1
|
Yang D, Liu B, Sha H. Advances and prospects of cell-penetrating peptides in tumor immunotherapy. Sci Rep 2025; 15:3392. [PMID: 39870681 PMCID: PMC11772771 DOI: 10.1038/s41598-025-86130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Cell-penetrating peptides (CPPs) have been shown to have superior material transport ability because poor infiltration of activated lymphocytes into tumors is one of the crucial factors limiting the therapeutic effect of tumor immunotherapy. Numerous studies have investigated the potential application of CPPs in tumor immunotherapy. This review delves into the crucial role that CPPs play in enhancing tumor immunotherapy, emphasizing their impact on various immunotherapy strategies, such as cytokine therapy, adoptive cell therapy, cancer vaccines, and immune checkpoint inhibitors. We also discuss the practical application challenges associated with enhancing the efficiency of CPPs in terms of their stability and targeting ability. In conclusion, the combination of CPPs with tumor immunotherapy is a promising strategy that has potential for precision administration and requires further research for optimal implementation.
Collapse
Affiliation(s)
- Di Yang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210023, China
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210023, China.
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Huizi Sha
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
2
|
Namdari H, Rezaei F, Heidarnejad F, Yaghoubzad-Maleki M, Karamigolbaghi M. Immunoinformatics Approach to Design a Chimeric CD70-Peptide Vaccine against Renal Cell Carcinoma. J Immunol Res 2024; 2024:2875635. [PMID: 38314087 PMCID: PMC10838208 DOI: 10.1155/2024/2875635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Renal cell carcinoma (RCC) accounts for the majority of cancer-related deaths worldwide. Overexpression of CD70 has been linked to advanced stages of RCC. Therefore, this study aims to develop a multiepitope vaccine targeting the overexpressed CD70 using immunoinformatics techniques. In this investigation, in silico multiepitope vaccines were constructed by linking specific CD70 protein epitopes for helper T lymphocytes and CD8+ T lymphocytes. To enhance immunogenicity, sequences of cell-penetrating peptide (CPP), penetratin (pAntp), along with the entire sequence of tumor necrosis factor-α (TNF-α), were attached to the N-terminal and C-terminal of the CD70 epitopes. Computational assessments were performed on these chimeric vaccines for antigenicity, allergenicity, peptide toxicity, population coverage, and physicochemical properties. Furthermore, refined 3D constructs were subjected to a range of analyses, encompassing structural B-cell epitope prediction and molecular docking. The chosen vaccine construct underwent diverse assessments such as molecular dynamics simulation, immune response simulation, and in silico cloning. All vaccines comprised antigenic, nontoxic, and nonallergenic epitopes, ensuring extensive global population coverage. The vaccine constructs demonstrated favorable physicochemical characteristics. The binding affinity of chimeric vaccines to the TNF receptor remained relatively stable, influenced by the alignment of vaccine components. Molecular docking and dynamics analyses predicted stable interactions between CD70-CPP-TNF and the TNF receptor, indicating potential efficacy. In silico codon optimization and cloning of the vaccine nucleic acid sequence were accomplished using the pET28a plasmid. Furthermore, this vaccine displayed the capacity to modulate humoral and cellular immune responses. Overall, the results suggest therapeutic potential for the chimeric CD70-CPP-TNF vaccine against RCC. However, validation through in vitro and in vivo experiments is necessary. This trial is registered with NCT04696731 and NCT04046445.
Collapse
Affiliation(s)
- Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Farhad Rezaei
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Heidarnejad
- Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Yaghoubzad-Maleki
- Division of Biochemistry, Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Karamigolbaghi
- Iranian Tissue Bank and Research Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
3
|
Chavda VP, Solanki HK, Davidson M, Apostolopoulos V, Bojarska J. Peptide-Drug Conjugates: A New Hope for Cancer Management. Molecules 2022; 27:7232. [PMID: 36364057 PMCID: PMC9658517 DOI: 10.3390/molecules27217232] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 08/07/2023] Open
Abstract
Cancer remains the leading cause of death worldwide despite advances in treatment options for patients. As such, safe and effective therapeutics are required. Short peptides provide advantages to be used in cancer management due to their unique properties, amazing versatility, and progress in biotechnology to overcome peptide limitations. Several appealing peptide-based therapeutic strategies have been developed. Here, we provide an overview of peptide conjugates, the better equivalents of antibody-drug conjugates, as the next generation of drugs for required precise targeting, enhanced cellular permeability, improved drug selectivity, and reduced toxicity for the efficient treatment of cancers. We discuss the basic components of drug conjugates and their release action, including the release of cytotoxins from the linker. We also present peptide-drug conjugates under different stages of clinical development as well as regulatory and other challenges.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Hetvi K. Solanki
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90-924 Lodz, Poland
| |
Collapse
|
4
|
Backlund CM, Holden RL, Moynihan KD, Garafola D, Farquhar C, Mehta NK, Maiorino L, Pham S, Iorgulescu JB, Reardon DA, Wu CJ, Pentelute BL, Irvine DJ. Cell-penetrating peptides enhance peptide vaccine accumulation and persistence in lymph nodes to drive immunogenicity. Proc Natl Acad Sci U S A 2022; 119:e2204078119. [PMID: 35914154 PMCID: PMC9371699 DOI: 10.1073/pnas.2204078119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/29/2022] [Indexed: 12/30/2022] Open
Abstract
Peptide-based cancer vaccines are widely investigated in the clinic but exhibit modest immunogenicity. One approach that has been explored to enhance peptide vaccine potency is covalent conjugation of antigens with cell-penetrating peptides (CPPs), linear cationic and amphiphilic peptide sequences designed to promote intracellular delivery of associated cargos. Antigen-CPPs have been reported to exhibit enhanced immunogenicity compared to free peptides, but their mechanisms of action in vivo are poorly understood. We tested eight previously described CPPs conjugated to antigens from multiple syngeneic murine tumor models and found that linkage to CPPs enhanced peptide vaccine potency in vivo by as much as 25-fold. Linkage of antigens to CPPs did not impact dendritic cell activation but did promote uptake of linked antigens by dendritic cells both in vitro and in vivo. However, T cell priming in vivo required Batf3-dependent dendritic cells, suggesting that antigens delivered by CPP peptides were predominantly presented via the process of cross-presentation and not through CPP-mediated cytosolic delivery of peptide to the classical MHC class I antigen processing pathway. Unexpectedly, we observed that many CPPs significantly enhanced antigen accumulation in draining lymph nodes. This effect was associated with the ability of CPPs to bind to lymph-trafficking lipoproteins and protection of CPP-antigens from proteolytic degradation in serum. These two effects resulted in prolonged presentation of CPP-peptides in draining lymph nodes, leading to robust T cell priming and expansion. Thus, CPPs can act through multiple unappreciated mechanisms to enhance T cell priming that can be exploited for cancer vaccines with enhanced potency.
Collapse
Affiliation(s)
- Coralie M. Backlund
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Rebecca L. Holden
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kelly D. Moynihan
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel Garafola
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Charlotte Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Naveen K. Mehta
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Laura Maiorino
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Sydney Pham
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - J. Bryan Iorgulescu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - David A. Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard University School of Medicine, Boston, MA 02215
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Bradley L. Pentelute
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Darrell J. Irvine
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
5
|
Zorko M, Jones S, Langel Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv Drug Deliv Rev 2022; 180:114044. [PMID: 34774552 DOI: 10.1016/j.addr.2021.114044] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Extensive research has been undertaken in the pursuit of anticancer therapeutics. Many anticancer drugs require specificity of delivery to cancer cells, whilst sparing healthy tissue. Cell-penetrating peptides (CPPs), now well established as facilitators of intracellular delivery, have in recent years advanced to incorporate target specificity and thus possess great potential for the targeted delivery of anticancer cargoes. Though none have yet been approved for clinical use, this novel technology has already entered clinical trials. In this review we present CPPs, discuss their classification, mechanisms of cargo internalization and highlight strategies for conjugation to anticancer moieties including their incorporation into therapeutic proteins. As the mainstay of this review, strategies to build specificity into tumor targeting CPP constructs through exploitation of the tumor microenvironment and the use of tumor homing peptides are discussed, whilst acknowledging the extensive contribution made by CPP constructs to target specific protein-protein interactions integral to intracellular signaling pathways associated with tumor cell survival and progression. Finally, antibody/antigen CPP conjugates and their potential roles in cancer immunotherapy and diagnostics are considered. In summary, this review aims to harness the potential of CPP-aided drug delivery for future cancer therapies and diagnostics whilst highlighting some of the most recent achievements in selective delivery of anticancer drugs, including cytostatic drugs, to a range of tumor cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sarah Jones
- University of Wolverhampton, School of Pharmacy, Faculty of Science & Engineering, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden; Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia 50411, Estonia.
| |
Collapse
|
6
|
TAT for Enzyme/Protein Delivery to Restore or Destroy Cell Activity in Human Diseases. Life (Basel) 2021; 11:life11090924. [PMID: 34575072 PMCID: PMC8466028 DOI: 10.3390/life11090924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/28/2022] Open
Abstract
Much effort has been dedicated in the recent decades to find novel protein/enzyme-based therapies for human diseases, the major challenge of such therapies being the intracellular delivery and reaching sub-cellular organelles. One promising approach is the use of cell-penetrating peptides (CPPs) for delivering enzymes/proteins into cells. In this review, we describe the potential therapeutic usages of CPPs (mainly trans-activator of transcription protein, TAT) in enabling the uptake of biologically active proteins/enzymes needed in cases of protein/enzyme deficiency, concentrating on mitochondrial diseases and on the import of enzymes or peptides in order to destroy pathogenic cells, focusing on cancer cells.
Collapse
|
7
|
Backlund CM, Parhamifar L, Minter L, Tew GN, Andresen TL. Protein Transduction Domain Mimics Facilitate Rapid Antigen Delivery into Monocytes. Mol Pharm 2019; 16:2462-2469. [PMID: 31095395 DOI: 10.1021/acs.molpharmaceut.9b00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Delivering peptides and proteins with intracellular function represents a promising avenue for therapeutics, but remains a challenge due to the selective permeability of the plasma membrane. The successful delivery of cytosolically active proteins would enable many opportunities, including improved vaccine development through major histocompatibility complex (MHC) class I antigen display. Extended research using cell-penetrating peptides (CPPs) has aimed to facilitate intracellular delivery of exogenous proteins with some success. A new class of polymer-based mimics termed protein transduction domain mimics (PTDMs), which maintain the positive charge and amphiphilic nature displayed by many CPPs, was developed using a poly-norbornene-based backbone. Herein, we use a previously characterized PTDM to investigate delivery of the model antigen SIINFEKL into leukocytes. Peptide delivery into over 90% of CD14+ monocytes was detected in less than 15 min with nominal inflammatory cytokine response and high cell viability. The co-delivery of a TLR9 agonist and antigen using the PTDM into antigen-presenting cells in vitro showed presentation of SIINFEKL in association with MHC class I molecules, in addition to upregulation of classical differentiation markers revealing the ability of the PTDM to successfully deliver cargo intracellularly and show application in the field of immunotherapy.
Collapse
Affiliation(s)
| | - Ladan Parhamifar
- Department of Health Technology , Technical University of Denmark , 2800 Lyngby , Denmark
| | | | | | - Thomas L Andresen
- Department of Health Technology , Technical University of Denmark , 2800 Lyngby , Denmark
| |
Collapse
|
8
|
Yang J, Luo Y, Shibu MA, Toth I, Skwarczynski M. Cell-penetrating Peptides: Efficient Vectors for Vaccine Delivery. Curr Drug Deliv 2019; 16:430-443. [PMID: 30760185 PMCID: PMC6637094 DOI: 10.2174/1567201816666190123120915] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 11/22/2022]
Abstract
Subunit vaccines are composed of pathogen fragments that, on their own, are generally poorly immunogenic. Therefore, the incorporation of an immunostimulating agent, e.g. adjuvant, into vaccine formulation is required. However, there are only a limited number of licenced adjuvants and their immunostimulating ability is often limited, while their toxicity can be substantial. To overcome these problems, a variety of vaccine delivery systems have been proposed. Most of them are designed to improve the stability of antigen in vivo and its delivery into immune cells. Cell-penetrating peptides (CPPs) are especially attractive component of antigen delivery systems as they have been widely used to enhance drug transport into the cells. Fusing or co-delivery of antigen with CPPs can enhance antigen uptake, processing and presentation by antigen presenting cells (APCs), which are the fundamental steps in initiating an immune response. This review describes the different mechanisms of CPP intercellular uptake and various CPP-based vaccine delivery strategies.
Collapse
Affiliation(s)
| | | | | | - Istvan Toth
- Address correspondence to these authors at the School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; Tel: (617)33469892; E-mail: ;
| | - Mariusz Skwarczynski
- Address correspondence to these authors at the School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; Tel: (617)33469892; E-mail: ;
| |
Collapse
|
9
|
Brooks N, Hsu J, Esparon S, Pouniotis D, Pietersz GA. Immunogenicity of a Tripartite Cell Penetrating Peptide Containing a MUC1 Variable Number of Tandem Repeat (VNTR) and A T Helper Epitope. Molecules 2018; 23:molecules23092233. [PMID: 30200528 PMCID: PMC6225367 DOI: 10.3390/molecules23092233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Peptide-based vaccines for cancer have many advantages however, for optimization these immunogens should incorporate peptide epitopes that induce CD8, as well as CD4 responses, antibody and long term immunity. Cell penetrating peptides (CPP) with a capacity of cytosolic delivery have been used to deliver antigenic peptides and proteins to antigen presenting cells to induce cytotoxic T cell, helper T cell and humoral responses in mice. For this study, a tripartite CPP including a mucin 1 (MUC1) variable number of tandem repeat (VNTR) containing multiple T cell epitopes and tetanus toxoid universal T helper epitope peptide (tetCD4) was synthesised (AntpMAPMUC1tet) and immune responses investigated in mice. Mice vaccinated with AntpMAPMUC1tet + CpG show enhanced antigen-specific interferon-gamma (IFN-γ) and IL-4 T cell responses compared with AntpMAPMUC1tet vaccination alone and induced a Th1 response, characterised by a higher ratio of IgG2a antibody/IgG1 antibodies. Furthermore, vaccination generated long term MUC1-specific antibody and T cell responses and delayed growth of MUC1+ve tumours in mice. This data demonstrates the efficient delivery of branched multiple antigen peptides incorporating CPP and that the addition of CpG augments immune responses.
Collapse
Affiliation(s)
- Nicole Brooks
- School of Medical Sciences, RMIT University, Plenty Road, Bundoora 3083, Victoria, Australia.
| | - Jennifer Hsu
- Bio-Organic and Medicinal Chemistry Laboratory, Burnet Institute, 85 Commercial Rd, Melbourne 3004, Australia.
- Dendritic Cell Biology and Therapeutics Group, ANZAC Medical Research Institute, Institute of Haematology, Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW 2050, Australia.
| | - Sandra Esparon
- Bio-Organic and Medicinal Chemistry Laboratory, Burnet Institute, 85 Commercial Rd, Melbourne 3004, Australia.
| | - Dodie Pouniotis
- School of Medical Sciences, RMIT University, Plenty Road, Bundoora 3083, Victoria, Australia.
| | - Geoffrey A Pietersz
- Bio-Organic and Medicinal Chemistry Laboratory, Burnet Institute, 85 Commercial Rd, Melbourne 3004, Australia.
- Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia.
- Department of Immunology, Monash University, Clayton, Victoria 3800, Australia.
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia.
- College of Health and Biomedicine, Victoria University, Melbourne 3021, Australia.
| |
Collapse
|
10
|
Zhang R, Smith JD, Allen BN, Kramer JS, Schauflinger M, Ulery BD. Peptide Amphiphile Micelle Vaccine Size and Charge Influence the Host Antibody Response. ACS Biomater Sci Eng 2018; 4:2463-2472. [PMID: 33435110 DOI: 10.1021/acsbiomaterials.8b00511] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vaccines are one of the best health care advances ever developed, having led to the eradication of smallpox and near eradication of polio and diphtheria. While tremendously successful, traditional vaccines (i.e., whole-killed or live-attenuated) have been associated with some undesirable side effects, including everything from mild injection site inflammation to the autoimmune disease Guillain-Barré syndrome. This has led recent research to focus on developing subunit vaccines (i.e., protein, peptide, or DNA vaccines) since they are inherently safer because they deliver only the bioactive components necessary (i.e., antigens) to produce a protective immune response against the pathogen of interest. However, a major challenge in developing subunit vaccines is overcoming numerous biological barriers to effectively deliver the antigen to the secondary lymphoid organs where adaptive immune responses are orchestrated. Peptide amphiphile micelles are a class of biomaterials that have been shown to possess potent self-adjuvanting vaccine properties, but their optimization capacity and underlying immunostimulatory mechanism are not well understood. The present work investigated the influence of micelle size and charge on the materials' bioactivity, including lymph node accumulation, cell uptake ability, and immunogenicity. The results generated provide considerable insight into how micelles exert their biological effects, yielding a micellar toolbox that can be exploited to either enhance or diminish host immune responses. This exciting development makes peptide amphiphile micelles an attractive candidate for both immune activation and suppression applications.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Josiah D Smith
- Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Brittany N Allen
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Jake S Kramer
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Martin Schauflinger
- Electron Microscopy Core Facilities, University of Missouri, Columbia, Missouri 65211, United States
| | - Bret D Ulery
- Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States.,Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
11
|
Mechanistic insights into the efficacy of cell penetrating peptide-based cancer vaccines. Cell Mol Life Sci 2018; 75:2887-2896. [PMID: 29508006 PMCID: PMC6061156 DOI: 10.1007/s00018-018-2785-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/15/2017] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
Abstract
Immunotherapies are increasingly used to treat cancer, with some outstanding results. Immunotherapy modalities include therapeutic vaccination to eliminate cancer cells through the activation of patient’s immune system against tumor-derived antigens. Nevertheless, the full potential of therapeutic vaccination has yet to be demonstrated clinically because many early generation vaccines elicited low-level immune responses targeting only few tumor antigens. Cell penetrating peptides (CPPs) are highly promising tools to advance the field towards clinical success. CPPs efficiently penetrate cell membranes, even when linked to antigenic cargos, which can induce both CD8 and CD4 T-cell responses. Pre-clinical studies demonstrated that targeting multiple tumor antigens, even those considered to be poorly immunogenic, led to tumor regression. Therefore, CPP-based cancer vaccines represent a flexible and powerful means to extend therapeutic vaccination to many cancer indications. Here, we review recent findings in CPP development and discuss their use in next generation immunotherapies.
Collapse
|
12
|
Li D, Sun F, Bourajjaj M, Chen Y, Pieters EH, Chen J, van den Dikkenberg JB, Lou B, Camps MGM, Ossendorp F, Hennink WE, Vermonden T, van Nostrum CF. Strong in vivo antitumor responses induced by an antigen immobilized in nanogels via reducible bonds. NANOSCALE 2016; 8:19592-19604. [PMID: 27748778 DOI: 10.1039/c6nr05583d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cancer vaccines are at present mostly based on tumor associated protein antigens but fail to elicit strong cell-mediated immunity in their free form. For protein-based vaccines, the main challenges to overcome are the delivery of sufficient proteins into the cytosol of dendritic cells (DCs) and processing by, and presentation through, the MHC class I pathway. Recently, we developed a cationic dextran nanogel in which a model antigen (ovalbumin, OVA) is reversibly conjugated via disulfide bonds to the nanogel network to enable redox-sensitive intracellular release. In the present study, it is demonstrated that these nanogels, with the bound OVA, were efficiently internalized by DCs and were capable of maturating them. On the other hand, when the antigen was just physically entrapped in the nanogels, OVA was prematurely released before the particles were taken up by cells. When combined with an adjuvant (polyinosinic-polycytidylic acid, poly(I:C)), nanogels with conjugated OVA induced a strong protective and curative effect against melanoma in vivo. In a prophylactic vaccination setting, 90% of the mice vaccinated with nanogels with conjugated OVA + poly(I:C) did not develop a tumor. Moreover, in a therapeutic model, 40% of the mice showed clearance of established tumors and survived for the duration of the experiment (80 days) while the remaining mice showed substantial delay in tumor progression. In conclusion, our results demonstrate that conjugation of antigens to nanogels via reducible covalent bonds for intracellular delivery is a promising strategy to induce effective antigen-specific immune responses against cancer.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Feilong Sun
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Meriem Bourajjaj
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Yinan Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Ebel H Pieters
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Jian Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Joep B van den Dikkenberg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Bo Lou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Marcel G M Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| |
Collapse
|
13
|
Pouniotis D, Tang CK, Apostolopoulos V, Pietersz G. Vaccine delivery by penetratin: mechanism of antigen presentation by dendritic cells. Immunol Res 2016; 64:887-900. [PMID: 27138940 DOI: 10.1007/s12026-016-8799-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell-penetrating peptides (CPP) or membrane-translocating peptides such as penetratin from Antennapedia homeodomain or TAT from human immunodeficiency virus are useful vectors for the delivery of protein antigens or their cytotoxic (Tc) or helper (Th) T cell epitopes to antigen-presenting cells. Mice immunized with CPP containing immunogens elicit antigen-specific Tc and/or Th responses and could be protected from tumor challenges. In the present paper, we investigate the mechanism of class I and class II antigen presentation of ovalbumin covalently linked to penetratin (AntpOVA) by bone marrow-derived dendritic cells with the use of biochemical inhibitors of various pathways of antigen processing and presentation. Results from our study suggested that uptake of AntpOVA is via a combination of energy-independent (membrane fusion) and energy-dependent pathways (endocytosis). Once internalized by either mechanism, multiple tap-dependent or independent antigen presentation pathways are accessed while not completely dependent on proteasomal processing but involving proteolytic trimming in the ER and Golgi compartments. Our study provides an understanding on the mechanism of antigen presentation mediated by CPP and leads to greater insights into future development of vaccine formulations.
Collapse
Affiliation(s)
- Dodie Pouniotis
- School of Medical Sciences, RMIT University, Plenty Road, Bundoora, VIC, 3083, Australia
| | - Choon-Kit Tang
- Bio-Organic and Medicinal Chemistry Laboratory, Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- DUKE-NUS, 8 College Road, Singapore, 169857, Singapore
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Geoffrey Pietersz
- Bio-Organic and Medicinal Chemistry Laboratory, Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.
- Department of Pathology, University of Melbourne, Parkville, VIC, Australia.
- Department of Immunology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
14
|
Lim S, Koo JH, Choi JM. Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination. Immune Netw 2016; 16:33-43. [PMID: 26937230 PMCID: PMC4770098 DOI: 10.4110/in.2016.16.1.33] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 12/13/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4(+) and CD8(+) T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.
Collapse
Affiliation(s)
- Sangho Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
15
|
Comparative Immunogenicity of a Cytotoxic T Cell Epitope Delivered by Penetratin and TAT Cell Penetrating Peptides. Molecules 2015; 20:14033-50. [PMID: 26247926 PMCID: PMC6332296 DOI: 10.3390/molecules200814033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/16/2015] [Accepted: 07/29/2015] [Indexed: 12/02/2022] Open
Abstract
Cell penetrating peptides (CPP), including the TAT peptide from the human immunodeficiency virus transactivator of transcription (HIV-TAT) protein and penetratin from Drosophila Antennapedia homeodomain protein, translocate various cargos including peptides and proteins across cellular barriers. This mode of delivery has been harnessed by our group and others to deliver antigenic proteins or peptides into the cytoplasm of antigen processing cells (APC) such as monocyte-derived dendritic cells (MoDC). Antigens or T cell epitopes delivered by CPP into APC in vivo generate antigen-specific cytotoxic T cell and helper T cell responses in mice. Furthermore, mice immunised with these peptides or proteins are protected from a tumour challenge. The functional properties of CPP are dependent on the various cargos being delivered and the target cell type. Despite several studies demonstrating superior immunogenicity of TAT and Antp-based immunogens, none has compared the immunogenicity of antigens delivered by TAT and Antp CPP. In the current study we demonstrate that a cytotoxic T cell epitope from the mucin 1 (MUC1) tumour associated antigen, when delivered by TAT or Antp, generates identical immune responses in mice resulting in specific MUC1 T cell responses as measured by in vivo CTL assays, IFNγ ELISpot assays and prophylactic tumour protection.
Collapse
|
16
|
Derouazi M, Di Berardino-Besson W, Belnoue E, Hoepner S, Walther R, Benkhoucha M, Teta P, Dufour Y, Yacoub Maroun C, Salazar AM, Martinvalet D, Dietrich PY, Walker PR. Novel Cell-Penetrating Peptide-Based Vaccine Induces Robust CD4+ and CD8+ T Cell-Mediated Antitumor Immunity. Cancer Res 2015; 75:3020-31. [PMID: 26116496 DOI: 10.1158/0008-5472.can-14-3017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 05/02/2015] [Indexed: 12/19/2022]
Abstract
Vaccines that can coordinately induce multi-epitope T cell-mediated immunity, T helper functions, and immunologic memory may offer effective tools for cancer immunotherapy. Here, we report the development of a new class of recombinant protein cancer vaccines that deliver different CD8(+) and CD4(+) T-cell epitopes presented by MHC class I and class II alleles, respectively. In these vaccines, the recombinant protein is fused with Z12, a novel cell-penetrating peptide that promotes efficient protein loading into the antigen-processing machinery of dendritic cells. Z12 elicited an integrated and multi-epitopic immune response with persistent effector T cells. Therapy with Z12-formulated vaccines prolonged survival in three robust tumor models, with the longest survival in an orthotopic model of aggressive brain cancer. Analysis of the tumor sites showed antigen-specific T-cell accumulation with favorable modulation of the balance of the immune infiltrate. Taken together, the results offered a preclinical proof of concept for the use of Z12-formulated vaccines as a versatile platform for the development of effective cancer vaccines.
Collapse
Affiliation(s)
- Madiha Derouazi
- Geneva University Hospitals and University of Geneva, Centre of Oncology, Geneva, Switzerland.
| | | | | | - Sabine Hoepner
- Geneva University Hospitals and University of Geneva, Centre of Oncology, Geneva, Switzerland
| | - Romy Walther
- University of Toulouse, CNRS 5273, UMR STROMALab, Toulouse, France
| | - Mahdia Benkhoucha
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Patrick Teta
- Geneva University Hospitals and University of Geneva, Centre of Oncology, Geneva, Switzerland
| | - Yannick Dufour
- Geneva University Hospitals and University of Geneva, Centre of Oncology, Geneva, Switzerland
| | - Céline Yacoub Maroun
- Geneva University Hospitals and University of Geneva, Centre of Oncology, Geneva, Switzerland
| | | | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Geneva University Hospitals and University of Geneva, Centre of Oncology, Geneva, Switzerland
| | - Paul R Walker
- Geneva University Hospitals and University of Geneva, Centre of Oncology, Geneva, Switzerland.
| |
Collapse
|
17
|
Ma J, Xu J, Guan L, Hu T, Liu Q, Xiao J, Zhang Y. Cell-penetrating peptides mediated protein cross-membrane delivery and its use in bacterial vector vaccine. FISH & SHELLFISH IMMUNOLOGY 2014; 39:8-16. [PMID: 24746937 DOI: 10.1016/j.fsi.2014.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/15/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
It is an attractive strategy to develop a recombinant bacterial vector vaccine by expressing exogenous protective antigen to induce the immune response, and the main concern is how to enhance the cellular internalization of antigen produced by bacterial vector. Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides which facilitate cellular uptake of various molecular cargoes and therefore have great potentials in vector vaccine design. In this work, eleven different CPPs were fused to the C-terminus of EGFP respectively, and the resultant EGFP-CPP fusion proteins were expressed and purified to assay their cross-membrane transport in macrophage J774 A.1 cells. Among the tested CPPs, TAT showed an excellent capability to deliver the cargo protein EGFP into cytoplasm. In order to establish an efficient antigen delivery system in Escherichia coli, the EGFP-TAT synthesis circuit was combined with an in vivo inducible lysis circuit PviuA-E in E. coli to form an integrated antigen delivery system, the resultant E. coli was proved to be able to lyse upon the induction of a mimic in vivo signal and thus release intracellular EGFP-TAT intensively, which were assumed to undergo a more efficient intracellular delivery by CPP to evoke protective immune responses. Based on the established antigen delivery system, the protective antigen gene flgD from an invasive intracellular fish pathogen Edwardsiella tarda EIB202, was applied to establish an E. coli recombinant vector vaccine. This E. coli vector vaccine presented superior immune protection (RPS = 63%) under the challenge with E. tarda EIB202, suggesting that the novel antigen delivery system had great potential in bacterial vector vaccine applications.
Collapse
Affiliation(s)
- Jimei Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Jinmei Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Lingyu Guan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Tianjian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
18
|
Gartlan KH, Wee JL, Demaria MC, Nastovska R, Chang TM, Jones EL, Apostolopoulos V, Pietersz GA, Hickey MJ, van Spriel AB, Wright MD. Tetraspanin CD37 contributes to the initiation of cellular immunity by promoting dendritic cell migration. Eur J Immunol 2013; 43:1208-19. [PMID: 23420539 DOI: 10.1002/eji.201242730] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/03/2013] [Accepted: 02/13/2013] [Indexed: 12/16/2022]
Abstract
Previous studies on the role of the tetraspanin CD37 in cellular immunity appear contradictory. In vitro approaches indicate a negative regulatory role, whereas in vivo studies suggest that CD37 is necessary for optimal cellular responses. To resolve this discrepancy, we studied the adaptive cellular immune responses of CD37(-/-) mice to intradermal challenge with either tumors or model antigens and found that CD37 is essential for optimal cell-mediated immunity. We provide evidence that an increased susceptibility to tumors observed in CD37(-/-) mice coincides with a striking failure to induce antigen-specific IFN-γ-secreting T cells. We also show that CD37 ablation impairs several aspects of DC function including: in vivo migration from skin to draining lymph nodes; chemo-tactic migration; integrin-mediated adhesion under flow; the ability to spread and form actin protrusions and in vivo priming of adoptively transferred naïve T cells. In addition, multiphoton microscopy-based assessment of dermal DC migration demonstrated a reduced rate of migration and increased randomness of DC migration in CD37(-/-) mice. Together, these studies are consistent with a model in which the cellular defect that underlies poor cellular immune induction in CD37(-/-) mice is impaired DC migration.
Collapse
Affiliation(s)
- Kate H Gartlan
- Department of Immunology, Monash University, Prahran, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Skrlj N, Drevenšek G, Hudoklin S, Romih R, Curin Šerbec V, Dolinar M. Recombinant single-chain antibody with the Trojan peptide penetratin positioned in the linker region enables cargo transfer across the blood-brain barrier. Appl Biochem Biotechnol 2012; 169:159-69. [PMID: 23160949 DOI: 10.1007/s12010-012-9962-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/06/2012] [Indexed: 11/29/2022]
Abstract
Delivery of therapeutic proteins into tissues and across the blood-brain barrier (BBB) is limited by the size and biochemical properties of the proteins. Efficient delivery across BBB is generally restricted to small, highly lipophilic molecules. However, in the last decades, several peptides that can pass cell membranes have been identified. It has been shown that these peptides are also capable of delivering large hydrophilic cargoes into cells and are therefore a powerful biological tool for transporting drugs across cell membranes and even into the brain. We designed and prepared a single-chain antibody fragment (scFvs), specific for the pathological form of the prion protein (PrP(Sc)), where a cell-penetrating peptide (CPP) was used as a linker between the two variable domains of the scFv. The intravenously administered recombinant scFv-CPP was successfully targeted to and delivered into mouse brain cells. Our single-chain antibody fragments are of special interest in view of possible therapeutic reagents design not only for prion diseases but also for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Nives Skrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|