1
|
Zhao Z, Cutmore LC, Baleeiro RB, Hartlebury JJ, Brown N, Chard-Dunmall L, Lemoine N, Wang Y, Marshall JF. The Combination of Oncolytic Virus and Antibody Blockade of TGF-β Enhances the Efficacy of αvβ6-Targeting CAR T Cells Against Pancreatic Cancer in an Immunocompetent Model. Cancers (Basel) 2025; 17:1534. [PMID: 40361460 PMCID: PMC12070938 DOI: 10.3390/cancers17091534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES CAR T cell therapy, as a rapidly advancing immuno-oncology modality, has achieved significant success in the treatment of leukaemia and lymphoma. However, its application in solid tumours remains limited. The challenges include the heterogeneity of tumours, local immunosuppression, poor trafficking and infiltration, life-threatening toxicity and the lack of precise representative immunocompetent research models. Considering its typically dense and immunosuppressive tumour microenvironment (TME) and early metastasis, pancreatic ductal adenocarcinoma (PDAC) was employed as a model to address the challenges that hinder CAR T cell therapies against solid tumours and to expand immunotherapeutic options for advanced disease. METHODS A novel murine A20FMDV2 (A20) CAR T cell targeting integrin αvβ6 (mA20CART) was developed, demonstrating efficient and specific on-target cytotoxicity. The mA20CART cell as a monotherapy for orthotopic pancreatic cancer in an immunocompetent model demonstrated modest efficacy. Therefore, a novel triple therapy regimen, combining mA20CART cells with oncolytic vaccinia virus encoding IL-21 and a TGF-β-blocking antibody was evaluated in vivo. RESULTS The triple therapy improved overall survival, improved the safety profile of the CAR T cell therapy, attenuated metastasis and enhanced T cell infiltration. Notably, the potency of mA20CART was dependent on IL-2 supplementation. CONCLUSIONS This study presents an αvβ6-targeting murine CAR T cell, offering a novel approach to developing CAR T cell technologies for solid tumours and a potential adjuvant therapy for pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yaohe Wang
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Z.Z.); (L.C.C.); (R.B.B.); (J.J.H.); (N.B.); (L.C.-D.); (N.L.)
| | - John F. Marshall
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Z.Z.); (L.C.C.); (R.B.B.); (J.J.H.); (N.B.); (L.C.-D.); (N.L.)
| |
Collapse
|
2
|
Fischer A, Han W, Hu S, Mück-Häusl M, Wannemacher J, Kadri S, Lin Y, Dai R, Christ S, Su Y, Dasgupta B, Sardogan A, Deisenhofer C, Dutta S, Kadri A, Güney TG, Correa-Gallegos D, Mayr CH, Hatz R, Stoleriu MG, Lindner M, Hilgendorff A, Adler H, Machens HG, Schiller HB, Hauck SM, Rinkevich Y. Targeting pleuro-alveolar junctions reverses lung fibrosis in mice. Nat Commun 2025; 16:173. [PMID: 39747171 PMCID: PMC11696612 DOI: 10.1038/s41467-024-55596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Lung fibrosis development utilizes alveolar macrophages, with mechanisms that are incompletely understood. Here, we fate map connective tissue during mouse lung fibrosis and observe disassembly and transfer of connective tissue macromolecules from pleuro-alveolar junctions (PAJs) into deep lung tissue, to activate fibroblasts and fibrosis. Disassembly and transfer of PAJ macromolecules into deep lung tissue occurs by alveolar macrophages, activating cysteine-type proteolysis on pleural mesothelium. The PAJ niche and the disassembly cascade is active in patient lung biopsies, persists in chronic fibrosis models, and wanes down in acute fibrosis models. Pleural-specific viral therapeutic carrying the cysteine protease inhibitor Cystatin A shuts down PAJ disassembly, reverses fibrosis and regenerates chronic fibrotic lungs. Targeting PAJ disassembly by targeting the pleura may provide a unique therapeutic avenue to treat lung fibrotic diseases.
Collapse
Affiliation(s)
- Adrian Fischer
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
| | - Wei Han
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany.
- Member of the German Center of Lung Research (DZL), Munich, Germany.
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Shaoping Hu
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- Zhangzhou Health Vocational College, Zhangzhou, China
| | - Martin Mück-Häusl
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Juliane Wannemacher
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Safwen Kadri
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yue Lin
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Simon Christ
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Yiqun Su
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Bikram Dasgupta
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Aydan Sardogan
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Christoph Deisenhofer
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Subhasree Dutta
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Amal Kadri
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Tankut Gökhan Güney
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Donovan Correa-Gallegos
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Christoph H Mayr
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Rudolf Hatz
- Asklepios Fachkliniken in Munich-Gauting, Munich, Germany
| | | | - Michael Lindner
- Asklepios Fachkliniken in Munich-Gauting, Munich, Germany
- University Department of Visceral and Thoracic Surgery Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anne Hilgendorff
- Helmholtz Zentrum München, Institute of Lung Biology & Disease, Group Mechanism of Neonatal Chronic Lung Disease, Member of the German Center of Lung Research (DZL), Munich, Germany
- Comprehensive Pneumology Center with the CPC-M bioArchive and Institute of Lung Health and Immunity, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Heiko Adler
- Member of the German Center of Lung Research (DZL), Munich, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Munich, Germany
| | - Herbert B Schiller
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Chinese Institutes for Medical Research, Beijing, China.
- Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Taylor CA, Glover M, Maher J. CAR-T cell technologies that interact with the tumour microenvironment in solid tumours. Expert Rev Clin Immunol 2024; 20:849-871. [PMID: 39021098 DOI: 10.1080/1744666x.2024.2380894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T-cells have emerged as a ground-breaking therapy for the treatment of hematological malignancies due to their capacity for rapid tumor-specific killing and long-lasting tumor immunity. However, the same success has not been observed in patients with solid tumors. Largely, this is due to the additional challenges imposed by safe and uniform target selection, inefficient CAR T-cell access to sites of disease and the presence of a hostile immunosuppressive tumor microenvironment. AREAS COVERED Literature was reviewed on the PubMed database from the first description of a CAR by Kuwana, Kurosawa and colleagues in December 1987 through to the present day. This literature indicates that in order to tackle solid tumors, CAR T-cells can be further engineered with additional armoring strategies that facilitate trafficking to and infiltration of malignant lesions together with reversal of suppressive immune checkpoints that operate within solid tumor lesions. EXPERT OPINION In this review, we describe a number of recent advances in CAR T-cell technology that set out to combat the problems imposed by solid tumors including tumor recruitment, infiltration, immunosuppression, metabolic compromise, and hypoxia.
Collapse
Affiliation(s)
| | | | - John Maher
- Leucid Bio Ltd, Guy's Hospital, London, UK
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK
| |
Collapse
|
4
|
Giordano Attianese GMP, Ash S, Irving M. Coengineering specificity, safety, and function into T cells for cancer immunotherapy. Immunol Rev 2023; 320:166-198. [PMID: 37548063 DOI: 10.1111/imr.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Adoptive T-cell transfer (ACT) therapies, including of tumor infiltrating lymphocytes (TILs) and T cells gene-modified to express either a T cell receptor (TCR) or a chimeric antigen receptor (CAR), have demonstrated clinical efficacy for a proportion of patients and cancer-types. The field of ACT has been driven forward by the clinical success of CD19-CAR therapy against various advanced B-cell malignancies, including curative responses for some leukemia patients. However, relapse remains problematic, in particular for lymphoma. Moreover, for a variety of reasons, relative limited efficacy has been demonstrated for ACT of non-hematological solid tumors. Indeed, in addition to pre-infusion challenges including lymphocyte collection and manufacturing, ACT failure can be attributed to several biological processes post-transfer including, (i) inefficient tumor trafficking, infiltration, expansion and retention, (ii) chronic antigen exposure coupled with insufficient costimulation resulting in T-cell exhaustion, (iii) a range of barriers in the tumor microenvironment (TME) mediated by both tumor cells and suppressive immune infiltrate, (iv) tumor antigen heterogeneity and loss, or down-regulation of antigen presentation machinery, (v) gain of tumor intrinsic mechanisms of resistance such as to apoptosis, and (vi) various forms of toxicity and other adverse events in patients. Affinity-optimized TCRs can improve T-cell function and innovative CAR designs as well as gene-modification strategies can be used to coengineer specificity, safety, and function into T cells. Coengineering strategies can be designed not only to directly support the transferred T cells, but also to block suppressive barriers in the TME and harness endogenous innate and adaptive immunity. Here, we review a selection of the remarkable T-cell coengineering strategies, including of tools, receptors, and gene-cargo, that have been developed in recent years to augment tumor control by ACT, more and more of which are advancing to the clinic.
Collapse
Affiliation(s)
- Greta Maria Paola Giordano Attianese
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah Ash
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Qiang L, Hoffman MT, Ali LR, Castillo JI, Kageler L, Temesgen A, Lenehan P, Wang SJ, Bello E, Cardot-Ruffino V, Uribe GA, Yang A, Dougan M, Aguirre AJ, Raghavan S, Pelletier M, Cremasco V, Dougan SK. Transforming Growth Factor-β Blockade in Pancreatic Cancer Enhances Sensitivity to Combination Chemotherapy. Gastroenterology 2023; 165:874-890.e10. [PMID: 37263309 PMCID: PMC10526623 DOI: 10.1053/j.gastro.2023.05.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/30/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND & AIMS Transforming growth factor-b (TGFb) plays pleiotropic roles in pancreatic cancer, including promoting metastasis, attenuating CD8 T-cell activation, and enhancing myofibroblast differentiation and deposition of extracellular matrix. However, single-agent TGFb inhibition has shown limited efficacy against pancreatic cancer in mice or humans. METHODS We evaluated the TGFβ-blocking antibody NIS793 in combination with gemcitabine/nanoparticle (albumin-bound)-paclitaxel or FOLFIRINOX (folinic acid [FOL], 5-fluorouracil [F], irinotecan [IRI] and oxaliplatin [OX]) in orthotopic pancreatic cancer models. Single-cell RNA sequencing and immunofluorescence were used to evaluate changes in tumor cell state and the tumor microenvironment. RESULTS Blockade of TGFβ with chemotherapy reduced tumor burden in poorly immunogenic pancreatic cancer, without affecting the metastatic rate of cancer cells. Efficacy of combination therapy was not dependent on CD8 T cells, because response to TGFβ blockade was preserved in CD8-depleted or recombination activating gene 2 (RAG2-/-) mice. TGFβ blockade decreased total α-smooth muscle actin-positive fibroblasts but had minimal effect on fibroblast heterogeneity. Bulk RNA sequencing on tumor cells sorted ex vivo revealed that tumor cells treated with TGFβ blockade adopted a classical lineage consistent with enhanced chemosensitivity, and immunofluorescence for cleaved caspase 3 confirmed that TGFβ blockade increased chemotherapy-induced cell death in vivo. CONCLUSIONS TGFβ regulates pancreatic cancer cell plasticity between classical and basal cell states. TGFβ blockade in orthotropic models of pancreatic cancer enhances sensitivity to chemotherapy by promoting a classical malignant cell state. This study provides scientific rationale for evaluation of NIS793 with FOLFIRINOX or gemcitabine/nanoparticle (albumin-bound) paclitaxel chemotherapy backbone in the clinical setting and supports the concept of manipulating cancer cell plasticity to increase the efficacy of combination therapy regimens.
Collapse
Affiliation(s)
- Li Qiang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Megan T Hoffman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Lestat R Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jaime I Castillo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lauren Kageler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Ayantu Temesgen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Patrick Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - S Jennifer Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elisa Bello
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Giselle A Uribe
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Annan Yang
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Andrew J Aguirre
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Srivatsan Raghavan
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Marc Pelletier
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts
| | - Viviana Cremasco
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
6
|
Wang W, Al-Hajj M, Alavi AS. Detection and quantification of integrated vector copy number by multiplex droplet digital PCR in dual-transduced CAR T cells. Mol Ther Methods Clin Dev 2023; 30:403-410. [PMID: 37622159 PMCID: PMC10445099 DOI: 10.1016/j.omtm.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/12/2023] [Indexed: 08/26/2023]
Abstract
The success of chimeric antigen receptor (CAR) T cell therapies in refractory hematologic malignancies has prompted investigation of their efficacy in solid tumors. AUTO6NG is a dual-transduced GD2-targeting CAR that encodes distinct modules designed to enhance T cell activity in relapsed/refractory neuroblastoma. The ability to detect and precisely quantify vector copy number (VCN) for each integrated vector is essential for assessing the effect of each module on T cell tumor infiltration, persistence, and clinical activity. Droplet digital PCR (ddPCR) enables accurate, sensitive, and absolute quantification of specific nucleic acid sequences. Compared to standard detection of two targets, multiplex ddPCR assays allow simultaneous detection of up to four targets by selective modulation of signal amplitude while retaining the ability to quantify the target. We have developed a multiplex assay based on the two-channel system for simultaneous detection and quantification of three targets in AUTO6NG CAR T cells. The assay was highly specific, sensitive, accurate, and reproducible across time and samples. No differences were observed in measuring VCN between standard duplex and multiplex assays. Our results demonstrate that ddPCR is an accurate and cost-effective method for simultaneous detection of multiple targets in genomic DNA derived from engineered CAR T cells.
Collapse
Affiliation(s)
- Wei Wang
- Autolus Therapeutics, The MediaWorks, 191 Wood Lane, W12 7FP London, UK
| | - Muhammad Al-Hajj
- Autolus Therapeutics, The MediaWorks, 191 Wood Lane, W12 7FP London, UK
| | - Alireza S. Alavi
- Autolus Therapeutics, The MediaWorks, 191 Wood Lane, W12 7FP London, UK
| |
Collapse
|
7
|
Katiyar V, Chesney J, Kloecker G. Cellular Therapy for Lung Cancer: Focusing on Chimeric Antigen Receptor T (CAR T) Cells and Tumor-Infiltrating Lymphocyte (TIL) Therapy. Cancers (Basel) 2023; 15:3733. [PMID: 37509394 PMCID: PMC10377757 DOI: 10.3390/cancers15143733] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Lung cancer is a leading cause of morbidity and mortality in the United States and worldwide. The introduction of immune checkpoint inhibitors has led to a marked improvement in the outcomes of lung cancer patients. Despite these advances, there is a huge unmet need for therapeutic options in patients who are not candidates for targeted or immunotherapy or those who progress after first-line treatment. With its high mutational burden, lung cancer appears to be an attractive target for novel personalized treatment approaches. In this review, we provide an overview of two adoptive cell therapy approaches-chimeric antigen receptors (CAR) T-cell therapy and Tumor-infiltrating lymphocytes (TILs) in lung cancer with an emphasis on current challenges and future perspectives. While both these therapies are still in the early phases of development in lung cancer and need more refinement, they harbor the potential to be effective treatment options for this group of patients with otherwise poor prognoses.
Collapse
Affiliation(s)
- Vatsala Katiyar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jason Chesney
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Goetz Kloecker
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Nixon BG, Gao S, Wang X, Li MO. TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nat Rev Immunol 2023; 23:346-362. [PMID: 36380023 PMCID: PMC10634249 DOI: 10.1038/s41577-022-00796-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
The immune system responds to cancer in two main ways. First, there are prewired responses involving myeloid cells, innate lymphocytes and innate-like adaptive lymphocytes that either reside in premalignant tissues or migrate directly to tumours, and second, there are antigen priming-dependent responses, in which adaptive lymphocytes are primed in secondary lymphoid organs before homing to tumours. Transforming growth factor-β (TGFβ) - one of the most potent and pleiotropic regulatory cytokines - controls almost every stage of the tumour-elicited immune response, from leukocyte development in primary lymphoid organs to their priming in secondary lymphoid organs and their effector functions in the tumour itself. The complexity of TGFβ-regulated immune cell circuitries, as well as the contextual roles of TGFβ signalling in cancer cells and tumour stromal cells, necessitates the use of rigorous experimental systems that closely recapitulate human cancer, such as autochthonous tumour models, to uncover the underlying immunobiology. The diverse functions of TGFβ in healthy tissues further complicate the search for effective and safe cancer therapeutics targeting the TGFβ pathway. Here we discuss the contextual complexity of TGFβ signalling in tumour-elicited immune responses and explain how understanding this may guide the development of mechanism-based cancer immunotherapy.
Collapse
Affiliation(s)
- Briana G Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Shengyu Gao
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xinxin Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA.
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
de Lima SCG, Fantacini DMC, Furtado IP, Rossetti R, Silveira RM, Covas DT, de Souza LEB. Genome Editing for Engineering the Next Generation of Advanced Immune Cell Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:85-110. [PMID: 37486518 DOI: 10.1007/978-3-031-33325-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Our current genetic engineering capacity through synthetic biology and genome editing is the foundation of a revolution in biomedical science: the use of genetically programmed cells as therapeutics. The prime example of this paradigm is the adoptive transfer of genetically engineered T cells to express tumor-specific receptors, such as chimeric antigen receptors (CARs) or engineered T-cell receptors (TCR). This approach has led to unprecedented complete remission rates in patients with otherwise incurable hematological malignancies. However, this approach is still largely ineffective against solid tumors, which comprise the vast majority of neoplasms. Also, limitations associated with the autologous nature of this therapy and shared markers between cancer cells and T cells further restrict the access to these therapies. Here, we described how cutting-edge genome editing approaches have been applied to unlock the full potential of these revolutionary therapies, thereby increasing therapeutic efficacy and patient accessibility.
Collapse
Affiliation(s)
- Sarah Caroline Gomes de Lima
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Izadora Peter Furtado
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Rossetti
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roberta Maraninchi Silveira
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Eduardo Botelho de Souza
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
Motta CM, Keller MD, Bollard CM. Applications of Virus specific T cell Therapies Post BMT. Semin Hematol 2022; 60:10-19. [PMID: 37080705 DOI: 10.1053/j.seminhematol.2022.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) has been used as a curative standard of care for moderate to severe primary immunodeficiency disorders as well as relapsed hematologic malignancies for over 50 years [1,2]. However, chronic and refractory viral infections remain a leading cause of morbidity and mortality in the immune deficient period following HSCT, where use of available antiviral pharmacotherapies is limited by toxicity and emerging resistance [3]. Adoptive immunotherapy using virus-specific T cells (VSTs) has been explored for over 2 decades [4,5] in patients post-HSCT and has been shown prior phase I-II studies to be safe and effective for treatment or preventions of viral infections including cytomegalovirus, Epstein-Barr virus, BK virus, and adenovirus with minimal toxicity and low risk of graft vs host disease [6-9]. This review summarizes methodologies to generate VSTs the clinical results utilizing VST therapeutics and the challenges and future directions for the field.
Collapse
|
11
|
Feng J, Xu L, Zhang S, Geng L, Zhang T, Yu Y, Yuan R, He Y, Nan Z, Lin M, Guo H. A robust CD8+ T cell-related classifier for predicting the prognosis and efficacy of immunotherapy in stage III lung adenocarcinoma. Front Immunol 2022; 13:993187. [PMID: 36119068 PMCID: PMC9471021 DOI: 10.3389/fimmu.2022.993187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with stage III lung adenocarcinoma (LUAD) have significant survival heterogeneity, meanwhile, CD8+ T cell has a remarkable function in immunotherapy. Therefore, developing novel biomarkers based on CD8+ T cell can help evaluate the prognosis and guide the strategy of immunotherapy for patients with stage III LUAD. Thus, we abstracted twelve datasets from multiple online databases and grouped the stage III LUAD patients into training and validation sets. We then used WGCNA and CIBERSORT, while univariate Cox analysis, LASSO analysis, and multivariate Cox analysis were performed. Subsequently, a novel CD8+ T cell-related classifier including HDFRP3, ARIH1, SMAD2, and UPB1 was developed, which could divide stage III LUAD patients into high- and low-risk groups with distinct survival probability in multiple cohorts (all P < 0.05). Moreover, a robust nomogram including the traditional clinical parameters and risk signature was constructed, and t-ROC, C-index, and calibration curves confirmed its powerful predictive capacity. Besides, we detected the difference in immune cell subpopulations and evaluated the potential benefits of immunotherapy between the two risk subsets. Finally, we verified the correlation between the gene expression and CD8+ T cells included in the model by immunohistochemistry and validated the validity of the model in a real-world cohort. Overall, we constructed a robust CD8+ T cell-related risk model originally which could predict the survival rates in stage III LUAD. What’s more, this model suggested that patients in the high-risk group could benefit from immunotherapy, which has significant implications for accurately predicting the effect of immunotherapy and evaluating the prognosis for patients with stage III LUAD.
Collapse
Affiliation(s)
- Jinteng Feng
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Longwen Xu
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shirong Zhang
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Luying Geng
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tian Zhang
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang Yu
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rui Yuan
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yusheng He
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhuhui Nan
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Min Lin
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Ministry of Education of China (MOE), Xi’an, China
| | - Hui Guo
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China (MOE), Xi’an, China
- *Correspondence: Hui Guo,
| |
Collapse
|
12
|
Fix SM, Forget MA, Sakellariou-Thompson D, Wang Y, Griffiths TM, Lee M, Haymaker CL, Dominguez AL, Basar R, Reyes C, Kumar S, Meyer LA, Hwu P, Bernatchez C, Jazaeri AA. CRISPR-mediated TGFBR2 knockout renders human ovarian cancer tumor-infiltrating lymphocytes resistant to TGF-β signaling. J Immunother Cancer 2022; 10:jitc-2021-003750. [PMID: 35882447 PMCID: PMC9330322 DOI: 10.1136/jitc-2021-003750] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background The correlation between elevated T-cell infiltration and improved survival of ovarian cancer (OvCa) patients suggests that endogenous tumor-infiltrating lymphocytes (TIL) possess some degree of antitumor activity that can be harnessed for OvCa immunotherapy. We previously optimized a protocol for ex vivo OvCa TIL expansion for adoptive cell therapy, which is now being tested in a clinical trial at our institution (NCT03610490). Building on this success, we embarked on genetic modification of OvCa TIL to overcome key immunosuppressive factors present in the tumor microenvironment. Here, we present the preclinical optimization of CRISPR/Cas9-mediated knockout of the TGF-β receptor 2 (TGFBR2) in patient-derived OvCa TIL. Methods OvCa TILs were generated from four patients’ tumor samples obtained at surgical resection and subjected to CRISPR/Cas9-mediated knockout of TGFBR2 before undergoing a rapid expansion protocol. TGFBR2-directed gRNAs were comprehensively evaluated for their TGFBR2 knockout efficiency and off-target activity. Furthermore, the impact of TGFBR2 knockout on TIL expansion, function, and downstream signaling was assayed. Results TGFBR2 knockout efficiencies ranging from 59±6% to 100%±0% were achieved using 5 gRNAs tested in four independent OvCa TIL samples. TGFBR2 knockout TIL were resistant to immunosuppressive TGF-β signaling as evidenced by a lack of SMAD phosphorylation, a lack of global transcriptional changes in response to TGF-β stimulation, equally strong secretion of proinflammatory cytokines in the presence and absence of TGF-β, and improved cytotoxicity in the presence of TGF-β. CRISPR-modification itself did not alter the ex vivo expansion efficiency, immunophenotype, nor the TCR clonal diversity of OvCa TIL. Importantly for clinical translation, comprehensive analysis of CRISPR off-target effects revealed no evidence of off-target activity for our top two TGFBR2-targeting gRNAs. Conclusions CRISPR/Cas9-mediated gene knockout is feasible and efficient in patient-derived OvCa TIL using clinically-scalable methods. We achieved efficient and specific TGFBR2 knockout, yielding an expanded OvCa TIL product that was resistant to the immunosuppressive effects of TGF-β. This study lays the groundwork for clinical translation of CRISPR-modified TIL, providing opportunities for engineering more potent TIL therapies not only for OvCa treatment, but for the treatment of other solid cancers as well.
Collapse
Affiliation(s)
- Samantha M Fix
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marie-Andrée Forget
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Yunfei Wang
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tamara M Griffiths
- Biologics Development, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Minjung Lee
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cara L Haymaker
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ana Lucía Dominguez
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rafet Basar
- Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christopher Reyes
- Cell Biology R&D, Thermo Fisher Scientific, Carlsbad, California, USA
| | - Sanjay Kumar
- Cell Biology R&D, Thermo Fisher Scientific, Carlsbad, California, USA
| | - Larissa A Meyer
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Hwu
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chantale Bernatchez
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amir A Jazaeri
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Nguyen DT, Ogando-Rivas E, Liu R, Wang T, Rubin J, Jin L, Tao H, Sawyer WW, Mendez-Gomez HR, Cascio M, Mitchell DA, Huang J, Sawyer WG, Sayour EJ, Castillo P. CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells 2022; 11:1974. [PMID: 35741103 PMCID: PMC9221866 DOI: 10.3390/cells11121974] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elizabeth Ogando-Rivas
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Ruixuan Liu
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Theodore Wang
- College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Jacob Rubin
- Warrington College of Business, University of Florida, Gainesville, FL 32610, USA;
| | - Linchun Jin
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Haipeng Tao
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - William W. Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Hector R. Mendez-Gomez
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Matthew Cascio
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Jianping Huang
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elias J. Sayour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
14
|
Ding Y, Wang Y, Hu Q. Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210106. [PMID: 37323702 PMCID: PMC10190958 DOI: 10.1002/exp.20210106] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy strategies that use cell-based delivery systems have sparked much interest in the treatment of malignancies, owing to their high biocompatibility, excellent tumor targeting capability, and unique biofunctionalities in the tumor growth process. A variety of design principles for cell-based immunotherapy, including cell surface decoration, cell membrane coating, cell encapsulation, genetically engineered cell, and cell-derived exosomes, give cancer immunotherapy great potential to improve therapeutic efficacy and reduce adverse effects. However, the treatment efficacy of cell-based delivery methods for immunotherapy is still limited, and practical uses are hampered due to complex physiological and immunological obstacles, such as physical barriers to immune infiltration, immunosuppressive tumor microenvironment, upregulation of immunosuppressive pathways, and metabolic restriction. In this review, we present an overview of the design principles of cell-based delivery systems in cancer immunotherapy to maximize the therapeutic impact, along with anatomical, metabolic, and immunological impediments in using cell-based immunotherapy to treat cancer. Following that, a summary of novel delivery strategies that have been created to overcome these obstacles to cell-based immunotherapeutic delivery systems is provided. Also, the obstacles and prospects of next-step development of cell-based delivery systems for cancer immunotherapy are concluded in the end.
Collapse
Affiliation(s)
- Yingyue Ding
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Carbone Cancer CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Yixin Wang
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Carbone Cancer CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Quanyin Hu
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Carbone Cancer CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| |
Collapse
|
15
|
Narayan V, Barber-Rotenberg JS, Jung IY, Lacey SF, Rech AJ, Davis MM, Hwang WT, Lal P, Carpenter EL, Maude SL, Plesa G, Vapiwala N, Chew A, Moniak M, Sebro RA, Farwell MD, Marshall A, Gilmore J, Lledo L, Dengel K, Church SE, Hether TD, Xu J, Gohil M, Buckingham TH, Yee SS, Gonzalez VE, Kulikovskaya I, Chen F, Tian L, Tien K, Gladney W, Nobles CL, Raymond HE, Hexner EO, Siegel DL, Bushman FD, June CH, Fraietta JA, Haas NB. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med 2022; 28:724-734. [PMID: 35314843 PMCID: PMC10308799 DOI: 10.1038/s41591-022-01726-1] [Citation(s) in RCA: 278] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have demonstrated promising efficacy, particularly in hematologic malignancies. One challenge regarding CAR T cells in solid tumors is the immunosuppressive tumor microenvironment (TME), characterized by high levels of multiple inhibitory factors, including transforming growth factor (TGF)-β. We report results from an in-human phase 1 trial of castration-resistant, prostate cancer-directed CAR T cells armored with a dominant-negative TGF-β receptor (NCT03089203). Primary endpoints were safety and feasibility, while secondary objectives included assessment of CAR T cell distribution, bioactivity and disease response. All prespecified endpoints were met. Eighteen patients enrolled, and 13 subjects received therapy across four dose levels. Five of the 13 patients developed grade ≥2 cytokine release syndrome (CRS), including one patient who experienced a marked clonal CAR T cell expansion, >98% reduction in prostate-specific antigen (PSA) and death following grade 4 CRS with concurrent sepsis. Acute increases in inflammatory cytokines correlated with manageable high-grade CRS events. Three additional patients achieved a PSA reduction of ≥30%, with CAR T cell failure accompanied by upregulation of multiple TME-localized inhibitory molecules following adoptive cell transfer. CAR T cell kinetics revealed expansion in blood and tumor trafficking. Thus, clinical application of TGF-β-resistant CAR T cells is feasible and generally safe. Future studies should use superior multipronged approaches against the TME to improve outcomes.
Collapse
Affiliation(s)
- Vivek Narayan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie S Barber-Rotenberg
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - In-Young Jung
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew J Rech
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priti Lal
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica L Carpenter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon L Maude
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neha Vapiwala
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne Chew
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Moniak
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronnie A Sebro
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D Farwell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Marshall
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan Gilmore
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lester Lledo
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karen Dengel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Jun Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mercy Gohil
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas H Buckingham
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie S Yee
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Vanessa E Gonzalez
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fang Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lifeng Tian
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyle Tien
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Whitney Gladney
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher L Nobles
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hayley E Raymond
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth O Hexner
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald L Siegel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joseph A Fraietta
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| | - Naomi B Haas
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Andrea AE, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Front Immunol 2022; 13:830292. [PMID: 35211124 PMCID: PMC8861853 DOI: 10.3389/fimmu.2022.830292] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
During this last decade, adoptive transfer of T lymphocytes genetically modified to express chimeric antigen receptors (CARs) emerged as a valuable therapeutic strategy in hematological cancers. However, this immunotherapy has demonstrated limited efficacy in solid tumors. The main obstacle encountered by CAR-T cells in solid malignancies is the immunosuppressive tumor microenvironment (TME). The TME impedes tumor trafficking and penetration of T lymphocytes and installs an immunosuppressive milieu by producing suppressive soluble factors and by overexpressing negative immune checkpoints. In order to overcome these hurdles, new CAR-T cells engineering strategies were designed, to potentiate tumor recognition and infiltration and anti-cancer activity in the hostile TME. In this review, we provide an overview of the major mechanisms used by tumor cells to evade immune defenses and we critically expose the most optimistic engineering strategies to make CAR-T cell therapy a solid option for solid tumors.
Collapse
Affiliation(s)
- Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Andrada Chiron
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Sarah Mallah
- Faculty of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Stéphanie Bessoles
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Guillaume Sarrabayrouse
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Salima Hacein-Bey-Abina
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
17
|
Stock S, Kluever AK, Endres S, Kobold S. Enhanced Chimeric Antigen Receptor T Cell Therapy through Co-Application of Synergistic Combination Partners. Biomedicines 2022; 10:biomedicines10020307. [PMID: 35203517 PMCID: PMC8869718 DOI: 10.3390/biomedicines10020307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable response rates and revolutionized the treatment of patients suffering from defined hematological malignancies. However, many patients still do not respond to this therapy or relapse after an initial remission, underscoring the need for improved efficacy. Insufficient in vivo activity, persistence, trafficking, and tumor infiltration of CAR T cells, as well as antigen escape and treatment-associated adverse events, limit the therapeutic success. Multiple strategies and approaches have been investigated to further improve CAR T cell therapy. Besides genetic modification of the CAR itself, the combination with other treatment modalities has the potential to improve this approach. In particular, combining CAR T cells with clinically approved compounds such as monoclonal antibodies and small molecule inhibitors might be a promising strategy. Combination partners could already be applied during the production process to influence the cellular composition and immunophenotype of the final CAR T cell product. Alternatively, simultaneous administration of clinically approved compounds with CAR T cells would be another feasible avenue. In this review, we will discuss current strategies to combine CAR T cells with compounds to overcome recent limitations and further enhance this promising cancer therapy, potentially broadening its application beyond hematology.
Collapse
Affiliation(s)
- Sophia Stock
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, 80337 Munich, Germany; (A.-K.K.); (S.E.)
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, 81337 Munich, Germany
- Correspondence: (S.S.); (S.K.)
| | - Anna-Kristina Kluever
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, 80337 Munich, Germany; (A.-K.K.); (S.E.)
| | - Stefan Endres
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, 80337 Munich, Germany; (A.-K.K.); (S.E.)
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, 80337 Munich, Germany; (A.-K.K.); (S.E.)
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
- Correspondence: (S.S.); (S.K.)
| |
Collapse
|
18
|
Zur RT, Adler G, Shamalov K, Tal Y, Ankri C, Cohen CJ. Adoptive T-cell Immunotherapy: Perfecting Self-Defenses. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:253-294. [PMID: 35165867 DOI: 10.1007/978-3-030-91311-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an important part of the immune system, T lymphocytes exhibit undoubtedly an important role in targeting and eradicating cancer. However, despite these characteristics, their natural antitumor response may be insufficient. Numerous clinical trials in terminally ill cancer patients testing the design of novel and efficient immunotherapeutic approaches based on the adoptive transfer of autologous tumor-specific T lymphocytes have shown encouraging results. Moreover, this also led to the approval of engineered T-cell therapies in patients. Herein, we will expand on the development and the use of such strategies using tumor-infiltrating lymphocytes or genetically engineered T-cells. We will also comment on the requirements and potential hurdles encountered when elaborating and implementing such treatments as well as the exciting prospects for this kind of emerging personalized medicine therapy.
Collapse
Affiliation(s)
- Raphaëlle Toledano Zur
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Adler
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Katerina Shamalov
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yair Tal
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Chen Ankri
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Cyrille J Cohen
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
19
|
Silk JD, Abbott RJM, Adams KJ, Bennett AD, Brett S, Cornforth TV, Crossland KL, Figueroa DJ, Jing J, O'Connor C, Pachnio A, Patasic L, Peredo CE, Quattrini A, Quinn LL, Rust AG, Saini M, Sanderson JP, Steiner D, Tavano B, Viswanathan P, Wiedermann GE, Wong R, Jakobsen BK, Britten CM, Gerry AB, Brewer JE. Engineering Cancer Antigen-Specific T Cells to Overcome the Immunosuppressive Effects of TGF-β. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:169-180. [PMID: 34853077 DOI: 10.4049/jimmunol.2001357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Adoptive T cell therapy with T cells expressing affinity-enhanced TCRs has shown promising results in phase 1/2 clinical trials for solid and hematological tumors. However, depth and durability of responses to adoptive T cell therapy can suffer from an inhibitory tumor microenvironment. A common immune-suppressive agent is TGF-β, which is secreted by tumor cells and cells recruited to the tumor. We investigated whether human T cells could be engineered to be resistant to inhibition by TGF-β. Truncating the intracellular signaling domain from TGF-β receptor (TGFβR) II produces a dominant-negative receptor (dnTGFβRII) that dimerizes with endogenous TGFβRI to form a receptor that can bind TGF-β but cannot signal. We previously generated specific peptide enhanced affinity receptor TCRs recognizing the HLA-A*02-restricted peptides New York esophageal squamous cell carcinoma 1 (NY-ESO-1)157-165/l-Ag family member-1A (TCR: GSK3377794, formerly NY-ESO-1c259) and melanoma Ag gene A10254-262 (TCR: ADP-A2M10, formerly melanoma Ag gene A10c796). In this article, we show that exogenous TGF-β inhibited in vitro proliferation and effector functions of human T cells expressing these first-generation high-affinity TCRs, whereas inhibition was reduced or abolished in the case of second-generation TCRs coexpressed with dnTGFβRII (e.g., GSK3845097). TGF-β isoforms and a panel of TGF-β-associated genes are overexpressed in a range of cancer indications in which NY-ESO-1 is commonly expressed, particularly in synovial sarcoma. As an example, immunohistochemistry/RNAscope identified TGF-β-positive cells close to T cells in tumor nests and stroma, which had low frequencies of cells expressing IFN-γ in a non-small cell lung cancer setting. Coexpression of dnTGFβRII may therefore improve the efficacy of TCR-transduced T cells.
Collapse
Affiliation(s)
| | | | | | | | - Sara Brett
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | | | | | - David J Figueroa
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | - Junping Jing
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | | | | | - Lea Patasic
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | - Carlos E Peredo
- Cell and Gene Therapy Product Development and Supply, Analytical Development, GlaxoSmithKline, Collegeville, PA
| | | | - Laura L Quinn
- Adaptimmune Ltd., Milton Park, Abingdon, United Kingdom
| | - Alistair G Rust
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | - Manoj Saini
- Adaptimmune Ltd., Milton Park, Abingdon, United Kingdom
| | | | - Dylan Steiner
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | | | | | | | - Ryan Wong
- Adaptimmune Ltd., Milton Park, Abingdon, United Kingdom
| | | | - Cedrik M Britten
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | | | | |
Collapse
|
20
|
Chung H, Jung H, Noh JY. Emerging Approaches for Solid Tumor Treatment Using CAR-T Cell Therapy. Int J Mol Sci 2021; 22:ijms222212126. [PMID: 34830003 PMCID: PMC8621681 DOI: 10.3390/ijms222212126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is becoming more important in the clinical setting, especially for cancers resistant to conventional chemotherapy, including targeted therapy. Chimeric antigen receptor (CAR)-T cell therapy, which uses patient’s autologous T cells, combined with engineered T cell receptors, has shown remarkable results, with five US Food and Drug Administration (FDA) approvals to date. CAR-T cells have been very effective in hematologic malignancies, such as diffuse large B cell lymphoma (DLBCL), B cell acute lymphoblastic leukemia (B-ALL), and multiple myeloma (MM); however, its effectiveness in treating solid tumors has not been evaluated clearly. Therefore, many studies and clinical investigations are emerging to improve the CAR-T cell efficacy in solid tumors. The novel therapeutic approaches include modifying CARs in multiple ways or developing a combination therapy with immune checkpoint inhibitors and chemotherapies. In this review, we focus on the challenges and recent advancements in CAR-T cell therapy for solid tumors.
Collapse
Affiliation(s)
- Hyunmin Chung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon 34134, Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- Department of Functional Genomics, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (H.J.); (J.-Y.N.)
| | - Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- Correspondence: (H.J.); (J.-Y.N.)
| |
Collapse
|
21
|
Watanabe K, Nishikawa H. Engineering strategies for broad application of TCR-T and CAR-T cell therapies. Int Immunol 2021; 33:551-562. [PMID: 34374779 DOI: 10.1093/intimm/dxab052] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Adoptive cell therapy, including the transfer of tumor-infiltrating T lymphocytes after in vitro expansion or T cells redirected to tumor antigens using antigen-specific transgenic T cell receptor T cells (TCR-T cells) or chimeric antigen receptor T cells (CAR-T cells), has shown a significant clinical impact. Particularly, several types of CAR-T cell therapies have been approved for the treatment of hematological malignancies. The striking success of CAR-T cell therapies in hematological malignancies motivates their further expansion to a wide range of solid tumors, yet multiple obstacles, including the lack of proper target antigens exhibiting a tumor-specific expression pattern and the immunosuppressive tumor microenvironment (TME) impairing the effector functions of adoptively transferred T cells, have prevented clinical application. Gene engineering technologies such as the CRISPR/Cas9 system have enabled flexible reprograming of TCR/CAR-T cell signaling or loading genes that are targets of the tumor immunosuppression as a payload to overcome the difficulties. Here, we discuss recent advances in TCR/CAR-T cell engineering: various promising approaches to enhance the antitumor activity of adoptively transferred T cells in the TME for maximizing the efficacy and the safety of adoptive cell therapy are now being tested in the clinic, especially targeting solid tumors.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
22
|
Liu B, Zhu X, Kong L, Wang M, Spanoudis C, Chaturvedi P, George V, Jiao JA, You L, Egan JO, Echeverri C, Gallo VL, Xing J, Ravelo K, Prendes C, Antolinez J, Denissova J, Muniz GJ, Jeng EK, Rhode PR, Wong HC. Bifunctional TGF-β trap/IL-15 Protein Complex Elicits Potent NK Cell and CD8 + T Cell Immunity Against Solid Tumors. Mol Ther 2021; 29:2949-2962. [PMID: 34091051 DOI: 10.1016/j.ymthe.2021.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022] Open
Abstract
Advances in immunostimulatory and anti-immunosuppressive therapeutics have revolutionized cancer treatment. However, novel immunotherapeutics with these dual functions are not frequently reported. Here we describe the creation of a heterodimeric bifunctional fusion molecule, HCW9218, constructed using our soluble tissue factor-based scaffold technology. This complex comprises extracellular domains of the human transforming growth factor-β (TGF-β) receptor II and a human interleukin (IL)-15/IL-15 receptor α complex. HCW9218 can be readily expressed in CHO cells and purified using antibody-based affinity chromatography in a large-scale manufacturing setting. HCW9218 potently activates mouse natural killer (NK) cells and CD8+ T cells in vitro and in vivo to enhance cell proliferation, metabolism and antitumor cytotoxic activities. Similarly, human immune cells become activated with increased cytotoxicity following incubation with HCW9218. This fusion complex also exhibits TGF-β neutralizing activity in vitro and sequesters plasma TGF-β in vivo. In a syngeneic B16F10 melanoma model, HCW9218 displayed strong antitumor activity mediated by NK cells and CD8+ T cells, and increased their infiltration into tumors. Repeat-dose subcutaneous administration of HCW9218 was well tolerated by mice, with a half-life sufficient to provide long lasting biological activity. Thus, HCW9218 may serve as a novel therapeutic to simultaneously provide immunostimulation and lessen immunosuppression associated with tumors.
Collapse
Affiliation(s)
- Bai Liu
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | | | - Lin Kong
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | - Meng Wang
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | | | | | | | | | - Lijing You
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | | | | | | | - Jilan Xing
- HCW Biologics Inc., Miramar, FL, 33025 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mills JK, Henderson MA, Giuffrida L, Petrone P, Westwood JA, Darcy PK, Neeson PJ, Kershaw MH, Gyorki DE. Generating CAR T cells from tumor-infiltrating lymphocytes. Ther Adv Vaccines Immunother 2021; 9:25151355211017119. [PMID: 34159293 PMCID: PMC8186112 DOI: 10.1177/25151355211017119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T-cell therapies have demonstrated promising, though limited, efficacy against melanoma. Methods: We designed a model system to explore the efficacy of dual specific T cells derived from melanoma patient TILs by transduction with a Her2-specific CAR. Results: Metastatic melanoma cells in our biobank constitutively expressed Her2 antigen. CAR-TIL produced greater amounts of IFN compared with parental TIL, when co-cultured with Her2 expressing tumor lines, including autologous melanoma tumor lines, although no consistent increase in cytotoxicity by TIL was afforded by expression of a CAR. Results of an in vivo study in NSG mice demonstrated tumor shrinkage when CAR-TILs were used in an adoptive cell therapy protocol. Conclusion: Potential limitations of transduced TIL in our study included limited proliferative potential and a terminally differentiated phenotype, which would need addressing in further work before consideration of clinical translation.
Collapse
Affiliation(s)
- Jane K Mills
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Melissa A Henderson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lauren Giuffrida
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Pasquale Petrone
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jennifer A Westwood
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - David E Gyorki
- Department of Cancer Surgery, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
24
|
Glover M, Avraamides S, Maher J. How Can We Engineer CAR T Cells to Overcome Resistance? Biologics 2021; 15:175-198. [PMID: 34040345 PMCID: PMC8141613 DOI: 10.2147/btt.s252568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved unrivalled success in the treatment of B cell and plasma cell malignancies, with five CAR T cell products now approved by the US Food and Drug Administration (FDA). However, CAR T cell therapies for solid tumours have not been nearly as successful, owing to several additional challenges. Here, we discuss mechanisms of tumour resistance in CAR T cell therapy and the emerging strategies that are under development to engineer CAR T cells to overcome resistance.
Collapse
Affiliation(s)
- Maya Glover
- Leucid Bio Ltd., Guy's Hospital, London, SE1 9RT, UK
| | - Stephanie Avraamides
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, SE1 9RT, UK
| | - John Maher
- Leucid Bio Ltd., Guy's Hospital, London, SE1 9RT, UK.,King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, SE1 9RT, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK.,Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, BN21 2UD, UK
| |
Collapse
|
25
|
Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol 2021; 18:1085-1095. [PMID: 33785843 PMCID: PMC8093220 DOI: 10.1038/s41423-021-00655-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/07/2021] [Indexed: 02/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has achieved successful outcomes against hematological malignancies and provided a new impetus for treating solid tumors. However, the efficacy of CAR-T cells for solid tumors remains unsatisfactory. The tumor microenvironment has an important role in interfering with and inhibiting the effector function of immune cells, among which upregulated inhibitory checkpoint receptors, soluble suppressive cytokines, altered chemokine expression profiles, aberrant vasculature, complicated stromal composition, hypoxia and abnormal tumor metabolism are major immunosuppressive mechanisms. In this review, we summarize the inhibitory factors that affect the function of CAR-T cells in tumor microenvironment and discuss approaches to improve CAR-T cell efficacy for solid tumor treatment by targeting those barriers.
Collapse
|
26
|
Jung JG, Le A. Metabolism of Immune Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:173-185. [PMID: 34014543 DOI: 10.1007/978-3-030-65768-0_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment (TME) is a complex biological structure surrounding tumor cells and includes blood vessels, immune cells, fibroblasts, adipocytes, and extracellular matrix (ECM) [1, 2]. These heterogeneous surrounding structures provide nutrients, metabolites, and signaling molecules to provide a cancer-friendly environment. The metabolic interplay between immune cells and cancer cells in the TME is a key feature not only for understanding tumor biology but also for discovering cancer cells' vulnerability. As cancer immunotherapy to treat cancer patients and the use of metabolomics technologies become more and more common [3], the importance of the interplay between cancer cells and immune cells in the TME is emerging with respect to not only cell-to-cell interactions but also metabolic pathways. This interaction between immune cells and cancer cells is a complex and dynamic process in which immune cells act as a determinant factor of cancer cells' fate and vice versa. In this chapter, we provide an overview of the metabolic interplay between immune cells and cancer cells and discuss the therapeutic opportunities as a result of this interplay in order to define targets for cancer treatment. It is important to understand and identify therapeutic targets that interrupt this cancerpromoting relationship between cancer cells and the surrounding immune cells, allowing for maximum efficacy of immune checkpoint inhibitors as well as other genetic and cellular therapies.
Collapse
Affiliation(s)
- Jin G Jung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
27
|
Jin J, Cheng J, Huang M, Luo H, Zhou J. Fueling chimeric antigen receptor T cells with cytokines. Am J Cancer Res 2020; 10:4038-4055. [PMID: 33414984 PMCID: PMC7783740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T therapy started a new era of tumor treatment, especially for hematological malignancies. However, many challenges remain, including low-level proliferation and short-term persistence, insufficient CAR T-cell trafficking, suppressive tumor microenvironment (TME), frequent adverse events and the unaffordable manufacturing process. Cytokines are pleiotropic hormones involved in multiple processes of immunity, including activation, expansion, differentiation, and migration of immune cells. Both pre-clinical models and clinical trials showed that armoring CAR-T cells with cytokines strengthened the anti-tumor responses of CAR T cells. This review looked into the key role of cytokines as a promoter of anti-tumor activities of CAR-T cells and consequently a facilitator of clinical translation, mainly, from cytokines of the common γ-chains family, chemokines and chemokine receptors, immunosuppressive molecules and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Jin Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhan, Hubei, China
| | - Jiali Cheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhan, Hubei, China
| | - Meijuan Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhan, Hubei, China
| | - Hui Luo
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhan, Hubei, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei ProvinceWuhan, Hubei, China
| |
Collapse
|
28
|
Wang X, Wu Z, Qiu W, Chen P, Xu X, Han W. Programming CAR T cells to enhance anti-tumor efficacy through remodeling of the immune system. Front Med 2020; 14:726-745. [PMID: 32794014 DOI: 10.1007/s11684-020-0746-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor (CAR) T cells have been indicated effective in treating B cell acute lymphoblastic leukemia and non-Hodgkin lymphoma and have shown encouraging results in preclinical and clinical studies. However, CAR T cells have achieved minimal success against solid malignancies because of the additional obstacles of their insufficient migration into tumors and poor amplification and persistence, in addition to antigen-negative relapse and an immunosuppressive microenvironment. Various preclinical studies are exploring strategies to overcome the above challenges. Mobilization of endogenous immune cells is also necessary for CAR T cells to obtain their optimal therapeutic effect given the importance of the innate immune responses in the elimination of malignant tumors. In this review, we focus on the recent advances in the engineering of CAR T cell therapies to restore the immune response in solid malignancies, especially with CAR T cells acting as cellular carriers to deliver immunomodulators to tumors to mobilize the endogenous immune response. We also explored the sensitizing effects of conventional treatment approaches, such as chemotherapy and radiotherapy, on CAR T cell therapy. Finally, we discuss the combination of CAR T cells with biomaterials or oncolytic viruses to enhance the anti-tumor outcomes of CAR T cell therapies in solid tumors.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Biotechnology, Southwest University, Chongqing, 400715, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Stem Cell & Regenerative Medicine, Daping Hospital and Research Institute of Surgery, Chongqing, 400042, China
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhiqiang Wu
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wei Qiu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Stem Cell & Regenerative Medicine, Daping Hospital and Research Institute of Surgery, Chongqing, 400042, China
| | - Ping Chen
- College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xiang Xu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Stem Cell & Regenerative Medicine, Daping Hospital and Research Institute of Surgery, Chongqing, 400042, China.
| | - Weidong Han
- Molecular & Immunological Department, Bio-therapeutic Department, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
29
|
Leon E, Ranganathan R, Savoldo B. Adoptive T cell therapy: Boosting the immune system to fight cancer. Semin Immunol 2020; 49:101437. [PMID: 33262066 DOI: 10.1016/j.smim.2020.101437] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/06/2023]
Abstract
Cellular therapies have shown increasing promise as a cancer treatment. Encouraging results against hematologic malignancies are paving the way to move into solid tumors. In this review, we will focus on T-cell therapies starting from tumor infiltrating lymphocytes (TILs) to optimized T-cell receptor-modified (TCR) cells and chimeric antigen receptor-modified T cells (CAR-Ts). We will discuss the positive preclinical and clinical findings of these approaches, along with some of the persisting barriers that need to be overcome to improve outcomes.
Collapse
Affiliation(s)
- Ernesto Leon
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Raghuveer Ranganathan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Immunology and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
30
|
Gaissmaier L, Elshiaty M, Christopoulos P. Breaking Bottlenecks for the TCR Therapy of Cancer. Cells 2020; 9:E2095. [PMID: 32937956 PMCID: PMC7564186 DOI: 10.3390/cells9092095] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors have redefined the treatment of cancer, but their efficacy depends critically on the presence of sufficient tumor-specific lymphocytes, and cellular immunotherapies develop rapidly to fill this gap. The paucity of suitable extracellular and tumor-associated antigens in solid cancers necessitates the use of neoantigen-directed T-cell-receptor (TCR)-engineered cells, while prevention of tumor evasion requires combined targeting of multiple neoepitopes. These can be currently identified within 2 weeks by combining cutting-edge next-generation sequencing with bioinformatic pipelines and used to select tumor-reactive TCRs in a high-throughput manner for expeditious scalable non-viral gene editing of autologous or allogeneic lymphocytes. "Young" cells with a naive, memory stem or central memory phenotype can be additionally armored with "next-generation" features against exhaustion and the immunosuppressive tumor microenvironment, where they wander after reinfusion to attack heavily pretreated and hitherto hopeless neoplasms. Facilitated by major technological breakthroughs in critical manufacturing steps, based on a solid preclinical rationale, and backed by rapidly accumulating evidence, TCR therapies break one bottleneck after the other and hold the promise to become the next immuno-oncological revolution.
Collapse
Affiliation(s)
- Lena Gaissmaier
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Mariam Elshiaty
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Xu Y, Liu J, Liu Z, Ren H, Yong J, Li W, Wang H, Yang Z, Wang Y, Chen G, Li X. Blockade of Platelets Using Tumor-Specific NO-Releasing Nanoparticles Prevents Tumor Metastasis and Reverses Tumor Immunosuppression. ACS NANO 2020; 14:9780-9795. [PMID: 32806062 DOI: 10.1021/acsnano.0c01687] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumor microenvironment maintains a sufficient immunosuppressive state owing to the existence of the immunosuppressive factors. The most prominent such factor is transforming growth factor β (TGF-β), which is mainly provided by platelets. Moreover, platelets have been shown to be the main accomplice in assisting tumor metastasis. Therefore, blocking tumor-associated platelets is endowed with functions of enhancing immunity and reducing metastasis. Herein, we designed a tumor microenvironment-responsive nitric oxide (NO) release nanoparticle, Ptx@AlbSNO, which was able to specifically and safely co-deliver the antiplatelet agent NO and the chemotherapeutic agent paclitaxel (Ptx) into tumor tissues and inhibit platelet-tumor cell interactions. We discovered that Ptx@AlbSNO could successfully block tumor-specific platelet functions, thereby suppressing the process of tumor epithelial-mesenchymal transition (EMT), preventing platelet adhesion around circulating tumor cells (CTCs) and reducing distant metastasis. In vivo studies demonstrate that the co-delivery of NO and Ptx can suppress primary tumor growth. With the ability to effectively inhibit activated platelets and TGF-β secretion in tumors, Ptx@AlbSNO can enhance intratumoral immune cell infiltration to reverse the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Yan Xu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Jiwei Liu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Zhangya Liu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Jiahui Yong
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Weilan Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Hao Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Yang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Yonglu Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Guoguang Chen
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
32
|
Ji H, Liu G, Han J, Zhu F, Dong X, Li B. C-phycocyanin inhibits epithelial-to-mesenchymal transition in Caski cells. Cancer Cell Int 2020; 20:292. [PMID: 32655324 PMCID: PMC7339474 DOI: 10.1186/s12935-020-01384-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background In cervical cancer, most patients die of metastasis. The epithelial-to-mesenchymal transition (EMT) is a pivotal and intricate process that increases the metastatic potential of cervical cancer. C-phycocyanin (C-PC) is a natural marine product isolated and purified from Spirulina platensis, has been investigated that has anti-cancer function. The aim of this study was to explore the inhibitory effect of C-phycocyanin on the migration and invasion of cervical cancer cells induced by transforming growth factor-β1 (TGF-β1), so as to provide a new idea for the treatment and prognosis of cervical cancer. Methods A wound-healing assay, an invasion assay, immunofluorescence assay, western blot, flow cytometry and real-time reverse transcriptione polymerase chain reaction were explored in cervical cancer Caski cell lines. TGF-β/smad signaling pathway was evaluated of in Caski cell lines. Results Our study indicated that TGF-β1 induced EMT in cervical cancer cells. C-phycocyanin inhibited EMT in Caski cells by down-regulating N-cadherin and up-regulating E-cadherin protein expression. Furthermore, C-phycocyanin could inhibit the expression and proteins Twist, Snail and Zeb1 transcription factors related to EMT. In addition, C-phycocyanin could inhibit the migration and invasion of Caski cells induced by TGF-β1. Besides, C-phycocyanin inhibited EMT through TGF-β/smads signaling pathway. We also found C-phycocyanin induced cell cycle G0/G1 arrest by decreasing protein expression levels of Cyclin D1 and p27. Conclusions C-phycocyanin reversed TGF-β1-induced epithelial-to-mesenchymal transition in cervical cancer cells and down-regulated the TGF-β/samd signaling pathway induced G0/G1 arrest of tumor cell cycle.
Collapse
Affiliation(s)
- Huanhuan Ji
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071 People's Republic of China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071 People's Republic of China
| | - Jingjing Han
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071 People's Republic of China
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071 People's Republic of China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071 People's Republic of China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071 People's Republic of China
| |
Collapse
|
33
|
Rath JA, Arber C. Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy. Cells 2020; 9:E1485. [PMID: 32570906 PMCID: PMC7349724 DOI: 10.3390/cells9061485] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
T cell receptor (TCR)-based adoptive T cell therapies (ACT) hold great promise for the treatment of cancer, as TCRs can cover a broad range of target antigens. Here we summarize basic, translational and clinical results that provide insight into the challenges and opportunities of TCR-based ACT. We review the characteristics of target antigens and conventional αβ-TCRs, and provide a summary of published clinical trials with TCR-transgenic T cell therapies. We discuss how synthetic biology and innovative engineering strategies are poised to provide solutions for overcoming current limitations, that include functional avidity, MHC restriction, and most importantly, the tumor microenvironment. We also highlight the impact of precision genome editing on the next iteration of TCR-transgenic T cell therapies, and the discovery of novel immune engineering targets. We are convinced that some of these innovations will enable the field to move TCR gene therapy to the next level.
Collapse
MESH Headings
- Biomedical Engineering
- Cell Engineering
- Cell- and Tissue-Based Therapy/adverse effects
- Cell- and Tissue-Based Therapy/methods
- Cell- and Tissue-Based Therapy/trends
- Gene Editing
- Genetic Therapy
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Lymphocyte Activation
- Molecular Targeted Therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Safety
- Synthetic Biology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
| | - Caroline Arber
- Department of oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
34
|
Groeneveldt C, van Hall T, van der Burg SH, Ten Dijke P, van Montfoort N. Immunotherapeutic Potential of TGF-β Inhibition and Oncolytic Viruses. Trends Immunol 2020; 41:406-420. [PMID: 32223932 DOI: 10.1016/j.it.2020.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
Abstract
In cancer immunotherapy, a patient's own immune system is harnessed against cancer. Immune checkpoint inhibitors release the brakes on tumor-reactive T cells and, therefore, are particularly effective in treating certain immune-infiltrated solid tumors. By contrast, solid tumors with immune-silent profiles show limited efficacy of checkpoint blockers due to several barriers. Recent discoveries highlight transforming growth factor-β (TGF-β)-induced immune exclusion and a lack of immunogenicity as examples of these barriers. In this review, we summarize preclinical and clinical evidence that illustrates how the inhibition of TGF-β signaling and the use of oncolytic viruses (OVs) can increase the efficacy of immunotherapy, and discuss the promise and challenges of combining these approaches with immune checkpoint blockade.
Collapse
Affiliation(s)
- Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Nadine van Montfoort
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
35
|
Abstract
As a specifically programmable, living immunotherapeutic drug, chimeric antigen receptor (CAR)-modified T cells are providing an alternative treatment option for a broad variety of diseases including so far refractory cancer. By recognizing a tumor-associated antigen, the CAR triggers an anti-tumor response of engineered patient's T cells achieving lasting remissions in the treatment of leukemia and lymphoma. During the last years, significant progress was made in optimizing the CAR design, in manufacturing CAR-engineered T cells, and in the clinical management of patients showing promise to establish adoptive CAR T cell therapy as an effective treatment option in the forefront.
Collapse
Affiliation(s)
- Astrid Holzinger
- RCI Regensburg Center for Interventional Immunology, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
- Chair Genetic Immunotherapy, RCI c/o University Hospital Regensburg, Regensburg, Germany
| | - Hinrich Abken
- RCI Regensburg Center for Interventional Immunology, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany.
- Chair Genetic Immunotherapy, RCI c/o University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
36
|
Habib R, Nagrial A, Micklethwaite K, Gowrishankar K. Chimeric Antigen Receptors for the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:117-143. [PMID: 32588326 DOI: 10.1007/978-3-030-44518-8_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has dramatically revolutionised cancer treatment. The FDA approval of two CAR-T cell products for otherwise incurable refractory B-cell acute lymphoblastic leukaemia (B-ALL) and aggressive B-cell non-Hodgkin lymphoma has established this treatment as an effective immunotherapy option. The race for extending CAR-T therapy for various tumours is well and truly underway. However, response rates in solid organ cancers have been inadequate thus far, partly due to challenges posed by the tumour microenvironment (TME). The TME is a complex structure whose role is to subserve the persistence and proliferation of tumours as well as support their escape from immune surveillance. It presents several obstacles like inhibitory immune checkpoint proteins, immunosuppressive cells, cytokines, chemokines, stromal factors and adverse metabolic pathways. CAR structure and CAR-T therapies have evolved to overcome these obstacles, and we now have several novel CARs with improved anti-tumour activity demonstrated in xenograft models and in some clinical trials. This chapter provides a discussion of the evolution of CAR-T therapies to enable targeting specific aspects of the TME.
Collapse
Affiliation(s)
- Rosemary Habib
- Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW, Australia
| | - Adnan Nagrial
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Blood and Bone Marrow Transplant Unit, Department of Haematology, Sydney Medical School, Westmead Hospital, Sydney, NSW, Australia
| | - Kavitha Gowrishankar
- Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
37
|
Dafni U, Michielin O, Lluesma SM, Tsourti Z, Polydoropoulou V, Karlis D, Besser MJ, Haanen J, Svane IM, Ohashi PS, Kammula US, Orcurto A, Zimmermann S, Trueb L, Klebanoff CA, Lotze MT, Kandalaft LE, Coukos G. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Ann Oncol 2019; 30:1902-1913. [PMID: 31566658 DOI: 10.1093/annonc/mdz398] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) has been tested in advanced melanoma patients at various centers. We conducted a systematic review and meta-analysis to assess its efficacy on previously treated advanced metastatic cutaneous melanoma. The PubMed electronic database was searched from inception to 17 December 2018 to identify studies administering TIL-ACT and recombinant interleukin-2 (IL-2) following non-myeloablative chemotherapy in previously treated metastatic melanoma patients. Objective response rate (ORR) was the primary end point. Secondary end points were complete response rate (CRR), overall survival (OS), duration of response (DOR) and toxicity. Pooled estimates were derived from fixed or random effect models, depending on the amount of heterogeneity detected. Analysis was carried out separately for high dose (HD) and low dose (LD) IL-2. Sensitivity analyses were carried out. Among 1211 records screened, 13 studies (published 1988 - 2016) were eligible for meta-analysis. Among 410 heavily pretreated patients (some with brain metastasis), 332 received HD-IL-2 and 78 LD-IL-2. The pooled overall ORR estimate was 41% [95% confidence interval (CI) 35% to 48%], and the overall CRR was 12% (95% CI 7% to 16%). For the HD-IL-2 group, the ORR was 43% (95% CI 36% to 50%), while for the LD-IL-2 it was 35% (95% CI 25% to 45%). Corresponding pooled estimates for CRR were 14% (95% CI 7% to 20%) and 7% (95% CI 1% to 12%). The majority of HD-IL-2 complete responders (27/28) remained in remission during the extent of follow-up after CR (median 40 months). Sensitivity analyses yielded similar results. Higher number of infused cells was associated with a favorable response. The ORR for HD-IL-2 compared favorably with the nivolumab/ipilimumab combination following anti-PD-1 failure. TIL-ACT therapy, especially when combined with HD-IL-2, achieves durable clinical benefit and warrants further investigation. We discuss the current position of TIL-ACT in the therapy of advanced melanoma, particularly in the era of immune checkpoint blockade therapy, and review future opportunities for improvement of this approach.
Collapse
Affiliation(s)
- U Dafni
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| | - O Michielin
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - S Martin Lluesma
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Z Tsourti
- Scientific Research Consulting Hellas, Statistics Center, Athens
| | - V Polydoropoulou
- Scientific Research Consulting Hellas, Statistics Center, Athens
| | - D Karlis
- Department of Statistics, Athens University of Economics and Business, Athens, Greece
| | - M J Besser
- Ella Institute for the Treatment and Research of Melanoma and Skin Cancer, Sheba Medical Center, Tel Aviv; Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - I-M Svane
- Department of Hematology and Oncology, Center for Cancer Immune Therapy, Herlev Hospital, Herlev, Denmark
| | - P S Ohashi
- Department of Immunology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - U S Kammula
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh
| | - A Orcurto
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - S Zimmermann
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - L Trueb
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - C A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York; Parker Institute for Cancer Immunotherapy, New York; Weill Cornell Medical College, New York
| | - M T Lotze
- Department of Immunology, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, USA
| | - L E Kandalaft
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - G Coukos
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
38
|
McBride DA, Kerr MD, Wai SL, Shah NJ. Applications of molecular engineering in T-cell-based immunotherapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1557. [PMID: 30972976 PMCID: PMC7869905 DOI: 10.1002/wnan.1557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/24/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Harnessing an individual's immune cells to mediate antitumor and antiviral responses is a life-saving option for some patients with otherwise intractable forms of cancer and infectious disease. In particular, T-cell-based engineered immune cells are a powerful new class of therapeutics with remarkable efficacy. Clinical experience has helped to define some of the major challenges for reliable, safe, and effective deployment of T-cells against a broad range of diseases. While poised to revolutionize immunotherapy, scalable manufacturing, safety, specificity, and the development of resistance are potential roadblocks in their widespread usage. The development of molecular engineering tools to allow for the direct or indirect engineering of T-cells to enable one to troubleshoot delivery issues, amplify immunomodulatory effects, integrate the synergistic effects of different molecules, and home to the target cells in vivo. In this review, we will analyze thus-far developed cell- and material-based tools for enhancing T-cell therapies, including methods to improve safety and specificity, enhancing efficacy, and overcoming limitations in scalable manufacturing. We summarize the potential of T-cells as immune modulating therapies and the potential future directions for enabling their adoption for a broad range of diseases. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Cells at the Nanoscale.
Collapse
Affiliation(s)
- David A McBride
- Department of Nanoengineering, University of California, San Diego, California
- Program in Chemical Engineering, University of California, San Diego, California
- Center for Nano-Immuno Engineering, University of California, San Diego, California
| | - Matthew D Kerr
- Department of Nanoengineering, University of California, San Diego, California
- Program in Chemical Engineering, University of California, San Diego, California
- Center for Nano-Immuno Engineering, University of California, San Diego, California
| | - Shinya L Wai
- Department of Nanoengineering, University of California, San Diego, California
- Center for Nano-Immuno Engineering, University of California, San Diego, California
| | - Nisarg J Shah
- Department of Nanoengineering, University of California, San Diego, California
- Program in Chemical Engineering, University of California, San Diego, California
- Center for Nano-Immuno Engineering, University of California, San Diego, California
- Graduate Program in Immunology, University of California, San Diego, California
- San Diego Center for Precision Immunotherapy, University of California, San Diego, California
| |
Collapse
|
39
|
Gorchakov AA, Kulemzin SV, Kochneva GV, Taranin AV. Challenges and Prospects of Chimeric Antigen Receptor T-cell Therapy for Metastatic Prostate Cancer. Eur Urol 2019; 77:299-308. [PMID: 31471138 DOI: 10.1016/j.eururo.2019.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/08/2019] [Indexed: 01/17/2023]
Abstract
CONTEXT Progress achieved in the treatment of prostate cancer (PCa) with surgical, radiation, and hormonal therapies has drastically reduced mortality from this disease. Yet, patients with advanced PCa have few, if any, curative options. Recent success in treating patients with hematological malignancies of B-cell origin using T cells engineered to express chimeric antigen receptors (CARs) has inspired multiple groups worldwide to adapt this approach to the problem of late-stage PCa. OBJECTIVE To summarize the available clinical results for CAR T-cell therapy of PCa and discuss future technological advancements in the CAR T-cell field that may help patients with metastatic PCa. EVIDENCE ACQUISITION A literature review was conducted of clinical trial data, abstracts presented at recent oncology conferences, as well as reports highlighting critical bottlenecks of CAR T-cell therapy that became apparent from preclinical and clinical studies. EVIDENCE SYNTHESIS Current understanding of why CAR T-cell therapy may fail, particularly in the context of solid cancers, is as follows. First, a CAR design that provides potent activity and persistence of engineered T cells in the hostile tumor microenvironment is a must. The choice of the targetable epitope(s) is critical to counteract tumor antigen escape. Preclinical and clinical evidence indicates that the efficacy of CAR T-cell therapy can be enhanced significantly in combination with other therapeutic approaches. We propose that several improvements to CAR design and patient conditioning, such as unbiased identification of novel PCa-specific CAR targets, use of next-generation (multispecific, resistant to the tumor microenvironment, and with prolonged persistence) CAR T-cell products, and combination therapies may translate into improved patient outcomes and more durable responses. CONCLUSIONS Although significant preclinical experience of testing CAR T cells in solid cancer models has identified important technological and biological bottlenecks, information from clinical trials, particularly those focusing on the PCa, will be instrumental to the rational design of advanced CAR T therapies that will be both safe and effective in patients with advanced PCa. PATIENT SUMMARY So far, chimeric antigen receptor (CAR) T-cell therapy has not shown significant activity in patients with metastatic prostate cancer (PCa). CAR T-cell products used for such trials represent one of the pioneering efforts to adapt this technology to the problem of metastatic PCa. In retrospect, both CAR design and cell composition appear to have been suboptimal to expect strong patient responses. Given the impressive results of CAR-based approaches observed in preclinical models of solid cancers, emerging CAR T-cell products are expected to be more successful in the clinic. Here, we discuss the challenges that need to be overcome to boost the efficacy of PCa-targeted CAR T-cell therapy and call for dialogue between clinicians and cell biologists to address these challenges.
Collapse
Affiliation(s)
- Andrey A Gorchakov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
| | - Sergey V Kulemzin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Galina V Kochneva
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Aleksandr V Taranin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
40
|
Ungefroren H. Blockade of TGF-β signaling: a potential target for cancer immunotherapy? Expert Opin Ther Targets 2019; 23:679-693. [PMID: 31232607 DOI: 10.1080/14728222.2019.1636034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Malignant tumors often escape surveillance and eventual destruction by the host immune system through a variety of strategies including production of transforming growth factor (TGF)-β. Because of its generally immunosuppressive role, TGF-β has emerged as a promising therapeutic target in cancer immunotherapy. Areas covered: This article looks at specific mechanisms of how TGF-β controls the function of various immune cell subsets in the tumor microenvironment and focusses on T-cells. Various inhibition tools of TGF-β signaling and potential targets of therapeutic intervention are assessed along with the recent progress in combining TGF-β blockade and immune-mediated therapies. To round off the article, a summary of results from clinical trials is provided in which TGF-β blockade has shown therapeutic benefit for patients. Expert opinion: Data from preclinical models have shown that blocking TGF-β signaling can overcome resistance mechanisms and in combination with immune-checkpoint therapies, can yield additive or synergistic anti-tumor responses. The future of immunooncology will therefore be based on combination trials. Since response rates may critically depend on both cancer type and stage, selection of only those patients who can benefit from combinatorial immunotherapy regimens is of utmost importance.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- a First Department of Medicine , University Hospital Schleswig-Holstein, Campus Lübeck, and University of Lübeck , Lübeck , Germany.,b Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery , University Hospital Schleswig-Holstein , Campus Kiel, Kiel , Germany
| |
Collapse
|
41
|
Hartley J, Abken H. Chimeric antigen receptors designed to overcome transforming growth factor-β-mediated repression in the adoptive T-cell therapy of solid tumors. Clin Transl Immunology 2019; 8:e1064. [PMID: 31236274 PMCID: PMC6589154 DOI: 10.1002/cti2.1064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR)-engineered T cells produced lasting remissions in the treatment of advanced, so far refractory B-cell malignancies; however, the elimination of solid tumors remains so far elusive. The low efficacy of CAR T cells is thought to be due to the immune-repressive milieu within the tumor lesion, predominantly mediated by transforming growth factor-β (TGF-β) that represses effector T-cell activities and drives differentiation towards regulatory T cells (Tregs). Seeking to boost antitumor immunity, TGF-β is currently targeted by different means in pre-clinical studies. While a recent clinical trial showed the utility of shielding CAR T cells from TGF-β repression, further strategies in counteracting TGF-β in the adoptive cell therapy warrant exploration. We here discuss the most recent advances in the field and draw future developments to make CAR T-cell therapy more potent in the treatment of solid cancer.
Collapse
Affiliation(s)
- Jordan Hartley
- RCI Regensburg Centre for Interventional Immunology Chair Genetic Immunotherapy University Hospital Regensburg Regensburg Germany
| | - Hinrich Abken
- RCI Regensburg Centre for Interventional Immunology Chair Genetic Immunotherapy University Hospital Regensburg Regensburg Germany
| |
Collapse
|
42
|
Tahmasebi S, Elahi R, Esmaeilzadeh A. Solid Tumors Challenges and New Insights of CAR T Cell Engineering. Stem Cell Rev Rep 2019; 15:619-636. [DOI: 10.1007/s12015-019-09901-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Patel S, Burga RA, Powell AB, Chorvinsky EA, Hoq N, McCormack SE, Van Pelt SN, Hanley PJ, Cruz CRY. Beyond CAR T Cells: Other Cell-Based Immunotherapeutic Strategies Against Cancer. Front Oncol 2019; 9:196. [PMID: 31024832 PMCID: PMC6467966 DOI: 10.3389/fonc.2019.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Chimeric antigen receptor (CAR)-modified T cells have successfully harnessed T cell immunity against malignancies, but they are by no means the only cell therapies in development for cancer. Main Text Summary: Systemic immunity is thought to play a key role in combatting neoplastic disease; in this vein, genetic modifications meant to explore other components of T cell immunity are being evaluated. In addition, other immune cells—from both the innate and adaptive compartments—are in various stages of clinical application. In this review, we focus on these non-CAR T cell immunotherapeutic approaches for malignancy. The first section describes engineering T cells to express non-CAR constructs, and the second section describes other gene-modified cells used to target malignancy. Conclusions: CAR T cell therapies have demonstrated the clinical benefits of harnessing our body's own defenses to combat tumor cells. Similar research is being conducted on lesser known modifications and gene-modified immune cells, which we highlight in this review.
Collapse
Affiliation(s)
- Shabnum Patel
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Rachel A Burga
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Allison B Powell
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Elizabeth A Chorvinsky
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, United States
| | - Nia Hoq
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Sarah E McCormack
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Stacey N Van Pelt
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, United States
| | - Conrad Russell Y Cruz
- GW Cancer Center, The George Washington University, Washington, DC, United States.,Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, United States
| |
Collapse
|
44
|
Eisenberg V, Hoogi S, Shamul A, Barliya T, Cohen CJ. T-cells "à la CAR-T(e)" - Genetically engineering T-cell response against cancer. Adv Drug Deliv Rev 2019; 141:23-40. [PMID: 30653988 DOI: 10.1016/j.addr.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
The last decade will be remembered as the dawn of the immunotherapy era during which we have witnessed the approval by regulatory agencies of genetically engineered CAR T-cells and of checkpoint inhibitors for cancer treatment. Understandably, T-lymphocytes represent the essential player in these approaches. These cells can mediate impressive tumor regression in terminally-ill cancer patients. Moreover, they are amenable to genetic engineering to improve their function and specificity. In the present review, we will give an overview of the most recent developments in the field of T-cell genetic engineering including TCR-gene transfer and CAR T-cells strategies. We will also elaborate on the development of other types of genetic modifications to enhance their anti-tumor immune response such as the use of co-stimulatory chimeric receptors (CCRs) and unconventional CARs built on non-antibody molecules. Finally, we will discuss recent advances in genome editing and synthetic biology applied to T-cell engineering and comment on the next challenges ahead.
Collapse
|
45
|
Holzinger A, Abken H. CAR T Cells: A Snapshot on the Growing Options to Design a CAR. Hemasphere 2019; 3:e172. [PMID: 31723811 PMCID: PMC6745938 DOI: 10.1097/hs9.0000000000000172] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
Adoptive cell therapy of malignant diseases with chimeric antigen receptor (CAR) modified T cells rapidly advanced from pre-clinical models to commercial approvals within 2 decades. CARs redirect patient's T cells towards cancer cells and activate the engineered cells for a cytolytic attack resulting in the destruction of the cognate target cell. CAR T cells have demonstrated their powerful capacities in inducing complete and lasting remissions of leukemia/lymphoma in an increasing number of trials worldwide. Since the early 90's, the design of CARs went through various steps of optimization until the very recent developments which include CARs with logic gating in the recognition of antigen patterns on target cells and TRUCKs with a target recognition induced delivery of immune modulating agents. Here we review the generations in CAR design, the impact of specific modifications, the strategies to improve the safety of CAR T cell therapy, and the challenges to adapt the CAR design for broader applications.
Collapse
Affiliation(s)
- Astrid Holzinger
- RCI, Regensburg Center for Interventional Immunology, Chair for Gene-Immune Therapy, University Hospital Regensburg, Regensburg, Germany
| | - Hinrich Abken
- RCI, Regensburg Center for Interventional Immunology, Chair for Gene-Immune Therapy, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
46
|
Hartley J, Abken H. Chimeric antigen receptors designed to overcome transforming growth factor-β-mediated repression in the adoptive T-cell therapy of solid tumors. Clin Transl Immunology 2019. [PMID: 31236274 DOI: 10.1002/cti2.1064.pmid:31236274;pmcid:pmc6589154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR)-engineered T cells produced lasting remissions in the treatment of advanced, so far refractory B-cell malignancies; however, the elimination of solid tumors remains so far elusive. The low efficacy of CAR T cells is thought to be due to the immune-repressive milieu within the tumor lesion, predominantly mediated by transforming growth factor-β (TGF-β) that represses effector T-cell activities and drives differentiation towards regulatory T cells (Tregs). Seeking to boost antitumor immunity, TGF-β is currently targeted by different means in pre-clinical studies. While a recent clinical trial showed the utility of shielding CAR T cells from TGF-β repression, further strategies in counteracting TGF-β in the adoptive cell therapy warrant exploration. We here discuss the most recent advances in the field and draw future developments to make CAR T-cell therapy more potent in the treatment of solid cancer.
Collapse
Affiliation(s)
- Jordan Hartley
- RCI Regensburg Centre for Interventional Immunology Chair Genetic Immunotherapy University Hospital Regensburg Regensburg Germany
| | - Hinrich Abken
- RCI Regensburg Centre for Interventional Immunology Chair Genetic Immunotherapy University Hospital Regensburg Regensburg Germany
| |
Collapse
|
47
|
Li Z, Song W, Rubinstein M, Liu D. Recent updates in cancer immunotherapy: a comprehensive review and perspective of the 2018 China Cancer Immunotherapy Workshop in Beijing. J Hematol Oncol 2018; 11:142. [PMID: 30577797 PMCID: PMC6303854 DOI: 10.1186/s13045-018-0684-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022] Open
Abstract
The immune system is the hard-wired host defense mechanism against pathogens as well as cancer. Five years ago, we pondered the question if the era of cancer immunotherapy was upon us (Li et al., Exp Hem Oncol 2013). Exciting progresses have been made at all fronts since then, including (1) sweeping approval of six agents by the US Food and Drug Administration (FDA) to block the PD-1/PD-L1 pathway for treatment of 13 cancer types; (2) a paradigm shifting indication of PD-1 and CTLA4 blockers for the management of a broad class of cancers with DNA mismatch repair defect, the first-ever tissue agnostic approval of cancer drugs; (3) real world practice of adoptive T cell therapy with two CD19-directed chimeric antigen receptor T cell products (CAR-T) for relapsed and/or refractory B cell malignancies including acute lymphoid leukemia and diffuse large B cell lymphoma, signaling the birth of a field now known as synthetic immunology; (4) the award of 2018 Nobel Prize in Physiology and Medicine from the Nobel Committee to Tasuku Honjo and James Allison "for their discovery of cancer medicine by inhibition of negative immune regulation" ( www.nobelprize.org/prizes/medicine/2018 ); and (5) the emerging new concept of normalizing rather than amplifying anti-tumor immunity for guiding the next wave of revolution in the field of immuno-oncology (IO) (Sanmamed and Chen, Cell 2018).This article will highlight the significant developments of immune-oncology as of October 2018. The US FDA approved indications of all seven immune checkpoint blockers, and two CD19-directed CAR-T products are tabulated for easy references. We organized our discussion into the following sections: introduction, cell therapy, emerging immunotherapeutic strategies, expediting oncology drug development in an era of breakthrough therapies, new concepts in cancer immunology and immunotherapy, and concluding remarks. Many of these topics were covered by the 2018 China Cancer Immunotherapy Workshop in Beijing, the fourth annual conference co-organized by the Chinese American Hematologist and Oncologist Network (CAHON), China FDA (CFDA; now known as China National Medical Product Administration (NMPA)), and the Tsinghua University. We significantly expanded our discussion of important IO developments beyond what were covered in the conference, and proposed a new Three Rs conceptual framework for cancer immunotherapy, which is to reverse tolerance, rejuvenate the immune system, and restore immune homeostasis. We conclude that the future of immuno-oncology as a distinct discipline of cancer medicine has arrived.
Collapse
Affiliation(s)
- Zihai Li
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.
| | - Wenru Song
- Chinese American Hematologist and Oncologist Network, New York, NY, USA
| | - Mark Rubinstein
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Delong Liu
- Chinese American Hematologist and Oncologist Network, New York, NY, USA
- New York Medical College, New York, NY, USA
| |
Collapse
|
48
|
Jenkins J, Park J, Petersen K, Shajihan K, Kruthiventi S, Betenbaugh M. Adoptive T cell therapy: engineering and biomanufacturing chimeric antigen receptor-T cell. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Schmidts A, Maus MV. Making CAR T Cells a Solid Option for Solid Tumors. Front Immunol 2018; 9:2593. [PMID: 30467505 PMCID: PMC6235951 DOI: 10.3389/fimmu.2018.02593] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/22/2018] [Indexed: 01/02/2023] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR) T cells aims to redirect the patient's own immune system to selectively attack cancer cells. To do so, CAR T cells are endowed with specific antigen recognition moieties fused to signaling and costimulatory domains. While this approach has shown great success for the treatment of B cell malignancies, response rates among patients with solid cancers are less favorable. The major challenges for CAR T cell immunotherapy in solid cancers are the identification of unique tumor target antigens, as well as improving CAR T cell trafficking to and expansion at the tumor site. This review focuses on combinatorial antigen targeting, regional delivery and approaches to improve CAR T cell persistence in the face of a hostile tumor microenvironment.
Collapse
Affiliation(s)
- Andrea Schmidts
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
50
|
NF-κB Signaling in Targeting Tumor Cells by Oncolytic Viruses-Therapeutic Perspectives. Cancers (Basel) 2018; 10:cancers10110426. [PMID: 30413032 PMCID: PMC6265863 DOI: 10.3390/cancers10110426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, oncolytic virotherapy became a promising therapeutic approach, leading to the introduction of a novel generation of anticancer drugs. However, despite evoking an antitumor response, introducing an oncolytic virus (OV) to the patient is still inefficient to overcome both tumor protective mechanisms and the limitation of viral replication by the host. In cancer treatment, nuclear factor (NF)-κB has been extensively studied among important therapeutic targets. The pleiotropic nature of NF-κB transcription factor includes its involvement in immunity and tumorigenesis. Therefore, in many types of cancer, aberrant activation of NF-κB can be observed. At the same time, the activity of NF-κB can be modified by OVs, which trigger an immune response and modulate NF-κB signaling. Due to the limitation of a monotherapy exploiting OVs only, the antitumor effect can be enhanced by combining OV with NF-κB-modulating drugs. This review describes the influence of OVs on NF-κB activation in tumor cells showing NF-κB signaling as an important aspect, which should be taken into consideration when targeting tumor cells by OVs.
Collapse
|