1
|
Wang A, Zhu XX, Bie Y, Zhang B, Ji W, Lou J, Huang M, Zhou X, Ren Y. Single-cell RNA-sequencing reveals a profound immune cell response in human cytomegalovirus-infected humanized mice. Virol Sin 2024; 39:782-792. [PMID: 39153545 PMCID: PMC11738796 DOI: 10.1016/j.virs.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a common herpesvirus that persistently infects a large portion of the world's population. Despite the robust host immune response, HCMV is able to replicate, evade host defenses, and establish latency throughout the lifespan by developing multiple immunomodulatory strategies, making the studies on the interaction between HCMV infection and host response particularly important. HCMV has a strict host specificity that specifically infects humans. Therefore, most of the in vivo researches of HCMV rely on clinical samples. Fortunately, the establishment of humanized mouse models allows for convenient in-lab animal experiments involving HCMV infection. Single-cell RNA sequencing enables the study of the relationship between viral and host gene expressions at the single-cell level within host cells. In this study, we assessed the gene expression alterations of PBMCs at the single-cell level within HCMV-infected humanized mice, which sheds light onto the virus-host interactions in the context of HCMV infection of humanized mice and provides a valuable dataset for the related researches.
Collapse
Affiliation(s)
- An Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Xu Zhu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Bie
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenting Ji
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Lou
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Muhan Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xi Zhou
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Yujie Ren
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Litvin U, Wang ECY, Stanton RJ, Fielding CA, Hughes J. Evolution of the Cytomegalovirus RL11 gene family in Old World monkeys and Great Apes. Virus Evol 2024; 10:veae066. [PMID: 39315401 PMCID: PMC11416908 DOI: 10.1093/ve/veae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/15/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Cytomegalovirus (CMV) is a genus of herpesviruses, members of which share a long history of coevolution with their primate hosts including New World monkeys, Old World monkeys (OWMs), and Great Apes (GAs). These viruses are ubiquitous within their host populations and establish lifelong infection in most individuals. Although asymptomatic in healthy individuals, infection poses a significant risk to individuals with a weakened or underdeveloped immune system. The genome of human CMV is the largest among human-infecting viruses and comprises at least 15 separate gene families, which may have arisen by gene duplication. Within human CMV, the RL11 gene family is the largest. RL11 genes are nonessential in vitro but have immune evasion roles that are likely critical to persistence in vivo. These genes demonstrate an extreme level of inter-species and intra-strain sequence diversity, which makes it challenging to deduce the evolutionary relationships within this gene family. Understanding the evolutionary relationships of these genes, especially accurate ortholog identification, is essential for reconstructing ancestral genomes, deciphering gene repertoire and order, and enabling reliable functional analyses across the CMV species, thereby offering insights into evolutionary processes, genetic diversity, and the functional significance of genes. In this work, we combined in silico genome screening with sequence-based and structure-guided phylogenetic analysis to reconstruct the evolutionary history of the RL11 gene family. We confirmed that RL11 genes are unique to OWM and GA CMVs, showing that this gene family was formed by multiple early duplication events and later lineage-specific losses. We identified four main clades of RL11 genes and showed that their expansions were mainly lineage specific and happened independently in CMVs of GAs, African OWMs, and Asian OWMs. We also identified groups of orthologous genes across the CMV tree, showing that some human CMV-specific RL11 genes emerged before the divergence of human and chimpanzee CMVs but were subsequently lost in the latter. The extensive and dynamic species-specific evolution of this gene family suggests that their functions target elements of host immunity that have similarly coevolved during speciation.
Collapse
Affiliation(s)
- Ulad Litvin
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, United Kingdom
| | - Eddie C Y Wang
- Division of Infection and Immunity, Cardiff University School of Medicine, UHW Main Building, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Richard J Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, UHW Main Building, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Ceri A Fielding
- Division of Infection and Immunity, Cardiff University School of Medicine, UHW Main Building, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, United Kingdom
| |
Collapse
|
3
|
Yuan Q, Fan Z, Huang W, Huo X, Yang X, Ran Y, Chen J, Li H. Human cytomegalovirus UL23 exploits PD-L1 inhibitory signaling pathway to evade T cell-mediated cytotoxicity. mBio 2024; 15:e0119124. [PMID: 38829126 PMCID: PMC11253622 DOI: 10.1128/mbio.01191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Human cytomegalovirus (HCMV), a widely prevalent human beta-herpesvirus, establishes lifelong persistence in the host following primary infection. In healthy individuals, the virus is effectively controlled by HCMV-specific T cells and typically exhibits asymptomatic. The T cell immune response plays a pivotal role in combating HCMV infection, while HCMV employs various strategies to counteract it within the host. Previously, we reported that UL23, a tegument protein of HCMV, facilitates viral immune evasion from interferon-gamma (IFN-γ) responses, and it is well known that IFN-γ is mainly derived from T cells. However, the involvement of UL23 in viral immune evasion from T cell-mediated immunity remains unclear. Herein, we present compelling evidence that UL23 significantly enhances viral resistance against T cell-mediated cytotoxicity during HCMV infection from the co-culture assays of HCMV-infected cells with T cells. We found that IFN-γ plays a major role in regulating T cell cytotoxicity mediated by UL23. More interestingly, we demonstrated that UL23 not only regulates the IFN-γ downstream responses but also modulates the IFN-γ secretion by regulating T cell activities. Further experiments indicate that UL23 upregulates the expression and signaling of programmed death ligand 1 (PD-L1), which is responsible for inhibiting multiple aspects of T cell activities, including activation, apoptosis, and IFN-γ secretion, as determined through RNA-seq analysis and inhibitor-blocking experiments, ultimately facilitating viral replication and spread. Our findings highlight the potential role of UL23 as an alternative antagonist in suppressing T cell cytotoxicity and unveil a novel strategy for HCMV to evade T cell immunity. IMPORTANCE T cell immunity is pivotal in controlling primary human cytomegalovirus (HCMV) infection, restricting periodic reactivation, and preventing HCMV-associated diseases. Despite inducing a robust T cell immune response, HCMV has developed sophisticated immune evasion mechanisms that specifically target T cell responses. Although numerous studies have been conducted on HCMV-specific T cells, the primary focus has been on the impact of HCMV on T cell recognition via major histocompatibility complex molecules. Our studies show for the first time that HCMV exploits the programmed death ligand 1 (PD-L1) inhibitory signaling pathway to evade T cell immunity by modulating the activities of T cells and thereby blocking the secretion of IFN-γ, which is directly mediated by HCMV-encoded tegument protein UL23. While PD-L1 has been extensively studied in the context of tumors and viruses, its involvement in HCMV infection and viral immune evasion is rarely reported. We observed an upregulation of PD-L1 in normal cells during HCMV infection and provided strong evidence supporting its critical role in UL23-induced inhibition of T cell-mediated cytotoxicity. The novel strategy employed by HCMV to manipulate the inhibitory signaling pathway of T cell immune activation for viral evasion through its encoded protein offers valuable insights for the understanding of HCMV-mediated T cell immunomodulation and developing innovative antiviral treatment strategies.
Collapse
Affiliation(s)
- Qin Yuan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhaosong Fan
- Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wenqiang Huang
- Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoping Huo
- Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoping Yang
- Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yanhong Ran
- Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jun Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Hongjian Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Vlachava VM, Seirafian S, Fielding CA, Kollnberger S, Aicheler RJ, Hughes J, Baker A, Weekes MP, Forbes S, Wilkinson GWG, Wang ECY, Stanton RJ. HCMV-secreted glycoprotein gpUL4 inhibits TRAIL-mediated apoptosis and NK cell activation. Proc Natl Acad Sci U S A 2023; 120:e2309077120. [PMID: 38011551 PMCID: PMC10710050 DOI: 10.1073/pnas.2309077120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/07/2023] [Indexed: 11/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a paradigm of pathogen immune evasion and sustains lifelong persistent infection in the face of exceptionally powerful host immune responses through the concerted action of multiple immune-evasins. These reduce NK cell activation by inhibiting ligands for activating receptors, expressing ligands for inhibitory receptors, or inhibiting synapse formation. However, these functions only inhibit direct interactions with the infected cell. To determine whether the virus also expresses soluble factors that could modulate NK function at a distance, we systematically screened all 170 HCMV canonical protein-coding genes. This revealed that UL4 encodes a secreted and heavily glycosylated protein (gpUL4) that is expressed with late-phase kinetics and is capable of inhibiting NK cell degranulation. Analyses of gpUL4 binding partners by mass spectrometry identified an interaction with TRAIL. gpUL4 bound TRAIL with picomolar affinity and prevented TRAIL from binding its receptor, thus acting as a TRAIL decoy receptor. TRAIL is found in both soluble and membrane-bound forms, with expression of the membrane-bound form strongly up-regulated on NK cells in response to interferon. gpUL4 inhibited apoptosis induced by soluble TRAIL, while also binding to the NK cell surface in a TRAIL-dependent manner, where it blocked NK cell degranulation and cytokine secretion. gpUL4 therefore acts as an immune-evasin by inhibiting both soluble and membrane-bound TRAIL and is a viral-encoded TRAIL decoy receptor. Interestingly, gpUL4 could also suppress NK responses to heterologous viruses, suggesting that it may act as a systemic virally encoded immunosuppressive agent.
Collapse
Affiliation(s)
- Virginia-Maria Vlachava
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Sepehr Seirafian
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Ceri A. Fielding
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Simon Kollnberger
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Rebecca J. Aicheler
- Department of Biomedical Sciences, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, CardiffCF5 2YB, United Kingdom
| | - Joseph Hughes
- Centre for Virus Research, School of Infection & Immunity, Glasgow University, GlasgowG61 1QH, United Kingdom
| | - Alexander Baker
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Simone Forbes
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Gavin W. G. Wilkinson
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Eddie C. Y. Wang
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| | - Richard J. Stanton
- Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4XN, United Kingdom
| |
Collapse
|
5
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
6
|
Deciphering the Potential Coding of Human Cytomegalovirus: New Predicted Transmembrane Proteome. Int J Mol Sci 2022; 23:ijms23052768. [PMID: 35269907 PMCID: PMC8911422 DOI: 10.3390/ijms23052768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
CMV is a major cause of morbidity and mortality in immunocompromised individuals that will benefit from the availability of a vaccine. Despite the efforts made during the last decade, no CMV vaccine is available. An ideal CMV vaccine should elicit a broad immune response against multiple viral antigens including proteins involved in virus-cell interaction and entry. However, the therapeutic use of neutralizing antibodies targeting glycoproteins involved in viral entry achieved only partial protection against infection. In this scenario, a better understanding of the CMV proteome potentially involved in viral entry may provide novel candidates to include in new potential vaccine design. In this study, we aimed to explore the CMV genome to identify proteins with putative transmembrane domains to identify new potential viral envelope proteins. We have performed in silico analysis using the genome sequences of nine different CMV strains to predict the transmembrane domains of the encoded proteins. We have identified 77 proteins with transmembrane domains, 39 of which were present in all the strains and were highly conserved. Among the core proteins, 17 of them such as UL10, UL139 or US33A have no ascribed function and may be good candidates for further mechanistic studies.
Collapse
|
7
|
Gugliesi F, Pasquero S, Griffante G, Scutera S, Albano C, Pacheco SFC, Riva G, Dell’Oste V, Biolatti M. Human Cytomegalovirus and Autoimmune Diseases: Where Are We? Viruses 2021; 13:260. [PMID: 33567734 PMCID: PMC7914970 DOI: 10.3390/v13020260] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous double-stranded DNA virus belonging to the β-subgroup of the herpesvirus family. After the initial infection, the virus establishes latency in poorly differentiated myeloid precursors from where it can reactivate at later times to cause recurrences. In immunocompetent subjects, primary HCMV infection is usually asymptomatic, while in immunocompromised patients, HCMV infection can lead to severe, life-threatening diseases, whose clinical severity parallels the degree of immunosuppression. The existence of a strict interplay between HCMV and the immune system has led many to hypothesize that HCMV could also be involved in autoimmune diseases (ADs). Indeed, signs of active viral infection were later found in a variety of different ADs, such as rheumatological, neurological, enteric disorders, and metabolic diseases. In addition, HCMV infection has been frequently linked to increased production of autoantibodies, which play a driving role in AD progression, as observed in systemic lupus erythematosus (SLE) patients. Documented mechanisms of HCMV-associated autoimmunity include molecular mimicry, inflammation, and nonspecific B-cell activation. In this review, we summarize the available literature on the various ADs arising from or exacerbating upon HCMV infection, focusing on the potential role of HCMV-mediated immune activation at disease onset.
Collapse
Affiliation(s)
- Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Gloria Griffante
- Department of Translational Medicine, Molecular Virology Unit, University of Piemonte Orientale Medical School, 28100 Novara, Italy;
| | - Sara Scutera
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Sergio Fernando Castillo Pacheco
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Giuseppe Riva
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy;
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| |
Collapse
|
8
|
Pang J, Slyker JA, Roy S, Bryant J, Atkinson C, Cudini J, Farquhar C, Griffiths P, Kiarie J, Morfopoulou S, Roxby AC, Tutil H, Williams R, Gantt S, Goldstein RA, Breuer J. Mixed cytomegalovirus genotypes in HIV-positive mothers show compartmentalization and distinct patterns of transmission to infants. eLife 2020; 9:e63199. [PMID: 33382036 PMCID: PMC7806273 DOI: 10.7554/elife.63199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cytomegalovirus (CMV) is the commonest cause of congenital infection and particularly so among infants born to HIV-infected women. Studies of congenital CMV infection (cCMVi) pathogenesis are complicated by the presence of multiple infecting maternal CMV strains, especially in HIV-positive women, and the large, recombinant CMV genome. Using newly developed tools to reconstruct CMV haplotypes, we demonstrate anatomic CMV compartmentalization in five HIV-infected mothers and identify the possibility of congenitally transmitted genotypes in three of their infants. A single CMV strain was transmitted in each congenitally infected case, and all were closely related to those that predominate in the cognate maternal cervix. Compared to non-transmitted strains, these congenitally transmitted CMV strains showed statistically significant similarities in 19 genes associated with tissue tropism and immunomodulation. In all infants, incident superinfections with distinct strains from breast milk were captured during follow-up. The results represent potentially important new insights into the virologic determinants of early CMV infection.
Collapse
Affiliation(s)
- Juanita Pang
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Jennifer A Slyker
- Departments of Global Health and Epidemiology, University of WashingtonSeattleUnited States
| | - Sunando Roy
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Josephine Bryant
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Claire Atkinson
- Institute of Immunology and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Juliana Cudini
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Carey Farquhar
- Departments of Global Health, Epidemiology, Medicine (Div. Allergy and Infectious Diseases), University of WashingtonSeattleUnited States
| | - Paul Griffiths
- Institute of Immunology and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - James Kiarie
- University of Nairobi, Department of Obstetrics and Gynaecology, World Health OrganizationNairobiKenya
| | - Sofia Morfopoulou
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Alison C Roxby
- Departments of Global Health, Epidemiology, Medicine (Div. Allergy and Infectious Diseases), University of WashingtonSeattleUnited States
| | - Helena Tutil
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Rachel Williams
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Soren Gantt
- Research Centre of the Sainte-Justine University Hospital, Department of Microbiology, Infectious Diseases and Immunology, University of Montréal QCMontréalCanada
| | - Richard A Goldstein
- Division of Infection and Immunity, University College London, Cruciform BuildingLondonUnited Kingdom
| | - Judith Breuer
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College LondonLondonUnited Kingdom
| |
Collapse
|
9
|
Ye L, Qian Y, Yu W, Guo G, Wang H, Xue X. Functional Profile of Human Cytomegalovirus Genes and Their Associated Diseases: A Review. Front Microbiol 2020; 11:2104. [PMID: 33013768 PMCID: PMC7498621 DOI: 10.3389/fmicb.2020.02104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
The human cytomegalovirus (HCMV), whose genome is 235 ± 1.9 kbp long, is a common herpesvirus. However, the functions of many of its genes are still unknown. HCMV is closely associated with various human diseases and infects 60-90% of the global population. It can infect various human cells, including fibroblasts, epithelial cells, endothelial cells, smooth muscle cells, and monocytes. Although HCMV infection is generally asymptomatic and causes subtle clinical symptoms, it can generate a robust immune response and establish a latent infection in immunocompromised individuals, including those with AIDS, transplant recipients, and developing fetuses. Currently available antivirals approved for the treatment of HCMV-associated diseases are limited by dose-limiting toxicity and the emergence of resistance; however, vaccines and immunoglobulins are unavailable. In this review, we have summarized the recent literature on 43 newly identified HCMV genes. We have described their novel functions on the viral replication cycle, latency, and host immune evasion. Further, we have discussed HCMV-associated diseases and current therapeutic targets. Our review may provide a foundational basis for studies aiming to prevent and develop targeted therapies for HCMV-associated diseases.
Collapse
Affiliation(s)
- Lele Ye
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yunyun Qian
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Weijie Yu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Gangqiang Guo
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong Wang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hong Wang, ; Xiangyang Xue,
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hong Wang, ; Xiangyang Xue,
| |
Collapse
|
10
|
Kolb P, Sijmons S, McArdle MR, Taher H, Womack J, Hughes C, Ventura A, Jarvis MA, Stahl-Hennig C, Hansen S, Picker LJ, Malouli D, Hengel H, Früh K. Identification and Functional Characterization of a Novel Fc Gamma-Binding Glycoprotein in Rhesus Cytomegalovirus. J Virol 2019; 93:e02077-18. [PMID: 30487278 PMCID: PMC6364020 DOI: 10.1128/jvi.02077-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
Receptors recognizing the Fc part of immunoglobulin G (FcγRs) are key determinants in antibody-mediated immune responses. Members of the Herpesviridae interfere with this immune regulatory network by expressing viral FcγRs (vFcγRs). Human cytomegalovirus (HCMV) encodes four distinct vFcγRs that differ with respect to their IgG subtype specificity and their impact on antibody-mediated immune function in vitro The impact of vFcγRs on HCMV pathogenesis and immunomodulation in vivo is not known. The closest evolutionary animal model of HCMV is rhesus CMV (RhCMV) infection of rhesus macaques. To enable the characterization of vFcγR function in this model, we studied IgG binding by RhCMV. We show that lysates of RhCMV-infected cells contain an IgG-binding protein of 30 kDa encoded by the gene Rh05 that is a predicted type I glycoprotein belonging to the RL11 gene family. Upon deletion of Rh05, IgG-Fc binding by RhCMV strain 68-1 is lost, whereas ectopic expression of Rh05 results in IgG binding to transfected cells consistent with Rh05 being a vFcγR. Using a set of reporter cell lines stably expressing human and rhesus FcγRs, we further demonstrate that Rh05 antagonizes host FcγR activation. Compared to Rh05-intact RhCMV, RhCMVΔRh05 showed an increased activation of host FcγR upon exposure of infected cells to IgG from RhCMV-seropositive animals, suggesting that Rh05 protects infected cells from opsonization and IgG-dependent activation of host FcγRs. However, antagonizing host FcγR activation by Rh05 was not required for the establishment and maintenance of infection of RhCMV, even in a seropositive host, as shown by the induction of T cell responses to heterologous antigens expressed by RhCMV lacking the gene region encoding Rh05. In contrast to viral evasion of natural killer cells or T cell recognition, the evasion of antibody-mediated effects does not seem to be absolutely required for infection or reinfection. The identification of the first vFcγR that efficiently antagonizes host FcγR activation in the RhCMV genome will thus permit more detailed studies of this immunomodulatory mechanism in promoting viral dissemination in the presence of natural or vaccine-induced humoral immunity.IMPORTANCE Rhesus cytomegalovirus (RhCMV) offers a unique model for studying human cytomegalovirus (HCMV) pathogenesis and vaccine development. RhCMV infection of nonhuman primates greatly broadened the understanding of mechanisms by which CMVs evade or reprogram T cell and natural killer cell responses in vivo However, the role of humoral immunity and viral modulation of anti-CMV antibodies has not been studied in this model. There is evidence from in vitro studies that HCMVs can evade humoral immunity. By gene mapping and with the help of a novel cell-based reporter assay system we characterized the first RhCMV encoded IgG-Fcγ binding glycoprotein as a potent antagonist of rhesus FcγR activation. We further demonstrate that, unlike evasion of T cell immunity, this viral Fcγ receptor is not required to overcome anti-CMV immunity to establish secondary infections. These findings enable more detailed studies of the in vivo consequences of CMV evasion from IgG responses in nonhuman primate models.
Collapse
Affiliation(s)
- Philipp Kolb
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven Sijmons
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Matthew R McArdle
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Husam Taher
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Jennie Womack
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Colette Hughes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Abigail Ventura
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michael A Jarvis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | | | - Scott Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| |
Collapse
|
11
|
Human Cytomegalovirus Encodes a Novel FLT3 Receptor Ligand Necessary for Hematopoietic Cell Differentiation and Viral Reactivation. mBio 2018; 9:mBio.00682-18. [PMID: 29691342 PMCID: PMC5915732 DOI: 10.1128/mbio.00682-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability of human cytomegalovirus (HCMV) to reactivate from latent infection of hematopoietic progenitor cells (HPCs) is intimately linked to cellular differentiation. HCMV encodes UL7 that our group has shown is secreted from infected cells and induces angiogenesis. In this study, we show that UL7 is a ligand for Fms-like tyrosine kinase 3 receptor (Flt-3R), a well-known critical factor in HPC differentiation. We observed that UL7 directly binds Flt-3R and induces downstream signaling cascades, including phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways. Importantly, we show that UL7 protein induces differentiation of both CD34+ HPCs and CD14+ monocytes. Last, we show that an HCMV mutant lacking UL7 fails to reactivate in CD34+ HPCs in vitro as well as in humanized mice. These observations define the first virally encoded differentiation factor with significant implications not only for HCMV reactivation but also for alteration of the hematopoietic compartment in transplant patients.IMPORTANCE Human cytomegalovirus (HCMV) remains a significant cause of morbidity and mortality in allogeneic hematopoietic stem cell transplant recipients. CD34+ hematopoietic progenitor cells (HPCs) represent a critical reservoir of latent HCMV in the transplant population, thereby providing a source of virus for dissemination to visceral organs. HCMV reactivation has been linked to HPC/myeloid cellular differentiation; however, the mechanisms involved in these events are poorly understood at the molecular level. In this study, we show that a viral protein is a ligand for Fms-like tyrosine kinase 3 receptor (Flt-3R) and that the binding of HCMV UL7 to the Flt-3R triggers HPC and monocyte differentiation. Moreover, the loss of UL7 prevents viral reactivation in HPCs in vitro as well as in humanized mice. These observations define the first virally encoded differentiation factor with significant implications not only for HCMV reactivation but also for alteration of the hematopoietic compartment in transplant patients.
Collapse
|
12
|
A Prominent Role of the Human Cytomegalovirus UL8 Glycoprotein in Restraining Proinflammatory Cytokine Production by Myeloid Cells at Late Times during Infection. J Virol 2018; 92:JVI.02229-17. [PMID: 29467314 DOI: 10.1128/jvi.02229-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/14/2018] [Indexed: 01/21/2023] Open
Abstract
Human cytomegalovirus (HCMV) persistence in infected individuals relies on a plethora of mechanisms to efficiently reduce host immune responses. To that end, HCMV uses a variety of gene products, some of which have not been identified yet. Here we characterized the UL8 gene, which consists of two exons, sharing the first with the HCMV RL11 family member UL7 UL8 is a transmembrane protein with an N-terminal immunoglobulin (Ig)-like domain in common with UL7 but with an extended stalk and a distinctive cytoplasmic tail. The UL8 open reading frame gives rise to a heavily glycosylated protein predominantly expressed on the cell surface, from where it can be partially endocytosed and subsequently degraded. Infections with UL8-tagged viruses indicated that UL8 was synthesized with late-phase kinetics. By virtue of its highly conserved Ig-like domain, this viral protein interacted with a surface molecule present on activated neutrophils. Notably, when ectopically expressed in THP-1 myeloid cells, UL8 was able to significantly reduce the production of a variety of proinflammatory cytokines. Mutations in UL8 indicated that this functional effect was mediated by the cell surface expression of its Ig-like domain. To investigate the impact of the viral protein in the infection context, we engineered HCMVs lacking the UL8 gene and demonstrated that UL8 decreases the release of a large number of proinflammatory factors at late times after infection of THP-1 cells. Our data indicate that UL8 may exert an immunosuppressive role key for HCMV survival in the host.IMPORTANCE HCMV is a major pathogen that causes life-threatening diseases and disabilities in infected newborns and immunocompromised individuals. Containing one of the largest genomes among all reported human viruses, HCMV encodes an impressive repertoire of gene products. However, the functions of a large proportion of them still remain unknown, a fact that complicates the design of new therapeutic approaches to prevent or treat HCMV-associated diseases. In this report, we have conducted an extensive study of UL8, one of the previously uncharacterized HCMV open reading frames. We found that the UL8 protein is expressed at late times postinfection and utilized by HCMV to reduce the production of proinflammatory factors by infected myeloid cells. Thus, the work presented here points to a key role of UL8 as a novel HCMV immune modulator capable of restraining host antiviral defenses.
Collapse
|