1
|
Pontes TF, Reis G, Santos GRC, Pereira HMG, Kac G, Ferreira ALL, Trevenzoli IH. Maternal Obesity and Excessive Gestational Weight Gain Influence Endocannabinoid Levels in Human Milk Across Breastfeeding: Potential Implications for Offspring Development. Nutrients 2025; 17:1344. [PMID: 40284208 PMCID: PMC12029957 DOI: 10.3390/nu17081344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Endocannabinoids are endogenous bioactive lipids that promote neurodevelopment and positive energy balance. Increased levels of endocannabinoids are associated with obesity, but the effect of maternal obesity on breast milk endocannabinoids across lactation is mostly unknown. Methods: Women from Rio de Janeiro (Brazil) (n = 92) were followed from the third trimester of pregnancy to 119 days postpartum, and milk samples were analyzed in the postpartum days 2-8 (T1), 28-47 (T2), and 88-119 (T3). We assessed the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) by high-performance liquid chromatography-mass spectrometry, leptin and insulin by immunoassay, and macronutrients by colorimetric assays in milk samples. Results: Milk AEA concentration was higher in T2 compared with T1 or T3, while 2-AG levels were higher in T2 and T3 compared with T1. Milk endocannabinoids were directly correlated with pre-pregnancy body mass index (BMI), gestational weight gain (GWG), and milk triglycerides. Triglyceride and leptin levels were higher in mature milk (T2 and T3) of women with BMI > 25 or excessive GWG. Adjusted linear regression models showed a positive association between excessive GWG and milk 2-AG (β = 1629; 95% CI: 467-2792; p = 0.008). Conclusions: The endocannabinoid levels are higher in mature milk from women with obesity or excessive GWG, which may impact offspring development and metabolism.
Collapse
Affiliation(s)
- Tatiana F. Pontes
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil;
| | - Gabriel Reis
- Laboratório Brasileiro de Controle de Dopagem, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Gustavo R. C. Santos
- Laboratório Brasileiro de Controle de Dopagem, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Henrique M. G. Pereira
- Laboratório Brasileiro de Controle de Dopagem, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Gilberto Kac
- Observatório de Epidemiologia Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil; (G.K.); (A.L.L.F.)
| | - Ana L. L. Ferreira
- Observatório de Epidemiologia Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil; (G.K.); (A.L.L.F.)
| | - Isis H. Trevenzoli
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil;
| |
Collapse
|
2
|
Lee K, Sarikahya MH, Cousineau SL, Yeung KKC, Lucas A, Loudon K, Tomy T, Tomy GT, Natale DRC, Laviolette SR, Hardy DB. Maternal dietary DHA and EPA supplementation ameliorates adverse cardiac outcomes in THC-exposed rat offspring. Sci Rep 2025; 15:8316. [PMID: 40064971 PMCID: PMC11894106 DOI: 10.1038/s41598-025-92844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Cannabis use in pregnancy is associated with low birthweight outcomes. Recent preclinical data suggests that maternal Δ9-tetrahydrocannabinol (THC) exposure leads to decreases in birthweight followed by early cardiac deficits in offspring. Currently, no studies have explored an intervention for these maternal THC-induced deficits. Omega-3 fatty acids have been shown to exhibit cardioprotective effects. In this present study, we demonstrated that maternal dietary supplementation of omega-3 fatty acids ameliorates both THC-induced fetal growth and postnatal cardiac deficits in offspring. Our data indicates this may be underpinned by alterations in cardiac and hepatic fatty acids and reduction in markers of cardiac collagen deposition. Interestingly, the cardioprotective effects of omega-3s may be further underscored by decreased signaling of the cardiac endocannabinoid system. With increasing rates of cannabis use in pregnancy and recent evidence of subsequent cardiometabolic aberrations in offspring, our data suggests a potential intervention for THC-induced fetal growth and cardiac disturbances in offspring.
Collapse
Affiliation(s)
- Kendrick Lee
- Department of Physiology and Pharmacology, Western University, London, Canada
- Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, London, Canada
- Children's Health Research Institute, London, Canada
| | - Mohammed H Sarikahya
- Department of Anatomy and Cell Biology, Schulich School of Medicine and DentistryWestern University, London, Canada
| | | | - Ken K-C Yeung
- Department of Chemistry and Biochemistry, Western University, London, Canada
| | - Amica Lucas
- University of Manitoba, Winnipeg, MB, Canada
| | - Kara Loudon
- University of Manitoba, Winnipeg, MB, Canada
| | - Thane Tomy
- University of Manitoba, Winnipeg, MB, Canada
| | | | | | - Steven R Laviolette
- Department of Anatomy and Cell Biology, Schulich School of Medicine and DentistryWestern University, London, Canada
| | - Daniel B Hardy
- Department of Physiology and Pharmacology, Western University, London, Canada.
- Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, London, Canada.
- Children's Health Research Institute, London, Canada.
- Department of Physiology and Pharmacology, University of Western Ontario, Dental Sciences Building Room 2023, London, ON, N6A 5C1, Canada.
| |
Collapse
|
3
|
Wang Y, Balvers MGJ, Esser D, Schutte S, Vincken JP, Afman LA, Witkamp RF, Meijerink J. Nutrient composition of different energy-restricted diets determines plasma endocannabinoid profiles and adipose tissue DAGL-α expression; a 12-week randomized controlled trial in subjects with abdominal obesity. J Nutr Biochem 2024; 128:109605. [PMID: 38401691 DOI: 10.1016/j.jnutbio.2024.109605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The endocannabinoid system (ECS) is dysregulated during obesity and metabolic disorders. Weight loss favours the re-establishment of ECS homeostatic conditions, but also the fatty acid composition of the diet can modulate endocannabinoid profiles. However, the combined impact of nutrient quality and energy restriction on the ECS remains unclear. In this 12 weeks randomized controlled trial, men and women (40-70 years) with obesity (BMI: 31.3 ± 3.5 kg/ m2) followed either a low nutrient quality 25% energy-restricted (ER) diet (n=39) high in saturated fats and fructose, or a high nutrient quality ER diet (n=34) amongst others enriched in n-3 polyunsaturated fatty acids (PUFAs) or kept their habitual diet (controls). Profiles of plasma- and adipose N-acylethanolamines and mono-acyl glycerol esters were quantified using LC-MS/MS. Gene expression of ECS-related enzymes and receptors was determined in adipose tissue. Measurements were performed under fasting conditions before and after 12 weeks. Our results showed that plasma level of the DHA-derived compound docosahexaenoylethanolamide (DHEA) was decreased in the low nutrient quality ER diet (P<0.001) compared with the high nutrient quality ER diet, whereas anandamide (AEA) and arachidonoylglycerol (2-AG) levels were unaltered. However, adipose tissue gene expression of the 2-AG synthesizing enzyme diacylglycerol lipase alpha (DAGL-α) was increased following the low nutrient quality ER diet (P<.009) and differed upon intervention with both other diets. Concluding, nutrient quality of the diet affects N-acylethanolamine profiles and gene expression of ECS-related enzymes and receptors even under conditions of high energy restriction in abdominally obese humans. ClinicalTrials.gov NCT02194504.
Collapse
Affiliation(s)
- Ya Wang
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; The Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Diederik Esser
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sophie Schutte
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Jean-Paul Vincken
- The Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Chen YF, Fan ZK, Wang YP, Liu P, Guo XF, Li D. Docosahexaenoic Acid Modulates Nonalcoholic Fatty Liver Disease by Suppressing Endocannabinoid System. Mol Nutr Food Res 2024; 68:e2300616. [PMID: 38430210 DOI: 10.1002/mnfr.202300616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Indexed: 03/03/2024]
Abstract
SCOPE Endocannabinoid signaling regulates energy homeostasis, and is tightly associated with nonalcoholic fatty liver disease (NAFLD). The study previously finds that supplementation of docosahexaenoic acid (DHA) has superior function to ameliorate NAFLD compared with eicosapentaenoic acid (EPA), however, the underlying mechanism remains elusive. The present study aims to investigate whether DHA intervention alleviates NAFLD via endocannabinoid system. METHODS AND RESULTS In a case-control study, the serum endocannabinoid ligands in 60 NAFLD and 60 healthy subjects are measured. Meanwhile, NAFLD model is established in mice fed a high-fat and -cholesterol diet (HFD) for 9 weeks. DHA or EPA is administrated for additional 9 weeks. Serum primary endocannabinoid ligands, namely anandamide (AEA) and 2-arachidoniylglycerol (2-AG), are significantly higher in individuals with NAFLD compared with healthy controls. NAFLD model shows that serum 2-AG concentrations and adipocyte cannabinoid receptor 1 expression levels are significantly lower in DHA group compared with HFD group. Lipidomic and targeted ceramide analyses further confirm that endocannabinoid signaling inhibition has exerted deletion of hepatic C16:0-ceramide contents, resulting in down-regulation of de novo fatty acid synthesis and up-regulation of fatty acid β-oxidation related protein expression levels. CONCLUSIONS This work elucidates that DHA has improved NAFLD by suppressing endocannabinoid system.
Collapse
Affiliation(s)
- Yan-Fang Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Ze-Kai Fan
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Yin-Peng Wang
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Peng Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Xiao-Fei Guo
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- Qingdao University Function Center of Medical Nutrition, Qingdao, 266071, China
| |
Collapse
|
5
|
Watkins BA, Smith BJ, Volpe SL, Shen CL. Exerkines, Nutrition, and Systemic Metabolism. Nutrients 2024; 16:410. [PMID: 38337694 PMCID: PMC10857119 DOI: 10.3390/nu16030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The cornerstones of good health are exercise, proper food, and sound nutrition. Physical exercise should be a lifelong routine, supported by proper food selections to satisfy nutrient requirements based on energy needs, energy management, and variety to achieve optimal metabolism and physiology. The human body is sustained by intermediary and systemic metabolism integrating the physiologic processes for cells, tissues, organs, and systems. Recently, interest in specific metabolites, growth factors, cytokines, and hormones called exerkines has emerged to explain cooperation between nutrient supply organs and the brain during exercise. Exerkines consist of different compounds described as signaling moiety released during and after exercise. Examples of exerkines include oxylipin 12, 13 diHOME, lipid hormone adiponectin, growth factor BDNF, metabolite lactate, reactive oxygen species (ROS), including products of fatty acid oxidation, and cytokines such as interleukin-6. At this point, it is believed that exerkines are immediate, fast, and long-lasting factors resulting from exercise to support body energy needs with an emphasis on the brain. Although exerkines that are directly a product of macronutrient metabolism such as lactate, and result from catabolism is not surprising. Furthermore, other metabolites of macronutrient metabolism seem to be candidate exerkines. The exerkines originate from muscle, adipose, and liver and support brain metabolism, energy, and physiology. The purpose of this review is to integrate the actions of exerkines with respect to metabolism that occurs during exercise and propose other participating factors of exercise and brain physiology. The role of diet and macronutrients that influence metabolism and, consequently, the impact of exercise will be discussed. This review will also describe the evidence for PUFA, their metabolic and physiologic derivatives endocannabinoids, and oxylipins that validate them being exerkines. The intent is to present additional insights to better understand exerkines with respect to systemic metabolism.
Collapse
Affiliation(s)
- Bruce A. Watkins
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Brenda J. Smith
- Department of Obstetrics and Gynecology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Stella Lucia Volpe
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061, USA;
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Chen YF, Fan ZK, Gao X, Zhou F, Guo XF, Sinclair AJ, Li D. n-3 polyunsaturated fatty acids in phospholipid or triacylglycerol form attenuate nonalcoholic fatty liver disease via mediating cannabinoid receptor 1/adiponectin/ceramide pathway. J Nutr Biochem 2024; 123:109484. [PMID: 37866428 DOI: 10.1016/j.jnutbio.2023.109484] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
n-3 polyunsaturated fatty acids (PUFA) have shown to exert beneficial effects in the treatment of nonalcoholic fatty liver disease (NAFLD). Supplements of n-3 PUFA occur in either phospholipid or triacylglycerol form. The present study aimed to compare whether the different n-3 PUFA of marine-origin, namely krill oil, DHA/EPA-phospholipid (PL), and EPA/DHA-triacylglycerol (TAG) forms had differential abilities to ameliorate NAFLD. The NAFLD model was established in mice fed a high-fat and high-cholesterol diet (HFD). The mice showed evidence of weight gain, dyslipidemia, insulin resistance and hepatic steatosis after 9 weeks of HFD, while the three forms of the n-3 PUFA reduced hepatic TAG accumulation, fatty liver and improved insulin instance, and hepatic biomarkers after 9 weeks of intervention. Of these, krill oil intervention significantly reduced adipocyte hypertrophy and hepatic steatosis in comparison with DHA/EPA-PL and EPA/DHA-TAG groups. Importantly, only krill oil intervention significantly reduced serum alanine transaminase, aspartate transaminase concentrations and low-density lipoprotein-cholesterol, compared with the HFD group. Supplemental n-3 PUFA lowered circulating anandamide (AEA) and 2-arachidonoylglycerol (2-AG) concentrations, compared with the HFD group, which was associated with down-regulating CB1 and upregulating adiponectin expressions in adipose tissue. Besides, targeted lipidomic analyses indicated that the increased adiponectin levels were accompanied by reductions in hepatic ceramide levels. The reduced ceramide levels were associated with inhibiting lipid synthesis and increasing fatty acid β-oxidation, finally inhibiting TAG accumulation in the liver. Through mediating CB1/adiponectin/ceramide pathway, the present study suggested that administration of krill oil had superior health effects in the therapy of NAFLD in comparison with DHA/EPA-PL and EPA/DHA-TAG.
Collapse
Affiliation(s)
- Yan-Fang Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Ze-Kai Fan
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Fang Zhou
- Qingdao University Function Center of Medical Nutrition, Qingdao, China
| | - Xiao-Fei Guo
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China.
| | - Andrew J Sinclair
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, Australia
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; Qingdao University Function Center of Medical Nutrition, Qingdao, China
| |
Collapse
|
7
|
Courville AB, Majchrzak-Hong S, Yang S, Turner S, Wilhite B, Ness Shipley K, Horneffer Y, Domenichiello AF, Schwandt M, Cutler RG, Chen KY, Hibbeln JR, Ramsden CE. Dietary linoleic acid lowering alone does not lower arachidonic acid or endocannabinoids among women with overweight and obesity: A randomized, controlled trial. Lipids 2023; 58:271-284. [PMID: 38100748 PMCID: PMC10767670 DOI: 10.1002/lipd.12382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023]
Abstract
The linoleic acid (LA)-arachidonic acid (ARA)-inflammatory axis suggests dietary LA lowering benefits health because it lowers ARA and ARA-derived endocannabinoids (ECB). Dietary LA reduction increases concentrations of omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and DHA derived ECB. The aim of this study was to examine targeted reduction of dietary LA, with and without EPA and DHA, on plasma EPA and DHA and ECB (2-arachidonoyl glycerol [2-AG], anandamide [AEA], and docosahexaenoyl ethanolamide [DHA-EA]). Healthy, pre-menopausal women (n = 62, BMI 30 ± 3 kg/m2 , age 35 ± 7 years; mean ± SD) were randomized to three 12-week controlled diets: (1) high LA, low omega-3 EPA and DHA (H6L3); (2) low LA, low omega-3 EPA and DHA (L6L3); or (3) low LA, high omega-3 EPA and DHA (L6H3). Baseline plasma fatty acids and ECB were similar between diets. Starting at 4 weeks, L6L3 and L6H3 lowered plasma LA compared to H6L3 (p < 0.001). While plasma ARA changed from baseline by 8% in L6L3 and -8% in L6H3, there were no group differences. After 4 weeks, plasma EPA and DHA increased from baseline in women on the L6H3 diet (ps < 0.001) and were different than the H6L3 and L6L3 diets. No differences were found between diets for AEA or 2-AG, however, in L6L3 and L6H3, AEA increased by 14% (ps < 0.02). L6H3 resulted in 35% higher DHA-EA (p = 0.013) whereas no changes were seen with the other diets. Lowering dietary LA did not result in the expected changes in fatty acids associated with the LA-ARA inflammatory axis in women with overweight and obesity.
Collapse
Affiliation(s)
- Amber B Courville
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Sharon Majchrzak-Hong
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Shanna Yang
- National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Sara Turner
- National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Breanne Wilhite
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Katherine Ness Shipley
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Yvonne Horneffer
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Anthony F Domenichiello
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Melanie Schwandt
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Roy G Cutler
- National Institutes of Health, National Institute on Aging, Bethesda, Maryland, USA
| | - Kong Y Chen
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Joseph R Hibbeln
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Christopher E Ramsden
- National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
- National Institutes of Health, National Institute on Aging, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Watkins BA, Newman JW, Kuchel GA, Fiehn O, Kim J. Dietary Docosahexaenoic Acid and Glucose Systemic Metabolic Changes in the Mouse. Nutrients 2023; 15:2679. [PMID: 37375583 DOI: 10.3390/nu15122679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The endocannabinoid system (ECS) participates in regulating whole body energy balance. Overactivation of the ECS has been associated with the negative consequence of obesity and type 2 diabetes. Since activators of the ECS rely on lipid-derived ligands, an investigation was conducted to determine whether dietary PUFA could influence the ECS to affect glucose clearance by measuring metabolites of macronutrient metabolism. C57/blk6 mice were fed a control or DHA-enriched semi-purified diet for a period of 112 d. Plasma, skeletal muscle, and liver were collected after 56 d and 112 d of feeding the diets for metabolomics analysis. Key findings characterized a shift in glucose metabolism and greater catabolism of fatty acids in mice fed the DHA diet. Glucose use and promotion of fatty acids as substrate were found based on levels of metabolic pathway intermediates and altered metabolic changes related to pathway flux with DHA feeding. Greater levels of DHA-derived glycerol lipids were found subsequently leading to the decrease of arachidonate-derived endocannabinoids (eCB). Levels of 1- and 2-arachidonylglcerol eCB in muscle and liver were lower in the DHA diet group compared to controls. These findings demonstrate that DHA feeding in mice alters macronutrient metabolism and may restore ECS tone by lowering arachidonic acid derived eCB.
Collapse
Affiliation(s)
- Bruce A Watkins
- Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
- Center on Aging, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - George A Kuchel
- Center on Aging, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Oliver Fiehn
- NIH UC Davis West Coast Metabolomics Center, Davis, CA 95616, USA
| | - Jeffrey Kim
- Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
9
|
Augimeri G, Bonofiglio D. Promising Effects of N-Docosahexaenoyl Ethanolamine in Breast Cancer: Molecular and Cellular Insights. Molecules 2023; 28:molecules28093694. [PMID: 37175104 PMCID: PMC10180201 DOI: 10.3390/molecules28093694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Unhealthy dietary habits have been identified as a risk factor for the development and progression of cancer. Therefore, adopting a healthy eating pattern is currently recommended to prevent the onset of different types of cancers, including breast carcinoma. In particular, the Mediterranean diet, based on high consumption of omega-3 polyunsaturated fatty acids (N-3 PUFAs), such as those found in cold-water fish and other seafood, nuts, and seeds, is recommended to reduce the incidence of several chronic-degenerative diseases. Indeed, the consumption of N-3 PUFAs, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), reduced the risk of different types of cancer, including breast cancer. Moreover, they can counteract breast cancer progression and reduce the side effects of chemotherapy in breast cancer survival. Studies have demonstrated that DHA, exhibiting greater antitumor activity than EPA in breast cancer, can be attributed to its direct impact on breast cancer cells and also due to its conversion into various metabolites. N-docosahexaenoyl ethanolamine, DHEA, is the most studied DHA derivative for its therapeutic potential in breast cancer. In this review, we emphasize the significance of dietary habits and the consumption of N-3 polyunsaturated fatty acids, particularly DHA, and we describe the current knowledge on the antitumoral action of DHA and its derivative DHEA in the treatment of breast cancer.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Centro Sanitario, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
10
|
Tang TYC, Kim JS, Das A. Role of omega-3 and omega-6 endocannabinoids in cardiopulmonary pharmacology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:375-422. [PMID: 37236765 DOI: 10.1016/bs.apha.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Endocannabinoids are derived from dietary omega-3 and omega-6 fatty acids and play an important role in regulation of inflammation, development, neurodegenerative diseases, cancer, and cardiovascular diseases. They elicit this effect via interactions with cannabinoid receptors 1 and 2 which are also targeted by plant derived cannabinoid from cannabis. The evidence of the involvement of the endocannabinoid system in cardiopulmonary function comes from studies that show that cannabis consumption leads to cardiovascular effect such as arrythmia and is beneficial in lung cancer patients. Moreover, omega-3 and omega-6 endocannabinoids play several important roles in cardiopulmonary system such as causing airway relaxation, suppressing atherosclerosis and hypertension. These effects are mediated via the cannabinoids receptors that are abundant in the cardiopulmonary system. Overall, this chapter reviews the known role of phytocannabinoids and endocannabinoids in the cardiopulmonary context.
Collapse
Affiliation(s)
- Tiffany Y-C Tang
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States
| | - Justin S Kim
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States
| | - Aditi Das
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States.
| |
Collapse
|
11
|
Lacroix S, Leblanc N, Abolghasemi A, Paris-Robidas S, Martin C, Frappier M, Flamand N, Silvestri C, Raymond F, Millette M, Di Marzo V, Veilleux A. Probiotic interventions promote metabolic health in high fat-fed hamsters in association with gut microbiota and endocannabinoidome alterations. Benef Microbes 2023; 14:223-237. [PMID: 37282555 DOI: 10.3920/bm2022.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/17/2023] [Indexed: 06/08/2023]
Abstract
Probiotics represent a promising tool to improve metabolic health, including lipid profiles and cholesterol levels. Modulation of the gut microbiome and the endocannabinoidome - two interrelated systems involved in several metabolic processes influenced by probiotics - has been proposed as a potential mechanism of action. This study establishes the impact of probiotics on metabolic health, gut microbiota composition and endocannabinoidome mediators in an animal model of hypercholesterolaemia. Syrian hamsters were fed either a low-fat low-cholesterol or high-fat high-cholesterol (HFHC) diet to induce hypercholesterolaemia and gavaged for 6 weeks with either Lactobacillus acidophilus CL1285, Lactiplantibacillus plantarum CHOL-200 or a combination of the two. Globally, probiotic interventions ameliorated, at least partially, lipid metabolism in HFHC-fed hamsters. The interventions, especially those including L. acidophilus, modified the gut microbiota composition of the small intestine and caecum in ways suggesting reversal of HFHC-induced dysbiosis. Several associations were observed between changes in gut microbiota composition and endocannabinoidome mediators following probiotic interventions and both systems were also associated with improved metabolic health parameters. For instance, potential connexions between the Eubacteriaceae and Deferribacteraceae families, levels of 2‑palmitoylglycerol, 2‑oleoylglycerol, 2‑linoleoylglycerol or 2‑eicosapentaenoylglycerol and improved lipid profiles were found. Altogether, our results suggest a potential crosstalk between gut microbiota and the endocannabinoidome in driving metabolic benefits associated with probiotics, especially those including L. acidophilus, in an animal model of hypercholesterolaemia.
Collapse
Affiliation(s)
- S Lacroix
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, 2440 boulevard Hochelaga, Québec City, Québec G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 Ch Ste-Foy, Québec City, Quebec G1V 4G5, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - N Leblanc
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, 2440 boulevard Hochelaga, Québec City, Québec G1V 0A6, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
- École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, 2425 Rue de l'Agriculture, Québec City, Quebec G1V 0A6, Canada
| | - A Abolghasemi
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 Ch Ste-Foy, Québec City, Quebec G1V 4G5, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - S Paris-Robidas
- TransBioTech, 201 Rue Monseigneur-Bourget, Lévis, Quebec G6V 6Z9, Canada
| | - C Martin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 Ch Ste-Foy, Québec City, Quebec G1V 4G5, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - M Frappier
- Bio-K+, a division of Kerry Group, 495 Bd Armand-Frappier, Laval, Québec H7V 4B3, Canada
| | - N Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 Ch Ste-Foy, Québec City, Quebec G1V 4G5, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
- Département de médecine, Faculté de Médecine, Université Laval, 1050 Av. de la Médecine, Québec City, Quebec G1V 0A6, Canada
| | - C Silvestri
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 Ch Ste-Foy, Québec City, Quebec G1V 4G5, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
- Département de médecine, Faculté de Médecine, Université Laval, 1050 Av. de la Médecine, Québec City, Quebec G1V 0A6, Canada
| | - F Raymond
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, 2440 boulevard Hochelaga, Québec City, Québec G1V 0A6, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
- École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, 2425 Rue de l'Agriculture, Québec City, Quebec G1V 0A6, Canada
| | - M Millette
- Bio-K+, a division of Kerry Group, 495 Bd Armand-Frappier, Laval, Québec H7V 4B3, Canada
| | - V Di Marzo
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, 2440 boulevard Hochelaga, Québec City, Québec G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 Ch Ste-Foy, Québec City, Quebec G1V 4G5, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
- École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, 2425 Rue de l'Agriculture, Québec City, Quebec G1V 0A6, Canada
- Département de médecine, Faculté de Médecine, Université Laval, 1050 Av. de la Médecine, Québec City, Quebec G1V 0A6, Canada
- Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - A Veilleux
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, 2440 boulevard Hochelaga, Québec City, Québec G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 Ch Ste-Foy, Québec City, Quebec G1V 4G5, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
- École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, 2425 Rue de l'Agriculture, Québec City, Quebec G1V 0A6, Canada
| |
Collapse
|
12
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
13
|
Dong L, Wang H, Chen K, Li Y. Roles of hydroxyeicosatetraenoic acids in diabetes (HETEs and diabetes). Biomed Pharmacother 2022; 156:113981. [DOI: 10.1016/j.biopha.2022.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
14
|
Fatty Acid-Derived N-acylethanolamines Dietary Supplementation Attenuates Neuroinflammation and Cognitive Impairment in LPS Murine Model. Nutrients 2022; 14:nu14183879. [PMID: 36145255 PMCID: PMC9504857 DOI: 10.3390/nu14183879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation plays a critical role in the pathogenesis of most neurological and neurodegenerative diseases and therefore represents a potential therapeutic target. In this regard, accelerating the resolution process in chronic neuroinflammation may be an effective strategy to deal with the cognitive consequences of neuropathology and generalized inflammatory processes. N-acylethanolamine (NAE) derivatives of fatty acids, being highly active lipid mediators, possess pro-resolving activity in inflammatory processes and are promising agents for the suppression of neuroinflammation and its consequences. This paper is devoted to a study of the effects played by dietary supplement (DS), containing a composition of fatty acid-derived NAEs, obtained from squid Berryteuthis magister, on the hippocampal neuroinflammatory and memory processes. By detecting the production of pro-inflammatory cytokines and glial markers, a pronounced anti-inflammatory activity of DS was demonstrated both in vitro and in vivo. DS administration reversed the LPS-induced reduction in hippocampal neurogenesis and memory deterioration. LC-MS analysis revealed an increase in the production of a range of NAEs with well-documented anti-inflammatory activity in response to the administered lipid composition. To conclude, we found that tested DS suppresses the neuroinflammatory response by reducing glial activation, positively regulates neural progenitor proliferation, and attenuates hippocampal-dependent memory impairment.
Collapse
|
15
|
Association of life course adiposity with risk of incident dementia: a prospective cohort study of 322,336 participants. Mol Psychiatry 2022; 27:3385-3395. [PMID: 35538193 DOI: 10.1038/s41380-022-01604-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023]
Abstract
Cohort studies report inconsistent associations between body mass index (BMI) and all-cause incident dementia. Furthermore, evidence on fat distribution and body composition measures are scarce and few studies estimated the association between early life adiposity and dementia risk. Here, we included 322,336 participants from UK biobank to investigate the longitudinal association between life course adiposity and risk of all-cause incident dementia and to explore the underlying mechanisms driven by metabolites, inflammatory cells and brain structures. Among the 322,336 individuals (mean (SD) age, 62.24 (5.41) years; 53.9% women) in the study, during a median 8.74 years of follow-up, 5083 all-cause incident dementia events occurred. The risk of dementia was 22% higher with plumper childhood body size (p < 0.001). A strong U-shaped association was observed between adult BMI and dementia. More fat and less fat-free mass distribution on arms were associated with a higher risk of dementia. Interestingly, similar U-shaped associations were found between BMI and four metabolites (i.e., 3-hydroxybutrate, acetone, citrate and polyunsaturated fatty acids), four inflammatory cells (i.e., neutrophil, lymphocyte, monocyte and leukocyte) and abnormalities in brain structure that were also related to dementia. The findings that adiposity is associated with metabolites, inflammatory cells and abnormalities in brain structure that were related to dementia risk might provide clues to underlying biological mechanisms. Interventions to prevent dementia should begin early in life and include not only BMI control but fat distribution and body composition.
Collapse
|
16
|
Park Y, Watkins BA. Dietary PUFAs and Exercise Dynamic Actions on Endocannabinoids in Brain: Consequences for Neural Plasticity and Neuroinflammation. Adv Nutr 2022; 13:1989-2001. [PMID: 35675221 PMCID: PMC9526838 DOI: 10.1093/advances/nmac064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/15/2021] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
The brain and peripheral nervous system provide oversight to muscle physiology and metabolism. Muscle is the largest organ in the body and critical for glucose sensitivity, prevention of diabetes, and control of obesity. The central nervous system produces endocannabinoids (eCBs) that play a role in brain neurobiology, such as inflammation and pain. Interestingly, studies in humans and rodents show that a moderate duration of exercise increases eCBs in the brain and blood and influences cannabinoid receptors. Cannabinoid actions in the nervous system have advanced our understanding of pain, well-being, and disease. Nutrition is an important aspect of brain and eCB physiology because eCBs are biosynthesized from PUFAs. The primary eCB metabolites are derived from arachidonic acid, a 20:4n-6 (ω-6) PUFA, and the n-3 (ω-3) PUFAs, EPA and DHA. The eCBs bind to cannabinoid receptors CB1 and CB2 to exert a wide range of activities, such as stimulating appetite, influencing energy metabolism, supporting the immune system, and facilitating neuroplasticity. A diet containing different essential n-6 and n-3 PUFAs will dominate the formation of specific eCBs, and subsequently their actions as ligands for CB1 and CB2. The eCBs also function as substrates for cyclooxygenase enzymes, including potential substrates for the oxylipins (OxLs), which can be proinflammatory. Together, the eCBs and OxLs act as modulators of neuroinflammation. Thus, dietary PUFAs have implications for exercise responses via synthesis of eCBs and their effects on neuroinflammation. Neurotrophins also participate in interactions between diet and the eCBs, specifically brain-derived neurotrophic factor (BDNF). BDNF supports neuroplasticity in cooperation with the endocannabinoid system (ECS). This review will describe the role of PUFAs in eCB biosynthesis, discuss the ECS and OxLs in neuroinflammation, highlight the evidence for exercise effects on eCBs, and describe eCB and BDNF actions on neuroplasticity.
Collapse
|
17
|
Chen W, Chen Y, Wu R, Guo G, Liu Y, Zeng B, Liao X, Wang Y, Wang X. DHA alleviates diet-induced skeletal muscle fiber remodeling via FTO/m 6A/DDIT4/PGC1α signaling. BMC Biol 2022; 20:39. [PMID: 35135551 PMCID: PMC8827147 DOI: 10.1186/s12915-022-01239-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Background Obesity leads to a decline in the exercise capacity of skeletal muscle, thereby reducing mobility and promoting obesity-associated health risks. Dietary intervention has been shown to be an important measure to regulate skeletal muscle function, and previous studies have demonstrated the beneficial effects of docosahexaenoic acid (DHA; 22:6 ω-3) on skeletal muscle function. At the molecular level, DHA and its metabolites were shown to be extensively involved in regulating epigenetic modifications, including DNA methylation, histone modifications, and small non-coding microRNAs. However, whether and how epigenetic modification of mRNA such as N6-methyladenosine (m6A) mediates DHA regulation of skeletal muscle function remains unknown. Here, we analyze the regulatory effect of DHA on skeletal muscle function and explore the involvement of m6A mRNA modifications in mediating such regulation. Results DHA supplement prevented HFD-induced decline in exercise capacity and conversion of muscle fiber types from slow to fast in mice. DHA-treated myoblasts display increased mitochondrial biogenesis, while slow muscle fiber formation was promoted through DHA-induced expression of PGC1α. Further analysis of the associated molecular mechanism revealed that DHA enhanced expression of the fat mass and obesity-associated gene (FTO), leading to reduced m6A levels of DNA damage-induced transcript 4 (Ddit4). Ddit4 mRNA with lower m6A marks could not be recognized and bound by the cytoplasmic m6A reader YTH domain family 2 (YTHDF2), thereby blocking the decay of Ddit4 mRNA. Accumulated Ddit4 mRNA levels accelerated its protein translation, and the consequential increased DDIT4 protein abundance promoted the expression of PGC1α, which finally elevated mitochondria biogenesis and slow muscle fiber formation. Conclusions DHA promotes mitochondrial biogenesis and skeletal muscle fiber remodeling via FTO/m6A/DDIT4/PGC1α signaling, protecting against obesity-induced decline in skeletal muscle function. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01239-w.
Collapse
Affiliation(s)
- Wei Chen
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Ruifan Wu
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Guanqun Guo
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Botao Zeng
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Xing Liao
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang province, China. .,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China. .,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China. .,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Sihag J, Di Marzo V. (Wh)olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N)utrition (WHEN) to Curb Obesity and Related Disorders. Lipids Health Dis 2022; 21:9. [PMID: 35027074 PMCID: PMC8759188 DOI: 10.1186/s12944-021-01609-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
The discovery of the endocannabinoidome (eCBome) is evolving gradually with yet to be elucidated functional lipid mediators and receptors. The diet modulates these bioactive lipids and the gut microbiome, both working in an entwined alliance. Mounting evidence suggests that, in different ways and with a certain specialisation, lipid signalling mediators such as N-acylethanolamines (NAEs), 2-monoacylglycerols (2-MAGs), and N-acyl-amino acids (NAAs), along with endocannabinoids (eCBs), can modulate physiological mechanisms underpinning appetite, food intake, macronutrient metabolism, pain sensation, blood pressure, mood, cognition, and immunity. This knowledge has been primarily utilised in pharmacology and medicine to develop many drugs targeting the fine and specific molecular pathways orchestrating eCB and eCBome activity. Conversely, the contribution of dietary NAEs, 2-MAGs and eCBs to the biological functions of these molecules has been little studied. In this review, we discuss the importance of (Wh) olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N) utrition (WHEN), in the management of obesity and related disorders.
Collapse
Affiliation(s)
- Jyoti Sihag
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Department of Foods and Nutrition, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India.
| | - Vincenzo Di Marzo
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Institute of Biomolecular Chemistry of the National Research Council (ICB-CNR), Naples, Italy.
- Endocannabinoid Research Group, Naples, Italy.
- Joint International Research Unit between the Italian National Research Council (CNR) and University of Laval, for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Quebec, Canada.
| |
Collapse
|
19
|
Zhang Y, He L, Chen X, Shentu P, Xu Y, Jiao J. Omega-3 polyunsaturated fatty acids promote SNAREs mediated GLUT4 vesicle docking and fusion. J Nutr Biochem 2021; 101:108912. [PMID: 34801692 DOI: 10.1016/j.jnutbio.2021.108912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 11/27/2022]
Abstract
Glucose homeostasis imbalance and insulin resistance (IR) are major contributors to the incidence of type 2 diabetes. Omega-3 polyunsaturated fatty acids (PUFAs) are key ingredients for maintaining cellular functions and improving insulin sensitivity. However, how omega-3 PUFAs modulate the dynamic process of glucose transport at the cellular level remains unclear. Here we unraveled eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may regulate the glucose transporter 4 (GLUT4) vesicle trafficking in both normal and IR adipocytes. Both omega-3 PUFAs significantly increase glucose consumption within a range of 10-32% in the basal state. Furthermore, both EPA (200 μM) and DHA (100 μM) may significantly promote the serine/threonine protein kinase (Akt) phosphorylation by 70% and 40% in the physiological state of adipocytes, respectively. Both omega-3 PUFAs significantly advanced the Akt phosphorylation in a dose-dependent way and showed a ∼2-fold increase at the dose of 200 μM in the IR pathological state. However, they could not up-regulate the expression of GLUT4 and insulin-regulated aminopeptidase protein. We further revealed that both omega-3 PUFAs dynamically promote insulin-stimulated GLUT4 vesicle translocation and soluble N-ethylmaleimide-sensitive factor attachment protein receptor mediated vesicle docking and fusion to the plasma membrane via specifically modulating the expression of vesicle-associated membrane protein 2. Understanding the mechanisms by which omega-3 PUFAs modulate cellular metabolism and IR in peripheral tissues may provide novel insights into the potential impact of omega-3 PUFAs on the metabolic function and the management of IR.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lilin He
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ping Shentu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingke Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China; Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Rahmanian M, Lotfi Yaghin N, Alizadeh M. Blood Level of 2-arachidonoyl glycerol (2-AG), Neuropeptide Y and Omentin and Their Correlation with Food Habits in Obese Women. Galen Med J 2021; 9:e1721. [PMID: 34466576 PMCID: PMC8343500 DOI: 10.31661/gmj.v9i0.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Despite growing concern about the increasing global burden of obesity, there are still many uncertainties in understanding the pathogenesis of this disease. This study aimed to investigate the serum levels of 2-arachidonoylglycerol (2-AG), neuropeptide Y (NPY), and omentin, concerning dietary patterns in obese women. Materials and Methods: This case-control study was carried on an equal number of obese (case group) and normal-weight women (n=45 each). Dietary intake was determined based on the food frequency questionnaire. Serum levels of 2-AG, NPY, and omentin were determined using ELISA. Results: The obese group showed significantly higher 2-AG and NPY levels than the controls(P<0.001). There were significant positive correlations between the serum level of 2-AG and calorie intake (r=0.219, P=0.038), carbohydrates (r=0.238, P=0.024), fat (r=0.227, P=0.032), saturated fatty acids (r=0.272, P=0.009), and monounsaturated fatty acids (r=0.265, P=0.012). Conclusion: Our study revealed that dietary patterns, in particular, the type of fatty acids used may influence levels of 2-AG, NPY, and omentin, which all are involved in pathways resulting in obesity.
Collapse
Affiliation(s)
- Mozhdeh Rahmanian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Lotfi Yaghin
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Correspondence to: Mohammad Alizadeh, Nutrition Research Center, Tabriz University of Medical Sciences, Attar Nishabouri St., Tabriz, I.R. Iran Telephone Number: 0098-41-33362117 Email Address:
| |
Collapse
|
21
|
Dysregulation of endocannabinoid concentrations in human subcutaneous adipose tissue in obesity and modulation by omega-3 polyunsaturated fatty acids. Clin Sci (Lond) 2021; 135:185-200. [PMID: 33393630 DOI: 10.1042/cs20201060] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Obesity is believed to be associated with a dysregulated endocannabinoid system which may reflect enhanced inflammation. However, reports of this in human white adipose tissue (WAT) are limited and inconclusive. Marine long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have anti-inflammatory actions and therefore may improve obesity-associated adipose tissue inflammation. Therefore, fatty acid (FA) concentrations, endocannabinoid concentrations, and gene expression were assessed in subcutaneous WAT (scWAT) biopsies from healthy normal weight individuals (BMI 18.5-25 kg/m2) and individuals living with metabolically healthy obesity (BMI 30-40 kg/m2) prior to and following a 12-week intervention with 3 g fish oil/day (1.1 g eicosapentaenoic acid (EPA) + 0.8 g DHA) or 3 g corn oil/day (placebo). WAT from individuals living with metabolically healthy obesity had higher n-6 PUFAs and EPA, higher concentrations of two endocannabinoids (anandamide (AEA) and eicosapentaenoyl ethanolamide (EPEA)), higher expression of phospholipase A2 Group IID (PLA2G2D) and phospholipase A2 Group IVA (PLA2G4A), and lower expression of CNR1. In response to fish oil intervention, WAT EPA increased to a similar extent in both BMI groups, and WAT DHA increased by a greater extent in normal weight individuals. WAT EPEA and docosahexaenoyl ethanolamide (DHEA) increased in normal weight individuals only and WAT 2-arachidonyl glycerol (2-AG) decreased in individuals living with metabolically healthy obesity only. Altered WAT fatty acid, endocannabinoid, and gene expression profiles in metabolically healthy obesity at baseline may be linked. WAT incorporates n-3 PUFAs when their intake is increased which affects the endocannabinoid system; however, effects appear greater in normal weight individuals than in those living with metabolically healthy obesity.
Collapse
|
22
|
Choi JE, Borkowski K, Newman JW, Park Y. N-3 PUFA improved post-menopausal depression induced by maternal separation and chronic mild stress through serotonergic pathway in rats-effect associated with lipid mediators. J Nutr Biochem 2021; 91:108599. [PMID: 33548474 DOI: 10.1016/j.jnutbio.2021.108599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/26/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022]
Abstract
Early life maternal separation (MS) increases the vulnerability to depression in rats with chronic mild stress (CMS). N-3 polyunsaturated fatty acids (PUFA) improved depressive behaviors in rats with acute stress; however, their effects on rats with MS+CMS were not apparent. The purpose of the present study was to investigate the hypothesis that lifetime n-3 PUFA supplementation improves post-menopausal depression through the serotonergic and glutamatergic pathways while modulating n-3 PUFA-derived metabolites. Female rats were fed diets of either 0% n-3 PUFA during lifetime or 1% energy n-3 PUFA during pre-weaning, post-weaning, or lifetime periods. Rats were allocated to non-MS or MS groups and underwent CMS after ovariectomy. N-3 PUFA increased brain n-3 PUFA-derived endocannabinoid/oxylipin levels, and reversed depressive behaviors. N-3 PUFA decreased blood levels of adrenocorticotropic hormone and corticosterone, and brain expressions of corticotropin-releasing factor and miRNA-218, which increased the expression of the glucocorticoid receptor. N-3 PUFA decreased the expression of tumor necrosis factor-α, interleukin (IL)-6, IL-1β, and prostaglandin E2, while increased the expression of miRNA-155. N-3 PUFA also increased brainstem serotonin levels and hippocampal expression of the serotonin-1A receptor, cAMP response element-binding protein (CREB), phospho-CREB, and brain-derived neurotrophic factor. However, n-3 PUFA did not affect brain expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subtype 1, N-methyl-D-aspartate receptor subtype 2B, or miRNA-132. Moreover, n-3 PUFA exposure during lifetime caused greater effects than pre- and post-weaning periods. The present study suggested that n-3 PUFA improved depressive behaviors through serotonergic pathway while modulating the metabolites of n-3 PUFA in post-menopausal depressed rats with chronic stress.
Collapse
Affiliation(s)
- Jeong-Eun Choi
- Department of Food and Nutrition, Hanyang University, Seoul, South Korea
| | - Kamil Borkowski
- UC Davis Genome Center, University of California - Davis, Davis, California 95616, USA
| | - John W Newman
- UC Davis Genome Center, University of California - Davis, Davis, California 95616, USA; Department of Nutrition, University of California - Davis, Davis, California 95616, USA; Western Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Davis, California, USA
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, Seoul, South Korea.
| |
Collapse
|
23
|
DHA inhibits Gremlin-1-induced epithelial-to-mesenchymal transition via ERK suppression in human breast cancer cells. Biosci Rep 2021; 40:222308. [PMID: 32141512 PMCID: PMC7087330 DOI: 10.1042/bsr20200164] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/22/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an omega-3 fatty acid abundant in fish oils. It is known to have an inhibitory effect on various diseases such as inflammation, diabetes, and cancer. Epithelial-to-mesenchymal transition (EMT) is a process that epithelial cells gain migratory property to become mesenchymal cells involved in wound healing, organ fibrosis, and cancer progression. Gremlin-1 (GREM1) is a bone morphogenetic protein antagonist known to play a role in EMT. However, the role of GREM1 in the induction of EMT in human breast cancer cells and the effect of DHA on GREM1-induced EMT remain unclear. Establishment of GREM1 knockdown cell lines was performed using lentiviral shRNAs. Expression of EMT markers was determined by qRT-PCR and Western blotting. Effect of GREM1 and/or DHA on cell migration was investigated using wound healing assay. The level of GREM1 expression in human breast cancer tissues was determined by Oncomine database mining. GREM1 induced the expression of genes including N-cadherin, vimentin, and Slug. GREM1 promoted the migration of human breast cancer cells. GREM1 enhanced the expression of phosphorylated extracellular signal-regulated kinase (p-ERK) and the ERK activation was involved in EMT. Interestingly, DHA reduced the expression of GREM1. DHA also inhibited the expression of mesenchymal cell-associated genes and cell migration induced by GREM1. Furthermore, DHA suppressed the expression of p-ERK induced by GREM1. These results indicate that GREM1–ERK axis plays a role in EMT in human breast cancer cells and DHA is a putative compound that can inhibit EMT by inhibiting GREM1 signal transduction.
Collapse
|
24
|
Endocannabinoids and aging-Inflammation, neuroplasticity, mood and pain. VITAMINS AND HORMONES 2021; 115:129-172. [PMID: 33706946 DOI: 10.1016/bs.vh.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aging is associated with changes in hormones, slowing of metabolism, diminished physiological processes, chronic inflammation and high exposure to oxidative stress factors, generally described as the biological cost of living. Lifestyle interventions of diet and exercise can improve the quality of life during aging and lower diet-related chronic disease. The endocannabinoid system (ECS) has important effects on systemic metabolism and physiological systems, including the central and peripheral nervous systems. Exercise can reduce the loss of muscle mass and improve strength, and increase the levels of endocannabinoids (eCB) in brain and blood. Although the ECS exerts controls on multiple systems throughout life it affords benefits to natural aging. The eCB are synthesized from polyunsaturated fatty acids (PUFA) and the primary ones are produced from arachidonic acid (n-6 PUFA) and others from the n-3 PUFA, namely eicosapentaenoic and docosahexaenoic acids. The eCB ligands bind to their receptors, CB1 and CB2, with effects on appetite stimulation, metabolism, immune functions, and brain physiology and neuroplasticity. Dietary families of PUFA are a primary factor that can influence the types and levels of eCB and as a consequence, the downstream actions when the ligands bind to their receptors. Furthermore, the association of eCB with the synthesis of oxylipins (OxL) is a connection between the physiological actions of eCB and the lipid derived immunological OxL mediators of inflammation. OxL are ubiquitous and influence neuroinflammation and inflammatory processes. The emerging actions of eCB on neuroplasticity, well-being and pain are important to aging. Herein, we present information about the ECS and its components, how exercise and diet affects specific eCB, their role in neuroplasticity, neuroinflammation, pain, mood, and relationship to OxL. Poor nutrition status and low nutrient intakes observed with many elderly are reasons to examine the role of dietary PUFA actions on the ECS to improve health.
Collapse
|
25
|
Balakrishnan J, Kannan S, Govindasamy A. Structured form of DHA prevents neurodegenerative disorders: A better insight into the pathophysiology and the mechanism of DHA transport to the brain. Nutr Res 2020; 85:119-134. [PMID: 33482601 DOI: 10.1016/j.nutres.2020.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
Docosahexaenoic acid (DHA) is one of the most important fatty acids that plays a critical role in maintaining proper brain function and cognitive development. Deficiency of DHA leads to several neurodegenerative disorders and, therefore, dietary supplementations of these fatty acids are essential to maintain cognitive health. However, the complete picture of how DHA is incorporated into the brain is yet to be explored. In general, the de novo synthesis of DHA is poor, and targeting the brain with specific phospholipid carriers provides novel insights into the process of reduction of disease progression. Recent studies have suggested that compared to triacylglycerol form of DHA, esterified form of DHA (i.e., lysophosphatidylcholine [lysoPC]) is better incorporated into the brain. Free DHA is transported across the outer membrane leaflet of the blood-brain barrier via APOE4 receptors, whereas DHA-lysoPC is transported across the inner membrane leaflet of the blood-brain barrier via a specific protein called Mfsd2a. Dietary supplementation of this lysoPC specific form of DHA is a novel therapy and is used to decrease the risk of various neurodegenerative disorders. Currently, structured glycerides of DHA - novel nutraceutical agents - are being widely used for the prevention and treatment of various neurological diseases. However, it is important to fully understand their metabolic regulation and mechanism of transportation to the brain. This article comprehensively reviews various studies that have evaluated the bioavailability of DHA, mechanisms of DHA transport, and role of DHA in preventing neurodegenerative disorders, which provides better insight into the pathophysiology of these disorders and use of structured DHA in improving neurological health.
Collapse
Affiliation(s)
- Jeyakumar Balakrishnan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, India.
| | - Suganya Kannan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry, India
| | - Ambujam Govindasamy
- Department of General Surgery, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission Research Foundation (Deemed to be University), Karaikal. Puducherry, India
| |
Collapse
|
26
|
Jung T, Hudson R, Rushlow W, Laviolette SR. Functional interactions between cannabinoids, omega-3 fatty acids, and peroxisome proliferator-activated receptors: Implications for mental health pharmacotherapies. Eur J Neurosci 2020; 55:1088-1100. [PMID: 33108021 DOI: 10.1111/ejn.15023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Cannabis contains a plethora of phytochemical constituents with diverse neurobiological effects. Cannabidiol (CBD) is the main non-psychotropic component found in cannabis that is capable of modulating mesocorticolimbic DA transmission and may possess therapeutic potential for several neuropsychiatric disorders. Emerging evidence also suggests that, similar to CBD, omega-3 polyunsaturated fatty acids may regulate DA transmission and possess therapeutic potential for similar neuropsychiatric disorders. Although progress has been made to elucidate the mechanisms underlying the therapeutic properties of CBD and omega-3s, it remains unclear through which receptor mechanisms they may produce their purported effects. Peroxisome proliferator-activated receptors are a group of nuclear transcription factors with multiple isoforms. PPARγ is an isoform activated by both CBD and omega-3, whereas the PPARα isoform is activated by omega-3. Interestingly, the activation of PPARγ and PPARα with selective agonists has been shown to decrease mesocorticolimbic DA activity and block neuropsychiatric symptoms similar to CBD and omega-3s, raising the possibility that CBD and omega-3s produce their effects through PPAR signaling. This review will examine the relationship between CBD, omega-3s, and PPARs and how they may be implicated in the modulation of mesocorticolimbic DAergic abnormalities and associated neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Tony Jung
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Roger Hudson
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Walter Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
27
|
Gil-Iturbe E, Félix-Soriano E, Sáinz N, Idoate-Bayón A, Castilla-Madrigal R, Moreno-Aliaga MJ, Lostao MP. Effect of aging and obesity on GLUT12 expression in small intestine, adipose tissue, muscle, and kidney and its regulation by docosahexaenoic acid and exercise in mice. Appl Physiol Nutr Metab 2020; 45:957-967. [PMID: 32176854 DOI: 10.1139/apnm-2019-0721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Obesity is characterized by excessive fat accumulation and inflammation. Aging has also been characterized as an inflammatory condition, frequently accompanied by accumulation of visceral fat. Beneficial effects of exercise and n-3 long-chain polyunsaturated fatty acids in metabolic disorders have been described. Glucose transporter 12 (GLUT12) is one of the less investigated members of the GLUT family. Glucose, insulin, and tumor necrosis factor alpha (TNF-α) induce GLUT12 translocation to the membrane in muscle, adipose tissue, and intestine. We aimed to investigate GLUT12 expression in obesity and aging, and under diet supplementation with docosahexaenoic acid (DHA) alone or in combination with physical exercise in mice. Aging increased GLUT12 expression in intestine, kidney, and adipose tissue, whereas obesity reduced it. No changes on the transporter occurred in skeletal muscle. In obese 18-month-old mice, DHA further decreased GLUT12 in the 4 organs. Aerobic exercise alone did not modify GLUT12, but the changes triggered by exercise were able to prevent the DHA-diminishing effect, and almost restored GLUT12 basal levels. In conclusion, the downregulation of metabolism in aging would be a stimulus to upregulate GLUT12 expression. Contrary, obesity, an excessive energy condition, would induce GLUT12 downregulation. The combination of exercise and DHA would contribute to restore basal function of GLUT12. Novelty In small intestine, kidney and adipose tissue aging increases GLUT12 protein expression whereas obesity reduces it. Dietary DHA decreases GLUT12 in small intestine, kidney, adipose tissue and skeletal muscle. Exercise alone does not modify GLUT12 expression, nevertheless exercise prevents the DHA-diminishing effect on GLUT12.
Collapse
Affiliation(s)
- Eva Gil-Iturbe
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Elisa Félix-Soriano
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Adrián Idoate-Bayón
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
| | | | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Navarra, Spain
- Institute of Health Carlos III (ISCIII), Biomedical Research Networking Center in Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - María Pilar Lostao
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Navarra, Spain
| |
Collapse
|
28
|
Lin L, Metherel AH, Di Miceli M, Liu Z, Sahin C, Fioramonti X, Cummins CL, Layé S, Bazinet RP. Tetracosahexaenoylethanolamide, a novel N-acylethanolamide, is elevated in ischemia and increases neuronal output. J Lipid Res 2020; 61:1480-1490. [PMID: 32826272 DOI: 10.1194/jlr.ra120001024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-acylethanolamines (NAEs) are endogenous lipid-signaling molecules derived from fatty acids that regulate numerous biological functions, including in the brain. Interestingly, NAEs are elevated in the absence of fatty acid amide hydrolase (FAAH) and following CO2-induced ischemia/hypercapnia, suggesting a neuroprotective response. Tetracosahexaenoic acid (THA) is a product and precursor to DHA; however, the NAE product, tetracosahexaenoylethanolamide (THEA), has never been reported. Presently, THEA was chemically synthesized as an authentic standard to confirm THEA presence in biological tissues. Whole brains were collected and analyzed for unesterified THA, total THA, and THEA in wild-type and FAAH-KO mice that were euthanized by either head-focused microwave fixation, CO2 + microwave, or CO2 only. PPAR activity by transient transfection assay and ex vivo neuronal output in medium spiny neurons (MSNs) of the nucleus accumbens by patch clamp electrophysiology were determined following THEA exposure. THEA in the wild-type mice was nearly doubled (P < 0.05) following ischemia/hypercapnia (CO2 euthanization) and up to 12 times higher (P < 0.001) in the FAAH-KO compared with wild-type. THEA did not increase (P > 0.05) transcriptional activity of PPARs relative to control, but 100 nM of THEA increased (P < 0.001) neuronal output in MSNs of the nucleus accumbens. Here were identify a novel NAE, THEA, in the brain that is elevated upon ischemia/hypercapnia and by KO of the FAAH enzyme. While THEA did not activate PPAR, it augmented the excitability of MSNs in the nucleus accumbens. Overall, our results suggest that THEA is a novel NAE that is produced in the brain upon ischemia/hypercapnia and regulates neuronal excitation.
Collapse
Affiliation(s)
- Lin Lin
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Di Miceli
- Université de Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Zhen Liu
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Cigdem Sahin
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Xavier Fioramonti
- Université de Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sophie Layé
- Université de Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Saleh-Ghadimi S, Alizadeh M, Jafari-Vayghan H, Darabi M, Golmohammadi A, Kheirouri S. Effect of flaxseed oil supplementation on the erythrocyte membrane fatty acid composition and endocannabinoid system modulation in patients with coronary artery disease: a double-blind randomized controlled trial. GENES AND NUTRITION 2020; 15:9. [PMID: 32370762 PMCID: PMC7201600 DOI: 10.1186/s12263-020-00665-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/05/2020] [Indexed: 01/09/2023]
Abstract
Background The endocannabinoid system (ECS) overactivation, associated with increased inflammatory process, may act as a risk factor for coronary artery disease (CAD). Dietary fat may influence the ECS tone. The aim of the present study was to investigate the effect of flaxseed oil on the erythrocyte membrane fatty acid profile and ECS activity by the measurement of serum N-arachydonoil ethanolamine (AEA) and cannabinoid receptor type-1 (CB1), cannabinoid receptor type-2 (CB2), and fatty acid amide hydrolase (FAAH) mRNA expression. Methods This clinical trial was performed on 44 patients with CAD. The intervention group received 1.5% fat milk supplemented with flaxseed oil (containing 2.5 g α-linolenic acid or ALA), while the placebo group received 1.5% fat milk for 10 weeks. The fatty acid profile of erythrocyte membrane phospholipids was measured by gas chromatography. The AEA level was determined using an ELISA kit, and real-time PCR was performed to measure CB1, CB2, and FAAH mRNA expression pre- and post-intervention. Results Flaxseed oil supplementation resulted in a significant increase in the ALA content and a significant reduction in linoleic acid (LA) content of membrane phospholipids, compared to the placebo group (MD = − 0.35 and 2.89, respectively; P < 0.05). The within group analysis showed that flaxseed oil supplementation caused a significant reduction in both LA and arachidonic acid (MD = − 4.84 and − 4.03, respectively; P < 0.05) and an elevation in the ALA (MD = 0.37, P < 0.001) content of membrane phospholipids compared with the baseline. In the intervention group, a marked reduction was observed in the serum AEA level after 10 weeks of intervention, compared with the placebo group (MD = 0.64, P = 0.016). Changes in CB2 mRNA expression in the flaxseed oil group were significant (fold change = 1.30, P = 0.003), compared with the placebo group. Conclusion Flaxseed oil supplementation could attenuate the ECS tone by decreasing the AEA level and increasing CB2 mRNA expression. Therefore, flaxseed oil may be considered a promising agent with cardioprotective properties.
Collapse
Affiliation(s)
- Sevda Saleh-Ghadimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Golmohammadi
- Cardiovascular Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Interactions of dietary fat with the gut microbiota: Evaluation of mechanisms and metabolic consequences. Clin Nutr 2020; 39:994-1018. [DOI: 10.1016/j.clnu.2019.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
|
31
|
Yang B, Lin L, Bazinet RP, Chien YC, Chang JPC, Satyanarayanan SK, Su H, Su KP. Clinical Efficacy and Biological Regulations of ω-3 PUFA-Derived Endocannabinoids in Major Depressive Disorder. PSYCHOTHERAPY AND PSYCHOSOMATICS 2020; 88:215-224. [PMID: 31269506 DOI: 10.1159/000501158] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/24/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Endocannabinoids (ECs) are one type of bioactive endogenous neuroinflammatory mediator derived from polyunsaturated fatty acids (PUFAs), which may regulate the emotional processes. Here, we assessed the effect of ω-3 PUFAs on EC levels, which may be the novel targets for the ω-3 PUFAs' antidepressive effects. METHODS We conducted a 12-week double-blind, nonplacebo, randomized controlled trial. Eighty-eight major depressive disorder (MDD) participants were randomly assigned to receive eicosapentaenoic acid (EPA, 3.0 g/day), docosahexaenoic acid (DHA, 1.4 g/day), or a combination of EPA (1.5 g/d) and DHA (0.7 g/day). Eighty-five participants completed the trial, and their clinical remission and plasma PUFA-derived EC levels (pmol/mL) were measured. RESULTS The cumulative rates of clinical remission were significantly higher in the EPA and EPA + DHA groups than the DHA group (51.85 and 53.84 vs. 34.37%; p =0.027 and p =0.024, respectively). EPA and EPA + DHA treatments increased the eicosapentaenoylethanolamide (EPEA) levels compared to DHA treatment (0.33 ± 0.18 and 0.35 ± 0.24 vs. 0.08 ± 0.12; p =0.002 and p =0.001, respectively), while EPA + DHA treatment increased the docosahexaenoylethanolamide levels more than EPA treatment (1.34 ± 2.09 vs. 0.01 ± 1.79; p =0.006). Plasma EPEA levels were positively correlated with rates of clinical remission (hazard ratio: 1.60, 95% confidence interval: 1.08-2.39). CONCLUSIONS Treatments enriched with EPA increased plasma EPEA levels, which was positively associated with clinical remission. This finding may suggest that levels of plasma EPEA play a potential novel endogenous therapeutic target in MDD.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Lipids Medicine and School of Public Health, Wenzhou Medical University, Wenzhou, China.,Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Lin Lin
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Chuan Chien
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Jane Pei-Chen Chang
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Senthil Kumaran Satyanarayanan
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Kuan-Pin Su
- Institute of Lipids Medicine and School of Public Health, Wenzhou Medical University, Wenzhou, China, .,Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan, .,College of Medicine, China Medical University, Taichung, Taiwan,
| |
Collapse
|
32
|
Saleh-Ghadimi S, Kheirouri S, Maleki V, Jafari-Vayghan H, Alizadeh M. Endocannabinoid system and cardiometabolic risk factors: A comprehensive systematic review insight into the mechanistic effects of omega-3 fatty acids. Life Sci 2020; 250:117556. [PMID: 32184122 DOI: 10.1016/j.lfs.2020.117556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Increased levels of endocannabinoids, 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA) have a pathophysiological role in the setting of cardiometabolic diseases. This systematic review was carried out to appraise the effect of omega-3 on cardiometabolic risk factors by highlighting the mediating effect of endocannabinoids. SCOPUS, PubMed, Embase, Google Scholar and ProQuest databases were searched until January 2020. All published English-language animal studies and clinical trials that evaluated the effects of omega-3 on cardiometabolic diseases with a focus on endocannabinoids were included. Of 1407 studies, 16 animal studies and three clinical trials were included for analysis. Eleven animal studies and two human studies showed a marked reduction in 2-AG and AEA levels following intake of omega-3 which correlated with decreased adiposity, weight gain and improved glucose homeostasis. Moreover, endocannabinoids were elevated in three studies that replaced omega-3 with omega-6. Omega-3 showed anti-inflammatory properties due to reduced levels of inflammatory cytokines, regulation of T-cells function and increased levels of eicosapentaenoyl ethanolamide, docosahexaenoyl ethanolamide and oxylipins; however, a limited number of studies examined a correlation between inflammatory cytokines and endocannabinoids following omega-3 administration. In conclusion, omega-3 modulates endocannabinoid tone, which subsequently attenuates inflammation and cardiometabolic risk factors. However, further randomized clinical trials are needed before any recommendations are made to target the ECS using omega-3 as an alternative therapy to drugs for cardiometabolic disease improvement.
Collapse
Affiliation(s)
- Sevda Saleh-Ghadimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Baptista LC, Sun Y, Carter CS, Buford TW. Crosstalk Between the Gut Microbiome and Bioactive Lipids: Therapeutic Targets in Cognitive Frailty. Front Nutr 2020; 7:17. [PMID: 32219095 PMCID: PMC7078157 DOI: 10.3389/fnut.2020.00017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cognitive frailty is a geriatric condition defined by the coexistence of cognitive impairment and physical frailty. This "composite" aging phenotype is associated with a higher risk of several adverse health-related outcomes, including dementia. In the last decade, cognitive frailty has gained increased attention from the scientific community that has focused on understanding the clinical impact and the physiological and pathological mechanisms of development and on identifying preventive and/or rehabilitative therapeutic interventions. The emergence of gut microbiome in neural signaling increased the interest in targeting the gut-brain axis as a modulation strategy. Multiple studies on gastroenteric, metabolic, and neurodegenerative diseases support the existence of a wide bidirectional communication network of signaling mediators, e.g., bioactive lipids, that can modulate inflammation, gut permeability, microbiota composition, and the gut-brain axis. This crosstalk between the gut-brain axis, microbiome, and bioactive lipids may emerge as the basis of a promising therapeutic strategy to counteract cognitive frailty. In this review, we summarize the evidence in the literature regarding the link between the gut microbiome, brain, and several families of bioactive lipids. In addition, we also explore the applicability of several bioactive lipid members as a potential routes for therapeutic interventions to combat cognitive frailty.
Collapse
Affiliation(s)
- Liliana C. Baptista
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yi Sun
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christy S. Carter
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Christy S. Carter
| | - Thomas W. Buford
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States,Thomas W. Buford ; Twitter: @twbuford
| |
Collapse
|
34
|
Aryaie A, Tinsley G, Lee J, Watkins BA, Moore L, Alhaj-Saleh A, Shankar K, Wood SR, Wang R, Shen CL. Actions of annatto-extracted tocotrienol supplementation on obese postmenopausal women: study protocol for a double-blinded, placebo-controlled, randomised trial. BMJ Open 2020; 10:e034338. [PMID: 32152169 PMCID: PMC7064069 DOI: 10.1136/bmjopen-2019-034338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/04/2019] [Accepted: 01/28/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Obesity is a major health concern in postmenopausal women, and chronic low-grade inflammation contributes to the development of obesity. Cellular studies and high-fat-diet-induced obese mouse model mimicking obesity show the antiobesity effect of annatto-extracted tocotrienols (TT) with antioxidant capability. We aim to assess the safety and efficacy of TT consumption for lipid-related parameters in obese postmenopausal women. METHODS AND ANALYSIS Eligible obese postmenopausal women will be randomly assigned to placebo group (430 mg olive oil) and TT group (DeltaGold Tocotrienol 70%) for 24 weeks. In the present study, the primary outcome is total/regional fat mass and visceral adipose tissue. The secondary outcomes include lipid profile in serum, mRNA expression of fatty acid synthase and carnitine palmitoyltransferase 1A in fat tissue, oxylipins and endocannabinoids in plasma and adipose tissue, abundance and composition of intestinal microbiome in faeces, high-sensitivity C-reactive protein (hs-CRP) in serum and leptin in serum. Every participant will be evaluated at 0 (prior to starting intervention) and 24 weeks of intervention, except for serum lipid profile and hs-CRP at 0, 12 and 24 weeks. 'Intent-to-treat' principle is employed for data analysis. Hierarchical linear modelling is used to estimate the effects of dietary TT supplementation while properly accounting for dependency of data and identified covariates. To our knowledge, this is the first randomised, placebo-controlled, double-blinded study to determine dietary TT supplementation on an obese population. If successful, this study will guide the future efficacy TT interventions and TT can be implemented as an alternative for obese population in antiobesity management. ETHICS AND DISSEMINATION This study has been approved by the Bioethics Committee of the Texas Tech University Health Sciences Center, Lubbock. An informed consent form will be signed by a participant before enrolling in the study. The results from this trial will be actively disseminated through academic conference presentation and peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT03705845.
Collapse
Affiliation(s)
- Amir Aryaie
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Grant Tinsley
- Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Jaehoon Lee
- Educational Psychology and Leadership, Texas Tech University, Lubbock, Texas, USA
| | - Bruce A Watkins
- Nutrition, University of California Davis, Davis, California, USA
| | - Lane Moore
- Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Adel Alhaj-Saleh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kartik Shankar
- Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Sarah R Wood
- Clinical Research Institutes, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
35
|
Shin BC, Ghosh S, Dai Y, Byun SY, Calkins KL, Devaskar SU. Early life high-fat diet exposure maintains glucose tolerance and insulin sensitivity with a fatty liver and small brain size in the adult offspring. Nutr Res 2019; 69:67-81. [PMID: 31639589 PMCID: PMC6934265 DOI: 10.1016/j.nutres.2019.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/10/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
Diet during pregnancy has long lasting consequences on the offspring, warranting a study on the impact of early exposure to a high fat diet on the adult offspring. We hypothesized that a prenatal n-6 enriched diet will have adverse metabolic outcomes on the adult offspring that may be reversed with a postnatal n-3 enriched diet. To test this hypothesis, we examined the adult offspring from three groups: (1) n-6 group: during gestation and lactation, dams consumed an n-6 polyunsaturated fatty acid enriched diet, (2) n-3 group: gestational n-6 diet was followed by an n-3 enriched diet during lactation, and (3) a control (CD) group that received standard diet throughout gestation and lactation. Offspring from all groups weaned to a control diet ad libitum. Beginning at postnatal day 2 (P < .03) and persisting at 360 days in males (P < .04), an increase in hypothalamic AgRP expression occurred in the n-6 and n-3 groups, with an increase in food intake (P = .01), and the n-3 group displaying lower body (P < .03) and brain (P < .05) weights. At 360 days, the n-6 and n-3 groups remained glucose tolerant and insulin sensitive, with increased phosphorylated-AMP-activated protein kinase (P < .05). n-6 group developed hepatic steatosis with reduced hepatic reflected as higher plasma microRNA-122 (P < .04) that targets pAMPK. We conclude that early life exposure to n-6 and n-3 led to hypothalamic AgRP-related higher food intake, with n-6 culminating in a fatty liver partially mitigated by postnatal n-3. While both diets preserved glucose tolerance and insulin sensitivity, postnatal n-3 displayed detrimental effects on the brain.
Collapse
Affiliation(s)
- Bo-Chul Shin
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Shubhamoy Ghosh
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Yun Dai
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Shin Yun Byun
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Kara L Calkins
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Sherin U Devaskar
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752.
| |
Collapse
|
36
|
Röhrig W, Achenbach S, Deutsch B, Pischetsrieder M. Quantification of 24 circulating endocannabinoids, endocannabinoid-related compounds, and their phospholipid precursors in human plasma by UHPLC-MS/MS. J Lipid Res 2019; 60:1475-1488. [PMID: 31235475 PMCID: PMC6672038 DOI: 10.1194/jlr.d094680] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Endocannabinoids and endocannabinoid-related compounds (ERCs) are involved in many physiological processes. They are released on demand from phosphoinositide and N-acylphosphatidyl ethanolamine (NAPE) precursors and comprise 2-monoacylglycerols (2-MGs) and FA ethanolamides (FEAs). Despite the abundance of advanced quantitative methods, however, their determined concentrations in blood plasma are inconsistent because 2-MGs and FEAs undergo artifactual de novo formation, chemical isomerization, and degradation during sample collection and storage. For a comprehensive survey of these compounds in blood and plasma, we have developed and validated an ultra-HPLC-MS/MS method to quantify 24 endocannabinoids, ERCs, and their phospholipid precursors. Immediate acidification of EDTA-blood to pH 5.8 blocked artifactual FEA formation for at least 4 h on ice. The 2-MGs were stabilized after plasma harvest with 0.5 M potassium thiocyanate at pH 4.7. FEA and MG plasma concentrations in six healthy volunteers ranged between 0.04-3.48 and 0.63-6.18 ng/ml, respectively. Interestingly, only 1-5% of circulating FEAs were present in their free form, while the majority was bound to NAPEs. Similarly, 97% of 2-arachidonoylglycerol (2-AG) was bound to a potential phosphoinositide pool. The herein-described stabilization and extraction methods may now be used to reliably and comprehensively quantify endocannabinoids, ERCs, and their phospholipid precursors in clinical studies.
Collapse
Affiliation(s)
- Waldemar Röhrig
- Food Chemistry, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Susanne Achenbach
- Department of Transfusion Medicine and Hemostaseology Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Birgit Deutsch
- Institute of Experimental and Clinical Pharmacology and Toxicology Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
37
|
Abstract
Healthy aging includes freedom from disease, ability to engage in physical activity, and maintenance of cognitive skills for which diet is a major lifestyle factor. Aging, diet, and health are at the forefront of well-being for the growing population of older adults with the caveat of reducing and controlling pain. Obesity and diabetes risk increase in frequency in adults, and exercise is encouraged to control weight, reduce risk of type II diabetes, and maintain muscle mass and mobility. One area of research that appears to integrate many aspects of healthy aging is focused on understanding the endocannabinoid system (ECS) because of its role in systemic energy metabolism, inflammation, pain, and brain biology. Physical activity is important for maintaining health throughout the life cycle. The benefits of exercise facilitate macronutrient use, promote organ health, and augment the maintenance of metabolic activity and physiological functions. One outcome of routine exercise is a generalized well-being, and perhaps, this is linked to the ECS. The purpose of this review is to briefly present the current knowledge of key components of the ECS that contribute to appetite and influence systemic energy metabolism, and dietary factors that alter the responses of ligand binding and activation of cannabinoid receptors and its role in the brain. Herein, the objectives are to (1) explain the role of the ECS in the body, (2) describe the relationship between dietary polyunsaturated fatty acids and macronutrient intake and systemic metabolism, and (3) present areas of promising research where exercise induces endocannabinoid production in the brain to benefit well-being. There are many gaps in the knowledge of how the ECS participates in controlling pain through exercise; however, emerging research will reveal key relationships to understand this system in the brain and body.
Collapse
Affiliation(s)
- Bruce A Watkins
- Department of Nutrition, University of California, Davis, CA, USA.
| |
Collapse
|
38
|
Watson JE, Kim JS, Das A. Emerging class of omega-3 fatty acid endocannabinoids & their derivatives. Prostaglandins Other Lipid Mediat 2019; 143:106337. [PMID: 31085370 DOI: 10.1016/j.prostaglandins.2019.106337] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/11/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022]
Abstract
Cannabinoid receptor activation is involved in homeostatic regulation of the body. These receptors are activated by cannabinoids, that include the active constituents of Cannabis sativa, as well as endocannabinoids (eCBs). The eCBs are endogenously synthesized from the omega-6 and omega-3 polyunsaturated fatty acids (PUFAs). The consumption of omega-3 fatty acids shifts the balance towards a higher proportion of omega-3 eCBs, whose physiological functions warrants further investigation. Herein, we review the discovery of omega-3 fatty acid derived eCBs that are generated from long chain omega-3 PUFAs - docosahexaenoyl ethanolamide (DHA-EA or synaptamide), docosahexanoyl-glycerol (DHG), eicosapentaenoyl ethanolamide (EPA-EA) and eicosapentanoylglycerol (EPG). Furthermore, we outline the lesser known omega-3 eCB-like molecules that arise from the conjugation of omega-3 fatty acids with neurotransmitters serotonin and dopamine - DHA-serotonin (DHA-5HT), DHA-dopamine (DHA-DA), EPA-serotonin (EPA-5HT) and EPA-dopamine (EPA-DA). Additionally, we describe the role of omega-3 eCBs and their derivatives in different disease states, such as pain, inflammation and cancer. Moreover, we detail the formation and potential physiological roles of the oxidative metabolites that arise from the metabolism of omega-3 eCBs by eicosanoid synthesizing enzymes - cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 epoxygenase (CYP450). In summary, we outline the novel findings regarding a growing class of signaling molecules that can control the physiological and pathophysiological processes in the body.
Collapse
Affiliation(s)
| | - Justin S Kim
- Division of Nutritional Sciences, Urbana, IL 61801, United States
| | - Aditi Das
- Department of Comparative Biosciences, Urbana, IL 61802, United States; Department of Biochemistry, Urbana, IL 61801, United States; Division of Nutritional Sciences, Urbana, IL 61801, United States; Beckman Institute for Advanced Science, Neuroscience Program, Center for Biophysics and Quantitative Biology, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
39
|
Chazarin B, Storey KB, Ziemianin A, Chanon S, Plumel M, Chery I, Durand C, Evans AL, Arnemo JM, Zedrosser A, Swenson JE, Gauquelin-Koch G, Simon C, Blanc S, Lefai E, Bertile F. Metabolic reprogramming involving glycolysis in the hibernating brown bear skeletal muscle. Front Zool 2019; 16:12. [PMID: 31080489 PMCID: PMC6503430 DOI: 10.1186/s12983-019-0312-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background In mammals, the hibernating state is characterized by biochemical adjustments, which include metabolic rate depression and a shift in the primary fuel oxidized from carbohydrates to lipids. A number of studies of hibernating species report an upregulation of the levels and/or activity of lipid oxidizing enzymes in muscles during torpor, with a concomitant downregulation for glycolytic enzymes. However, other studies provide contrasting data about the regulation of fuel utilization in skeletal muscles during hibernation. Bears hibernate with only moderate hypothermia but with a drop in metabolic rate down to ~ 25% of basal metabolism. To gain insights into how fuel metabolism is regulated in hibernating bear skeletal muscles, we examined the vastus lateralis proteome and other changes elicited in brown bears during hibernation. Results We show that bear muscle metabolic reorganization is in line with a suppression of ATP turnover. Regulation of muscle enzyme expression and activity, as well as of circulating metabolite profiles, highlighted a preference for lipid substrates during hibernation, although the data suggested that muscular lipid oxidation levels decreased due to metabolic rate depression. Our data also supported maintenance of muscle glycolysis that could be fuelled from liver gluconeogenesis and mobilization of muscle glycogen stores. During hibernation, our data also suggest that carbohydrate metabolism in bear muscle, as well as protein sparing, could be controlled, in part, by actions of n-3 polyunsaturated fatty acids like docosahexaenoic acid. Conclusions Our work shows that molecular mechanisms in hibernating bear skeletal muscle, which appear consistent with a hypometabolic state, likely contribute to energy and protein savings. Maintenance of glycolysis could help to sustain muscle functionality for situations such as an unexpected exit from hibernation that would require a rapid increase in ATP production for muscle contraction. The molecular data we report here for skeletal muscles of bears hibernating at near normal body temperature represent a signature of muscle preservation despite atrophying conditions.
Collapse
Affiliation(s)
- Blandine Chazarin
- 1Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.,10Centre National d'Etudes Spatiales, CNES, F-75001 Paris, France
| | - Kenneth B Storey
- 2Department of Biology, Carleton University, Ottawa, ON K1S 5B6 Canada
| | - Anna Ziemianin
- 1Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.,10Centre National d'Etudes Spatiales, CNES, F-75001 Paris, France
| | - Stéphanie Chanon
- 3CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Marine Plumel
- 1Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Isabelle Chery
- 1Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Christine Durand
- 3CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Alina L Evans
- 4Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway
| | - Jon M Arnemo
- 4Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway.,5Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Andreas Zedrosser
- 6Department of Environmental and Health Studies, University College of Southeast Norway, N-3800 Bø, Telemark Norway.,7Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, A-1180 Vienna, Austria
| | - Jon E Swenson
- 8Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway.,9Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway
| | | | - Chantal Simon
- 3CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Stephane Blanc
- 1Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Etienne Lefai
- 3CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France.,Université d'Auvergne, INRA, UNH UMR1019, F-63122 Saint-Genès Champanelle, France
| | - Fabrice Bertile
- 1Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
40
|
Farahnak Z, Lévy-Ndejuru J, Lavery P, Weiler HA. Docosahexaenoic Acid at 0.4% of Dietary Weight Enhances Lean Mass in Young Female Sprague-Dawley Rats. J Nutr 2019; 149:479-487. [PMID: 30773585 DOI: 10.1093/jn/nxy266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/05/2018] [Accepted: 09/26/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA; 22:6n-3) is an n-3 (ω-3) fatty acid known for beneficial effects on body composition. OBJECTIVE The objective of the study was to test the dose response of lean and fat mass to DHA in healthy growing female rats. METHODS Female Sprague-Dawley rats (7 wk at baseline; n = 12/diet) were randomly assigned to receive a control (AIN-93M; 60 g soybean oil/kg diet) or experimental diet for 10 wk. Experimental diets contained 0.1%, 0.4%, 0.8%, or 1.2% DHA (wt:wt of total diet). Imaging for whole-body and abdominal composition was conducted using dual-energy X-ray absorptiometry and microcomputed tomography, respectively, at weeks 0, 5, and 10. Fatty acid profiles of several tissues were analyzed using gas chromatography. Serum leptin, C-reactive protein, and plasma insulin-like growth factor I concentrations were measured at each time point using immunoassays. Data were tested using Pearson's correlations and mixed-model ANOVA. RESULTS No differences were observed in weight at baseline or food intake throughout the study. Overall, a 6% increase (P < 0.05) in whole-body and abdominal lean mass was observed in the 0.4%-DHA diet group compared with the control diet group. Moreover, the abdominal visceral fat mass was 31.4% lower in rats in the 0.4%-DHA than in the 1.2%-DHA diet group (P < 0.001). Rats in the 1.2%-DHA diet group showed greater percent differences in whole-body (32.5% and 40.6% higher) and in abdominal (33.9% and 49.4% higher) fat mass relative to the 0.1%- and 0.4%-DHA diet groups, respectively (P < 0.01). Accordingly, serum leptin concentration was lower in the 0.1%-DHA (38.2%) and 0.4%-DHA (43.8%) diet groups (P < 0.01) than in the 1.2%-DHA diet group and positively related to whole-body fat mass (r = 0.91, P < 0.0001). CONCLUSION Dietary DHA at 0.4% of dietary weight effectively enhances lean mass and proportionally reduces fat mass in growing female rats.
Collapse
Affiliation(s)
- Zahra Farahnak
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Julia Lévy-Ndejuru
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Paula Lavery
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Hope A Weiler
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
41
|
Watkins BA. Endocannabinoids, exercise, pain, and a path to health with aging. Mol Aspects Med 2018; 64:68-78. [DOI: 10.1016/j.mam.2018.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
|
42
|
El-Ashmawy NE, Al-Ashmawy GM, Kamel AA. Docosahexaenoic acid-flurbiprofen combination ameliorates metaflammation in rats fed on high-carbohydrate high-fat diet. Biomed Pharmacother 2018; 109:233-241. [PMID: 30396081 DOI: 10.1016/j.biopha.2018.10.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Potential benefits of combining docosahexaenoic acid (DHA), an omega-3 fatty acid with flurbiprofen (Flu), a non-steroidal anti-inflammatory drug in ameliorating obesity remain to be elucidated. This study aimed to investigate the possible protective effects of DHA and Flu, either alone or in combination, against obesity-induced metaflammation and to clarify the underlying molecular mechanisms. METHODS Seventy-five male Wistar rats were divided into five groups: normal diet (ND) group, high-carbohydrate high-fat diet (HCHFD) control group, DHA group (HCHFD + 200 mg/kg DHA), Flu group (HCHFD + 10 mg/kg Flu), and DHA + Flu group (HCHFD + DHA + Flu). Treatments were administered orally daily for 8 consecutive weeks, parallel with the start of diets. RESULTS Plasma levels of glucose, insulin, and TGs were significantly reduced in DHA, Flu, and DHA + Flu treated groups, while HDL-C concentrations were significantly elevated in the same groups, compared to HCHFD control group. Only Flu and DHA + Flu groups showed a significant decrease in plasma levels of leptin, TC, and LDL-C, relative to HCHFD control group. Concentrations of phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) and resolvin D1 (RvD1) in epididymal adipose tissue (EAT) were significantly increased in the three treated groups, compared with HCHFD control group. Expression of AMPK-α1 subunit in EAT was significantly increased, whereas expression of nuclear factor kappa B (NF-κB) was significantly decreased in EAT of the three treated groups, relative to HCHFD control group. CONCLUSIONS Docosahexaenoic acid-flurbiprofen combination showed an ameliorative effect on obesity-associated metaflammation and its consequences in rats.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal Code: 31527, Egypt.
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal Code: 31527, Egypt.
| | - Asmaa A Kamel
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal Code: 31527, Egypt.
| |
Collapse
|
43
|
Lin L, Metherel AH, Kitson AP, Alashmali SM, Hopperton KE, Trépanier MO, Jones PJ, Bazinet RP. Dietary fatty acids augment tissue levels of n-acylethanolamines in n-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) knockout mice. J Nutr Biochem 2018; 62:134-142. [PMID: 30290332 DOI: 10.1016/j.jnutbio.2018.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 07/31/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
Abstract
N-acylethanolamines (NAEs) are lipid signaling mediators, which can be synthesized from dietary fatty acids via n-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD) and in turn influence physiological outcomes; however, the roles of NAPE-PLD upon dietary fatty acid modulation are not fully understood. Presently, we examine if NAPE-PLD is necessary to increase NAEs in response to dietary fatty acid manipulation. Post-weaning male wild-type (C57Bl/6), NAPE-PLD (-/+) and NAPE-PLD (-/-) mice received isocaloric fat diets containing either beef tallow, corn oil, canola oil or fish oil (10% wt/wt from fat) for 9 weeks. Brain docosahexaenoic acid (DHA) levels were higher (P<.01) in NAPE-PLD (-/+) (10.01±0.31 μmol/g) and NAPE-PLD (-/-) (10.89±0.61 μmol/g) than wild-type (7.72±0.61 μmol/g) consuming fish oil. In NAPE-PLD (-/-) mice, brain docosahexaenoylethanolamide (DHEA) levels were higher (P<.01) after fish oil feeding suggesting that NAPE-PLD was not necessary for DHEA synthesis. Liver and jejunum arachidonoylethanolamide, 1,2-arachidonoylglycerol and DHEA levels reflected their corresponding fatty acid precursors suggesting that alternate pathways are involved in NAE synthesis. NAPE-PLD (-/-) mice had lower oleoylethanolamide levels in the jejunum and a leaner phenotype compared to wild-type mice. Overall, these results demonstrate that dietary fatty acid can augment tissue NAEs in the absence of NAPE-PLD.
Collapse
Affiliation(s)
- Lin Lin
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Alex P Kitson
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Shoug M Alashmali
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | | | | | - Peter J Jones
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada.
| |
Collapse
|
44
|
Rossmeisl M, Pavlisova J, Janovska P, Kuda O, Bardova K, Hansikova J, Svobodova M, Oseeva M, Veleba J, Kopecky J, Zacek P, Fiserova E, Pelikanova T, Kopecky J. Differential modulation of white adipose tissue endocannabinoid levels by n-3 fatty acids in obese mice and type 2 diabetic patients. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:712-725. [PMID: 29626526 DOI: 10.1016/j.bbalip.2018.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/16/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022]
Abstract
n-3 polyunsaturated fatty acids (n-3 PUFA) might regulate metabolism by lowering endocannabinoid levels. We examined time-dependent changes in adipose tissue levels of endocannabinoids as well as in parameters of glucose homeostasis induced by n-3 PUFA in dietary-obese mice, and compared these results with the effect of n-3 PUFA intervention in type 2 diabetic (T2DM) subjects. Male C57BL/6J mice were fed for 8, 16 or 24 weeks a high-fat diet alone (cHF) or supplemented with n-3 PUFA (cHF + F). Overweight/obese, T2DM patients on metformin therapy were given for 24 weeks corn oil (Placebo; 5 g/day) or n-3 PUFA concentrate as above (Omega-3; 5 g/day). Endocannabinoids were measured by liquid chromatography-tandem mass-spectrometry. Compared to cHF-fed controls, the cHF + F mice consistently reduced 2-arachidonoylglycerol (up to ~2-fold at week 24) and anandamide (~2-fold) in adipose tissue, while the levels of endocannabinoid-related anti-inflammatory molecules N-eicosapentaenoyl ethanolamine (EPEA) and N-docosahexaenoyl ethanolamine (DHEA) increased more than ~10-fold and ~8-fold, respectively. At week 24, the cHF + F mice improved glucose tolerance and fasting blood glucose, the latter being positively correlated with adipose 2-arachidonoylglycerol levels only in obese cHF-fed controls, like fasting insulin and HOMA-IR. In the patients, n-3 PUFA failed to reduce 2-arachidonoylglycerol and anandamide levels in adipose tissue and serum, but they increased both adipose tissue and serum levels of EPEA and DHEA. In conclusion, the inability of n-3 PUFA to reduce adipose tissue and serum levels of classical endocannabinoids might contribute to a lack of beneficial effects of these lipids on glucose homeostasis in T2DM patients.
Collapse
Affiliation(s)
- Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jana Pavlisova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Janovska
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristina Bardova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Hansikova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Svobodova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marina Oseeva
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Veleba
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Kopecky
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Zacek
- Proteomics Core Facility, Faculty of Science, Charles University, Division BIOCEV, Vestec, Czech Republic
| | - Eva Fiserova
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacky University, Olomouc, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Terezie Pelikanova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
45
|
Perinatal maternal high-fat diet induces early obesity and sex-specific alterations of the endocannabinoid system in white and brown adipose tissue of weanling rat offspring. Br J Nutr 2017; 118:788-803. [PMID: 29110748 DOI: 10.1017/s0007114517002884] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perinatal maternal high-fat (HF) diet programmes offspring obesity. Obesity is associated with overactivation of the endocannabinoid system (ECS) in adult subjects, but the role of the ECS in the developmental origins of obesity is mostly unknown. The ECS consists of endocannabinoids, cannabinoid receptors (cannabinoid type-1 receptor (CB1) and cannabinoid type-2 receptor (CB2)) and metabolising enzymes. We hypothesised that perinatal maternal HF diet would alter the ECS in a sex-dependent manner in white and brown adipose tissue of rat offspring at weaning in parallel to obesity development. Female rats received standard diet (9 % energy content from fat) or HF diet (29 % energy content from fat) before mating, during pregnancy and lactation. At weaning, male and female offspring were killed for tissue harvest. Maternal HF diet induced early obesity, white adipocyte hypertrophy and increased lipid accumulation in brown adipose tissue associated with sex-specific changes of the ECS's components in weanling rats. In male pups, maternal HF diet decreased CB1 and CB2 protein in subcutaneous adipose tissue. In female pups, maternal HF diet increased visceral and decreased subcutaneous CB1. In brown adipose tissue, maternal HF diet increased CB1 regardless of pup sex. In addition, maternal HF diet differentially changed oestrogen receptor across the adipose depots in male and female pups. The ECS and oestrogen signalling play an important role in lipogenesis, adipogenesis and thermogenesis, and we observed early changes in their targets in adipose depots of the offspring. The present findings provide insights into the involvement of the ECS in the developmental origins of metabolic disease induced by inadequate maternal nutrition in early life.
Collapse
|
46
|
Pati S, Krishna S, Lee JH, Ross MK, de La Serre CB, Harn DA, Wagner JJ, Filipov NM, Cummings BS. Effects of high-fat diet and age on the blood lipidome and circulating endocannabinoids of female C57BL/6 mice. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:26-39. [PMID: 28986283 DOI: 10.1016/j.bbalip.2017.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/17/2017] [Accepted: 09/24/2017] [Indexed: 01/06/2023]
Abstract
Alterations in lipid metabolism play a significant role in the pathogenesis of obesity-associated disorders, and dysregulation of the lipidome across multiple diseases has prompted research to identify novel lipids indicative of disease progression. To address the significant gap in knowledge regarding the effect of age and diet on the blood lipidome, we used shotgun lipidomics with electrospray ionization-mass spectrometry (ESI-MS). We analyzed blood lipid profiles of female C57BL/6 mice following high-fat diet (HFD) and low-fat diet (LFD) consumption for short (6weeks), long (22weeks), and prolonged (36weeks) periods. We examined endocannabinoid levels, plasma esterase activity, liver homeostasis, and indices of glucose tolerance and insulin sensitivity to compare lipid alterations with metabolic dysregulation. Multivariate analysis indicated differences in dietary blood lipid profiles with the most notable differences after 6weeks along with robust alterations due to age. HFD altered phospholipids, fatty acyls, and glycerolipids. Endocannabinoid levels were affected in an age-dependent manner, while HFD increased plasma esterase activity at all time points, with the most pronounced effect at 6weeks. HFD-consumption also altered liver mRNA levels of PPARα, PPARγ, and CD36. These findings indicate an interaction between dietary fat consumption and aging with widespread effects on the lipidome, which may provide a basis for identification of female-specific obesity- and age-related lipid biomarkers.
Collapse
Affiliation(s)
- Sumitra Pati
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Saritha Krishna
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Jung Hwa Lee
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, United States
| | - Matthew K Ross
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, United States
| | - Claire B de La Serre
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, United States
| | - Donald A Harn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - John J Wagner
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States; Interdisciplinary Toxicology Program, University of, Georgia, Athens, GA 30602, United States
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States; Interdisciplinary Toxicology Program, University of, Georgia, Athens, GA 30602, United States.
| | - Brian S Cummings
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States; Interdisciplinary Toxicology Program, University of, Georgia, Athens, GA 30602, United States.
| |
Collapse
|
47
|
Dietary Fatty Acid Composition Modulates Obesity and Interacts with Obesity-Related Genes. Lipids 2017; 52:803-822. [DOI: 10.1007/s11745-017-4291-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022]
|
48
|
Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr Neurosci 2017; 21:695-714. [PMID: 28686542 DOI: 10.1080/1028415x.2017.1347373] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are lipid derivatives of omega-3 (docosahexaenoic acid, DHA, and eicosapentaenoic acid, EPA) or of omega-6 (arachidonic acid, ARA) synthesized from membrane phospholipids and used as a precursor for endocannabinoids (ECs). They mediate significant effects in the fine-tune adjustment of body homeostasis. Phyto- and synthetic cannabinoids also rule the daily life of billions worldwide, as they are involved in obesity, depression and drug addiction. Consequently, there is growing interest to reveal novel active compounds in this field. Cloning of cannabinoid receptors in the 90s and the identification of the endogenous mediators arachidonylethanolamide (anandamide, AEA) and 2-arachidonyglycerol (2-AG), led to the characterization of the endocannabinoid system (ECS), together with their metabolizing enzymes and membrane transporters. Today, the ECS is known to be involved in diverse functions such as appetite control, food intake, energy balance, neuroprotection, neurodegenerative diseases, stroke, mood disorders, emesis, modulation of pain, inflammatory responses, as well as in cancer therapy. Western diet as well as restriction of micronutrients and fatty acids, such as DHA, could be related to altered production of pro-inflammatory mediators (e.g. eicosanoids) and ECs, contributing to the progression of cardiovascular diseases, diabetes, obesity, depression or impairing conditions, such as Alzheimer' s disease. Here we review how diets based in PUFAs might be linked to ECS and to the maintenance of central and peripheral metabolism, brain plasticity, memory and learning, blood flow, and genesis of neural cells.
Collapse
Affiliation(s)
- Hércules Rezende Freitas
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Alinny Rosendo Isaac
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | | | - Bruno Lourenço Diaz
- c Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Isis Hara Trevenzoli
- d Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Ricardo Augusto De Melo Reis
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| |
Collapse
|
49
|
Shapses SA, Pop LC, Wang Y. Obesity is a concern for bone health with aging. Nutr Res 2017; 39:1-13. [PMID: 28385284 DOI: 10.1016/j.nutres.2016.12.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/16/2016] [Accepted: 12/27/2016] [Indexed: 02/08/2023]
Abstract
Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population.
Collapse
Affiliation(s)
- Sue A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ.
| | - L Claudia Pop
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Yang Wang
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
50
|
Schlosser M, Löser H, Siegmund SV, Montesinos-Rongen M, Bindila L, Lutz B, Barrett DA, Sarmad S, Ortori CA, Grau V, von Brandenstein M, Fries JW. The Endocannabinoid, Anandamide, Induces Cannabinoid Receptor-Independent Cell Death in Renal Proximal Tubule Cells. Cell 2017. [DOI: 10.4236/cellbio.2017.64004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|