1
|
Saini I, Joshi J, Kaur S. Unleashing the role of potential adjuvants in leishmaniasis. Int J Pharm 2025; 669:125077. [PMID: 39675537 DOI: 10.1016/j.ijpharm.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Leishmaniasis is amongst one of the most neglected tropical disease, caused by an intracellular protozoan of genus Leishmania. Currently, the most promising strategy to combat leishmaniasis, relies on chemotherapy but the toxicity and increasing resistance of the standard drugs, presses the demand for new alternatives. Immunization is arguably the best strategy for cure because an individual once infected becomes immune to the disease. Yet, there is no efficient vaccine capable of providing enduring immunity against the parasite. Achieving the goal of developing highly efficacious and durable vaccine is limited due to lack of an appropriate adjuvant. Adjuvants are recognized as 'immune potentiators' which redirect or amplify the immune response. A number of adjuvants like alum, MPL-A, CpG ODN, GLA-SE, imiquimod, saponins etc. have been used in combination with various classes of Leishmania antigens. However, only few have reached clinical trials. Thus, the choice of an adjuvant is critically dependent on many factors such as the route of administration, the nature of antigen, formulation, the type of required immune response, their mode of action and the immunization schedule. This review provides an updated status on the types of adjuvants used in leishmaniasis so far and their mechanism of action if known.
Collapse
Affiliation(s)
- Isha Saini
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Jyoti Joshi
- Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Zhang D, Zhao H, Li P, Wu X, Liang Y. Research Progress on Liposome Pulmonary Delivery of Mycobacterium tuberculosis Nucleic Acid Vaccine and Its Mechanism of Action. J Aerosol Med Pulm Drug Deliv 2024; 37:284-298. [PMID: 38669118 PMCID: PMC11502632 DOI: 10.1089/jamp.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Traditional vaccines have played an important role in the prevention and treatment of infectious diseases, but they still have problems such as low immunogenicity, poor stability, and difficulty in inducing lasting immune responses. In recent years, the nucleic acid vaccine has emerged as a relatively cheap and safe new vaccine. Compared with traditional vaccines, nucleic acid vaccine has some unique advantages, such as easy production and storage, scalability, and consistency between batches. However, the direct administration of naked nucleic acid vaccine is not ideal, and safer and more effective vaccine delivery systems are needed. With the rapid development of nanocarrier technology, the combination of gene therapy and nanodelivery systems has broadened the therapeutic application of molecular biology and the medical application of biological nanomaterials. Nanoparticles can be used as potential drug-delivery vehicles for the treatment of hereditary and infectious diseases. In addition, due to the advantages of lung immunity, such as rapid onset of action, good efficacy, and reduced adverse reactions, pulmonary delivery of nucleic acid vaccine has become a hot spot in the field of research. In recent years, lipid nanocarriers have become safe, efficient, and ideal materials for vaccine delivery due to their unique physical and chemical properties, which can effectively reduce the toxic side effects of drugs and achieve the effect of slow release and controlled release, and there have been a large number of studies using lipid nanocarriers to efficiently deliver target components into the body. Based on the delivery of tuberculosis (TB) nucleic acid vaccine by lipid carrier, this article systematically reviews the advantages and mechanism of liposomes as a nucleic acid vaccine delivery carrier, so as to lay a solid foundation for the faster and more effective development of new anti-TB vaccine delivery systems in the future.
Collapse
Affiliation(s)
- Danyang Zhang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Haimei Zhao
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Ping Li
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Liang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Disis ML(N, Guthrie KA, Liu Y, Coveler AL, Higgins DM, Childs JS, Dang Y, Salazar LG. Safety and Outcomes of a Plasmid DNA Vaccine Encoding the ERBB2 Intracellular Domain in Patients With Advanced-Stage ERBB2-Positive Breast Cancer: A Phase 1 Nonrandomized Clinical Trial. JAMA Oncol 2023; 9:71-78. [PMID: 36326756 PMCID: PMC9634596 DOI: 10.1001/jamaoncol.2022.5143] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/03/2022] [Indexed: 11/05/2022]
Abstract
Importance High levels of ERBB2 (formerly HER2)-specific type 1 T cells in the peripheral blood are associated with favorable clinical outcomes after trastuzumab therapy; however, only a minority of patients develop measurable ERBB2 immunity after treatment. Vaccines designed to increase ERBB2-specific T-helper cells could induce ERBB2 immunity in a majority of patients. Objective To determine the safety and immunogenicity of 3 doses (10, 100, and 500 μg) of a plasmid-based vaccine encoding the ERBB2 intracellular domain (ICD). Design, Setting, and Participants Single-arm phase 1 trial including 66 patients with advanced-stage ERBB2-positive breast cancer treated in an academic medical center between 2001 and 2010 with 10-year postvaccine toxicity assessments. Data analysis was performed over 2 periods: January 2012 to March 2013 and July 2021 to August 2022. Interventions Patients were sequentially enrolled to the 3 dose arms. The vaccine was administered intradermally once a month with soluble granulocyte-macrophage colony-stimulating factor as an adjuvant for 3 immunizations. Toxicity evaluations occurred at set intervals and yearly. Peripheral blood mononuclear cells were collected for evaluation of immunity. Biopsy of vaccine sites at weeks 16 and 36 measured DNA persistence. Main Outcomes and Measures Safety was graded by Common Terminology Criteria for Adverse Events, version 3.0, and ERBB2 ICD immune responses were measured by interferon-γ enzyme-linked immunosorbent spot. Secondary objectives determined if vaccine dose was associated with immunity and evaluated persistence of plasmid DNA at the vaccine site. Results A total of 66 patients (median [range] age, 51 [34-77] years) were enrolled. The majority of vaccine-related toxic effects were grade 1 and 2 and not significantly different between dose arms. Patients in arm 2 (100 μg) and arm 3 (500 μg) had higher magnitude ERBB2 ICD type 1 immune responses at most time points than arm 1 (10 μg) (arm 2 compared with arm 1, coefficient, 181 [95% CI, 60-303]; P = .003; arm 3 compared with arm 1, coefficient, 233 [95% CI, 102-363]; P < .001) after adjusting for baseline factors. ERBB2 ICD immunity at time points after the end of immunizations was significantly lower on average in patients with DNA persistence at week 16 compared with those without persistence. The highest vaccine dose was associated with the greatest incidence of persistent DNA at the injection site. Conclusions and Relevance In this phase 1 nonrandomized clinical trial, immunization with the 100-μg dose of the ERBB2 ICD plasmid-based vaccine was associated with generation of ERBB2-specific type 1 T cells in most patients with ERBB2-expressing breast cancer, and it is currently being evaluated in randomized phase 2 trials. Trial Registration ClinicalTrials.gov Identifier: NCT00436254.
Collapse
Affiliation(s)
- Mary L. (Nora) Disis
- University of Washington Medicine Cancer Vaccine Institute, University of Washington, Seattle
| | | | - Ying Liu
- University of Washington Medicine Cancer Vaccine Institute, University of Washington, Seattle
| | - Andrew L. Coveler
- University of Washington Medicine Cancer Vaccine Institute, University of Washington, Seattle
| | - Doreen M. Higgins
- University of Washington Medicine Cancer Vaccine Institute, University of Washington, Seattle
| | - Jennifer S. Childs
- University of Washington Medicine Cancer Vaccine Institute, University of Washington, Seattle
| | - Yushe Dang
- University of Washington Medicine Cancer Vaccine Institute, University of Washington, Seattle
| | - Lupe G. Salazar
- University of Washington Medicine Cancer Vaccine Institute, University of Washington, Seattle
| |
Collapse
|
4
|
Mazire PH, Saha B, Roy A. Immunotherapy for visceral leishmaniasis: A trapeze of balancing counteractive forces. Int Immunopharmacol 2022; 110:108969. [PMID: 35738089 DOI: 10.1016/j.intimp.2022.108969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
The protozoan parasite Leishmania donovani, residing and replicating within the cells of the monocyte-macrophage (mono-mac) lineage, causes visceral leishmaniasis (VL) in humans. While, Leishmania infantum, is the main causative agent for zoonotic VL, where dogs are the main reservoirs of the disease. The chemotherapy is a serious problem because of restricted repertoire of drugs, drug-resistant parasites, drug-toxicity and the requirement for parenteral administration, which is a problem in resource-starved countries. Moreover, immunocompromised individuals, particularly HIV-1 infected are at higher risk of VL due to impairment in T-helper cell and regulatory cell responses. Furthermore, HIV-VL co-infected patients report poor response to conventional chemotherapy. Recent efforts are therefore directed towards devising both prophylactic and therapeutic immunomodulation. As far as prophylaxis is concerned, although canine vaccines for the disease caused by Leishmania infantum or Leishmania chagasi are available, no vaccine is available for use in humans till date. Therefore, anti-leishmanial immunotherapy triggering or manipulating the host's immune response is gaining momentum during the last two decades. Immunomodulators comprised of small molecules, anti-leishmanial peptides, complex ligands for host receptors, cytokines or their agonists and antibodies have been given trials both in experimental models and in humans. However, the success of immunotherapy in humans remains a far-off target. We, therefore, propose that devising a successful immunotherapy is an act of balancing enhanced beneficial Leishmania-specific responses and deleterious immune activation/hyperinflammation just as the swings in a trapeze.
Collapse
Affiliation(s)
- Priyanka H Mazire
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind Road, Pune 411007, India
| | - Amit Roy
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|
5
|
Voak AA, Harris A, Coteron-Lopez JM, Angulo-Barturen I, Ferrer-Bazaga S, Croft SL, Seifert K. Pharmacokinetic / pharmacodynamic relationships of liposomal amphotericin B and miltefosine in experimental visceral leishmaniasis. PLoS Negl Trop Dis 2021; 15:e0009013. [PMID: 33651812 PMCID: PMC7924795 DOI: 10.1371/journal.pntd.0009013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There is a continued need to develop effective and safe treatments for visceral leishmaniasis (VL). Preclinical studies on pharmacokinetics and pharmacodynamics of anti-infective agents, such as anti-bacterials and anti-fungals, have provided valuable information in the development and dosing of these agents. The aim of this study was to characterise the pharmacokinetic and pharmacodynamic properties of the anti-leishmanial drugs AmBisome and miltefosine in a preclinical disease model of VL. METHODOLOGY / PRINCIPAL FINDINGS BALB/c mice were infected with L. donovani (MHOM/ET/67/HU3) amastigotes. Groups of mice were treated with miltefosine (orally, multi-dose regimen) or AmBisome (intravenously, single dose regimen) or left untreated as control groups. At set time points groups of mice were killed and plasma, livers and spleens harvested. For pharmacodynamics the hepatic parasite burden was determined microscopically from tissue impression smears. For pharmacokinetics drug concentrations were measured in plasma and whole tissue homogenates by LC-MS. Unbound drug concentrations were determined by rapid equilibrium dialysis. Doses exerting maximum anti-leishmanial effects were 40 mg/kg for AmBisome and 150 mg/kg (cumulatively) for miltefosine. AmBisome displayed a wider therapeutic range than miltefosine. Dose fractionation at a total dose of 2.5 mg/kg pointed towards concentration-dependent anti-leishmanial activity of AmBisome, favouring the administration of large doses infrequently. Protein binding was >99% for miltefosine and amphotericin B in plasma and tissue homogenates. CONCLUSION / SIGNIFICANCE Using a PK/PD approach we propose optimal dosing strategies for AmBisome. Additionally, we describe pharmacokinetic and pharmacodynamic properties of miltefosine and compare our findings in a preclinical disease model to available knowledge from studies in humans. This approach also presents a strategy for improved use of animal models in the drug development process for VL.
Collapse
Affiliation(s)
- Andrew A. Voak
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | | | | | - Simon L. Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Karin Seifert
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Leishmania treatment and prevention: Natural and synthesized drugs. Eur J Med Chem 2018; 160:229-244. [DOI: 10.1016/j.ejmech.2018.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
|
7
|
Das A, Asad M, Sabur A, Didwania N, Ali N. Monophosphoryl Lipid A Based Cationic Liposome Facilitates Vaccine Induced Expansion of Polyfunctional T Cell Immune Responses against Visceral Leishmaniasis. ACS APPLIED BIO MATERIALS 2018; 1:999-1018. [PMID: 34996141 DOI: 10.1021/acsabm.8b00184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Amrita Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Abdus Sabur
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Nicky Didwania
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
8
|
Salguero FJ, Garcia-Jimenez WL, Lima I, Seifert K. Histopathological and immunohistochemical characterisation of hepatic granulomas in Leishmania donovani-infected BALB/c mice: a time-course study. Parasit Vectors 2018; 11:73. [PMID: 29386047 PMCID: PMC5793367 DOI: 10.1186/s13071-018-2624-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is a neglected tropical disease (NTD), caused by the intracellular protozoan parasites Leishmania donovani and Leishmania infantum. Symptomatic VL is considered fatal when left untreated. At present, there is no effective vaccine licensed for human use and available chemotherapies have limitations. Understanding the local immune mechanisms required for the control of infection is a key factor for developing effective vaccines and therapeutics. METHODS We have investigated the development of the typical granulomatous lesions in the liver in experimental VL over time, together with the local immune responses. BALB/c mice were infected intravenously with a dose of 2 × 107 L. donovani amastigotes (MHOM/ET/67/HU3) and sacrificed at 15, 35 and 63 days post-infection (dpi). Histopathology and immunohistochemical techniques were used for the detection of Leishmania antigen, selected cell types including B and T lymphocytes, macrophages and neutrophils (CD45R-B220+, CD3+, F4/80+ and Ly-6G+) and iNOS. RESULTS Granulomatous lesions were identified as early as 15 dpi in the livers of all infected animals. Three categories were used to classify liver granulomas (immature, mature and clear). Clear granulomas were exclusively detected from 35 dpi onwards. Kupffer cells (F4/80+) were predominant in immature granulomas, regardless of the dpi. Nonetheless, the highest expression was found 63 dpi. Positive staining for iNOS was mainly observed in the cytoplasm of fused Kupffer cells and the highest expression observed at 35 dpi. T cells (CD3+) and B cells (CD45R-B220+) were predominant in more advanced granuloma stages, probably related to the establishment of acquired immunity. Neutrophils (Ly-6G+) were predominantly observed in mature granulomas with the highest expression at 15 dpi. Neutrophils were lower in numbers compared to other cell types, particularly at later time points. CONCLUSIONS Our results reflect the role of macrophages during the early stage of infection and the establishment of a lymphocytic response to control the infection in more advanced stages.
Collapse
Affiliation(s)
- Francisco J Salguero
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Waldo L Garcia-Jimenez
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Isadora Lima
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK.,Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz, Salvador, Bahia, Brazil
| | - Karin Seifert
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
9
|
Didwania N, Shadab M, Sabur A, Ali N. Alternative to Chemotherapy-The Unmet Demand against Leishmaniasis. Front Immunol 2017; 8:1779. [PMID: 29312309 PMCID: PMC5742582 DOI: 10.3389/fimmu.2017.01779] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis is a neglected protozoan disease that mainly affects the tropical as well as subtropical countries of the world. The primary option to control the disease still relies on chemotherapy. However, a hindrance to treatments owing to the emergence of drug-resistant parasites, enormous side effects of the drugs, their high cost, and requirement of long course hospitalization has added to the existing problems of leishmaniasis containment program. This review highlights the prospects of immunotherapy and/or immunochemotherapy to address the limitations for current treatment measures for leishmaniasis. In addition to the progress in alternate therapeutic strategies, the possibility and advances in developing preventive measures against the disease have been pointed. The review highlights our recent understandings of the protective immunology that can be exploited to develop an effective vaccine against leishmaniasis. Moreover, an update on the approaches that have evolved over the recent years are predominantly focused to overcome the current challenges in developing immunotherapeutic as well as prophylactic antileishmanial vaccines is discussed.
Collapse
Affiliation(s)
- Nicky Didwania
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Md Shadab
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Abdus Sabur
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
10
|
Pharmacodynamics and Biodistribution of Single-Dose Liposomal Amphotericin B at Different Stages of Experimental Visceral Leishmaniasis. Antimicrob Agents Chemother 2017. [PMID: 28630200 PMCID: PMC5571318 DOI: 10.1128/aac.00497-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Visceral leishmaniasis is a neglected tropical disease that causes significant morbidity and mortality worldwide. Characterization of the pharmacokinetics and pharmacodynamics of antileishmanial drugs in preclinical models is important for drug development and use. Here we investigated the pharmacodynamics and drug distribution of liposomal amphotericin B (AmBisome) in Leishmania donovani-infected BALB/c mice at three different dose levels and two different time points after infection. We additionally compared drug levels in plasma, liver, and spleen in infected and uninfected BALB/c mice over time. At the highest administered dose of 10 mg/kg AmBisome, >90% parasite inhibition was observed within 2 days after drug administration, consistent with drug distribution from blood to tissue within 24 h and a fast rate of kill. Decreased drug potency was observed in the spleen when AmBisome was administered on day 35 after infection, compared to day 14 after infection. Amphotericin B concentrations and total drug amounts per organ were lower in liver and spleen when AmBisome was administered at the advanced stage of infection and compared to those in uninfected BALB/c mice. However, the magnitude of difference was lower when total drug amounts per organ were estimated. Differences were also noted in drug distribution to L. donovani-infected livers and spleens. Taken together, our data suggest that organ enlargement and other pathophysiological factors cause infection- and organ-specific drug distribution and elimination after administration of single-dose AmBisome to L. donovani-infected mice. Plasma drug levels were not reflective of changes in drug levels in tissues.
Collapse
|
11
|
Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, Laska ME, Smith M, Almarsson Ö, Thompson J, Ribeiro AM, Watson M, Zaks T, Ciaramella G. Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Mol Ther 2017; 25:1316-1327. [PMID: 28457665 PMCID: PMC5475249 DOI: 10.1016/j.ymthe.2017.03.035] [Citation(s) in RCA: 470] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022] Open
Abstract
Recently, the World Health Organization confirmed 120 new human cases of avian H7N9 influenza in China resulting in 37 deaths, highlighting the concern for a potential pandemic and the need for an effective, safe, and high-speed vaccine production platform. Production speed and scale of mRNA-based vaccines make them ideally suited to impede potential pandemic threats. Here we show that lipid nanoparticle (LNP)-formulated, modified mRNA vaccines, encoding hemagglutinin (HA) proteins of H10N8 (A/Jiangxi-Donghu/346/2013) or H7N9 (A/Anhui/1/2013), generated rapid and robust immune responses in mice, ferrets, and nonhuman primates, as measured by hemagglutination inhibition (HAI) and microneutralization (MN) assays. A single dose of H7N9 mRNA protected mice from a lethal challenge and reduced lung viral titers in ferrets. Interim results from a first-in-human, escalating-dose, phase 1 H10N8 study show very high seroconversion rates, demonstrating robust prophylactic immunity in humans. Adverse events (AEs) were mild or moderate with only a few severe and no serious events. These data show that LNP-formulated, modified mRNA vaccines can induce protective immunogenicity with acceptable tolerability profiles.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cell Line
- Disease Models, Animal
- Ferrets
- Gene Expression
- Immunization
- Immunization Schedule
- Influenza A Virus, H10N8 Subtype/genetics
- Influenza A Virus, H10N8 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza Vaccines/immunology
- Macaca fascicularis
- Orthomyxoviridae Infections/prevention & control
- Protamines
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/pharmacokinetics
- RNA, Viral
- Tissue Distribution
Collapse
Affiliation(s)
- Kapil Bahl
- Valera, A Moderna Venture, 500 Technology Square, Cambridge, MA 02139, USA
| | - Joe J Senn
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - Olga Yuzhakov
- Valera, A Moderna Venture, 500 Technology Square, Cambridge, MA 02139, USA
| | - Alex Bulychev
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - Luis A Brito
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - Kimberly J Hassett
- Valera, A Moderna Venture, 500 Technology Square, Cambridge, MA 02139, USA
| | - Michael E Laska
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - Mike Smith
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - Örn Almarsson
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - James Thompson
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | | | - Mike Watson
- Valera, A Moderna Venture, 500 Technology Square, Cambridge, MA 02139, USA
| | - Tal Zaks
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | | |
Collapse
|
12
|
Srivastava S, Shankar P, Mishra J, Singh S. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasit Vectors 2016; 9:277. [PMID: 27175732 PMCID: PMC4866332 DOI: 10.1186/s13071-016-1553-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is a vector-borne disease caused by different species of protozoan parasites of the genus Leishmania. It is a major health problem yet neglected tropical diseases, with approximately 350 million people worldwide at risk and more than 1.5 million infections occurring each year. Leishmaniasis has different clinical manifestations, including visceral (VL or kala-azar), cutaneous (CL), mucocutaneous (MCL), diffuse cutaneous (DCL) and post kala-azar dermal leishmaniasis (PKDL). Currently, the only mean to treat and control leishmaniasis is by rational medications and vector control. However, the number of available drugs is limited and even these are either exorbitantly priced, have toxic side effects or prove ineffective due to the emergence of resistant strains. On the other hand, the vector control methods are not so efficient. Therefore, there is an urgent need for developing a safe, effective, and affordable vaccine for the prevention of leishmaniasis. Although in recent years a large body of researchers has concentrated their efforts on this issue, yet only three vaccine candidates have gone for clinical trial, until date. These are: (i) killed vaccine in Brazil for human immunotherapy; (ii) live attenuated vaccine for humans in Uzbekistan; and (iii) second-generation vaccine for dog prophylaxis in Brazil. Nevertheless, there are at least half a dozen vaccine candidates in the pipeline. One can expect that, in the near future, the understanding of the whole genome of Leishmania spp. will expand the vaccine discovery and strategies that may provide novel vaccines. The present review focuses on the development and the status of various vaccines and potential vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Saumya Srivastava
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Prem Shankar
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Jyotsna Mishra
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sarman Singh
- Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
13
|
Kumar A, Samant M. DNA vaccine against visceral leishmaniasis: a promising approach for prevention and control. Parasite Immunol 2016; 38:273-81. [DOI: 10.1111/pim.12315] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/21/2016] [Indexed: 01/23/2023]
Affiliation(s)
- A. Kumar
- Department of Biotechnology; National Institute of Technology; Raipur Chhattisgarh India
| | - M. Samant
- Cell and Molecular biology laboratory; Department of Zoology; Kumaun University SSJ Campus; Almora Uttarakhand India
| |
Collapse
|
14
|
Seyed N, Taheri T, Rafati S. Post-Genomics and Vaccine Improvement for Leishmania. Front Microbiol 2016; 7:467. [PMID: 27092123 PMCID: PMC4822237 DOI: 10.3389/fmicb.2016.00467] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/21/2016] [Indexed: 01/27/2023] Open
Abstract
Leishmaniasis is a parasitic disease that primarily affects Asia, Africa, South America, and the Mediterranean basin. Despite extensive efforts to develop an effective prophylactic vaccine, no promising vaccine is available yet. However, recent advancements in computational vaccinology on the one hand and genome sequencing approaches on the other have generated new hopes in vaccine development. Computational genome mining for new vaccine candidates is known as reverse vaccinology and is believed to further extend the current list of Leishmania vaccine candidates. Reverse vaccinology can also reduce the intrinsic risks associated with live attenuated vaccines. Individual epitopes arranged in tandem as polytopes are also a possible outcome of reverse genome mining. Here, we will briefly compare reverse vaccinology with conventional vaccinology in respect to Leishmania vaccine, and we will discuss how it influences the aforementioned topics. We will also introduce new in vivo models that will bridge the gap between human and laboratory animal models in future studies.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of IranTehran, Iran
| | | | | |
Collapse
|
15
|
Domínguez-Bernal G, Horcajo P, Orden JA, Ruiz-Santa-Quiteria JA, De La Fuente R, Ordóñez-Gutiérrez L, Martínez-Rodrigo A, Mas A, Carrión J. HisAK70: progress towards a vaccine against different forms of leishmaniosis. Parasit Vectors 2015; 8:629. [PMID: 26653170 PMCID: PMC4675018 DOI: 10.1186/s13071-015-1246-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/03/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Leishmania major and Leishmania infantum are among the main species that are responsible for cutaneous leishmaniosis (CL) and visceral leishmaniosis (VL), respectively. The leishmanioses represent the second-largest parasitic killer in the world after malaria. Recently, we succeeded in generating a plasmid DNA (pCMV-HISA70m2A) and demonstrated that immunized mice were protected against L. major challenge. The efficacy of the DNA-vaccine was further enhanced by the inclusion of KMP-11 antigen into the antibiotic-free plasmid pVAX1-asd. METHODS Here, we describe the use of a HisAK70 DNA-vaccine encoding seven Leishmania genes (H2A, H2B, H3, H4, A2, KMP11 and HSP70) for vaccination of mice to assess the induction of a resistant phenotype against VL and CL. RESULTS HisAK70 was successful in vaccinated mice, resulting in a high amount of efficient sterile hepatic granulomas associated with a hepatic parasite burden fully resolved in the VL model; and resulting in 100% inhibition of parasite visceralization in the CL model. CONCLUSIONS The results suggest that immunization with the HisAK70 DNA-vaccine may provide a rapid, suitable, and efficient vaccination strategy to confer cross-protective immunity against VL and CL.
Collapse
Affiliation(s)
- Gustavo Domínguez-Bernal
- INMIVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| | - Pilar Horcajo
- SALUVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| | - José A Orden
- INMIVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| | - José A Ruiz-Santa-Quiteria
- INMIVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| | - Ricardo De La Fuente
- INMIVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| | | | - Abel Martínez-Rodrigo
- INMIVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| | - Alicia Mas
- INMIVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| | - Javier Carrión
- INMIVET, Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, 28040, Spain.
| |
Collapse
|
16
|
Sequential chemoimmunotherapy of experimental visceral leishmaniasis using a single low dose of liposomal amphotericin B and a novel DNA vaccine candidate. Antimicrob Agents Chemother 2015; 59:5819-23. [PMID: 26055371 DOI: 10.1128/aac.00273-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/02/2015] [Indexed: 01/10/2023] Open
Abstract
Combination therapies for leishmaniasis, including drugs and immunomodulators, are one approach to shorten treatment courses and to improve the treatment of complex manifestations of the disease. We evaluated a novel T-cell-epitope-enriched DNA vaccine candidate (LEISHDNAVAX) as host-directed immunotherapy in combination with a standard antileishmanial drug in experimental visceral leishmaniasis. Here we show that the DNA vaccine candidate can boost the efficacy of a single suboptimal dose of liposomal amphotericin B in C57BL/6 mice.
Collapse
|