1
|
Elder JB, Lonser RR. Direct Convective Delivery for Nervous System Gene Therapy. Neurosurg Clin N Am 2025; 36:101-111. [PMID: 39542544 DOI: 10.1016/j.nec.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Convection-enhanced delivery for central nervous system gene therapy is an emerging treatment strategy to modify the course of previously untreatable or inadequately treated neurologic conditions, including brain tumors, metabolic disorders, epilepsy, and neurodegenerative disorders. Ongoing nervous system gene therapy clinical trials highlight advantages and ongoing challenges to this therapeutic paradigm.
Collapse
Affiliation(s)
- James Bradley Elder
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Russell R Lonser
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Agosti E, Antonietti S, Ius T, Fontanella MM, Zeppieri M, Panciani PP. A Systematic Review of Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Treatment for Glioblastoma. Brain Sci 2024; 14:1058. [PMID: 39595821 PMCID: PMC11591642 DOI: 10.3390/brainsci14111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an extremely aggressive brain tumor that has few available treatment options and a dismal prognosis. Recent research has highlighted the potential of extracellular vesicles (MSC-EVs) produced from mesenchymal stem cells as a potential treatment approach for GBM. MSC-EVs, including exosomes, microvesicles, and apoptotic bodies, perform a significant function in cellular communication and have shown promise in mediating anti-tumor effects. PURPOSE This systematic literature review aims to consolidate current findings on the therapeutic potential of MSC-EVs in GBM treatment. METHODS A systematic search was conducted across major medical databases (PubMed, Web of Science, and Scopus) up to September 2024 to identify studies investigating the use of MSC-derived EVs in GBM therapy. Keywords included "extracellular vesicles", "mesenchymal stem cells", "targeted therapies", "outcomes", "adverse events", "glioblastoma", and "exosomes". Inclusion criteria were studies published in English involving GBM models both in vivo and in vitro and those reporting on therapeutic outcomes of MSC-EVs. Data were extracted and analyzed based on EV characteristics, mechanisms of action, and therapeutic efficacy. RESULTS The review identified several key studies demonstrating the anti-tumor effects of MSC-EVs in GBM models. A total of three studies were included, focusing on studies conducted between 2021 and 2023. The review included three studies that collectively enrolled a total of 18 patients. These studies were distributed across two years, with two trials published in 2023 (66.7%) and one in 2021 (33.3%). The mean age of the participants ranged from 37 to 57 years. In terms of gender distribution, males were the predominant group in all studies. Prior to receiving MSC-EV therapy, all patients had undergone standard treatments for GBM, including surgery, chemotherapy (CT), and, in some cases, radiation therapy (RT). In all three studies, the targeted treatment involved the administration of herpes simplex virus thymidine kinase (HSVtk) gene therapy delivered to the tumor site, then 14 days of ganciclovir treatment. Outcomes across the studies indicated varying levels of efficacy for the MSC-EV-based therapy. The larger 2023 study reported fewer encouraging outcomes, with a median PFS of 11.0 months (95% CI: 8.3-13.7) and a median OS of 16.0 months (95% CI: 14.3-17.7). Adverse effects were reported in only one of the studies, the 2021 trial, where patients experienced mild-to-moderate side effects, including fever, headache, and cerebrospinal fluid leukocytosis. A total of 11 studies on preclinical trials, using in vitro and in vivo models, were included, covering publications from 2010 to 2024. The studies utilized MSCs as delivery systems for various therapeutic agents (interleukin 12, interleukin 7, doxorubicin, paclitaxel), reflecting the versatility of these cells in targeted cancer therapies. CONCLUSIONS MSC-derived EVs represent a promising therapeutic approach for GBM, offering multiple mechanisms to inhibit tumor growth and enhance treatment efficacy. Their ability to deliver bioactive molecules and modulate the tumor microenvironment underscores their potential as a novel, cell-free therapeutic strategy. Future studies should optimize EV production and delivery methods and fully understand their long-term effects in clinical settings to harness their therapeutic potential in GBM treatment.
Collapse
Affiliation(s)
- Edoardo Agosti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Division of Neurosurgery, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Sara Antonietti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Division of Neurosurgery, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Marco Maria Fontanella
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Division of Neurosurgery, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Pier Paolo Panciani
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Division of Neurosurgery, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| |
Collapse
|
3
|
Bezze A, Mattioda C, Ciardelli G, Mattu C. Harnessing cells to improve transport of nanomedicines. Eur J Pharm Biopharm 2024; 203:114446. [PMID: 39122052 DOI: 10.1016/j.ejpb.2024.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Efficient tumour treatment is hampered by the poor selectivity of anticancer drugs, resulting in scarce tumour accumulation and undesired off-target effects. Nano-sized drug-delivery systems in the form of nanoparticles (NPs) have been proposed to improve drug distribution to solid tumours, by virtue of their ability of passive and active tumour targeting. Despite these advantages, literature studies indicated that less than 1% of the administered NPs can successfully reach the tumour mass, highlighting the necessity for more efficient drug transporters in cancer treatment. Living cells, such as blood cells, circulating immune cells, platelets, and stem cells, are often found as an infiltrating component in most solid tumours, because of their ability to naturally circumvent immune recognition, bypass biological barriers, and reach inaccessible tissues through innate tropism and active motility. Therefore, the tumour-homing ability of these cells can be harnessed to design living cell carriers able to improve the transport of drugs and NPs to tumours. Albeit promising, this approach is still in its beginnings and suffers from difficult scalability, high cost, and poor reproducibility. In this review, we present an overview of the most common cell transporters of drugs and NPs, and we discuss how different cell types interact with biological barriers to deliver cargoes of various natures to tumours. Finally, we analyse the different techniques used to load drugs or NPs in living cells and discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Andrea Bezze
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlotta Mattioda
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gianluca Ciardelli
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Clara Mattu
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
4
|
Zhang X, Taylor H, Valdivia A, Dasari R, Buckley A, Bonacquisti E, Nguyen J, Kanchi K, Corcoran DL, Herring LE, Steindler DA, Baldwin A, Hingtgen S, Satterlee AB. Auto-loaded TRAIL-exosomes derived from induced neural stem cells for brain cancer therapy. J Control Release 2024; 372:433-445. [PMID: 38908756 PMCID: PMC11283351 DOI: 10.1016/j.jconrel.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Transdifferentiation (TD), a somatic cell reprogramming process that eliminates pluripotent intermediates, creates cells that are ideal for personalized anti-cancer therapy. Here, we provide the first evidence that extracellular vesicles (EVs) from TD-derived induced neural stem cells (Exo-iNSCs) are an efficacious treatment strategy for brain cancer. We found that genetically engineered iNSCs generated EVs loaded with the tumoricidal gene product TRAIL at nearly twice the rate of their parental fibroblasts, and TRAIL produced by iNSCs was naturally loaded into the lumen of EVs and arrayed across their outer membrane (Exo-iNSC-TRAIL). Uptake studies in ex vivo organotypic brain slice cultures showed that Exo-iNSC-TRAIL selectively accumulates within tumor foci, and co-culture assays demonstrated that Exo-iNSC-TRAIL killed metastatic and primary brain cancer cells more effectively than free TRAIL. In an orthotopic mouse model of brain cancer, Exo-iNSC-TRAIL reduced breast-to-brain tumor xenografts by approximately 3000-fold compared to treatment with free TRAIL, with all Exo-iNSC-TRAIL treated animals surviving through 90 days post-treatment. In additional in vivo testing against aggressive U87 and invasive GBM8 glioblastoma tumors, Exo-iNSC-TRAIL also induced a statistically significant increase in survival. These studies establish a novel, easily generated, stable, tumor-targeted EV to efficaciously treat multiple forms of brain cancer.
Collapse
Affiliation(s)
- Xiaopei Zhang
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah Taylor
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alain Valdivia
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rajaneekar Dasari
- Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Buckley
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Bonacquisti
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Juliane Nguyen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krishna Kanchi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E Herring
- Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dennis A Steindler
- Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Steindler Consulting, Boston, MA, USA
| | - Albert Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Yu W, Srivastava R, Srivastava S, Ma Y, Shankar S, Srivastava RK. Oncogenic Role of SATB2 In Vitro: Regulator of Pluripotency, Self-Renewal, and Epithelial-Mesenchymal Transition in Prostate Cancer. Cells 2024; 13:962. [PMID: 38891096 PMCID: PMC11171950 DOI: 10.3390/cells13110962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Special AT-rich sequence binding protein-2 (SATB2) is a nuclear matrix protein that binds to nuclear attachment regions and is involved in chromatin remodeling and transcription regulation. In stem cells, it regulates the expression of genes required for maintaining pluripotency and self-renewal and epithelial-mesenchymal transition (EMT). In this study, we examined the oncogenic role of SATB2 in prostate cancer and assessed whether overexpression of SATB2 in human normal prostate epithelial cells (PrECs) induces properties of cancer stem cells (CSCs). The results demonstrate that SATB2 is highly expressed in prostate cancer cell lines and CSCs, but not in PrECs. Overexpression of SATB2 in PrECs induces cellular transformation which was evident by the formation of colonies in soft agar and spheroids in suspension. Overexpression of SATB2 in PrECs also resulted in induction of stem cell markers (CD44 and CD133), pluripotency-maintaining transcription factors (cMYC, OCT4, SOX2, KLF4, and NANOG), CADHERIN switch, and EMT-related transcription factors. Chromatin immunoprecipitation assay demonstrated that SATB2 can directly bind to promoters of BCL-2, BSP, NANOG, MYC, XIAP, KLF4, and HOXA2, suggesting SATB2 is capable of directly regulating pluripotency/self-renewal, cell survival, and proliferation. Since prostate CSCs play a crucial role in cancer initiation, progression, and metastasis, we also examined the effects of SATB2 knockdown on stemness. SATB2 knockdown in prostate CSCs inhibited spheroid formation, cell viability, colony formation, cell motility, migration, and invasion compared to their scrambled control groups. SATB2 knockdown in CSCs also upregulated the expression of E-CADHERIN and inhibited the expression of N-CADHERIN, SNAIL, SLUG, and ZEB1. The expression of SATB2 was significantly higher in prostate adenocarcinoma compared to normal tissues. Overall, our data suggest that SATB2 acts as an oncogenic factor where it is capable of inducing malignant changes in PrECs by inducing CSC characteristics.
Collapse
Affiliation(s)
- Wei Yu
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
| | - Rashmi Srivastava
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | | | - Yiming Ma
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
| | - Sharmila Shankar
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA 70119, USA
| | - Rakesh K. Srivastava
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
- GLAX LLC, 3500 S Dupont Highway, Dover, DE 19901, USA
| |
Collapse
|
6
|
Zhang X, Taylor H, Valdivia A, Dasari R, Buckley A, Bonacquisti E, Nguyen J, Kanchi K, Corcoran DL, Herring LE, Steindler DA, Baldwin A, Hingtgen S, Satterlee AB. Auto-loaded TRAIL-exosomes derived from induced neural stem cells for brain cancer therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595724. [PMID: 38854085 PMCID: PMC11160660 DOI: 10.1101/2024.05.24.595724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Transdifferentiation (TD), a somatic cell reprogramming process that eliminates pluripotent intermediates, creates cells that are ideal for personalized anti-cancer therapy. Here, we provide the first evidence that extracellular vesicles (EVs) from TD-derived induced neural stem cells (Exo-iNSCs) are an efficacious treatment strategy for brain cancer. We found that genetically engineered iNSCs generated EVs loaded with the tumoricidal gene product TRAIL at nearly twice the rate as their parental fibroblasts, and the TRAIL produced by iNSCs were naturally loaded into the lumen of EVs and arrayed across their outer membrane (Exo-iNSC-TRAIL). Uptake studies in ex vivo organotypic brain slice cultures showed Exo-iNSC-TRAIL selectively accumulates within tumor foci, and co-culture assays showed that Exo-iNSC-TRAIL killed metastatic and primary brain cancer cells more effectively than free TRAIL. In an orthotopic mouse model of brain cancer, Exo-iNSC-TRAIL reduced breast-to-brain tumor xenografts around 3000-fold greater than treatment with free TRAIL, with all Exo-iNSC-TRAIL treated animals surviving through 90 days post-treatment. In additional in vivo testing against aggressive U87 and invasive GBM8 glioblastoma tumors, Exo-iNSC-TRAIL also induced a statistically significant increase in survival. These studies establish a new easily generated, stable, tumor-targeted EV to efficaciously treat multiple forms of brain cancer.
Collapse
|
7
|
Lu Q, Liu T, Han Z, Zhao J, Fan X, Wang H, Song J, Ye H, Sun J. Revolutionizing cancer treatment: The power of cell-based drug delivery systems. J Control Release 2023; 361:604-620. [PMID: 37579974 DOI: 10.1016/j.jconrel.2023.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Intravenous administration of drugs is a widely used cancer therapy approach. However, the efficacy of these drugs is often hindered by various biological barriers, including circulation, accumulation, and penetration, resulting in poor delivery to solid tumors. Recently, cell-based drug delivery platforms have emerged as promising solutions to overcome these limitations. These platforms offer several advantages, including prolonged circulation time, active targeting, controlled release, and excellent biocompatibility. Cell-based delivery systems encompass cell membrane coating, intracellular loading, and extracellular backpacking. These innovative platforms hold the potential to revolutionize cancer diagnosis, monitoring, and treatment, presenting a plethora of opportunities for the advancement and integration of pharmaceuticals, medicine, and materials science. Nevertheless, several technological, ethical, and financial barriers must be addressed to facilitate the translation of these platforms into clinical practice. In this review, we explore the emerging strategies to overcome these challenges, focusing specifically on the functions and advantages of cell-mediated drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zeyu Han
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jian Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaoyuan Fan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Helin Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jiaxuan Song
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hao Ye
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China; Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich 8092, Switzerland.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
8
|
Kim JH, Ahn JS, Lee DS, Hong SH, Lee HJ. Anti-Cancer Effect of Neural Stem Cells Transfected with Carboxylesterase and sTRAIL Genes in Animals with Brain Lesions of Lung Cancer. Pharmaceuticals (Basel) 2023; 16:1156. [PMID: 37631070 PMCID: PMC10458428 DOI: 10.3390/ph16081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
A metastatic brain tumor is the most common type of malignancy in the central nervous system, which is one of the leading causes of death in patients with lung cancer. The purpose of this study is to evaluate the efficacy of a novel treatment for metastatic brain tumors with lung cancer using neural stem cells (NSCs), which encode rabbit carboxylesterase (rCE) and the secretion form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). rCE and/or sTRAIL were transduced in immortalized human fetal NSCs, HB1.F3. The cytotoxic effects of the therapeutic cells on human lung cancer cells were evaluated in vitro with the ligands and decoy receptor expression for sTRAIL in the presence of CPT-11. Human NSCs encoding rCE (F3.CE and F3.CE.sTRAIL) significantly inhibited the growth of lung cancer cells in the presence of CPT-11 in vitro. Lung cancer cells were inoculated in immune-deficient mice, and therapeutic cells were transplanted systematically through intracardiac arterial injection and then treated with CPT-11. In resting state, DR4 expression in lung cancer cells and DcR1 in NSCs increased to 70% and 90% after CPT-11 addition, respectively. The volumes of the tumors in immune-deficient mice were reduced significantly in mice with F3.CE.sTRAIL transplantation and CPT-11 treatment. The survival was also significantly prolonged with treatment with F3.sTRAIL and F3.CE plus CPT-11 as well as F3.CE.sTRAIL plus CPT-11. NSCs transduced with rCE and sTRAIL genes showed a significant anti-cancer effect on brain metastatic lung cancer in vivo and in vitro, and the effect may be synergistic when rCE/CPT-11 and sTRAIL are combined. This stem-cell-based study using two therapeutic genes of different biological effects can be translatable to clinical application.
Collapse
Affiliation(s)
- Jung Hak Kim
- Research Institute, Humetacell Inc., Bucheon-si 14786, Republic of Korea
| | - Jae Sung Ahn
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seok Ho Hong
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hong J. Lee
- Research Institute, Humetacell Inc., Bucheon-si 14786, Republic of Korea
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| |
Collapse
|
9
|
Breusa S, Zilio S, Catania G, Bakrin N, Kryza D, Lollo G. Localized chemotherapy approaches and advanced drug delivery strategies: a step forward in the treatment of peritoneal carcinomatosis from ovarian cancer. Front Oncol 2023; 13:1125868. [PMID: 37287910 PMCID: PMC10242058 DOI: 10.3389/fonc.2023.1125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Peritoneal carcinomatosis (PC) is a common outcome of epithelial ovarian carcinoma and is the leading cause of death for these patients. Tumor location, extent, peculiarities of the microenvironment, and the development of drug resistance are the main challenges that need to be addressed to improve therapeutic outcome. The development of new procedures such as HIPEC (Hyperthermic Intraperitoneal Chemotherapy) and PIPAC (Pressurized Intraperitoneal Aerosol Chemotherapy) have enabled locoregional delivery of chemotherapeutics, while the increasingly efficient design and development of advanced drug delivery micro and nanosystems are helping to promote tumor targeting and penetration and to reduce the side effects associated with systemic chemotherapy administration. The possibility of combining drug-loaded carriers with delivery via HIPEC and PIPAC represents a powerful tool to improve treatment efficacy, and this possibility has recently begun to be explored. This review will discuss the latest advances in the treatment of PC derived from ovarian cancer, with a focus on the potential of PIPAC and nanoparticles in terms of their application to develop new therapeutic strategies and future prospects.
Collapse
Affiliation(s)
- Silvia Breusa
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon, Institut national de santé et de la recherche médicale (INSERM) U1052-Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Sociétés d'Accélération du Transfert de Technologies (SATT) Ouest Valorisation, Rennes, France
| | - Giuseppina Catania
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
| | - Naoual Bakrin
- Department of Surgical Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
- Centre pour l'Innovation en Cancérologie de Lyon (CICLY), Claude Bernard University Lyon 1, Lyon, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Imthernat Plateform, Hospices Civils de Lyon, Lyon, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
| |
Collapse
|
10
|
Microcapsule-Based Dose-Dependent Regulation of the Lifespan and Behavior of Adipose-Derived MSCs as a Cell-Mediated Delivery System: In Vitro Study. Int J Mol Sci 2022; 24:ijms24010292. [PMID: 36613737 PMCID: PMC9820487 DOI: 10.3390/ijms24010292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The development of “biohybrid” drug delivery systems (DDS) based on mesenchymal stem/stromal cells (MSCs) is an important focus of current biotechnology research, particularly in the areas of oncotheranostics, regenerative medicine, and tissue bioengineering. However, the behavior of MSCs at sites of inflammation and tumor growth is relevant to potential tumor transformation, immunosuppression, the inhibition or stimulation of tumor growth, metastasis, and angiogenesis. Therefore, the concept was formulated to control the lifespan of MSCs for a specific time sufficient for drug delivery to the target tissue by varying the number of internalized microcontainers. The current study addressed the time-dependent in vitro assessment of the viability, migration, and division of human adipose-derived MSCs (hAMSCs) as a function of the dose of internalized polyelectrolyte microcapsules prepared using a layer-by-layer technique. Polystyrene sulfonate (PSS)—poly(allylamine hydrochloride) (PAH)-coated spherical micrometer-sized (diameter ~2−3 µm) vaterite (CaCO3) microcapsules (PAH-PSS)6 with the capping PSS layer were prepared after dissolution of the CaCO3 core template. The Cell-IQ phase contrast imaging results showed that hAMSCs internalized all (PAH-PSS)6 microcapsules saturating the intercellular medium (5−90 particles per cell). A strong (r > 0.7) linear dose-dependent and time-dependent (up to 8 days) regression was observed between the in vitro decrease in cell viability and the number of internalized microvesicles. The approximate time-to-complete-death of hAMSCs at different concentrations of microcapsules in culture was 428 h (1:5 ratio), 339 h (1:10), 252 h (1:20), 247 h (1:45), and 170 h (1:90 ratio). By varying the number of microcontainers loaded into the cells (from 1:10 to 1:90), a dose-dependent exponential decrease in both the movement rate and division rate of hAMSCs was observed. A real-time cell analysis (RTCA) of the effect of (PAH-PSS)6 microcapsules (from 1:5 to 1:20) on hAMSCs also showed a dose- and time-dependent decrease in cell longevity after a 50h study at ratios of 1:10 and 1:20. The incorporation of microcapsules (1:5, 1:20, and 1:45) resulted in a dose-dependent increase in 24−48 h secretion of GRO-α (CXCL1), MIF, and SDF-1α (CXCL12) chemokines in hAMSC culture. In turn, the normalization or inhibition of chemokine secretion occurred after 72 h, except for MIF levels below 5−20 microcapsules, which were internalized by MSCs. Thus, the proposed concept of controlling the lifespan of MSC-based DDS using a dose of internalized PAH-PSS microcapsules could be useful for biomedical applications. (PAH-PSS)6 microcapsule ratios of 1:5 and 1:10 have little effect on the lifespan of hAMSCs for a long time (up to 14−18 days), which can be recommended for regenerative therapy and tissue bioengineering associated with low oncological risk. The microcapsule ratios of 1:20 and 1:45 did not significantly restrict the migratory activity of hAMSCs-based DDS during the time interval required for tissue delivery (up to 4−5 days), followed by cell death after 10 days. Therefore, such doses of microcapsules can be used for hAMSC-based DDS in oncotheranostics.
Collapse
|
11
|
Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol 2022; 19:768-784. [PMID: 36056202 DOI: 10.1038/s41575-022-00669-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/08/2022]
Abstract
Maintenance of gastrointestinal health is challenging as it requires balancing multifaceted processes within the highly complex and dynamic ecosystem of the gastrointestinal tract. Disturbances within this vibrant environment can have detrimental consequences, including the onset of gastrointestinal cancers. Globally, gastrointestinal cancers account for ~19% of all cancer cases and ~22.5% of all cancer-related deaths. Developing new ways to more readily detect and more efficiently target these malignancies are urgently needed. Whereas members of the tumour microenvironment, such as immune cells and fibroblasts, have already been in the spotlight as key players of cancer initiation and progression, the importance of the nervous system in gastrointestinal cancers has only been highlighted in the past few years. Although extrinsic innervations modulate gastrointestinal cancers, cells and signals from the gut's intrinsic innervation also have the ability to do so. Here, we shed light on this thriving field and discuss neural influences during gastrointestinal carcinogenesis. We focus on the interactions between neurons and components of the gastrointestinal tract and tumour microenvironment, on the neural signalling pathways involved, and how these factors affect the cancer hallmarks, and discuss the neural signatures in gastrointestinal cancers. Finally, we highlight neural-related therapies that have potential for the management of gastrointestinal cancers.
Collapse
|
12
|
Liu HJ, Xu P. Strategies to overcome/penetrate the BBB for systemic nanoparticle delivery to the brain/brain tumor. Adv Drug Deliv Rev 2022; 191:114619. [PMID: 36372301 PMCID: PMC9724744 DOI: 10.1016/j.addr.2022.114619] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Despite its prevalence in the management of peripheral tumors, compared to surgery and radiation therapy, chemotherapy is still a suboptimal intervention in fighting against brain cancer and cancer brain metastases. This discrepancy is mainly derived from the complicatedly physiological characteristic of intracranial tumors, including the presence of blood-brain barrier (BBB) and limited enhanced permeability and retention (EPR) effect attributed to blood-brain tumor barrier (BBTB), which largely lead to insufficient therapeutics penetrating to tumor lesions to produce pharmacological effects. Therefore, dependable methodologies that can boost the efficacy of chemotherapy for brain tumors are urgently needed. Recently, nanomedicines have shown great therapeutic potential in brain tumors by employing various transcellular strategies, paracellular strategies, and their hybrids, such as adsorptive-mediated transcytosis, receptor-mediated transcytosis, BBB disruption technology, and so on. It is compulsory to comprehensively summarize these practices to shed light on future directions in developing therapeutic regimens for brain tumors. In this review, the biological and pathological characteristics of brain tumors, including BBB and BBTB, are illustrated. After that, the emerging delivery strategies for brain tumor management are summarized into different classifications and supported with detailed examples. Finally, the potential challenges and prospects for developing and clinical application of brain tumor-oriented nanomedicine are discussed.
Collapse
Affiliation(s)
- Hai-Jun Liu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, USA
| | - Peisheng Xu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, USA.
| |
Collapse
|
13
|
Satterlee AB, Dunn DE, Valdivia A, Malawsky D, Buckley A, Gershon T, Floyd S, Hingtgen S. Spatiotemporal analysis of induced neural stem cell therapy to overcome advanced glioblastoma recurrence. Mol Ther Oncolytics 2022; 26:49-62. [PMID: 35784402 PMCID: PMC9217992 DOI: 10.1016/j.omto.2022.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/01/2022] [Indexed: 12/03/2022] Open
Abstract
Genetically engineered neural stem cells (NSCs) are a promising therapy for the highly aggressive brain cancer glioblastoma (GBM); however, treatment durability remains a major challenge. We sought to define the events that contribute to dynamic adaptation of GBM during treatment with human skin-derived induced NSCs releasing the pro-apoptotic agent TRAIL (iNSC-TRAIL) and develop strategies that convert initial tumor kill into sustained GBM suppression. In vivo and ex vivo analysis before, during, and after treatment revealed significant shifts in tumor transcriptome and spatial distribution as the tumors adapted to treatment. To address this, we designed iNSC delivery strategies that increased spatiotemporal TRAIL coverage and significantly decreased GBM volume throughout the brain, reducing tumor burden 100-fold as quantified in live ex vivo brain slices. The varying impact of different strategies on treatment durability and median survival of both solid and invasive tumors provides important guidance for optimizing iNSC therapy.
Collapse
Affiliation(s)
- Andrew B. Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Denise E. Dunn
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27704, USA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel Malawsky
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrew Buckley
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Scott Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27704, USA
| | - Shawn Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Triple-negative breast cancer brain metastasis: an update on druggable targets, current clinical trials, and future treatment options. Drug Discov Today 2022; 27:1298-1314. [DOI: 10.1016/j.drudis.2022.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 01/22/2022] [Indexed: 12/12/2022]
|
15
|
Saeb S, Assche JV, Loustau T, Rohr O, Wallet C, Schwartz C. Suicide gene therapy in cancer and HIV-1 infection: An alternative to conventional treatments. Biochem Pharmacol 2021; 197:114893. [PMID: 34968484 DOI: 10.1016/j.bcp.2021.114893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Suicide Gene Therapy (SGT) aims to introduce a gene encoding either a toxin or an enzyme making the targeted cell more sensitive to chemotherapy. SGT represents an alternative approach to combat pathologies where conventional treatments fail such as pancreatic cancer or the high-grade glioblastoma which are still desperately lethal. We review the possibility to use SGT to treat these cancers which have shown promising results in vitro and in preclinical trials. However, SGT has so far failed in phase III clinical trials thus further improvements are awaited. We can now take advantages of the many advances made in SGT for treating cancer to combat other pathologies such as HIV-1 infection. In the review we also discuss the feasibility to add SGT to the therapeutic arsenal used to cure HIV-1-infected patients. Indeed, preliminary results suggest that both productive and latently infected cells are targeted by the SGT. In the last section, we address the limitations of this approach and how we might improve it.
Collapse
Affiliation(s)
- Sepideh Saeb
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Clémentine Wallet
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
16
|
Turk OM, Woodall RC, Gutova M, Brown CE, Rockne RC, Munson JM. Delivery strategies for cell-based therapies in the brain: overcoming multiple barriers. Drug Deliv Transl Res 2021; 11:2448-2467. [PMID: 34718958 PMCID: PMC8987295 DOI: 10.1007/s13346-021-01079-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Cell-based therapies to the brain are promising for the treatment of multiple brain disorders including neurodegeneration and cancers. In order to access the brain parenchyma, there are multiple physiological barriers that must be overcome depending on the route of delivery. Specifically, the blood-brain barrier has been a major difficulty in drug delivery for decades, and it still presents a challenge for the delivery of therapeutic cells. Other barriers, including the blood-cerebrospinal fluid barrier and lymphatic-brain barrier, are less explored, but may offer specific challenges or opportunities for therapeutic delivery. Here we discuss the barriers to the brain and the strategies currently in place to deliver cell-based therapies, including engineered T cells, dendritic cells, and stem cells, to treat diseases. With a particular focus on cancers, we also highlight the current ongoing clinical trials that use cell-based therapies to treat disease, many of which show promise at treating some of the deadliest illnesses.
Collapse
Affiliation(s)
- Olivia M Turk
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Ryan C Woodall
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope, Duarte, CA, USA
| | - Margarita Gutova
- Department of Stem Cell Biology and Regenerative Medicine, City of Hope, Duarte, CA, USA
| | - Christine E Brown
- Departments of Hematology & Hematopoietic Cell Transplantation and Immuno-Oncology, City of Hope, Duarte, CA, USA
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope, Duarte, CA, USA
| | - Jennifer M Munson
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, VA, USA.
| |
Collapse
|
17
|
Glioblastoma Therapy: Rationale for a Mesenchymal Stem Cell-based Vehicle to Carry Recombinant Viruses. Stem Cell Rev Rep 2021; 18:523-543. [PMID: 34319509 DOI: 10.1007/s12015-021-10207-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Evasion of growth suppression is among the prominent hallmarks of cancer. Phosphatase and tensin homolog (PTEN) and p53 tumor-suppressive pathways are compromised in most human cancers, including glioblastoma (GB). Hence, these signaling pathways are an ideal point of focus for novel cancer therapeutics. Recombinant viruses can selectivity kill cancer cells and carry therapeutic genes to tumors. Specifically, oncolytic viruses (OV) have been successfully employed for gene delivery in GB animal models and showed potential to neutralize immunosuppression at the tumor site. However, the associated systemic immunogenicity, inefficient transduction of GB cells, and inadequate distribution to metastatic tumors have been the major bottlenecks in clinical studies. Mesenchymal stem cells (MSCs), with tumor-tropic properties and immune privilege, can improve OVs targeting. Remarkably, combining the two approaches can address their individual issues. Herein, we summarize findings to advocate the reactivation of tumor suppressors p53 and PTEN in GB treatment and use MSCs as a "Trojan horse" to carry oncolytic viral cargo to disseminated tumor beds. The integration of MSCs and OVs can emerge as the new paradigm in cancer treatment.
Collapse
|
18
|
Abstract
Being the second leading cause of death globally, cancer has been a long-standing and rapidly evolving focus of biomedical research and practice in the world. A tremendous effort has been made to understand the origin of cancer cells, the formation of cancerous tissues, and the mechanism by which they spread and relapse, but the disease still remains mysterious. Here, we made an attempt to scrutinize evidences that indicate the role of stem cells in tumorigenesis and metastasis, and cancer relapse. We also looked into the influence of cancers on stem cells, which in turn represent a major constituent of tumor microenvironment. Based on current understandings of the properties of (cancer) stem cells and their relation to cancers, we can foresee that novel therapeutic approaches would become the next wave of cancer treatment.
Collapse
Affiliation(s)
- Wen Yin
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Sichuan 610041, China
| | - Jialing Wang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Sichuan 610041, China
| | - Linling Jiang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Sichuan 610041, China.,Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
19
|
Feng J, Ren WX, Kong F, Dong YB. Recent insight into functional crystalline porous frameworks for cancer photodynamic therapy. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01051k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We summarize and illustrate the recent developments of MOF- and COF-based nanomedicines for PDT and its combined antitumor treatments. Furthermore, major challenges and future development prospects in this field are also discussed.
Collapse
Affiliation(s)
- Jie Feng
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wen-Xiu Ren
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Fei Kong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yu-Bin Dong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
20
|
Das MK, Lunavat TR, Miletic H, Hossain JA. The Potentials and Pitfalls of Using Adult Stem Cells in Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1326:139-157. [PMID: 33615422 DOI: 10.1007/5584_2021_619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Stem cells play a pivotal role in the developmental stages of an organism and in adulthood as well. Therefore, it is not surprising that stem cells constitute a focus of extensive research. Indeed, several decades of stem cell research have tremendously increased our knowledge on the mechanistic understandings of stem cell biology. Interestingly, revealing the fundamental principles of stem cell biology has also fostered its application for therapeutic purposes. Many of the attributes that the stem cells possess, some of which are unique, allow multifaceted exploitation of stem cells in the treatment of various diseases. Cancer, the leading cause of mortality worldwide, is one of the disease groups that has been benefited by the potentials of therapeutic applications of the stem cells. While the modi operandi of how stem cells contribute to cancer treatment are many-sided, two major principles can be conceived. One mode involves harnessing the regenerative power of the stem cells to promote the generation of blood-forming cells in cancer patients after cytotoxic regimens. A totally different kind of utility of stem cells has been exercised in another mode where the stem cells can potentially deliver a plethora of anti-cancer therapeutics in a tumor-specific manner. While both these approaches can improve the treatment of cancer patients, there exist several issues that warrant further research. This review summarizes the basic principles of the utility of the stem cells in cancer treatment along with the current trends and pinpoints the major obstacles to focus on in the future for further improvement.
Collapse
Affiliation(s)
- Mrinal K Das
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Taral R Lunavat
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Jubayer A Hossain
- Department of Biomedicine, University of Bergen, Bergen, Norway. .,Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
21
|
Pei W, Huang B, Chen S, Wang L, Xu Y, Niu C. Platelet-Mimicking Drug Delivery Nanoparticles for Enhanced Chemo-Photothermal Therapy of Breast Cancer. Int J Nanomedicine 2020; 15:10151-10167. [PMID: 33363371 PMCID: PMC7754093 DOI: 10.2147/ijn.s285952] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Traditional nanoparticle-based drug delivery systems suffer from several limitations, such as easy clearance from blood and inaccurate targeting. MATERIALS AND METHODS Here, we developed platelet membrane-coated nanoparticles (PM-NPs) to improve the precise delivery of drugs to tumor sites and enable a more efficient photothermal therapy (PTT) treatment. RESULTS Mimicking the natural platelet membrane, nanoparticles containing drugs and photothermal agents were not recognized and cleared by the immune system; they could circulate in the blood for a long time and accumulate more efficiently at the tumor site, thus releasing more antitumor drugs and achieving better PTT effects. It is worth mentioning that, in this study, we found that tumors in mice treated with the platelet-mimicking nanoparticles were completely eliminated without recurrence during the observation period (up to 18 days). CONCLUSION This study provides a new strategy to design delivery systems of drugs or photothermal agents, whether in biotherapy or other fields.
Collapse
Affiliation(s)
- Wenjing Pei
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Biying Huang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan410008, People’s Republic of China
| | - Yan Xu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, People’s Republic of China
| |
Collapse
|
22
|
Griffith JI, Rathi S, Zhang W, Zhang W, Drewes LR, Sarkaria JN, Elmquist WF. Addressing BBB Heterogeneity: A New Paradigm for Drug Delivery to Brain Tumors. Pharmaceutics 2020; 12:E1205. [PMID: 33322488 PMCID: PMC7763839 DOI: 10.3390/pharmaceutics12121205] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Effective treatments for brain tumors remain one of the most urgent and unmet needs in modern oncology. This is due not only to the presence of the neurovascular unit/blood-brain barrier (NVU/BBB) but also to the heterogeneity of barrier alteration in the case of brain tumors, which results in what is referred to as the blood-tumor barrier (BTB). Herein, we discuss this heterogeneity, how it contributes to the failure of novel pharmaceutical treatment strategies, and why a "whole brain" approach to the treatment of brain tumors might be beneficial. We discuss various methods by which these obstacles might be overcome and assess how these strategies are progressing in the clinic. We believe that by approaching brain tumor treatment from this perspective, a new paradigm for drug delivery to brain tumors might be established.
Collapse
Affiliation(s)
- Jessica I. Griffith
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Sneha Rathi
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Wenqiu Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Wenjuan Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Lester R. Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School—Duluth, Duluth, MN 55812, USA;
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902, USA;
| | - William F. Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| |
Collapse
|
23
|
Romero-Trejo D, Mejía-Rodríguez R, Sierra-Mondragón E, Navarrete A, Pérez-Tapia M, González RO, Segovia J. The systemic administration of neural stem cells expressing an inducible and soluble form of growth arrest specific 1 inhibits mammary gland tumor growth and the formation of metastases. Cytotherapy 2020; 23:223-235. [PMID: 33168454 DOI: 10.1016/j.jcyt.2020.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AIMS Metastasis to different organs is the major cause of death in breast cancer patients. The poor clinical prognosis and lack of successful treatments for metastatic breast cancer patients demand the development of new tumor-selective therapies. Thus, it is necessary to develop treatments capable of releasing therapeutic agents to both primary tumors and metastases that avoid toxic side effects in normal tissue, and neural stem cells are an attractive vehicle for tracking tumor cells and delivering anti-cancer agents. The authorspreviously demonstrated that a soluble form of growth arrest specific 1 (GAS1) inhibits the growth of triple-negative breast tumors and glioblastoma. METHODS In this study, the authors engineered ReNcell CX (EMD Millipore, Temecula, CA, USA) neural progenitor cells to express truncated GAS1 (tGAS1) under a tetracycline/on inducible system using lentiviral vectors. RESULTS Here the authors show that treatment with ReNcell-tGAS1 in combination with tetracycline decreased primary tumor growth and inhibited the formation of metastases in tumor-bearing mice by diminishing the phosphorylation of AKT and ERK1/2 in orthotopic mammary gland tumors. Moreover, the authors observed that ReNcell-tGAS1 prolonged the survival of 4T1 tumor-bearing mice. CONCLUSIONS These data suggest that the delivery of tGAS1 by ReNcell cells could be an effective adjuvant for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Daniel Romero-Trejo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México
| | - Rosalinda Mejía-Rodríguez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México
| | - Edith Sierra-Mondragón
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México
| | - Araceli Navarrete
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México
| | - Mayra Pérez-Tapia
- Departamento de Inmunología Escuela Nacional de Ciencias Biológicas, del Instituto Politécnico Nacional, México
| | - Rosa O González
- Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), México
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México.
| |
Collapse
|
24
|
Joshi BS, Zuhorn IS. Heparan sulfate proteoglycan-mediated dynamin-dependent transport of neural stem cell exosomes in an in vitro blood-brain barrier model. Eur J Neurosci 2020; 53:706-719. [PMID: 32939863 PMCID: PMC7891616 DOI: 10.1111/ejn.14974] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Drug delivery to the brain is greatly hampered by the presence of the blood–brain barrier (BBB) which tightly regulates the passage of molecules from blood to brain and vice versa. Nanocarriers, in which drugs can be encapsulated, can move across the blood–brain barrier (BBB) via the process of transcytosis, thus showing promise to improve drug delivery to the brain. Here, we demonstrate the use of natural nanovesicles, that is, exosomes, derived from C17.2 neural stem cells (NSCs) to efficiently carry a protein cargo across an in vitro BBB model consisting of human brain microvascular endothelial cells. We show that the exosomes are primarily taken up in brain endothelial cells via endocytosis, while heparan sulfate proteoglycans (HSPGs) act as receptors. Taken together, our data support the view that NSC exosomes may act as biological nanocarriers for efficient passage across the BBB. Nanomedicines that target HSPGs may improve their binding to brain endothelial cells and, possibly, show subsequent transcytosis across the BBB.
Collapse
Affiliation(s)
- Bhagyashree S Joshi
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Inge S Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Sherif AY, Harisa GI, Alanazi FK, Youssof AME. Engineering of Exosomes: Steps Towards Green Production of Drug Delivery System. Curr Drug Targets 2020; 20:1537-1549. [PMID: 31309889 DOI: 10.2174/1389450120666190715104100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/09/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Targeting of therapeutic agents to their specific site of action not only increases the treatment efficacy, but also reduces systemic toxicity. Therefore, various drug delivery systems (DDSs) have been developed to achieve this target. However, most of those DDSs have several issues regarding biocompatibility and environmental hazard. In contrast to the synthetic DDSs, exosome-based natural carriers are biocompatible, biodegradable and safe for the environment. Since exosomes play a role in intercellular communication, they have been widely utilized as carriers for different therapeutic agents. This article was aimed to provide an overview of exosomes as an environment-friendly DDS in terms of engineering, isolation, characterization, application and limitation.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Biochemistry, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M E Youssof
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Tu GXE, Ho YK, Ng ZX, Teo KJ, Yeo TT, Too HP. A facile and scalable in production non-viral gene engineered mesenchymal stem cells for effective suppression of temozolomide-resistant (TMZR) glioblastoma growth. Stem Cell Res Ther 2020; 11:391. [PMID: 32917269 PMCID: PMC7488524 DOI: 10.1186/s13287-020-01899-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) serve as an attractive vehicle for cell-directed enzyme prodrug therapy (CDEPT) due to their unique tumour-nesting ability. Such approach holds high therapeutic potential for treating solid tumours including glioblastoma multiforme (GBM), a devastating disease with limited effective treatment options. Currently, it is a common practice in research and clinical manufacturing to use viruses to deliver therapeutic genes into MSCs. However, this is limited by the inherent issues of safety, high cost and demanding manufacturing processes. The aim of this study is to identify a facile, scalable in production and highly efficient non-viral method to transiently engineer MSCs for prolonged and exceptionally high expression of a fused transgene: yeast cytosine deaminase::uracil phosphoribosyl-transferase::green fluorescent protein (CD::UPRT::GFP). METHODS MSCs were transfected with linear polyethylenimine using a cpg-free plasmid encoding the transgene in the presence of a combination of fusogenic lipids and β tubulin deacetylase inhibitor (Enhancer). Process scalability was evaluated in various planar vessels and microcarrier-based bioreactor. The transfection efficiency was determined with flow cytometry, and the therapeutic efficacy of CD::UPRT::GFP expressing MSCs was evaluated in cocultures with temozolomide (TMZ)-sensitive or TMZ-resistant human glioblastoma cell lines. In the presence of 5-fluorocytosine (5FC), the 5-fluorouracil-mediated cytotoxicity was determined by performing colometric MTS assay. In vivo antitumor effects were examined by local injection into subcutaneous TMZ-resistant tumors implanted in the athymic nude mice. RESULTS At > 90% transfection efficiency, the phenotype, differentiation potential and tumour tropism of MSCs were unaltered. High reproducibility was observed in all scales of transfection. The therapeutically modified MSCs displayed strong cytotoxicity towards both TMZ-sensitive and TMZ-resistant U251-MG and U87-MG cell lines only in the presence of 5FC. The effectiveness of this approach was further validated with other well-characterized and clinically annotated patient-derived GBM cells. Additionally, a long-term suppression (> 30 days) of the growth of a subcutaneous TMZ-resistant U-251MG tumour was demonstrated. CONCLUSIONS Collectively, this highly efficient non-viral workflow could potentially enable the scalable translation of therapeutically engineered MSC for the treatment of TMZ-resistant GBM and other applications beyond the scope of this study.
Collapse
Affiliation(s)
- Geraldine Xue En Tu
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Yoon Khei Ho
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
| | - Zhi Xu Ng
- Division of Neurosurgery, Department of General Surgery, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Ke Jia Teo
- Division of Neurosurgery, Department of General Surgery, National University Hospital, National University Health Systems, Singapore, Singapore
| | - Tseng Tsai Yeo
- Division of Neurosurgery, Department of General Surgery, National University Hospital, National University Health Systems, Singapore, Singapore
| | - Heng-Phon Too
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| |
Collapse
|
27
|
Generation and Profiling of Tumor-Homing Induced Neural Stem Cells from the Skin of Cancer Patients. Mol Ther 2020; 28:1614-1627. [PMID: 32402245 DOI: 10.1016/j.ymthe.2020.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
The conversion of human fibroblasts into personalized induced neural stem cells (iNSCs) that actively seek out tumors and deliver cytotoxic agents is a highly promising approach for treating various types of cancer. However, the ability to generate iNSCs from the skin of cancer patients has not been explored. Here, we take an important step toward clinical application by generating iNSCs from skin biopsies of human patients undergoing treatment for the aggressive brain cancer, glioblastoma (GBM). We then utilized a panel of functional and genomic studies to investigate the efficacy and tumor-homing capacity of these patient-derived cells, as well as genomic analysis, to characterize the impact of interpatient variability on this personalized cell therapy. From the skin-tissue biopsies, we established fibroblasts and transdifferentiated the cells into iNSCs. Genomic and functional testing revealed marked variability in growth rates, therapeutic agent production, and gene expression during fibroblast-to-iNSC conversion among patient lines. In vivo testing showed patient-derived iNSCs home to tumors, yet rates and expression of homing-related pathways varied among patients. With the use of surgical-resection mouse models of invasive human cluster of differentiation 133+ (CD133+) GBM cells and serial kinetic imaging, we found that "high-performing" patient-derived iNSC lines reduced the volume of GBM cells 60-fold and extended survival from 28 to 45 days. Treatment with "low-performing" patient lines had minimal effect on tumor growth, but the anti-tumor effect could be rescued by increasing the intracavity dose. Together, these data show, for the first time, that tumor-homing iNSCs can be generated from the skin of cancer patients and efficaciously suppress tumor growth. We also begin to define genetic markers that could be used to identify cells that will contain the most effective attributes for tumor homing and kill in human patients, including high gene expression of the semaphorin-3B (SEMA3B), which is known to be involved in neuronal cell migration. These studies should serve as an important guide toward clinical GBM therapy, where the personalized nature of optimized iNSC therapy has the potential to avoid transplant rejection and maximize treatment durability.
Collapse
|
28
|
Next-generation stem cells - ushering in a new era of cell-based therapies. Nat Rev Drug Discov 2020; 19:463-479. [PMID: 32612263 DOI: 10.1038/s41573-020-0064-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Naturally occurring stem cells isolated from humans have been used therapeutically for decades. This has primarily involved the transplantation of primary cells such as haematopoietic and mesenchymal stem cells and, more recently, derivatives of pluripotent stem cells. However, the advent of cell-engineering approaches is ushering in a new generation of stem cell-based therapies, greatly expanding their therapeutic utility. These next-generation stem cells are being used as 'Trojan horses' to improve the delivery of drugs and oncolytic viruses to intractable tumours and are also being engineered with angiogenic, neurotrophic and anti-inflammatory molecules to accelerate the repair of injured or diseased tissues. Moreover, gene therapy and gene editing technologies are being used to create stem cell derivatives with improved functionality, specificity and responsiveness compared with their natural counterparts. Here, we review these engineering approaches and areas in which they will help broaden the utility and clinical applicability of stem cells.
Collapse
|
29
|
Hossain JA, Marchini A, Fehse B, Bjerkvig R, Miletic H. Suicide gene therapy for the treatment of high-grade glioma: past lessons, present trends, and future prospects. Neurooncol Adv 2020; 2:vdaa013. [PMID: 32642680 PMCID: PMC7212909 DOI: 10.1093/noajnl/vdaa013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Suicide gene therapy has represented an experimental cancer treatment modality for nearly 40 years. Among the various cancers experimentally treated by suicide gene therapy, high-grade gliomas have been the most prominent both in preclinical and clinical settings. Failure of a number of promising suicide gene therapy strategies in the clinic pointed toward a bleak future of this approach for the treatment of high-grade gliomas. Nevertheless, the development of new vectors and suicide genes, better prodrugs, more efficient delivery systems, and new combinatorial strategies represent active research areas that may eventually lead to better efficacy of suicide gene therapy. These trends are evident by the current increasing focus on suicide gene therapy for high-grade glioma treatment both in the laboratory and in the clinic. In this review, we give an overview of different suicide gene therapy approaches for glioma treatment and discuss clinical trials, delivery issues, and immune responses.
Collapse
Affiliation(s)
- Jubayer A Hossain
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Haukeland University Hospital, Bergen, Norway.,Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Antonio Marchini
- Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Boris Fehse
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
30
|
Jabbarpour Z, Kiani J, Keshtkar S, Saidijam M, Ghahremani MH, Ahmadbeigi N. Effects of human placenta-derived mesenchymal stem cells with NK4 gene expression on glioblastoma multiforme cell lines. J Cell Biochem 2020; 121:1362-1373. [PMID: 31595570 DOI: 10.1002/jcb.29371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
Poor prognosis and low survival are commonly seen in patients with glioblastoma multiforme (GBM). Due to the specific nature of solid tumors such as GBM, delivery of therapeutic agents to the tumor sites is difficult. So, one of the major challenges in the treatment of these tumors is a selection of appropriate method for drug delivery. Mesenchymal stem cells (MSCs) have a unique characteristic in migration toward the tumor tissue. In this regard, the present study examined the antitumor effects of manipulating human placenta-derived mesenchymal stem cells (PDMSCs) with NK4 expression (PDMSC-NK4) on GBM cells. After separation and characterization of PDMSCs, these cells were transduced with NK4 which was known as the antagonist of hepatocyte growth factor (HGF). The results indicated that engineered PDMSCs preferably migrate into GBM cells by transwell coculture system. In addition, the proliferation of the GBM cells significantly reduced after coculture with these cells. In fact, manipulated PDMSCs inhibited growth of tumor cells by induction of apoptosis. Our findings suggested that besides having antitumor effects, PDMSCs can also be applied as an ideal cellular vehicle to target the glioblastoma multiforme.
Collapse
Affiliation(s)
- Zahra Jabbarpour
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Keshtkar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad H Ghahremani
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Dong H, Xu X, Wang L, Mo R. Advances in living cell-based anticancer therapeutics. Biomater Sci 2020; 8:2344-2365. [DOI: 10.1039/d0bm00036a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in the applications of living cells as drug carriers or active drugs for anticancer drug delivery and cancer therapy.
Collapse
Affiliation(s)
- He Dong
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Xiao Xu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Leikun Wang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Ran Mo
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
32
|
Preclinical analysis of human mesenchymal stem cells: tumor tropism and therapeutic efficiency of local HSV-TK suicide gene therapy in glioblastoma. Oncotarget 2019; 10:6049-6061. [PMID: 31692882 PMCID: PMC6817450 DOI: 10.18632/oncotarget.27071] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma are highly invasive and associated with limited therapeutic options and a grim prognosis. Using stem cells to extend current therapeutic strategies by targeted drug delivery to infiltrated tumors cells is highly attractive. This study analyzes the tumor homing and therapeutic abilities of clinical grade human mesenchymal stem cells (MSCs) in an orthotopic glioblastoma mouse model. Our time course analysis demonstrated that MSCs display a rapid targeted migration to intracerebral U87 glioma xenografts growing in the contralateral hemisphere within the first 48h hours after application as assessed by histology and 7T magnetic resonance imaging. MSCs accumulated predominantly peritumorally but also infiltrated the main tumor mass and targeted distant tumor satellites while no MSCs were found in other regions of the brain. Intratumoral application of MSCs expressing herpes simplex virus thymidine kinase followed by systemic prodrug application of ganciclovir led to a significant tumor growth inhibition of 86% versus the control groups (p<0.05), which translated in a significant prolonged survival time (p<0.05). This study demonstrates that human MSCs generated according to apceth’s GMP process from healthy donors are able to target and provide a significant growth inhibition in a glioblastoma model supporting a potential clinical translation.
Collapse
|
33
|
Santiago-Toledo G, Georgiou M, Dos Reis J, Roberton VH, Valinhas A, Wood RC, Phillips JB, Mason C, Li D, Li Y, Sinden JD, Choi D, Jat PS, Wall IB. Generation of c-MycER TAM-transduced human late-adherent olfactory mucosa cells for potential regenerative applications. Sci Rep 2019; 9:13190. [PMID: 31519924 PMCID: PMC6744411 DOI: 10.1038/s41598-019-49315-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
Human olfactory mucosa cells (hOMCs) have been transplanted to the damaged spinal cord both pre-clinically and clinically. To date mainly autologous cells have been tested. However, inter-patient variability in cell recovery and quality, and the fact that the neuroprotective olfactory ensheathing cell (OEC) subset is difficult to isolate, means an allogeneic hOMC therapy would be an attractive "off-the-shelf" alternative. The aim of this study was to generate a candidate cell line from late-adherent hOMCs, thought to contain the OEC subset. Primary late-adherent hOMCs were transduced with a c-MycERTAM gene that enables cell proliferation in the presence of 4-hydroxytamoxifen (4-OHT). Two c-MycERTAM-derived polyclonal populations, PA5 and PA7, were generated and expanded. PA5 cells had a normal human karyotype (46, XY) and exhibited faster growth kinetics than PA7, and were therefore selected for further characterisation. PA5 hOMCs express glial markers (p75NTR, S100ß, GFAP and oligodendrocyte marker O4), neuronal markers (nestin and ß-III-tubulin) and fibroblast-associated markers (CD90/Thy1 and fibronectin). Co-culture of PA5 cells with a neuronal cell line (NG108-15) and with primary dorsal root ganglion (DRG) neurons resulted in significant neurite outgrowth after 5 days. Therefore, c-MycERTAM-derived PA5 hOMCs have potential as a regenerative therapy for neural cells.
Collapse
Affiliation(s)
| | - Melanie Georgiou
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Joana Dos Reis
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Victoria H Roberton
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Ana Valinhas
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Rachael C Wood
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
- Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - James B Phillips
- Department of Pharmacology, UCL School of Pharmacy, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
| | - Chris Mason
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
- AVROBIO Inc, Cambridge, MA 02139, USA
| | - Daqing Li
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - Ying Li
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - John D Sinden
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
- ReNeuron Limited, Pencoed, Bridgend, CF35 5HY, UK
| | - David Choi
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - Parmjit S Jat
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, W1W 7FF, UK
| | - Ivan B Wall
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK.
- Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK.
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
34
|
Established and Emerging Strategies for Drug Delivery Across the Blood-Brain Barrier in Brain Cancer. Pharmaceutics 2019; 11:pharmaceutics11050245. [PMID: 31137689 PMCID: PMC6572140 DOI: 10.3390/pharmaceutics11050245] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/05/2019] [Accepted: 05/20/2019] [Indexed: 12/25/2022] Open
Abstract
Brain tumors are characterized by very high mortality and, despite the continuous research on new pharmacological interventions, little therapeutic progress has been made. One of the main obstacles to improve current treatments is represented by the impermeability of the blood vessels residing within nervous tissue as well as of the new vascular net generating from the tumor, commonly referred to as blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), respectively. In this review, we focused on established and emerging strategies to overcome the blood-brain barrier to increase drug delivery for brain cancer. To date, there are three broad strategies being investigated to cross the brain vascular wall and they are conceived to breach, bypass, and negotiate the access to the nervous tissue. In this paper, we summarized these approaches highlighting their working mechanism and their potential impact on the quality of life of the patients as well as their current status of development.
Collapse
|
35
|
Tiet P, Li J, Abidi W, Mooney R, Flores L, Aramburo S, Batalla-Covello J, Gonzaga J, Tsaturyan L, Kang Y, Cornejo YR, Dellinger T, Han E, Aboody KS, Berlin JM. Silica Coated Paclitaxel Nanocrystals Enable Neural Stem Cell Loading For Treatment of Ovarian Cancer. Bioconjug Chem 2019; 30:1415-1424. [PMID: 30835443 DOI: 10.1021/acs.bioconjchem.9b00160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is commonly diagnosed only after it has metastasized to the abdominal cavity (stage III). While the current standard of care of intraperitoneal (IP) administration of cisplatin and paclitaxel (PTX) combination chemotherapy has benefit, patient 5-year survival rates are low and have not significantly improved in the past decade. The ability to target chemotherapy selectively to ovarian tumors while sparing normal tissue would improve efficacy and decrease toxicities. We have previously shown that cisplatin-loaded nanoparticles (NPs) loaded within neural stem cells (NSCs) are selectively delivered to ovarian tumors in the abdominal cavity following IP injection, with no evidence of localization to normal tissue. Here we extended the capabilities of this system to also include PTX delivery. NPs that will be loaded into NSCs must contain a high amount of drug by weight but constrain the release of the drug such that the NSCs are viable after loading and can successfully migrate to tumors. We developed silica coated PTX nanocrystals (Si[PTX-NC]) meeting these requirements. Si[PTX-NC] were more effective than uncoated PTX-NC or Abraxane for loading NSCs with PTX. NSCs loaded with Si[PTX-NC] maintained their migratory ability and, for low dose PTX, were more effective than free PTX-NC or Si[PTX-NC] at killing ovarian tumors in vivo. This work demonstrates that NSC/NP delivery is a platform technology amenable to delivering different therapeutics and enables the pursuit of NSC/NP targeted delivery of the entire preferred chemotherapy regimen for ovarian cancer. It also describes efficient silica coating chemistry for PTX nanocrystals that may have applications beyond our focus on NSC transport.
Collapse
|
36
|
Suryaprakash S, Lao YH, Cho HY, Li M, Ji HY, Shao D, Hu H, Quek CH, Huang D, Mintz RL, Bagó JR, Hingtgen SD, Lee KB, Leong KW. Engineered Mesenchymal Stem Cell/Nanomedicine Spheroid as an Active Drug Delivery Platform for Combinational Glioblastoma Therapy. NANO LETTERS 2019; 19:1701-1705. [PMID: 30773888 DOI: 10.1021/acs.nanolett.8b04697] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mesenchymal stem cell (MSC) has been increasingly applied to cancer therapy because of its tumor-tropic capability. However, short retention at target tissue and limited payload option hinder the progress of MSC-based cancer therapy. Herein, we proposed a hybrid spheroid/nanomedicine system, comprising MSC spheroid entrapping drug-loaded nanocomposite, to address these limitations. Spheroid formulation enhanced MSC's tumor tropism and facilitated loading of different types of therapeutic payloads. This system acted as an active drug delivery platform seeking and specifically targeting glioblastoma cells. It enabled effective delivery of combinational protein and chemotherapeutic drugs by engineered MSC and nanocomposite, respectively. In an in vivo migration model, the hybrid spheroid showed higher nanocomposite retention in the tumor tissue compared with the single MSC approach, leading to enhanced tumor inhibition in a heterotopic glioblastoma murine model. Taken together, this system integrates the merits of cell- and nanoparticle- mediated drug delivery with the tumor-homing characteristics of MSC to advance targeted combinational cancer therapy.
Collapse
Affiliation(s)
- Smruthi Suryaprakash
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Hyeon-Yeol Cho
- Department of Chemistry and Chemical Biology, Rutgers , The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Mingqiang Li
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Ha Yeun Ji
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Dan Shao
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Hanze Hu
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Chai Hoon Quek
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Dantong Huang
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Rachel L Mintz
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Juli R Bagó
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Shawn D Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers , The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Kam W Leong
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
- Department of Systems Biology , Columbia University Medical Center , New York , New York 10032 , United States
| |
Collapse
|
37
|
Gutova M, Flores L, Adhikarla V, Tsaturyan L, Tirughana R, Aramburo S, Metz M, Gonzaga J, Annala A, Synold TW, Portnow J, Rockne RC, Aboody KS. Quantitative Evaluation of Intraventricular Delivery of Therapeutic Neural Stem Cells to Orthotopic Glioma. Front Oncol 2019; 9:68. [PMID: 30838174 PMCID: PMC6389659 DOI: 10.3389/fonc.2019.00068] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/25/2019] [Indexed: 01/02/2023] Open
Abstract
Neural stem cells (NSCs) are inherently tumor-tropic, which allows them to migrate through normal tissue and selectively localize to invasive tumor sites in the brain. We have engineered a clonal, immortalized allogeneic NSC line (HB1.F3.CD21; CD-NSCs) that maintains its stem-like properties, a normal karyotype and is HLA Class II negative. It is genetically and functionally stable over time and multiple passages, and has demonstrated safety in phase I glioma trials. These properties enable the production of an "off-the-shelf" therapy that can be readily available for patient treatment. There are multiple factors contributing to stem cell tumor-tropism, and much remains to be elucidated. The route of NSC delivery and the distribution of NSCs at tumor sites are key factors in the development of effective cell-based therapies. Stem cells can be engineered to deliver and/or produce many different therapeutic agents, including prodrug activating enzymes (which locally convert systemically administered prodrugs to active chemotherapeutic agents); oncolytic viruses; tumor-targeted antibodies; therapeutic nanoparticles; and extracellular vesicles that contain therapeutic oligonucleotides. By targeting these therapeutics selectively to tumor foci, we aim to minimize toxicity to normal tissues and maximize therapeutic benefits. In this manuscript, we demonstrate that NSCs administered via intracerebral/ventricular (IVEN) routes can migrate efficiently toward single or multiple tumor foci. IVEN delivery will enable repeat administrations for patients through an Ommaya reservoir, potentially resulting in improved therapeutic outcomes. In our preclinical studies using various glioma lines, we have quantified NSC migration and distribution in mouse brains and have found robust migration of our clinically relevant HB1.F3.CD21 NSC line toward invasive tumor foci, irrespective of their origin. These results establish proof-of-concept and demonstrate the potential of developing a multitude of therapeutic options using modified NSCs.
Collapse
Affiliation(s)
- Margarita Gutova
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Linda Flores
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Vikram Adhikarla
- Division of Mathematical Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Lusine Tsaturyan
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Revathiswari Tirughana
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Soraya Aramburo
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Marianne Metz
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Joanna Gonzaga
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Alexander Annala
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Timothy W Synold
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Jana Portnow
- Department of Medical Oncology & Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Russell C Rockne
- Division of Mathematical Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Karen S Aboody
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
38
|
Tuazon JP, Castelli V, Lee JY, Desideri GB, Stuppia L, Cimini AM, Borlongan CV. Neural Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:79-91. [PMID: 31898782 DOI: 10.1007/978-3-030-31206-0_4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neural stem cell (NSC) transplantation has provided the basis for the development of potentially powerful new therapeutic cell-based strategies for a broad spectrum of clinical diseases, including stroke, psychiatric illnesses such as fetal alcohol spectrum disorders, and cancer. Here, we discuss pertinent preclinical investigations involving NSCs, including how NSCs can ameliorate these diseases, the current barriers hindering NSC-based treatments, and future directions for NSC research. There are still many translational requirements to overcome before clinical therapeutic applications, such as establishing optimal dosing, route of delivery, and timing regimens and understanding the exact mechanism by which transplanted NSCs lead to enhanced recovery. Such critical lab-to-clinic investigations will be necessary in order to refine NSC-based therapies for debilitating human disorders.
Collapse
Affiliation(s)
- Julian P Tuazon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Vanessa Castelli
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | | | - Liborio Stuppia
- Department of Psychological, Humanistic and Territorial Sciences, University G. D'Annunzio, Chieti, Italy
| | - Anna Maria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA.
| |
Collapse
|
39
|
Li Z, Hu S, Cheng K. Platelets and their biomimetics for regenerative medicine and cancer therapies. J Mater Chem B 2018; 6:7354-7365. [PMID: 31372220 PMCID: PMC6675472 DOI: 10.1039/c8tb02301h] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Platelets, circulating blood cells derived from megakaryocytes, play a key role in various physical activities, including coagulation, hemostasis, the body's innate immune response, and cancer metastasis. By taking advantage of their key traits, researchers have developed strategies to exploit platelets and platelet-mimicking nanoassemblies to treat a number of conditions, including wounds, cancers, and bacterial infections. Compared to traditional polymer, lipsosome, and inorganic nanoparticles-based delivery systems, platelets and platelet-mimicking vehicles hold many advantages. Among these are their enhanced circulation time, their large volumes and surface areas for drug loading or conjugation, and their inherent ability to target some diseases. In this review, we will highlight the recent progress made in the development of disease-targeting platelets- and platelet-mimicking-vehicles as therapeutic platforms.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
40
|
Mesenchymal stem cell-driven activatable photosensitizers for precision photodynamic oncotherapy. Biomaterials 2018; 187:18-26. [DOI: 10.1016/j.biomaterials.2018.09.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022]
|
41
|
Heo JR, Hwang KA, Kim SU, Choi KC. A Potential Therapy Using Engineered Stem Cells Prevented Malignant Melanoma in Cellular and Xenograft Mouse Models. Cancer Res Treat 2018; 51:797-811. [PMID: 30213181 PMCID: PMC6473263 DOI: 10.4143/crt.2018.364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022] Open
Abstract
PURPOSE In the present study, human neural stem cells (hNSCs) with tumor-tropic behavior were used as drug delivery vehicle to selectively target melanoma. A hNSC line (HB1.F3) was transduced into two types: one expressed only the cytosine deaminase (CD) gene (HB1.F3. CD) and the other expressed both CD and human interferon-β (IFN-β) genes (HB1.F3.CD. IFN-β). Materials and Methods This study verified the tumor-tropic migratory competence of engineered hNSCs on melanoma (A375SM) using a modified Boyden chamber assay in vitro and CM-DiI staining in vivo. The antitumor effect of HB1.F3.CD and HB1.F3.CD.IFN-β on melanoma was also confirmed using an MTT assay in vitro and xenograft mouse models. RESULTS A secreted form of IFN-β from the HB1.F3.CD.IFN-β cells modified the epithelial-mesenchymal transition (EMT) process and metastasis of melanoma. 5-Fluorouracil treatment also accelerated the expression of the pro-apoptotic protein BAX and decelerated the expression of the anti-apoptotic protein Bcl-xL on melanoma cell line. CONCLUSION Our results illustrate that engineered hNSCs prevented malignant melanoma cells from proliferating in the presence of the prodrug, and the form that secreted IFN-β intervened in the EMT process and melanoma metastasis. Hence, neural stem cell-directed enzyme/prodrug therapy is a plausible treatment for malignant melanoma.
Collapse
Affiliation(s)
- Jae-Rim Heo
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Seung U Kim
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.,Institute of Life Science and Bio-Engineering, TheraCell Bio & Science, Cheongju, Korea
| |
Collapse
|
42
|
Lang T, Yin Q, Li Y. Progress of Cell-Derived Biomimetic Drug Delivery Systems for Cancer Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road Shanghai 201203 China
- School of Pharmacy; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road Shanghai 201203 China
- School of Pharmacy; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road Shanghai 201203 China
- School of Pharmacy; University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
43
|
Chen S, Boda SK, Batra SK, Li X, Xie J. Emerging Roles of Electrospun Nanofibers in Cancer Research. Adv Healthc Mater 2018; 7:e1701024. [PMID: 29210522 PMCID: PMC5867260 DOI: 10.1002/adhm.201701024] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/01/2017] [Indexed: 02/01/2023]
Abstract
This article reviews the recent progress of electrospun nanofibers in cancer research. It begins with a brief introduction to the emerging potential of electrospun nanofibers in cancer research. Next, a number of recent advances on the important features of electrospun nanofibers critical for cancer research are discussed including the incorporation of drugs, control of release kinetics, orientation and alignment of nanofibers, and the fabrication of 3D nanofiber scaffolds. This article further highlights the applications of electrospun nanofibers in several areas of cancer research including local chemotherapy, combinatorial therapy, cancer detection, cancer cell capture, regulation of cancer cell behavior, construction of in vitro 3D cancer model, and engineering of bone microenvironment for cancer metastasis. This progress report concludes with remarks on the challenges and future directions for design, fabrication, and application of electrospun nanofibers in cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sunil Kumar Boda
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiaoran Li
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
44
|
Bagó JR, Okolie O, Dumitru R, Ewend MG, Parker JS, Werff RV, Underhill TM, Schmid RS, Miller CR, Hingtgen SD. Tumor-homing cytotoxic human induced neural stem cells for cancer therapy. Sci Transl Med 2018; 9:9/375/eaah6510. [PMID: 28148846 DOI: 10.1126/scitranslmed.aah6510] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 07/26/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022]
Abstract
Engineered neural stem cells (NSCs) are a promising approach to treating glioblastoma (GBM). The ideal NSC drug carrier for clinical use should be easily isolated and autologous to avoid immune rejection. We transdifferentiated (TD) human fibroblasts into tumor-homing early-stage induced NSCs (h-iNSCTE), engineered them to express optical reporters and different therapeutic gene products, and assessed the tumor-homing migration and therapeutic efficacy of cytotoxic h-iNSCTE in patient-derived GBM models of surgical and nonsurgical disease. Molecular and functional analysis revealed that our single-factor SOX2 TD strategy converted human skin fibroblasts into h-iNSCTE that were nestin+ and expressed pathways associated with tumor-homing migration in 4 days. Time-lapse motion analysis showed that h-iNSCTE rapidly migrated to human GBM cells and penetrated human GBM spheroids, a process inhibited by blockade of CXCR4. Serial imaging showed that h-iNSCTE delivery of the proapoptotic agent tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) reduced the size of solid human GBM xenografts 250-fold in 3 weeks and prolonged median survival from 22 to 49 days. Additionally, h-iNSCTE thymidine kinase/ganciclovir enzyme/prodrug therapy (h-iNSCTE-TK) reduced the size of patient-derived GBM xenografts 20-fold and extended survival from 32 to 62 days. Mimicking clinical NSC therapy, h-iNSCTE-TK therapy delivered into the postoperative surgical resection cavity delayed the regrowth of residual GBMs threefold and prolonged survival from 46 to 60 days. These results suggest that TD of human skin into h-iNSCTE is a platform for creating tumor-homing cytotoxic cell therapies for cancer, where the potential to avoid carrier rejection could maximize treatment durability in human trials.
Collapse
Affiliation(s)
- Juli R Bagó
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Onyi Okolie
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raluca Dumitru
- UNC Human Pluripotent Stem Cell Core Facility, Department of Genetics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew G Ewend
- Department of Neurosurgery, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan Vander Werff
- Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ralf S Schmid
- Division of Neuropathology and Department of Pathology and Laboratory Medicine, Department of Neurology and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - C Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Division of Neuropathology and Department of Pathology and Laboratory Medicine, Department of Neurology and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shawn D Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Neurosurgery, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
45
|
Chen X, Nomani A, Patel N, Nouri FS, Hatefi A. Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells. Biomaterials 2018; 152:1-14. [PMID: 29078136 PMCID: PMC5671363 DOI: 10.1016/j.biomaterials.2017.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/22/2017] [Accepted: 10/17/2017] [Indexed: 01/14/2023]
Abstract
Vectors used for stem cell transfection must be non-genotoxic, in addition to possessing high efficiency, because they could potentially transform normal stem cells into cancer-initiating cells. The objective of this research was to bioengineer an efficient vector that can be used for genetic modification of stem cells without any negative somatic or genetic impact. Two types of multifunctional vectors, namely targeted and non-targeted were genetically engineered and purified from E. coli. The targeted vectors were designed to enter stem cells via overexpressed receptors. The non-targeted vectors were equipped with MPG and Pep1 cell penetrating peptides. A series of commercial synthetic non-viral vectors and an adenoviral vector were used as controls. All vectors were evaluated for their efficiency and impact on metabolic activity, cell membrane integrity, chromosomal aberrations (micronuclei formation), gene dysregulation, and differentiation ability of stem cells. The results of this study showed that the bioengineered vector utilizing VEGFR-1 receptors for cellular entry could transfect mesenchymal stem cells with high efficiency without inducing genotoxicity, negative impact on gene function, or ability to differentiate. Overall, the vectors that utilized receptors as ports for cellular entry (viral and non-viral) showed considerably better somato- and genosafety profiles in comparison to those that entered through electrostatic interaction with cellular membrane. The genetically engineered vector in this study demonstrated that it can be safely and efficiently used to genetically modify stem cells with potential applications in tissue engineering and cancer therapy.
Collapse
Affiliation(s)
- Xuguang Chen
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Alireza Nomani
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Niket Patel
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Faranak S Nouri
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
46
|
Stem cells in cancer therapy: opportunities and challenges. Oncotarget 2017; 8:75756-75766. [PMID: 29088907 PMCID: PMC5650462 DOI: 10.18632/oncotarget.20798] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
Metastatic cancer cells generally cannot be eradicated using traditional surgical or chemoradiotherapeutic strategies, and disease recurrence is extremely common following treatment. On the other hand, therapies employing stem cells are showing increasing promise in the treatment of cancer. Stem cells can function as novel delivery platforms by homing to and targeting both primary and metastatic tumor foci. Stem cells engineered to stably express various cytotoxic agents decrease tumor volumes and extend survival in preclinical animal models. They have also been employed as virus and nanoparticle carriers to enhance primary therapeutic efficacies and relieve treatment side effects. Additionally, stem cells can be applied in regenerative medicine, immunotherapy, cancer stem cell-targeted therapy, and anticancer drug screening applications. However, while using stem cells to treat human cancers appears technically feasible, challenges such as treatment durability and tumorigenesis necessitate further study to improve therapeutic performance and applicability. This review focuses on recent progress toward stem cell-based cancer treatments, and summarizes treatment advantages, opportunities, and shortcomings, potentially helping to refine future trials and facilitate the translation from experimental to clinical studies.
Collapse
|
47
|
|
48
|
Mooney R, Abdul Majid A, Batalla J, Annala AJ, Aboody KS. Cell-mediated enzyme prodrug cancer therapies. Adv Drug Deliv Rev 2017; 118:35-51. [PMID: 28916493 DOI: 10.1016/j.addr.2017.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/15/2017] [Accepted: 09/06/2017] [Indexed: 02/08/2023]
Abstract
Cell-directed gene therapy is a promising new frontier for the field of targeted cancer therapies. Here we discuss the current pre-clinical and clinical use of cell-mediated enzyme prodrug therapy (EPT) directed against solid tumors and avenues for further development. We also discuss some of the challenges encountered upon translating these therapies to clinical trials. Upon sufficient development, cell-mediated enzyme prodrug therapy has the potential to maximize the distribution of therapeutic enzymes within the tumor environment, localizing conversion of prodrug to active drug at the tumor sites thereby decreasing off-target toxicities. New combinatorial possibilities are also promising. For example, when combined with viral gene-delivery vehicles, this may result in new hybrid vehicles that attain heretofore unmatched levels of therapeutic gene expression within the tumor.
Collapse
|
49
|
The inhibiting effect of neural stem cells on proliferation and invasion of glioma cells. Oncotarget 2017; 8:76949-76960. [PMID: 29100360 PMCID: PMC5652754 DOI: 10.18632/oncotarget.20270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
The invasive and infiltrative nature of tumor cells leads to the poor prognosis of glioma. Currently, novel therapeutic means to eliminate the tumor cells without damaging the normal brain tissue are still strongly demanded. Significant attentions had been paid to stem cell-based therapy and neural stem cell (NSC) had been considered as one of the efficient delivery vehicles for targeting therapeutic genes. However, whether the NSCs could directly affect glioma cells remains to be seen. In this study, both rat and human glioma cells (C6 and U251) were co-cultured with normal rat embryonic NSCs directly or in-directly. We found the survival, proliferation, invasion and migration of glioma cells were significantly inhibited, while the differentiation was not affected in the in vitro co-culture system. In nude mice, although no significant difference was observed in the tumor growth, survival status and time of tumor-bearing mice were significantly promoted when U251 cells were subcutaneously injected with NSCs. In coincidence with the suppression of glioma cell growth in vitro, expression of mutant p53 and phosphorylation of AKT, ERK1/2 decreased while the level of caspase-3 increased significantly. Our results suggested that normal NSCs could possess direct anti-glioma properties via inhibiting the glioma cell viability, proliferation, invasion and migration. It could be a very promising candidate for glioma treatment.
Collapse
|
50
|
Role of Mesenchymal Stem Cells in Cancer Development and Their Use in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:45-62. [DOI: 10.1007/5584_2017_64] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|