Therapy Approach. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e312. [PMID: 27093170 PMCID: PMC5014525 DOI: 10.1038/mtna.2016.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/08/2016] [Indexed: 02/08/2023]
Abstract
Gene therapy holds considerable promise for the functional cure of HIV-1 infection and, in this context, RNA interference (RNAi)-based approaches represent powerful strategies. Stable expression of small interfering RNAs (siRNAs) targeting HIV genes or cellular cofactors has the potential to render HIV-1 susceptible cells resistant to infection. To inhibit different steps of virus life cycle, self-inactivating lentiviral vectors expressing multiple siRNAs targeting the CCR5 cellular gene as well as vif and tat/rev viral transcripts, under the control of different RNA polymerase III promoters (U6, 7SK, H1) were developed. The use of a single RNA polymerase III promoter driving the expression of a sequence giving rise to three siRNAs directed against the selected targets (e-shRNA) was also investigated. Luciferase assay and inhibition of HIV-1 replication in human Jurkat T-cell line were adopted to select the best combination of promoter/siRNA. The efficacy of selected developed combinatorial vectors in interfering with viral replication was evaluated in human primary CD4(+) T lymphocytes. We identified two effective anti-HIV combinatorial vectors that conferred protection against R5- and X4- tropic viruses. Overall, our results showed that the antiviral effect is influenced by different factors, including the promoter used to express the RNAi molecules and the selected cassette combination. These findings contribute to gain further insights in the design of RNAi-based gene therapy approaches against HIV-1 for clinical application.
Collapse
Affiliation(s)
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Barbara Mantelli
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Chiara Frasson
- Oncohematology Laboratory, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Giuseppe Basso
- Oncohematology Laboratory, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique–Hôpitaux de Paris, INSERM, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
- INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, Paris, France
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Llewellyn GN, Exline CM, Holt N, Cannon PM. Using Engineered Nucleases to Create HIV-Resistant Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Bobbin ML, Burnett JC, Rossi JJ. RNA interference approaches for treatment of HIV-1 infection. Genome Med 2015; 7:50. [PMID: 26019725 PMCID: PMC4445287 DOI: 10.1186/s13073-015-0174-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/13/2015] [Indexed: 01/05/2023] Open
Abstract
HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery.
Collapse
Affiliation(s)
- Maggie L Bobbin
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA
| | - John C Burnett
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA ; Department of Molecular and Cell Biology, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 9101 USA
| | - John J Rossi
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA ; Department of Molecular and Cell Biology, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 9101 USA
| |
Collapse
|
10
|
The impact of HIV-1 genetic diversity on the efficacy of a combinatorial RNAi-based gene therapy. Gene Ther 2015; 22:485-95. [PMID: 25716532 DOI: 10.1038/gt.2015.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/13/2014] [Accepted: 01/15/2015] [Indexed: 11/08/2022]
Abstract
A hurdle for human immunodeficiency virus (HIV-1) therapy is the genomic diversity of circulating viruses and the possibility that drug-resistant virus variants are selected. Although RNA interference (RNAi) is a powerful tool to stably inhibit HIV-1 replication by the expression of antiviral short hairpin RNAs (shRNAs) in transduced T cells, this approach is also vulnerable to pre-existing genetic variation and the development of viral resistance through mutation. To prevent viral escape, we proposed to combine multiple shRNAs against important regions of the HIV-1 RNA genome, which should ideally be conserved in all HIV-1 subtypes. The vulnerability of RNAi therapy to viral escape has been studied for a single subtype B strain, but it is unclear whether the antiviral shRNAs can inhibit diverse virus isolates and subtypes, including drug-resistant variants that could be present in treated patients. To determine the breadth of the RNAi gene therapy approach, we studied the susceptibility of HIV-1 subtypes A-E and drug-resistant variants. In addition, we monitored the evolution of HIV-1 escape variants. We demonstrate that the combinatorial RNAi therapy is highly effective against most isolates, supporting the future testing of this gene therapy in appropriate in vivo models.
Collapse
|
11
|
Herrera-Carrillo E, Berkhout B. Gene therapy strategies to block HIV-1 replication by RNA interference. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:71-95. [PMID: 25757616 DOI: 10.1007/978-1-4939-2432-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cellular mechanism of RNA interference (RNAi) plays an antiviral role in many organisms and can be used for the development of therapeutic strategies against viral pathogens. Persistent infections like the one caused by the human immunodeficiency virus type 1 (HIV-1) likely require a durable gene therapy approach. The continuous expression of the inhibitory RNA molecules in T cells is needed to effectively block HIV-1 replication. We discuss here several issues, ranging from the choice of RNAi inhibitor and vector system, finding the best target in the HIV-1 RNA genome, alternatively by targeting host mRNAs that encode important viral cofactors, to the setup of appropriate preclinical test systems. Finally, we briefly discuss the relevance of this topic for other viral pathogens that cause a chronic infection in humans.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, K3-110 Meibergdreef 15, Amsterdam, 1105 AS, The Netherlands
| | | |
Collapse
|
12
|
Liang Z, Wang X, Li H, Liu B, Zhao X, Liu C, Kong XH. Silencing of HIV-1 gag gene from epidemic strains among men who have sex with men (MSM) in Tianjin, China by a broad-spectrum short hairpin RNA. Virusdisease 2014; 25:294-301. [DOI: 10.1007/s13337-014-0209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/12/2014] [Indexed: 11/30/2022] Open
|
13
|
Lipid nanoparticles as carriers for RNAi against viral infections: current status and future perspectives. BIOMED RESEARCH INTERNATIONAL 2014; 2014:161794. [PMID: 25184135 PMCID: PMC4145386 DOI: 10.1155/2014/161794] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022]
Abstract
The efforts made to develop RNAi-based therapies have led to productive research in the field of infections in humans, such as hepatitis C virus (HCV), hepatitis B virus (HBV), human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), herpetic keratitis, human papillomavirus, or influenza virus. Naked RNAi molecules are rapidly digested by nucleases in the serum, and due to their negative surface charge, entry into the cell cytoplasm is also hampered, which makes necessary the use of delivery systems to exploit the full potential of RNAi therapeutics. Lipid nanoparticles (LNP) represent one of the most widely used delivery systems for in vivo application of RNAi due to their relative safety and simplicity of production, joint with the enhanced payload and protection of encapsulated RNAs. Moreover, LNP may be functionalized to reach target cells, and they may be used to combine RNAi molecules with conventional drug substances to reduce resistance or improve efficiency. This review features the current application of LNP in RNAi mediated therapy against viral infections and aims to explore possible future lines of action in this field.
Collapse
|
14
|
Herrera-Carrillo E, Liu YP, Berkhout B. The impact of unprotected T cells in RNAi-based gene therapy for HIV-AIDS. Mol Ther 2014; 22:596-606. [PMID: 24336172 PMCID: PMC3944328 DOI: 10.1038/mt.2013.280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/01/2013] [Indexed: 12/18/2022] Open
Abstract
RNA interference (RNAi) is highly effective in inhibiting human immunodeficiency virus type 1 (HIV-1) replication by the expression of antiviral short hairpin RNA (shRNA) in stably transduced T-cell lines. For the development of a durable gene therapy that prevents viral escape, we proposed to combine multiple shRNAs against highly conserved regions of the HIV-1 RNA genome. The future in vivo application of such a gene therapy protocol will reach only a fraction of the T cells, such that HIV-1 replication will continue in the unmodified T cells, thereby possibly frustrating the therapy by generation of HIV-1 variants that escape from the inhibition imposed by the protected cells. We studied virus inhibition and evolution in pure cultures of shRNA-expressing cells versus mixed cell cultures of protected and unprotected T cells. The addition of the unprotected T cells indeed seems to accelerate HIV-1 evolution and escape from a single shRNA inhibitor. However, expression of three antiviral shRNAs from a single lentiviral vector prevents virus escape even in the presence of unprotected cells. These results support the idea to validate the therapeutic potential of this anti-HIV approach in appropriate in vivo models.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Bennett MS, Akkina R. Gene therapy strategies for HIV/AIDS: preclinical modeling in humanized mice. Viruses 2013; 5:3119-41. [PMID: 24351796 PMCID: PMC3967164 DOI: 10.3390/v5123119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/04/2013] [Accepted: 12/03/2013] [Indexed: 12/28/2022] Open
Abstract
In the absence of an effective vaccine and lack of a complete cure, gene therapy approaches to control HIV infection offer feasible alternatives. Due to the chronic nature of infection, a wide window of opportunity exists to gene modify the HIV susceptible cells that continuously arise from the bone marrow source. To evaluate promising gene therapy approaches that employ various anti-HIV therapeutic molecules, an ideal animal model is necessary to generate important efficacy and preclinical data. In this regard, the humanized mouse models that harbor human hematopoietic cells susceptible to HIV infection provide a suitable in vivo system. This review summarizes the currently used humanized mouse models and different anti-HIV molecules utilized for conferring HIV resistance. Humanized mouse models are compared for their utility in this context and provide perspectives for new directions.
Collapse
Affiliation(s)
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1619 Campus delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
16
|
Suzuki K, Hattori S, Marks K, Ahlenstiel C, Maeda Y, Ishida T, Millington M, Boyd M, Symonds G, Cooper DA, Okada S, Kelleher AD. Promoter Targeting shRNA Suppresses HIV-1 Infection In vivo Through Transcriptional Gene Silencing. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e137. [PMID: 24301868 PMCID: PMC3894581 DOI: 10.1038/mtna.2013.64] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/23/2013] [Indexed: 12/25/2022]
Abstract
Despite prolonged and intensive application, combined antiretroviral therapy cannot eradicate human immunodeficiency virus (HIV)-1 because it is harbored as a latent infection, surviving for long periods of time. Alternative approaches are required to overcome the limitations of current therapy. We have been developing a short interfering RNA (siRNA) gene silencing approach. Certain siRNAs targeting promoter regions of genes induce transcriptional gene silencing. We previously reported substantial transcriptional gene silencing of HIV-1 replication by an siRNA targeting the HIV-1 promoter in vitro. In this study, we show that this siRNA, expressed as a short hairpin RNA (shRNA) (shPromA-JRFL) delivered by lentiviral transduction of human peripheral blood mononuclear cells (PBMCs), which are then used to reconstitute NOJ mice, is able to inhibit HIV-1 replication in vivo, whereas a three-base mismatched variant (shPromA-M2) does not. In shPromA-JRFL-treated mice, HIV-1 RNA in serum is significantly reduced, and the ratio of CD4(+)/CD8(+) T cells is significantly elevated. Expression levels of the antisense RNA strand inversely correlates with HIV-1 RNA in serum. The silenced HIV-1 can be reactivated by T-cell activation in ex vivo cultures. HIV-1 suppression is not due to offtarget effects of shPromA-JRFL. These data provide "proof-of principle" that an shRNA targeting the HIV-1 promoter is able to suppress HIV-1 replication in vivo.Molecular Therapy-Nucleic Acids (2013) 2, e137; doi:10.1038/mtna.2013.64; published online 3 December 2013.
Collapse
Affiliation(s)
- Kazuo Suzuki
- St. Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, Australia
| | | | - Katherine Marks
- St. Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, Australia
| | - Chantelle Ahlenstiel
- The Kirby Institute, The University of New South Wales, New South Wales, Australia
| | - Yosuke Maeda
- Department of Medical Virology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaomi Ishida
- Research Center for Asian Infectious Disease, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | - Geoff Symonds
- St. Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, Australia
- Calimmune, Sydney, Australia
| | - David A Cooper
- St. Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, Australia
- The Kirby Institute, The University of New South Wales, New South Wales, Australia
| | - Seiji Okada
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Anthony D Kelleher
- St. Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, Australia
- The Kirby Institute, The University of New South Wales, New South Wales, Australia
| |
Collapse
|
17
|
Hauber I, Hofmann-Sieber H, Chemnitz J, Dubrau D, Chusainow J, Stucka R, Hartjen P, Schambach A, Ziegler P, Hackmann K, Schröck E, Schumacher U, Lindner C, Grundhoff A, Baum C, Manz MG, Buchholz F, Hauber J. Highly significant antiviral activity of HIV-1 LTR-specific tre-recombinase in humanized mice. PLoS Pathog 2013; 9:e1003587. [PMID: 24086129 PMCID: PMC3784474 DOI: 10.1371/journal.ppat.1003587] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/15/2013] [Indexed: 12/12/2022] Open
Abstract
Stable integration of HIV proviral DNA into host cell chromosomes, a hallmark and essential feature of the retroviral life cycle, establishes the infection permanently. Current antiretroviral combination drug therapy cannot cure HIV infection. However, expressing an engineered HIV-1 long terminal repeat (LTR) site-specific recombinase (Tre), shown to excise integrated proviral DNA in vitro, may provide a novel and highly promising antiviral strategy. We report here the conditional expression of Tre-recombinase from an advanced lentiviral self-inactivation (SIN) vector in HIV-infected cells. We demonstrate faithful transgene expression, resulting in accurate provirus excision in the absence of cytopathic effects. Moreover, pronounced Tre-mediated antiviral effects are demonstrated in vivo, particularly in humanized Rag2−/−γc−/− mice engrafted with either Tre-transduced primary CD4+ T cells, or Tre-transduced CD34+ hematopoietic stem and progenitor cells (HSC). Taken together, our data support the use of Tre-recombinase in novel therapy strategies aiming to provide a cure for HIV. Current antiretroviral combination therapy can efficiently suppress virus replication, but cannot eliminate HIV. Therefore, no cure for HIV exists. A main hurdle for virus eradication is seen in the existence of resting cells that contain integrated replication-competent, but temporarily silenced, HIV genomes. Therefore, the most direct approach to eliminating virus reservoirs is to remove HIV genomes from infected cells. As previous studies suggested, this may be achievable by Tre-recombinase, an engineered enzyme that can excise integrated HIV from host cell chromosomes. The present work analyzes the expression of Tre-recombinase in human cells and demonstrates highly accurate Tre activity in complete absence of Tre-related cytopathic effects. Furthermore, in vivo analysis of Tre-recombinase demonstrates highly significant antiviral effects of Tre in HIV-infected humanized mice. The presented data suggest that Tre-recombinase might become a valuable component of a future therapy that aims at virus eradication.
Collapse
Affiliation(s)
- Ilona Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Helga Hofmann-Sieber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jan Chemnitz
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Danilo Dubrau
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Janet Chusainow
- Department of Medical Systems Biology, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Rolf Stucka
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Philip Hartjen
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- Infectious Diseases Unit, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Patrick Ziegler
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Klinik für Onkologie, Hämatologie und Stammzelltransplantation, RWTH Aachen University, Aachen, Germany
| | - Karl Hackmann
- Institute for Clinical Genetics, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Udo Schumacher
- Institute for Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Lindner
- Department of Gynecology, Day Kimball Healthcare Hospital, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Christopher Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Markus G. Manz
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- University and University Hospital Zürich, Division of Hematology, Zürich, Switzerland
| | - Frank Buchholz
- Department of Medical Systems Biology, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Joachim Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
18
|
Centlivre M, Legrand N, Klamer S, Liu YP, Eije KJV, Bohne M, Rijnstra ESV, Weijer K, Blom B, Voermans C, Spits H, Berkhout B. Preclinical in vivo evaluation of the safety of a multi-shRNA-based gene therapy against HIV-1. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e120. [PMID: 24002730 PMCID: PMC3808742 DOI: 10.1038/mtna.2013.48] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023]
Abstract
Highly active antiretroviral therapy (HAART) has significantly improved the quality of life and the life expectancy of HIV-infected individuals. Still, drug-induced side effects and emergence of drug-resistant viral variants remain important issues that justify the exploration of alternative therapeutic options. One strategy consists of a gene therapy based on RNA interference to induce the sequence-specific degradation of the HIV-1 RNA genome. We have selected four potent short hairpin RNA (shRNA) candidates targeting the viral capside, integrase, protease and tat/rev open-reading frames and screened the safety of them during human hematopoietic cell development, both in vitro and in vivo. Although the four shRNA candidates appeared to be safe in vitro, one shRNA candidate impaired the in vivo development of the human immune system in Balb/c Rag2(-/-)IL-2Rγc(-/-) (BRG) mice. The three remaining shRNA candidates were combined into one single lentiviral vector (LV), and safety of the shRNA combination during human hematopoietic cell development was confirmed. Overall, we demonstrate here the preclinical in vivo safety of a LV expressing three shRNAs against HIV-1, which is proposed for a future Phase I clinical trial.Molecular Therapy-Nucleic Acids (2013) 2, e120; doi:10.1038/mtna.2013.48; published online 3 September 2013.
Collapse
Affiliation(s)
- Mireille Centlivre
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Immunity and Infection, Institut National de la Santé et de la Recherche Médicale, INSERM UMR-S 945, and Université Pierre et Marie Curie, UPMC Univ Paris 06, 91 Bld de l'Hôpital, 75013 Paris, France
| | - Nicolas Legrand
- Department of Cell Biology & Histology, Center for Immunology of Amsterdam (CIA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- AXENIS, 28 rue du Docteur Roux, 75015 Paris, France
| | - Sofieke Klamer
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ying Poi Liu
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin Jasmijn von Eije
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Martino Bohne
- Department of Cell Biology & Histology, Center for Immunology of Amsterdam (CIA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Kees Weijer
- Department of Cell Biology & Histology, Center for Immunology of Amsterdam (CIA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- HIS mouse facility, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Bianca Blom
- Department of Cell Biology & Histology, Center for Immunology of Amsterdam (CIA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Carlijn Voermans
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hergen Spits
- Department of Cell Biology & Histology, Center for Immunology of Amsterdam (CIA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Tytgat Institute of Intestinal and Liver Research, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Berkhout B. HIV, leukemia, and new horizons in molecular therapy. J Formos Med Assoc 2013; 112:441-444. [PMID: 24016608 DOI: 10.1016/j.jfma.2013.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 06/02/2023] Open
Abstract
Cancer and human immunodeficiency virus (HIV) are both scary things to have in your body, but a new treatment is successfully using the latter against the former. Recent news reports, among others in the New York Times, talked about this new cure for leukemia by using HIV. This mini-review puts this news in perspective and provides a broader view as there appear to be several areas where clinical research on HIV and leukemia seem to connect. The topics covered range from antiviral gene therapy approaches using HIV-based lentiviral vectors to the risk of leukemia induction by these integrating vectors, and from an anti-leukemia transplantation strategy that turned out to provide a functional cure for HIV, to novel vaccination approaches.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
20
|
|
21
|
Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology 2013; 435:14-28. [PMID: 23217612 DOI: 10.1016/j.virol.2012.10.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 12/27/2022]
Abstract
Work with human specific viruses will greatly benefit from the use of an in vivo system that provides human target cells and tissues in a physiological setting. In this regard humanized mice (hu-Mice) have played an important role in our understanding of viral pathogenesis and testing of therapeutic strategies. Limitations with earlier versions of hu-Mice that lacked a functioning human immune system are currently being overcome. The new generation hu-Mouse models are capable of multilineage human hematopoiesis and generate T cells, B cells, macrophages and dendritic cells required for an adaptive human immune response. Now any human specific pathogen that can infect humanized mice can be studied in the context of ongoing infection and immune responses. Two leading humanized mouse models are currently employed: the hu-HSC model is created by transplantation of human hematopoietic stem cells (HSC), whereas the BLT mouse model is prepared by transplantation of human fetal liver, thymus and HSC. A number of human specific viruses such as HIV-1, dengue, EBV and HCV are being studied intensively in these systems. Both models permit infection by mucosal routes with viruses such as HIV-1 thus allowing transmission prevention studies. Cellular and humoral immune responses are seen in both the models. While there is efficient antigen specific IgM production, IgG responses are suboptimal due to inefficient immunoglobulin class switching. With the maturation of T cells occurring in the autologous human thymus, BLT mice permit human HLA restricted T cell responses in contrast to hu-HSC mice. However, the strength of the immune responses needs further improvement in both models to reach the levels seen in humans. The scope of hu-Mice use is further broadened by transplantation of additional tissues like human liver thus permitting immunopathogenesis studies on hepatotropic viruses such as HCV. Numerous studies that encompass antivirals, gene therapy, viral evolution, and the generation of human monoclonal antibodies have been conducted with promising results in these mice. For further improvement of the new hu-Mouse models, ongoing work is focused on generating new strains of immunodeficient mice transgenic for human HLA molecules to strengthen immune responses and human cytokines and growth factors to improve human cell reconstitution and their homeostatic maintenance.
Collapse
Affiliation(s)
- Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
22
|
Kalomoiris S, Lawson J, Chen RX, Bauer G, Nolta JA, Anderson JS. CD25 preselective anti-HIV vectors for improved HIV gene therapy. Hum Gene Ther Methods 2013; 23:366-75. [PMID: 23216020 DOI: 10.1089/hgtb.2012.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As HIV continues to be a global public health problem with no effective vaccine available, new and innovative therapies, including HIV gene therapies, need to be developed. Due to low transduction efficiencies that lead to low in vivo gene marking, therapeutically relevant efficacy of HIV gene therapy has been difficult to achieve in a clinical setting. Methods to improve the transplantation of enriched populations of anti-HIV vector-transduced cells may greatly increase the in vivo efficacy of HIV gene therapies. Here we describe the development of preselective anti-HIV lentiviral vectors that allow for the purification of vector-transduced cells to achieve an enriched population of HIV-resistant cells. A selectable protein, human CD25, not normally found on CD34+ hematopoietic progenitor cells (HPCs), was incorporated into a triple combination anti-HIV lentiviral vector. Upon purification of cells transduced with the preselective anti-HIV vector, safety was demonstrated in CD34+ HPCs and in HPC-derived macrophages in vitro. Upon challenge with HIV-1, improved efficacy was observed in purified preselective anti-HIV vector-transduced macrophages compared to unpurified cells. These proof-of-concept results highlight the potential use of this method to improve HIV stem cell gene therapy for future clinical applications.
Collapse
Affiliation(s)
- Stefanos Kalomoiris
- University of California Davis, Department of Internal Medicine, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
23
|
Yang S, Chen Y, Ahmadie R, Ho EA. Advancements in the field of intravaginal siRNA delivery. J Control Release 2013; 167:29-39. [PMID: 23298612 DOI: 10.1016/j.jconrel.2012.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Abstract
The vaginal tract is a suitable site for the administration of both local and systemic acting drugs. There are numerous vaginal products on the market such as those approved for contraception, treatment of yeast infection, hormonal replacement therapy, and feminine hygiene. Despite the potential in drug delivery, the vagina is a complex and dynamic organ that requires greater understanding. The recent discovery that injections of double stranded RNA (dsRNA) in Caenorhabditis elegans (C. elegans) results in potent gene specific silencing, was a major scientific revolution. This phenomenon known as RNA interference (RNAi), is believed to protect host genome against invasion by mobile genetic elements such as transposons and viruses. Gene silencing or RNAi has opened new potential opportunities to study the function of a gene in an organism. Furthermore, its therapeutic potential is being investigated in the field of sexually transmitted infections such as human immunodeficiency virus (HIV) and other diseases such as age-related macular degeneration (AMD), diabetes, hypercholesterolemia, respiratory disease, and cancer. This review will focus on the therapeutic potential of siRNA for the treatment and/or prevention of infectious diseases such as HIV, HPV, and HSV within the vaginal tract. Specifically, formulation design parameters to improve siRNA stability and therapeutic efficacy in the vaginal tract will be discussed along with challenges, advancements, and future directions of the field.
Collapse
Affiliation(s)
- Sidi Yang
- Faculty of Pharmacy, University of Manitoba, 750 McDermot Ave, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
24
|
Zhang T, Cheng T, Wei L, Cai Y, Yeo AE, Han J, Yuan YA, Zhang J, Xia N. Efficient inhibition of HIV-1 replication by an artificial polycistronic miRNA construct. Virol J 2012; 9:118. [PMID: 22709537 PMCID: PMC3416660 DOI: 10.1186/1743-422x-9-118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 06/01/2012] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) has been used as a promising approach to inhibit human immunodeficiency virus type 1 (HIV-1) replication for both in vitro and in vivo animal models. However, HIV-1 escape mutants after RNAi treatment have been reported. Expressing multiple small interfering RNAs (siRNAs) against conserved viral sequences can serve as a genetic barrier for viral escape, and optimization of the efficiency of this process was the aim of this study. RESULTS An artificial polycistronic transcript driven by a CMV promoter was designed to inhibit HIV-1 replication. The artificial polycistronic transcript contained two pre-miR-30a backbones and one pre-miR-155 backbone, which are linked by a sequence derived from antisense RNA sequence targeting the HIV-1 env gene. Our results demonstrated that this artificial polycistronic transcript simultaneously expresses three anti-HIV siRNAs and efficiently inhibits HIV-1 replication. In addition, the biosafety of MT-4 cells expressing this polycistronic miRNA transcript was evaluated, and no apparent impacts on cell proliferation rate, interferon response, and interruption of native miRNA processing were observed. CONCLUSIONS The strategy described here to generate an artificial polycistronic transcript to inhibit viral replication provided an opportunity to select and optimize many factors to yield highly efficient constructs expressing multiple siRNAs against viral infection.
Collapse
Affiliation(s)
- Tao Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Research Center for Medical Molecular Virology of Fujian Province, School of Life Science, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Tong Cheng
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Research Center for Medical Molecular Virology of Fujian Province, School of Life Science, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Lihua Wei
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Research Center for Medical Molecular Virology of Fujian Province, School of Life Science, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Yijun Cai
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Research Center for Medical Molecular Virology of Fujian Province, School of Life Science, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Anthony Et Yeo
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Research Center for Medical Molecular Virology of Fujian Province, School of Life Science, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Jiahuai Han
- The Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Y Adam Yuan
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117543, Singapore
- Xiamen-National University of Singapore Joint Laboratory in Biomedical Sciences, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Research Center for Medical Molecular Virology of Fujian Province, School of Life Science, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Research Center for Medical Molecular Virology of Fujian Province, School of Life Science, Xiamen University, Xiamen, 361005, People’s Republic of China
| |
Collapse
|
25
|
Berkhout B, Das AT. HIV-1 Escape From RNAi Antivirals: Yet Another Houdini Action? MOLECULAR THERAPY-NUCLEIC ACIDS 2012; 1:e26. [PMID: 23344078 PMCID: PMC3390223 DOI: 10.1038/mtna.2012.22] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
26
|
Knoepfel SA, Centlivre M, Liu YP, Boutimah F, Berkhout B. Selection of RNAi-based inhibitors for anti-HIV gene therapy. World J Virol 2012; 1:79-90. [PMID: 24175213 PMCID: PMC3782270 DOI: 10.5501/wjv.v1.i3.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/16/2012] [Accepted: 05/20/2012] [Indexed: 02/05/2023] Open
Abstract
In the last decade, RNA interference (RNAi) advanced to one of the most widely applied techniques in the biomedical research field and several RNAi therapeutic clinical trials have been launched. We focus on RNAi-based inhibitors against the chronic infection with human immunodeficiency virus type 1 (HIV-1). A lentiviral gene therapy is proposed for HIV-infected patients that will protect and reconstitute the vital immune cell pool. The RNAi-based inhibitors that have been developed are short hairpin RNA molecules (shRNAs), of which multiple are needed to prevent viral escape. In ten distinct steps, we describe the selection process that started with 135 shRNA candidates, from the initial design criteria, via testing of the in vitro and in vivo antiviral activity and cytotoxicity to the final design of a combinatorial therapy with three shRNAs. These shRNAs satisfied all 10 selection criteria such as targeting conserved regions of the HIV-1 RNA genome, exhibiting robust inhibition of HIV-1 replication and having no impact on cell physiology. This combinatorial shRNA vector will soon move forward to the first clinical studies.
Collapse
Affiliation(s)
- Stefanie A Knoepfel
- Stefanie A Knoepfel, Mireille Centlivre, Ying Poi Liu, Fatima Boutimah, Ben Berkhout, Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Knoepfel SA, Abad A, Abad X, Fortes P, Berkhout B. Design of modified U1i molecules against HIV-1 RNA. Antiviral Res 2012; 94:208-16. [DOI: 10.1016/j.antiviral.2012.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 12/25/2022]
|
28
|
Legrand N, van der Velden GJ, Fang RHT, Douaisi M, Weijer K, Das AT, Blom B, Uittenbogaart CH, Berkhout B, Centlivre M. A doxycycline-dependent human immunodeficiency virus type 1 replicates in vivo without inducing CD4+ T-cell depletion. J Gen Virol 2012; 93:2017-2027. [PMID: 22647372 DOI: 10.1099/vir.0.042796-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A novel genetic approach for the control of virus replication was used for the design of a conditionally replicating human immunodeficiency virus (HIV) variant, HIV-rtTA. HIV-rtTA gene expression and virus replication are strictly dependent on the presence of a non-toxic effector molecule, doxycycline (dox), and thus can be turned on and off at will in a graded and reversible manner. The in vivo replication capacity, pathogenicity and genetic stability of this HIV-rtTA variant were evaluated in a humanized mouse model of haematopoiesis that harbours lymphoid and myeloid components of the human immune system (HIS). Infection of dox-fed BALB Rag/γc HIS (BRG-HIS) mice with HIV-rtTA led to the establishment of a productive infection without CD4(+) T-cell depletion. The virus did not show any sign of escape from dox control for up to 10 weeks after the onset of infection. No reversion towards a functional Tat-transactivating responsive (TAR) RNA element axis was observed, confirming the genetic stability of the HIV-rtTA variant in vivo. These results demonstrate the proof of concept that HIV-rtTA replicates efficiently in vivo. HIV-rtTA is a promising tool for fundamental research to study virus-host interactions in vivo in a controlled fashion.
Collapse
Affiliation(s)
- Nicolas Legrand
- Department of Cell Biology and Histology, Center for Immunology of Amsterdam (CIA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Gisela J van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Raphaël Ho Tsong Fang
- Microbiology, Immunology and Molecular Genetics, and Pediatrics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Marc Douaisi
- Microbiology, Immunology and Molecular Genetics, and Pediatrics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Kees Weijer
- Department of Cell Biology and Histology, Center for Immunology of Amsterdam (CIA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Bianca Blom
- Department of Cell Biology and Histology, Center for Immunology of Amsterdam (CIA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Christel H Uittenbogaart
- Microbiology, Immunology and Molecular Genetics, and Pediatrics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Ben Berkhout
- Department of Cell Biology and Histology, Center for Immunology of Amsterdam (CIA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Mireille Centlivre
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
29
|
Abstract
In recent years, the technology of constructing chimeric mice with humanized immune systems has markedly improved. Multiple lineages of human immune cells develop in immunodeficient mice that have been transplanted with human hematopoietic stem cells. More importantly, these mice mount functional humoral and cellular immune responses upon immunization or microbial infection. Human immunodeficiency virus type I (HIV-1) can establish an infection in humanized mice, resulting in CD4(+) T-cell depletion and an accompanying nonspecific immune activation, which mimics the immunopathology in HIV-1-infected human patients. This makes humanized mice an optimal model for studying the mechanisms of HIV-1 immunopathogenesis and for developing novel immune-based therapies.
Collapse
|
30
|
Gu Y, Hou W, Xu C, Li S, Shih JWK, Xia N. The enhancement of RNAi against HIV in vitro and in vivo using H-2K(k) protein as a sorting method. J Virol Methods 2012; 182:9-17. [PMID: 22401802 DOI: 10.1016/j.jviromet.2012.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/19/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
Gene therapy offers a potentially an effective treatment for many human diseases, including HIV/AIDS. One of the most studied gene delivery systems is the use of lentivirus based vectors, which can deliver genes into both dividing and nondividing cells. However, low infection efficiency represents an obstacle for proper evaluation of their biological function. In this study, a recombinant lentiviral vector which expressed short hairpin RNAs (shRNAs) targeted against the HIV-1 vif/pol was transduced into various cells. An MHC class I molecule, H-2K(k), was used as a marker to accumulate the virally transduced cells through immunomagnetic sorting. In vitro testing of transduced cells showed 85% suppression of HIV in post-sorted PBMCs compared to 30% in pre-sorted PBMCs. In additional, using a mouse xenotransplantation model with the same treatment protocol for cell enrichment, a >95% decrease in HIV activity in post-sorted cells was achieved, as compared to nearly none in the pre-sorted cells. These studies offer a practical method to accumulate virally transduced cells, which can be applied to evaluate the performance of various shRNAs constructs.
Collapse
Affiliation(s)
- Ying Gu
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | |
Collapse
|
31
|
Excision of HIV-1 proviral DNA by recombinant cell permeable tre-recombinase. PLoS One 2012; 7:e31576. [PMID: 22348110 PMCID: PMC3278460 DOI: 10.1371/journal.pone.0031576] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 01/11/2012] [Indexed: 01/09/2023] Open
Abstract
Over the previous years, comprehensive studies on antiretroviral drugs resulted in the successful introduction of highly active antiretroviral therapy (HAART) into clinical practice for treatment of HIV/AIDS. However, there is still need for new therapeutic approaches, since HAART cannot eradicate HIV-1 from the infected organism and, unfortunately, can be associated with long-term toxicity and the development of drug resistance. In contrast, novel gene therapy strategies may have the potential to reverse the infection by eradicating HIV-1. For example, expression of long terminal repeat (LTR)-specific recombinase (Tre-recombinase) has been shown to result in chromosomal excision of proviral DNA and, in consequence, in the eradication of HIV-1 from infected cell cultures. However, the delivery of Tre-recombinase currently depends on the genetic manipulation of target cells, a process that is complicating such therapeutic approaches and, thus, might be undesirable in a clinical setting. In this report we demonstrate that E.coli expressed Tre-recombinases, tagged either with the protein transduction domain (PTD) from the HIV-1 Tat trans-activator or the translocation motif (TLM) of the Hepatitis B virus PreS2 protein, were able to translocate efficiently into cells and showed significant recombination activity on HIV-1 LTR sequences. Tre activity was observed using episomal and stable integrated reporter constructs in transfected HeLa cells. Furthermore, the TLM-tagged enzyme was able to excise the full-length proviral DNA from chromosomal integration sites of HIV-1-infected HeLa and CEM-SS cells. The presented data confirm Tre-recombinase activity on integrated HIV-1 and provide the basis for the non-genetic transient application of engineered recombinases, which may be a valuable component of future HIV eradication strategies.
Collapse
|
32
|
Berges BK, Rowan MR. The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment. Retrovirology 2011; 8:65. [PMID: 21835012 PMCID: PMC3170263 DOI: 10.1186/1742-4690-8-65] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/11/2011] [Indexed: 11/10/2022] Open
Abstract
Substantial improvements have been made in recent years in the ability to engraft human cells and tissues into immunodeficient mice. The use of human hematopoietic stem cells (HSCs) leads to multi-lineage human hematopoiesis accompanied by production of a variety of human immune cell types. Population of murine primary and secondary lymphoid organs with human cells occurs, and long-term engraftment has been achieved. Engrafted cells are capable of producing human innate and adaptive immune responses, making these models the most physiologically relevant humanized animal models to date. New models have been successfully infected by a variety of strains of Human Immunodeficiency Virus Type 1 (HIV-1), accompanied by virus replication in lymphoid and non-lymphoid organs, including the gut-associated lymphoid tissue, the male and female reproductive tracts, and the brain. Multiple forms of virus-induced pathogenesis are present, and human T cell and antibody responses to HIV-1 are detected. These humanized mice are susceptible to a high rate of rectal and vaginal transmission of HIV-1 across an intact epithelium, indicating the potential to study vaccines and microbicides. Antiviral drugs, siRNAs, and hematopoietic stem cell gene therapy strategies have all been shown to be effective at reducing viral load and preventing or reversing helper T cell loss in humanized mice, indicating that they will serve as an important preclinical model to study new therapeutic modalities. HIV-1 has also been shown to evolve in response to selective pressures in humanized mice, thus showing that the model will be useful to study and/or predict viral evolution in response to drug or immune pressures. The purpose of this review is to summarize the findings reported to date on all new humanized mouse models (those transplanted with human HSCs) in regards to HIV-1 sexual transmission, pathogenesis, anti-HIV-1 immune responses, viral evolution, pre- and post-exposure prophylaxis, and gene therapeutic strategies.
Collapse
Affiliation(s)
- Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| | | |
Collapse
|
33
|
Humanized Rag1-/- γc-/- mice support multilineage hematopoiesis and are susceptible to HIV-1 infection via systemic and vaginal routes. PLoS One 2011; 6:e20169. [PMID: 21695116 PMCID: PMC3114781 DOI: 10.1371/journal.pone.0020169] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/14/2011] [Indexed: 01/12/2023] Open
Abstract
Several new immunodeficient mouse models for human cell engraftment have recently been introduced that include the Rag2−/−γc−/−, NOD/SCID, NOD/SCIDγc−/− and NOD/SCIDβ2m−/− strains. Transplantation of these mice with CD34+ human hematopoietic stem cells leads to prolonged engraftment, multilineage hematopoiesis and the capacity to generate human immune responses against a variety of antigens. However, the various mouse strains used and different methods of engrafting human cells are beginning to illustrate strain specific variations in engraftment levels, duration and longevity of mouse life span. In these proof-of-concept studies we evaluated the Balb/c-Rag1−/−γ−/− strain for engraftment by human fetal liver derived CD34+ hematopoietic cells using the same protocol found to be effective for Balb/c-Rag2−/−γc−/− mice. We demonstrate that these mice can be efficiently engrafted and show multilineage human hematopoiesis with human cells populating different lymphoid organs. Generation of human cells continues beyond a year and production of human immunoglobulins is noted. Infection with HIV-1 leads to chronic viremia with a resultant CD4 T cell loss. To mimic the predominant sexual viral transmission, we challenged humanized Rag1−/−γc−/− mice with HIV-1 via vaginal route which also resulted in chronic viremia and helper T cell loss. Thus these mice can be further exploited for studying human pathogens that infect the human hematopoietic system in an in vivo setting.
Collapse
|
34
|
Berkhout B, Sanders RW. Molecular strategies to design an escape-proof antiviral therapy. Antiviral Res 2011; 92:7-14. [PMID: 21513746 DOI: 10.1016/j.antiviral.2011.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 02/06/2023]
Abstract
Two antiviral approaches against the human immunodeficiency virus type 1 (HIV-1) were presented at the Antivirals Congress in Amsterdam. The common theme among these two separate therapeutic research lines is the wish to develop a durable therapy that prevents viral escape. We will present a brief overview of these two research lines and focus on our efforts to design an escape-proof anti-HIV therapy. The first topic concerns the class of HIV-1 fusion inhibitors, including the prototype T20 peptide and the improved versions T1249 and T2635, which were all developed by Trimeris-Roche. The selection of T20-resistant HIV-1 strains is a fairly easy evolutionary process that requires a single amino acid substitution in the peptide binding site of the viral envelope glycoprotein (Env) target. The selection of T1249-resistant HIV-1 strains was shown to require a more dramatic amino acid substitution in the viral Env protein, in particular the introduction of charged amino acid residues that cause resistance by charge-repulsion of the antiviral peptide. The third generation peptide T2635 remains active against all these HIV-1 escape variants because the charged residues within this peptide are "masked" by an introduced intra-helical salt bridge. This charge masking concept could facilitate the future design of escape-proof antiviral peptides. The second topic concerns the mechanism of RNA interference (RNAi) that we are currently employing to develop an antiviral gene therapy. One can make human T cells resistant to HIV-1 infection by a stable RNAi-inducing gene transfer, but the virus escapes under therapeutic pressure of a single inhibitor. Several options for a combinatorial RNAi attack to prevent viral escape will be discussed. The simultaneous use of multiple RNAi inhibitors turns out to be the most effective and durable strategy.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
35
|
Kambal A, Mitchell G, Cary W, Gruenloh W, Jung Y, Kalomoiris S, Nacey C, McGee J, Lindsey M, Fury B, Bauer G, Nolta JA, Anderson JS. Generation of HIV-1 resistant and functional macrophages from hematopoietic stem cell-derived induced pluripotent stem cells. Mol Ther 2011; 19:584-93. [PMID: 21119622 PMCID: PMC3048185 DOI: 10.1038/mt.2010.269] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 11/06/2010] [Indexed: 11/09/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have radically advanced the field of regenerative medicine by making possible the production of patient-specific pluripotent stem cells from adult individuals. By developing iPSCs to treat HIV, there is the potential for generating a continuous supply of therapeutic cells for transplantation into HIV-infected patients. In this study, we have used human hematopoietic stem cells (HSCs) to generate anti-HIV gene expressing iPSCs for HIV gene therapy. HSCs were dedifferentiated into continuously growing iPSC lines with four reprogramming factors and a combination anti-HIV lentiviral vector containing a CCR5 short hairpin RNA (shRNA) and a human/rhesus chimeric TRIM5α gene. Upon directed differentiation of the anti-HIV iPSCs toward the hematopoietic lineage, a robust quantity of colony-forming CD133(+) HSCs were obtained. These cells were further differentiated into functional end-stage macrophages which displayed a normal phenotypic profile. Upon viral challenge, the anti-HIV iPSC-derived macrophages exhibited strong protection from HIV-1 infection. Here, we demonstrate the ability of iPSCs to develop into HIV-1 resistant immune cells and highlight the potential use of iPSCs for HIV gene and cellular therapies.
Collapse
Affiliation(s)
- Amal Kambal
- Stem Cell Program, Department of Internal Medicine, University of California, Davis, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Toward a durable treatment of HIV-1 infection using RNA interference. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 102:141-63. [PMID: 21846571 DOI: 10.1016/b978-0-12-415795-8.00001-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism that mediates sequence-specific gene silencing at the posttranscriptional level. RNAi can be used as an antiviral approach against human pathogens. An attractive target for RNAi therapeutics is the human immunodeficiency virus type 1 (HIV-1), and the first clinical trial using a lentiviral gene therapy was initiated in early 2008. In this chapter, we focus on some basic principles of such an RNAi-based gene therapy against HIV-1. This includes the subjects of target site selection within the viral RNA genome, the phenomenon of viral escape, and therapeutic strategies to prevent viral escape. The latter antiescape strategies include diverse combinatorial RNAi approaches that are all directed against the HIV-1 RNA genome. As an alternative strategy, we also discuss the possibilities and restrictions of targeting cellular cofactors that are essential for virus replication, but less important for cell physiology.
Collapse
|
37
|
Méndez-Ortega MC, Restrepo S, Rodríguez-R LM, Pérez I, Mendoza JC, Martínez AP, Sierra R, Rey-Benito GJ. An RNAi in silico approach to find an optimal shRNA cocktail against HIV-1. Virol J 2010; 7:369. [PMID: 21172023 PMCID: PMC3022682 DOI: 10.1186/1743-422x-7-369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 12/20/2010] [Indexed: 12/25/2022] Open
Abstract
Background HIV-1 can be inhibited by RNA interference in vitro through the expression of short hairpin RNAs (shRNAs) that target conserved genome sequences. In silico shRNA design for HIV has lacked a detailed study of virus variability constituting a possible breaking point in a clinical setting. We designed shRNAs against HIV-1 considering the variability observed in naïve and drug-resistant isolates available at public databases. Methods A Bioperl-based algorithm was developed to automatically scan multiple sequence alignments of HIV, while evaluating the possibility of identifying dominant and subdominant viral variants that could be used as efficient silencing molecules. Student t-test and Bonferroni Dunn correction test were used to assess statistical significance of our findings. Results Our in silico approach identified the most common viral variants within highly conserved genome regions, with a calculated free energy of ≥ -6.6 kcal/mol. This is crucial for strand loading to RISC complex and for a predicted silencing efficiency score, which could be used in combination for achieving over 90% silencing. Resistant and naïve isolate variability revealed that the most frequent shRNA per region targets a maximum of 85% of viral sequences. Adding more divergent sequences maintained this percentage. Specific sequence features that have been found to be related with higher silencing efficiency were hardly accomplished in conserved regions, even when lower entropy values correlated with better scores. We identified a conserved region among most HIV-1 genomes, which meets as many sequence features for efficient silencing. Conclusions HIV-1 variability is an obstacle to achieving absolute silencing using shRNAs designed against a consensus sequence, mainly because there are many functional viral variants. Our shRNA cocktail could be truly effective at silencing dominant and subdominant naïve viral variants. Additionally, resistant isolates might be targeted under specific antiretroviral selective pressure, but in both cases these should be tested exhaustively prior to clinical use.
Collapse
Affiliation(s)
- María C Méndez-Ortega
- Grupo de Virología SRNL, Instituto Nacional de Salud, Avenida Calle 26 No, 51 - 20 ZONA 6 CAN, Bogotá, Colombia.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Applegate TL, Birkett DJ, Mcintyre GJ, Jaramillo AB, Symonds G, Murray JM. In silico modeling indicates the development of HIV-1 resistance to multiple shRNA gene therapy differs to standard antiretroviral therapy. Retrovirology 2010; 7:83. [PMID: 20932334 PMCID: PMC2959037 DOI: 10.1186/1742-4690-7-83] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 10/09/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Gene therapy has the potential to counter problems that still hamper standard HIV antiretroviral therapy, such as toxicity, patient adherence and the development of resistance. RNA interference can suppress HIV replication as a gene therapeutic via expressed short hairpin RNAs (shRNAs). It is now clear that multiple shRNAs will likely be required to suppress infection and prevent the emergence of resistant virus. RESULTS We have developed the first biologically relevant stochastic model in which multiple shRNAs are introduced into CD34+ hematopoietic stem cells. This model has been used to track the production of gene-containing CD4+ T cells, the degree of HIV infection, and the development of HIV resistance in lymphoid tissue for 13 years. In this model, we found that at least four active shRNAs were required to suppress HIV infection/replication effectively and prevent the development of resistance. The inhibition of incoming virus was shown to be critical for effective treatment. The low potential for resistance development that we found is largely due to a pool of replicating wild-type HIV that is maintained in non-gene containing CD4+ T cells. This wild-type HIV effectively out-competes emerging viral strains, maintaining the viral status quo. CONCLUSIONS The presence of a group of cells that lack the gene therapeutic and is available for infection by wild-type virus appears to mitigate the development of resistance observed with systemic antiretroviral therapy.
Collapse
Affiliation(s)
- Tanya Lynn Applegate
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- The National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Level 9 Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia
| | - Donald John Birkett
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- 9 Raglan St, Mosman, NSW, 2088, Australia
| | - Glen John Mcintyre
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- School of Molecular and Microbial Biosciences, School of Biological Sciences, University of Sydney, NSW, 2006, Australia
| | - Angel Belisario Jaramillo
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital Missenden Road, Camperdown, NSW, 2050, Australia
| | - Geoff Symonds
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- Faculty of Medicine, Level 8, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia
| | - John Michael Murray
- The National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Level 9 Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW, 2010, Australia
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
39
|
Das AT, Jeeninga RE, Berkhout B. Possible applications for replicating HIV 1 vectors. HIV THERAPY 2010; 4:361-369. [PMID: 20582153 PMCID: PMC2889699 DOI: 10.2217/hiv.10.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Since its discovery some 25 years ago, much has been learned about HIV type 1 and the molecular details of its replication cycle. This insight has been used to develop lentiviral vector systems that have advantages over conventional retroviral vector systems. For safety reasons, the lentiviral vector systems are replication incompetent and the risk of generating a replication competent virus has been minimized. Nevertheless, there may be certain applications for replication competent HIV based vector systems, and we will review our activities in this particular field. This includes the generation of a conditionally replicating HIV 1 variant as a safe live attenuated virus vaccine, the construction of mini HIV variants as cancer selective viruses for virotherapy against leukemia, and the use of a conditionally live anti HIV gene therapy vector. Although safety concerns will undoubtedly remain for the use of replication competent HIV based vector systems, some of the results in cell culture systems are very promising and warrant further testing in appropriate animal models.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Rienk E Jeeninga
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Update on humanized mouse models and their use in biomedical research. RECENT FINDINGS The recent description of immunodeficient mice bearing a mutated IL-2 receptor gamma chain (IL2rgamma) facilitated greatly the engraftment and function of human hematolymphoid cells and other cells and tissues. These mice permit the development of human immune systems, including functional T and B cells, following engraftment of hematopoietic stem cells (HSCs). The engrafted functional human immune systems are capable of T and B cell-dependent immune responses, antibody production, antiviral responses, and allograft rejection. Immunodeficient IL2rgamma(null) mice also support heightened engraftment of primary human cancers and malignant progenitor cells, permitting in-vivo investigation of pathogenesis and function. In addition, human-specific infectious agents for which animal models were previously unavailable can now be studied in vivo using these new-generation humanized mice. SUMMARY Immunodeficient mice bearing an IL2rgamma(null) mutated gene can be engrafted with functional human cells and tissues, including human immune systems, following engraftment with human hematolymphoid cells. These mice are now used as in-vivo models to study human hematopoiesis, immunity, regeneration, stem cell function, cancer, and human-specific infectious agents without putting patients at risk.
Collapse
Affiliation(s)
- Michael A. Brehm
- Diabetes Division, 373 Plantation Street, Biotech 2, Suite 218, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Dale L. Greiner
- Diabetes Division, 373 Plantation Street, Biotech 2, Suite 218, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
41
|
Zhang L, Meissner E, Chen J, Su L. Current humanized mouse models for studying human immunology and HIV-1 immuno-pathogenesis. SCIENCE CHINA-LIFE SCIENCES 2010; 53:195-203. [PMID: 20596827 DOI: 10.1007/s11427-010-0059-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 01/15/2010] [Indexed: 01/12/2023]
Abstract
A robust animal model for "hypothesis-testing/mechanistic" research in human immunology and immuno-pathology should meet the following criteria. First, it has well-studied hemato-lymphoid organs and target cells similar to those of humans. Second, the human pathogens establish infection and lead to relevant diseases. Third, it is genetically inbred and can be manipulated via genetic, immunological and pharmacological means. Many human-tropic pathogens such as HIV-1 fail to infect murine cells due to the blocks at multiple steps of their life cycle. The mouse with a reconstituted human immune system and other human target organs is a good candidate. A number of human-mouse chimeric models with human immune cells have been developed in the past 20 years, but most with only limited success due to the selective engraftment of xeno-reactive human T cells in hu-PBL-SCID mice or the lack of significant human immune responses in the SCID-hu Thy/Liv mouse. This review summarizes the current understanding of HIV-1 immuno-pathogenesis in human patients and in SIV-infected primate models. It also reviews the recent progress in the development of humanized mouse models with a functional human immune system, especially the recent progress in the immunodeficient mice that carry a defective gammaC gene. NOD/SCID/gammaC(-/-) (NOG or NSG) or the Rag2(-/-)gammaC(-/-) double knockout (DKO) mice, which lack NK as well as T and B cells (NTB-null mice), have been used to reconstitute a functional human immune system in central and peripheral lymphoid organs with human CD34(+) HSC. These NTB-hu HSC humanized models have been used to investigate HIV-1 infection, immuno-pathogenesis and therapeutic interventions. Such models, with further improvements, will contribute to study human immunology, human-tropic pathogens as well as human stem cell biology in the tissue development and function in vivo.
Collapse
Affiliation(s)
- LiGuo Zhang
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | | | | | | |
Collapse
|
42
|
Shimizu S, Hong P, Arumugam B, Pokomo L, Boyer J, Koizumi N, Kittipongdaja P, Chen A, Bristol G, Galic Z, Zack JA, Yang O, Chen ISY, Lee B, An DS. A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood 2010; 115:1534-44. [PMID: 20018916 PMCID: PMC2830759 DOI: 10.1182/blood-2009-04-215855] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 11/15/2009] [Indexed: 11/20/2022] Open
Abstract
Inhibiting the expression of the HIV-1 coreceptor CCR5 holds great promise for controlling HIV-1 infection in patients. Here we report stable knockdown of human CCR5 by a short hairpin RNA (shRNA) in a humanized bone marrow/liver/thymus (BLT) mouse model. We delivered a potent shRNA against CCR5 into human fetal liver-derived CD34(+) hematopoietic progenitor/stem cells (HPSCs) by lentiviral vector transduction. We transplanted vector-transduced HPSCs solidified with Matrigel and a thymus segment under the mouse kidney capsule. Vector-transduced autologous CD34(+) cells were subsequently injected in the irradiated mouse, intended to create systemic reconstitution. CCR5 expression was down-regulated in human T cells and monocytes/macrophages in systemic lymphoid tissues, including gut-associated lymphoid tissue, the major site of HIV-1 replication. The shRNA-mediated CCR5 knockdown had no apparent adverse effects on T-cell development as assessed by polyclonal T-cell receptor Vbeta family development and naive/memory T-cell differentiation. CCR5 knockdown in the secondary transplanted mice suggested the potential of long-term hematopoietic reconstitution by the shRNA-transduced HPSCs. CCR5 tropic HIV-1 infection was effectively inhibited in mouse-derived human splenocytes ex vivo. These results demonstrate that lentiviral vector delivery of shRNA into human HPSCs could stably down-regulate CCR5 in systemic lymphoid organs in vivo.
Collapse
Affiliation(s)
- Saki Shimizu
- Department of Medicine, Division of Hematology-Oncology, UCLA AIDS Institute, David Geffen School of Medicine, University of California-Los Angeles, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Schopman NCT, Liu YP, Konstantinova P, ter Brake O, Berkhout B. Optimization of shRNA inhibitors by variation of the terminal loop sequence. Antiviral Res 2010; 86:204-11. [PMID: 20188764 DOI: 10.1016/j.antiviral.2010.02.320] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 01/26/2010] [Accepted: 02/18/2010] [Indexed: 12/12/2022]
Abstract
Gene silencing by RNA interference (RNAi) can be achieved by intracellular expression of a short hairpin RNA (shRNA) that is processed into the effective small interfering RNA (siRNA) inhibitor by the RNAi machinery. Previous studies indicate that shRNA molecules do not always reflect the activity of corresponding synthetic siRNAs that attack the same target sequence. One obvious difference between these two effector molecules is the hairpin loop of the shRNA. Most studies use the original shRNA design of the pSuper system, but no extensive study regarding optimization of the shRNA loop sequence has been performed. We tested the impact of different hairpin loop sequences, varying in size and structure, on the activity of a set of shRNAs targeting HIV-1. We were able to transform weak inhibitors into intermediate or even strong shRNA inhibitors by replacing the loop sequence. We demonstrate that the efficacy of these optimized shRNA inhibitors is improved significantly in different cell types due to increased siRNA production. These results indicate that the loop sequence is an essential part of the shRNA design. The optimized shRNA loop sequence is generally applicable for RNAi knockdown studies, and will allow us to develop a more potent gene therapy against HIV-1.
Collapse
Affiliation(s)
- Nick C T Schopman
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
van Lent AU, Centlivre M, Nagasawa M, Karrich JJ, Pouw SM, Weijer K, Spits H, Blom B, Legrand N. In vivo modulation of gene expression by lentiviral transduction in "human immune system" Rag2-/- gamma c -/- mice. Methods Mol Biol 2010; 595:87-115. [PMID: 19941107 DOI: 10.1007/978-1-60761-421-0_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the last two decades, several humanized mouse models have been used to experimentally analyze the function and development of the human immune system. Recent advances have lead to the establishment of new murine-human chimeric models with improved characteristics, both in terms of human engraftment efficiency and in situ multilineage human hematopoietic development. We describe here the use of newborn BALB/c Rag2(-/-)gamma(c) (-/-) mice as recipients of human hematopoietic progenitor cells to produce "human immune system" (HIS) (BALB-Rag/gamma) mice, using human fetal liver progenitors. The two major subsets of the human dendritic cell lineage, namely, BDCA2(+)CD11c(-) plasmacytoid dendritic cells and BDCA2(-)CD11c(+) conventional dendritic cells, can be found in HIS (BALB-Rag/gamma) mice. In order to manipulate the expression of genes of interest, the human hematopoietic progenitor cells can be genetically engineered ex vivo by lentiviral transduction before performing xenograft transplantation. Using this mouse model, the human immune system can be assessed for both fundamental and pre-clinical purposes.
Collapse
Affiliation(s)
- Anja U van Lent
- Department of Cell Biology and Histology, Center for Immunology Amsterdam (CIA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Rag2(-/-) gamma(C)(-/-) mice transplanted with human hematopoietic stem cells (DKO-hu-HSC mice) mimic aspects of human infection with human immunodeficiency virus type 1 (HIV-1), including sustained viral replication and CD4(+) T-cell decline. However, the extent of HIV-1 evolution during long-term infection in these humanized mice, a key feature of the natural infection, has not been assessed fully. In this study, we examined the types of genotypic and phenotypic changes in the viral env gene that occur in the viral populations of DKO-hu-HSC mice infected with the CCR5-tropic isolate HIV-1(JRCSF) for up to 44 weeks. The mean rate of divergence of viral populations in mice was similar to that observed in a cohort of humans during a similar period of infection. Many amino acid substitutions were common across mice, including losses of N-linked glycosylation sites and substitutions in the CD4 binding site and in CD4-induced epitopes, indicating common selective pressures between mice. In addition, env variants evolved sensitivity to antibodies directed at V3, suggesting a more open conformation for Env. This phenotypic change was associated with increased CD4 binding efficiency and was attributed to specific amino acid substitutions. In one mouse, env variants emerged that exhibited a CXCR4-tropic phenotype. These sequences were compartmentalized in the mesenteric lymph node. In summary, viral populations in these mice exhibited dynamic behavior that included sequence evolution, compartmentalization, and the appearance of distinct phenotypic changes. Thus, humanized mice offer a useful model for studying evolutionary processes of HIV-1 in a complex host environment.
Collapse
|
46
|
Anderson JS, Javien J, Nolta JA, Bauer G. Preintegration HIV-1 inhibition by a combination lentiviral vector containing a chimeric TRIM5 alpha protein, a CCR5 shRNA, and a TAR decoy. Mol Ther 2009; 17:2103-14. [PMID: 19690520 PMCID: PMC2814390 DOI: 10.1038/mt.2009.187] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Accepted: 07/20/2009] [Indexed: 01/02/2023] Open
Abstract
Human immunodeficiency virus (HIV) gene therapy offers a promising alternative approach to current antiretroviral treatments to inhibit HIV-1 infection. Various stages of the HIV life cycle including pre-entry, preintegration, and postintegration can be targeted by gene therapy to block viral infection and replication. By combining multiple highly potent anti-HIV transgenes in a single gene therapy vector, HIV-1 resistance can be achieved in transduced cells while prohibiting the generation of escape mutants. Here, we describe a combination lentiviral vector that encodes three highly effective anti-HIV genes functioning at separate stages of the viral life cycle including a CCR5 short hairpin RNA (shRNA) (pre-entry), a human/rhesus macaque chimeric TRIM5 alpha (postentry/preintegration), and a transactivation response element (TAR) decoy (postintegration). The major focus on designing this anti-HIV vector was to block productive infection of HIV-1 and to inhibit any formation of provirus that would maintain the viral reservoir. Upon viral challenge, potent preintegration inhibition of HIV-1 infection was achieved in combination vector-transduced cells in both cultured and primary CD34(+) hematopoietic progenitor cell (HPC)-derived macrophages. The generation of escape mutants was also blocked as evaluated by long-term culture of challenged cells. The ability of this combination anti-HIV lentiviral vector to prevent HIV-1 infection, in vitro, warrants further evaluation of its in vivo efficacy.
Collapse
Affiliation(s)
- Joseph S Anderson
- Stem Cell Program, Department of Internal Medicine, University of California-Davis, Sacramento, California, USA.
| | | | | | | |
Collapse
|
47
|
Bordería AV, Berkhout B. Towards a genetic AIDS vaccine. Retrovirology 2009; 6:93. [PMID: 19835599 PMCID: PMC2766360 DOI: 10.1186/1742-4690-6-93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/16/2009] [Indexed: 11/19/2022] Open
Abstract
We discuss a recent Nature Medicine publication by Philip Johnson and co-workers (Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat. Med. 2009, 15: 901-906) in which an effective HIV-1 vaccine was designed that is based on gene therapy. The introduced gene produces an antibody-like immunoadhesin in the blood that neutralizes the virus.
Collapse
Affiliation(s)
- Antonia V Bordería
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infectious Diseases and Immunology Amsterdam, Academic Medical Center, University of Amsterdam, the Netherlands.
| | | |
Collapse
|
48
|
Duan QJ, Tao R, Hu MF, Shang SQ. Efficient inhibition of human cytomegalovirus UL122 gene expression in cell by small interfering RNAs. J Basic Microbiol 2009; 49:531-7. [DOI: 10.1002/jobm.200800364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Anderson JS, Walker J, Nolta JA, Bauer G. Specific transduction of HIV-susceptible cells for CCR5 knockdown and resistance to HIV infection: a novel method for targeted gene therapy and intracellular immunization. J Acquir Immune Defic Syndr 2009; 52:152-61. [PMID: 19593160 PMCID: PMC3777721 DOI: 10.1097/qai.0b013e3181b010a0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HIV-1 gene therapy offers a promising alternative to small molecule antiretroviral treatments and current vaccination strategies by transferring, into HIV-1-susceptible cells, the genetic ability to resist infection. The need for novel and innovative strategies to prevent and treat HIV-1 infection is critical due to devastating effects of the virus in developing countries, high cost, toxicity, generation of escape mutants from antiretroviral therapies, and the failure of past and current vaccination efforts. As a first step toward achieving this goal, an HIV-1-susceptible cell-specific targeting vector was evaluated to selectively transfer, into CCR5-positive target cells, an anti-HIV CCR5 shRNA gene for subsequent knockdown of CCR5 expression and protection from HIV-1 infection. Using a ZZ domain/monoclonal antibody-conjugated Sindbis virus glycoprotein pseudotyped lentiviral vector, here we demonstrate the utility of this strategy for HIV-1 gene therapy by specifically targeting HIV-1-susceptible cells and engineering these cells to resist HIV-1 infection. CCR5-positive human cells were successfully and specifically targeted in vitro and in vivo for transduction by a lentiviral vector expressing a highly potent CCR5 shRNA which conferred resistance to HIV-1 infection. Here we report the initial evaluation of this targeting vector for HIV-1 gene therapy in a preexposure prophylactic setting.
Collapse
Affiliation(s)
- Joseph S Anderson
- Department of Internal Medicine, Stem Cell Program, University of California-Davis, Sacramento, CA, USA.
| | | | | | | |
Collapse
|
50
|
Liu YP, von Eije KJ, Schopman NCT, Westerink JT, ter Brake O, Haasnoot J, Berkhout B. Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol Ther 2009; 17:1712-23. [PMID: 19672247 PMCID: PMC2835024 DOI: 10.1038/mt.2009.176] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 07/06/2009] [Indexed: 12/11/2022] Open
Abstract
RNA interference (RNAi) is a widely used gene suppression tool that holds great promise as a novel antiviral approach. However, for error-prone viruses including human immunodeficiency virus type 1(HIV-1), a combinatorial approach against multiple conserved sequences is required to prevent the emergence of RNAi-resistant escape viruses. Previously, we constructed extended short hairpin RNAs (e-shRNAs) that encode two potent small interfering RNAs (siRNAs) (e2-shRNAs). We showed that a minimal hairpin stem length of 43 base pairs (bp) is needed to obtain two functional siRNAs. In this study, we elaborated on the e2-shRNA design to make e-shRNAs encoding three or four antiviral siRNAs. We demonstrate that siRNA production and the antiviral effect is optimal for e3-shRNA of 66 bp. Further extension of the hairpin stem results in a loss of RNAi activity. The same was observed for long hairpin RNAs (lhRNAs) that target consecutive HIV-1 sequences. Importantly, we show that HIV-1 replication is durably inhibited in T cells stably transduced with a lentiviral vector containing the e3-shRNA expression cassette. These results show that e-shRNAs can be used as a combinatorial RNAi approach to target error-prone viruses.
Collapse
Affiliation(s)
- Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|