1
|
Ogawa M, Oshiro H, Tamura Y, Ishido M, Okamoto T, Hata J. Characteristics of T2* and anisotropy parameters in inguinal and epididymal adipose tissues after cold exposure in mice. Sci Rep 2024; 14:29491. [PMID: 39604392 PMCID: PMC11603128 DOI: 10.1038/s41598-024-78655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
White adipose tissue (WAT) in mice undergoes browning in response to cold exposure. Brown and beige adipocytes contain multilocular lipid droplets and abundant iron-containing mitochondria expressing uncoupling protein 1 (UCP-1). Cold exposure-induced browning WAT is accompanied by increased density of blood vessels and sympathetic nerve fibres. A previous study reported a more than threefold increase in sympathetic nerve dendritic tone in inguinal white adipose tissue (iWAT) after cold exposure. Therefore, we hypothesized that water molecule diffusion would be more restricted in brown and beige adipocytes compared to white adipocytes. The characteristics of T2* values and anisotropy parameters by diffusion tensor imaging (DTI) in browning WAT are unclear. The aim of the present study was to investigate the effect of cold exposure on T2* values and anisotropy parameters (fractional anisotropy [FA], apparent diffusion coefficient [ADC], radial diffusivity [RD] and eigenvalues λ1, λ2, λ3) in brown adipose tissue (BAT), iWAT and epididymal white adipose tissue (epiWAT). Furthermore, these parameters were investigated in vivo through additional validation experiments in three control mice. Mice in the cold exposure (CE) group were exposed to a cold environment at 4 °C for 10 days, while these in the control (C) group were maintained at 22 °C throughout the experiment. T2* values, FA, ADC, RD and eigenvalues (λ1, λ2, λ3) were measured in BAT, iWAT and epiWAT using a 9.4T magnetic resonance scanner (Bruker Biospin AG). T2* values of epiWAT in the C group were significantly higher than these of BAT in the C group and iWAT in the CE group. No significant differences were observed between groups for FA, ADC, RD, λ1 and λ2 of iWAT and epiWAT. However, the λ3 values of iWAT and epiWAT in the CE group were significantly higher than these of iWAT, epiWAT and BAT in the C group. Compared to ex vivo measurements, in vivo measurements in control mice showed higher T2* values with reduced intertissue variability while maintaining tissue-specific patterns. These results suggest that T2* values and anisotropy parameters might serve as potential markers for the assessment of adipose tissue plasticity. Further studies are required to investigate their utility as non-invasive indicators of browning WAT.
Collapse
Affiliation(s)
- Madoka Ogawa
- Institute for Liberal Arts, Environment and Society, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
- Nippon Sport Science University, Tokyo, Japan.
| | - Hinako Oshiro
- Graduate School of Human Health Science, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Saitama, Japan
| | - Yuki Tamura
- Nippon Sport Science University, Tokyo, Japan
| | | | | | - Junichi Hata
- Graduate School of Human Health Science, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Saitama, Japan
| |
Collapse
|
2
|
Junker D, Wu M, Reik A, Raspe J, Rupp S, Han J, Näbauer SM, Wiechert M, Somasundaram A, Burian E, Waschulzik B, Makowski MR, Hauner H, Holzapfel C, Karampinos DC. Impact of baseline adipose tissue characteristics on change in adipose tissue volume during a low calorie diet in people with obesity-results from the LION study. Int J Obes (Lond) 2024; 48:1332-1341. [PMID: 38926461 PMCID: PMC11347377 DOI: 10.1038/s41366-024-01568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND/OBJECTIVES Weight loss outcomes vary individually. Magnetic resonance imaging (MRI)-based evaluation of adipose tissue (AT) might help to identify AT characteristics that predict AT loss. This study aimed to assess the impact of an 8-week low-calorie diet (LCD) on different AT depots and to identify predictors of short-term AT loss using MRI in adults with obesity. METHODS Eighty-one adults with obesity (mean BMI 34.08 ± 2.75 kg/m², mean age 46.3 ± 10.97 years, 49 females) prospectively underwent baseline MRI (liver dome to femoral head) and anthropometric measurements (BMI, waist-to-hip-ratio, body fat), followed by a post-LCD-examination. Visceral and subcutaneous AT (VAT and SAT) volumes and AT fat fraction were extracted from the MRI data. Apparent lipid volumes based on MRI were calculated as approximation for the lipid contained in the AT. SAT and VAT volumes were subdivided into equidistant thirds along the craniocaudal axis and normalized by length of the segmentation. T-tests compared baseline and follow-up measurements and sex differences. Effect sizes on subdivided AT volumes were compared. Spearman Rank correlation explored associations between baseline parameters and AT loss. Multiple regression analysis identified baseline predictors for AT loss. RESULTS Following the LCD, participants exhibited significant weight loss (11.61 ± 3.07 kg, p < 0.01) and reductions in all MRI-based AT parameters (p < 0.01). Absolute SAT loss exceeded VAT loss, while relative apparent lipid loss was higher in VAT (both p < 0.01). The lower abdominopelvic third showed the most significant SAT and VAT reduction. The predictor of most AT and apparent lipid losses was the normalized baseline SAT volume in the lower abdominopelvic third, with smaller volumes favoring greater AT loss (p < 0.01 for SAT and VAT loss and SAT apparent lipid volume loss). CONCLUSIONS The LCD primarily reduces lower abdominopelvic SAT and VAT. Furthermore, lower abdominopelvic SAT volume was detected as a potential predictor for short-term AT loss in persons with obesity.
Collapse
Affiliation(s)
- Daniela Junker
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| | - Mingming Wu
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Anna Reik
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Johannes Raspe
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Selina Rupp
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jessie Han
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Stella M Näbauer
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Meike Wiechert
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Arun Somasundaram
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Egon Burian
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Birgit Waschulzik
- Institute of AI and Informatics in Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Marcus R Makowski
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Else Kroener-Fresenius-Center of Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany
| | - Dimitrios C Karampinos
- Institute of Diagnostic and Interventional Radiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
- Munich Data Science Institute, Technical University of Munich, Garching, Germany
| |
Collapse
|
3
|
Hu HH, Chen HSM, Hernando D. Linearity and bias of proton density fat fraction across the full dynamic range of 0-100%: a multiplatform, multivendor phantom study using 1.5T and 3T MRI at two sites. MAGMA (NEW YORK, N.Y.) 2024; 37:551-563. [PMID: 38349454 PMCID: PMC11428149 DOI: 10.1007/s10334-024-01148-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVE Performance assessments of quantitative determinations of proton density fat fraction (PDFF) have largely focused on the range between 0 and 50%. We evaluate PDFF in a two-site phantom study across the full 0-100% PDFF range. MATERIALS AND METHODS We used commercially available 3D chemical-shift-encoded water-fat MRI sequences from three MRI system vendors at 1.5T and 3T and conducted the study across two sites. A spherical phantom housing 18 vials spanning the full 0-100% PDFF range was used. Data at each site were acquired using default parameters to determine same-day and different-day intra-scanner repeatability, and inter-system and inter-site reproducibility, in addition to linear regression between reference and measured PDFF values. RESULTS Across all systems, results demonstrated strong linearity and minimal bias. For 1.5T systems, a pooled slope of 0.99 with a 95% confidence interval (CI) of 0.981-0.997 and a pooled intercept of 0.61% PDFF with a 95% CI of 0.17-1.04 were obtained. Results for pooled 3T data included a slope of 1.00 (95% CI 0.995-1.005) and an intercept of 0.69% PDFF (95% CI 0.39-0.97). Inter-site and inter-system reproducibility coefficients ranged from 2.9 to 6.2 (in units of PDFF), while intra-scanner same-day and different-day repeatability ranged from 0.6 to 7.8. DISCUSSION PDFF across the 0-100% range can be reliably estimated using current commercial offerings at 1.5T and 3T.
Collapse
Affiliation(s)
- Houchun H Hu
- Department of Radiology, Section of Radiological Science, Anschutz School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Leprino Building, 12401 E 17th Ave, 5th Floor, Mail Stop L954, Aurora, CO, 80045, USA.
- Department of Radiology, Children's Hospital Colorado, Aurora, CO, USA.
| | - Henry Szu-Meng Chen
- Department of Radiology, Section of Radiological Science, Anschutz School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Leprino Building, 12401 E 17th Ave, 5th Floor, Mail Stop L954, Aurora, CO, 80045, USA
- Department of Radiology, Children's Hospital Colorado, Aurora, CO, USA
| | - Diego Hernando
- Department of Radiology, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
4
|
Somasundaram A, Wu M, Reik A, Rupp S, Han J, Naebauer S, Junker D, Patzelt L, Wiechert M, Zhao Y, Rueckert D, Hauner H, Holzapfel C, Karampinos DC. Evaluating Sex-specific Differences in Abdominal Fat Volume and Proton Density Fat Fraction at MRI Using Automated nnU-Net-based Segmentation. Radiol Artif Intell 2024; 6:e230471. [PMID: 38809148 PMCID: PMC11294970 DOI: 10.1148/ryai.230471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
Sex-specific abdominal organ volume and proton density fat fraction (PDFF) in people with obesity during a weight loss intervention was assessed with automated multiorgan segmentation of quantitative water-fat MRI. An nnU-Net architecture was employed for automatic segmentation of abdominal organs, including visceral and subcutaneous adipose tissue, liver, and psoas and erector spinae muscle, based on quantitative chemical shift-encoded MRI and using ground truth labels generated from participants of the Lifestyle Intervention (LION) study. Each organ's volume and fat content were examined in 127 participants (73 female and 54 male participants; body mass index, 30-39.9 kg/m2) and in 81 (54 female and 32 male participants) of these participants after an 8-week formula-based low-calorie diet. Dice scores ranging from 0.91 to 0.97 were achieved for the automatic segmentation. PDFF was found to be lower in visceral adipose tissue compared with subcutaneous adipose tissue in both male and female participants. Before intervention, female participants exhibited higher PDFF in subcutaneous adipose tissue (90.6% vs 89.7%; P < .001) and lower PDFF in liver (8.6% vs 13.3%; P < .001) and visceral adipose tissue (76.4% vs 81.3%; P < .001) compared with male participants. This relation persisted after intervention. As a response to caloric restriction, male participants lost significantly more visceral adipose tissue volume (1.76 L vs 0.91 L; P < .001) and showed a higher decrease in subcutaneous adipose tissue PDFF (2.7% vs 1.5%; P < .001) than female participants. Automated body composition analysis on quantitative water-fat MRI data provides new insights for understanding sex-specific metabolic response to caloric restriction and weight loss in people with obesity. Keywords: Obesity, Chemical Shift-encoded MRI, Abdominal Fat Volume, Proton Density Fat Fraction, nnU-Net ClinicalTrials.gov registration no. NCT04023942 Supplemental material is available for this article. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
| | | | - Anna Reik
- From the Department of Diagnostic and Interventional Radiology,
Klinikum rechts der Isar (A.S., M. Wu, S.R., J.H., S.N., D.J., L.P., D.C.K.),
Institute of Nutritional Medicine, School of Medicine (A.R., M. Wiechert, H.H.,
C.H.), TUM School of Computation, Information, and Technology (Y.Z., D.R.), TUM
School of Medicine and Health (D.R.), and Else Kröner Fresenius Center
for Nutritional Medicine, School of Medicine (H.H.), Technical University of
Munich, Ismaninger Str 22, 81675 Munich, Germany; Department of Computing,
Imperial College London, London, UK (D.R.); Department of Nutritional, Food and
Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany (C.H.);
and Munich Institute of Biomedical Engineering and Munich Data Science
Institute, Technical University of Munich, Garching, Germany (D.C.K.)
| | - Selina Rupp
- From the Department of Diagnostic and Interventional Radiology,
Klinikum rechts der Isar (A.S., M. Wu, S.R., J.H., S.N., D.J., L.P., D.C.K.),
Institute of Nutritional Medicine, School of Medicine (A.R., M. Wiechert, H.H.,
C.H.), TUM School of Computation, Information, and Technology (Y.Z., D.R.), TUM
School of Medicine and Health (D.R.), and Else Kröner Fresenius Center
for Nutritional Medicine, School of Medicine (H.H.), Technical University of
Munich, Ismaninger Str 22, 81675 Munich, Germany; Department of Computing,
Imperial College London, London, UK (D.R.); Department of Nutritional, Food and
Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany (C.H.);
and Munich Institute of Biomedical Engineering and Munich Data Science
Institute, Technical University of Munich, Garching, Germany (D.C.K.)
| | - Jessie Han
- From the Department of Diagnostic and Interventional Radiology,
Klinikum rechts der Isar (A.S., M. Wu, S.R., J.H., S.N., D.J., L.P., D.C.K.),
Institute of Nutritional Medicine, School of Medicine (A.R., M. Wiechert, H.H.,
C.H.), TUM School of Computation, Information, and Technology (Y.Z., D.R.), TUM
School of Medicine and Health (D.R.), and Else Kröner Fresenius Center
for Nutritional Medicine, School of Medicine (H.H.), Technical University of
Munich, Ismaninger Str 22, 81675 Munich, Germany; Department of Computing,
Imperial College London, London, UK (D.R.); Department of Nutritional, Food and
Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany (C.H.);
and Munich Institute of Biomedical Engineering and Munich Data Science
Institute, Technical University of Munich, Garching, Germany (D.C.K.)
| | - Stella Naebauer
- From the Department of Diagnostic and Interventional Radiology,
Klinikum rechts der Isar (A.S., M. Wu, S.R., J.H., S.N., D.J., L.P., D.C.K.),
Institute of Nutritional Medicine, School of Medicine (A.R., M. Wiechert, H.H.,
C.H.), TUM School of Computation, Information, and Technology (Y.Z., D.R.), TUM
School of Medicine and Health (D.R.), and Else Kröner Fresenius Center
for Nutritional Medicine, School of Medicine (H.H.), Technical University of
Munich, Ismaninger Str 22, 81675 Munich, Germany; Department of Computing,
Imperial College London, London, UK (D.R.); Department of Nutritional, Food and
Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany (C.H.);
and Munich Institute of Biomedical Engineering and Munich Data Science
Institute, Technical University of Munich, Garching, Germany (D.C.K.)
| | - Daniela Junker
- From the Department of Diagnostic and Interventional Radiology,
Klinikum rechts der Isar (A.S., M. Wu, S.R., J.H., S.N., D.J., L.P., D.C.K.),
Institute of Nutritional Medicine, School of Medicine (A.R., M. Wiechert, H.H.,
C.H.), TUM School of Computation, Information, and Technology (Y.Z., D.R.), TUM
School of Medicine and Health (D.R.), and Else Kröner Fresenius Center
for Nutritional Medicine, School of Medicine (H.H.), Technical University of
Munich, Ismaninger Str 22, 81675 Munich, Germany; Department of Computing,
Imperial College London, London, UK (D.R.); Department of Nutritional, Food and
Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany (C.H.);
and Munich Institute of Biomedical Engineering and Munich Data Science
Institute, Technical University of Munich, Garching, Germany (D.C.K.)
| | - Lisa Patzelt
- From the Department of Diagnostic and Interventional Radiology,
Klinikum rechts der Isar (A.S., M. Wu, S.R., J.H., S.N., D.J., L.P., D.C.K.),
Institute of Nutritional Medicine, School of Medicine (A.R., M. Wiechert, H.H.,
C.H.), TUM School of Computation, Information, and Technology (Y.Z., D.R.), TUM
School of Medicine and Health (D.R.), and Else Kröner Fresenius Center
for Nutritional Medicine, School of Medicine (H.H.), Technical University of
Munich, Ismaninger Str 22, 81675 Munich, Germany; Department of Computing,
Imperial College London, London, UK (D.R.); Department of Nutritional, Food and
Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany (C.H.);
and Munich Institute of Biomedical Engineering and Munich Data Science
Institute, Technical University of Munich, Garching, Germany (D.C.K.)
| | - Meike Wiechert
- From the Department of Diagnostic and Interventional Radiology,
Klinikum rechts der Isar (A.S., M. Wu, S.R., J.H., S.N., D.J., L.P., D.C.K.),
Institute of Nutritional Medicine, School of Medicine (A.R., M. Wiechert, H.H.,
C.H.), TUM School of Computation, Information, and Technology (Y.Z., D.R.), TUM
School of Medicine and Health (D.R.), and Else Kröner Fresenius Center
for Nutritional Medicine, School of Medicine (H.H.), Technical University of
Munich, Ismaninger Str 22, 81675 Munich, Germany; Department of Computing,
Imperial College London, London, UK (D.R.); Department of Nutritional, Food and
Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany (C.H.);
and Munich Institute of Biomedical Engineering and Munich Data Science
Institute, Technical University of Munich, Garching, Germany (D.C.K.)
| | - Yu Zhao
- From the Department of Diagnostic and Interventional Radiology,
Klinikum rechts der Isar (A.S., M. Wu, S.R., J.H., S.N., D.J., L.P., D.C.K.),
Institute of Nutritional Medicine, School of Medicine (A.R., M. Wiechert, H.H.,
C.H.), TUM School of Computation, Information, and Technology (Y.Z., D.R.), TUM
School of Medicine and Health (D.R.), and Else Kröner Fresenius Center
for Nutritional Medicine, School of Medicine (H.H.), Technical University of
Munich, Ismaninger Str 22, 81675 Munich, Germany; Department of Computing,
Imperial College London, London, UK (D.R.); Department of Nutritional, Food and
Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany (C.H.);
and Munich Institute of Biomedical Engineering and Munich Data Science
Institute, Technical University of Munich, Garching, Germany (D.C.K.)
| | - Daniel Rueckert
- From the Department of Diagnostic and Interventional Radiology,
Klinikum rechts der Isar (A.S., M. Wu, S.R., J.H., S.N., D.J., L.P., D.C.K.),
Institute of Nutritional Medicine, School of Medicine (A.R., M. Wiechert, H.H.,
C.H.), TUM School of Computation, Information, and Technology (Y.Z., D.R.), TUM
School of Medicine and Health (D.R.), and Else Kröner Fresenius Center
for Nutritional Medicine, School of Medicine (H.H.), Technical University of
Munich, Ismaninger Str 22, 81675 Munich, Germany; Department of Computing,
Imperial College London, London, UK (D.R.); Department of Nutritional, Food and
Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany (C.H.);
and Munich Institute of Biomedical Engineering and Munich Data Science
Institute, Technical University of Munich, Garching, Germany (D.C.K.)
| | - Hans Hauner
- From the Department of Diagnostic and Interventional Radiology,
Klinikum rechts der Isar (A.S., M. Wu, S.R., J.H., S.N., D.J., L.P., D.C.K.),
Institute of Nutritional Medicine, School of Medicine (A.R., M. Wiechert, H.H.,
C.H.), TUM School of Computation, Information, and Technology (Y.Z., D.R.), TUM
School of Medicine and Health (D.R.), and Else Kröner Fresenius Center
for Nutritional Medicine, School of Medicine (H.H.), Technical University of
Munich, Ismaninger Str 22, 81675 Munich, Germany; Department of Computing,
Imperial College London, London, UK (D.R.); Department of Nutritional, Food and
Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany (C.H.);
and Munich Institute of Biomedical Engineering and Munich Data Science
Institute, Technical University of Munich, Garching, Germany (D.C.K.)
| | - Christina Holzapfel
- From the Department of Diagnostic and Interventional Radiology,
Klinikum rechts der Isar (A.S., M. Wu, S.R., J.H., S.N., D.J., L.P., D.C.K.),
Institute of Nutritional Medicine, School of Medicine (A.R., M. Wiechert, H.H.,
C.H.), TUM School of Computation, Information, and Technology (Y.Z., D.R.), TUM
School of Medicine and Health (D.R.), and Else Kröner Fresenius Center
for Nutritional Medicine, School of Medicine (H.H.), Technical University of
Munich, Ismaninger Str 22, 81675 Munich, Germany; Department of Computing,
Imperial College London, London, UK (D.R.); Department of Nutritional, Food and
Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany (C.H.);
and Munich Institute of Biomedical Engineering and Munich Data Science
Institute, Technical University of Munich, Garching, Germany (D.C.K.)
| | - Dimitrios C. Karampinos
- From the Department of Diagnostic and Interventional Radiology,
Klinikum rechts der Isar (A.S., M. Wu, S.R., J.H., S.N., D.J., L.P., D.C.K.),
Institute of Nutritional Medicine, School of Medicine (A.R., M. Wiechert, H.H.,
C.H.), TUM School of Computation, Information, and Technology (Y.Z., D.R.), TUM
School of Medicine and Health (D.R.), and Else Kröner Fresenius Center
for Nutritional Medicine, School of Medicine (H.H.), Technical University of
Munich, Ismaninger Str 22, 81675 Munich, Germany; Department of Computing,
Imperial College London, London, UK (D.R.); Department of Nutritional, Food and
Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany (C.H.);
and Munich Institute of Biomedical Engineering and Munich Data Science
Institute, Technical University of Munich, Garching, Germany (D.C.K.)
| |
Collapse
|
5
|
Engin A. Lipid Storage, Lipolysis, and Lipotoxicity in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:97-129. [PMID: 39287850 DOI: 10.1007/978-3-031-63657-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
6
|
Wu B, Cheng C, Qi Y, Zhou H, Peng H, Wan Q, Liu X, Zheng H, Zhang H, Zou C. Automatic segmentation of human supraclavicular adipose tissue using high-resolution T2-weighted magnetic resonance imaging. MAGMA (NEW YORK, N.Y.) 2023; 36:641-649. [PMID: 36538249 DOI: 10.1007/s10334-022-01056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To achieve efficient segmentation of human supraclavicular adipose tissue (sclavAT) using high-resolution T2-weighted magnetic resonance images. METHODS High-resolution 1.0 mm isotropic 3D T2-weighted images covering human supraclavicular area were acquired in transverse or coronary plane from 29 volunteers using a 3.0 T MRI scanner. There were typically 144/288 slices for the transverse/coronary scans for each subject, which amounts to a total of 6816 images in 29 volunteers. A U-NET network was trained to segment the supraclavicular adipose tissue (sclavAT). The performance of the automatic segmentation method was evaluated by comparing the output results with the manual labels using the quantitative indices of dice similarity coefficient (DSC), precision rate (PR), and recall rate (RR). The auto-segmented images were used to calculate the sclavAT volumes and registered to the MR fat fraction (FF) images to quantify the fat component of the sclavAT area. The relationship between body mass index (BMI), the volume and FF of sclavAT area was evaluated for all subjects. RESULTS The DSC, PR and RR of the automatic sclavAT segmentation method on the testing datasets were 0.920 ± 0.048, 0.915 ± 0.070 and 0.930 ± 0.058. The volume and the mean FF of sclavAT were both found to be strongly correlated to BMI, with the correlation coefficient of 0.703 and 0.625 (p < 0.05), respectively. The averaged computation time of the automatic segmentation method was approximately 0.06 s per slice, compared to more than 5 min for manual labeling. CONCLUSION The present study demonstrates that the proposed automatic segmentation method using U-Net network is able to identify human sclavAT efficiently and accurately.
Collapse
Affiliation(s)
- Bingxia Wu
- School of Information Engineering, Wuhan University of Technology, Wuhan, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| | - Yulong Qi
- Radiology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hongyu Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Hao Peng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Qian Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Huimao Zhang
- Radiology Department, Bethune First Hospital of Jilin University, Changchun, China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China.
- Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China.
| |
Collapse
|
7
|
Karlsson M, Indurain A, Romu T, Tunon P, Segelmark M, Uhlin F, Fernström A, Leinhard OD. Assessing Tissue Hydration Dynamics Based on Water/Fat Separated MRI. J Magn Reson Imaging 2023. [PMID: 36591977 DOI: 10.1002/jmri.28581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Optimal fluid status is an important issue in hemodialysis. Clinical evaluation of volume status and different diagnostic tools are used to determine hydration status in these patients. However, there is still no accurate method for this assessment. PURPOSE To propose and evaluate relative lean water signal (LWSrel ) as a water-fat MRI-based tissue hydration measurement. STUDY TYPE Prospective. POPULATION A total of 16 healthy subjects (56 ± 6 years, 0 male) and 11 dialysis patients (60.3 ± 12.3 years, 9 male; dialysis time per week 15 ± 3.5 hours, dialysis duration 31.4 ± 27.9 months). FIELD STRENGTH/SEQUENCE A 3 T; 3D spoiled gradient echo. ASSESSMENT LWSrel , a measurement of the water concentration of tissue, was estimated from fat-referenced MR images. Segmentations of total adipose tissue as well as thigh and calf muscles were used to measure LWSrel and tissue volumes. LWSrel was compared between healthy subjects and dialysis patients, the latter before and after dialysis. Bioimpedance-based body composition monitor over hydration (BCM OH) was also measured. STATISTICAL TESTS T-tests were used to compare differences between the healthy subjects and dialysis patients, as well as changes between before and after dialysis. Pearson correlation was calculated between MRI and non-MRI biomarkers. A P value <0.05 was considered statistically significant. RESULTS The LWSrel in adipose tissue was significantly higher in the dialysis cohort compared with the healthy cohort (246.8% ± 60.0% vs. 100.0% ± 10.8%) and decreased significantly after dialysis (246.8 ± 60.0% vs. 233.8 ± 63.4%). Thigh and calf muscle volumes also significantly decreased by 3.78% ± 1.73% and 2.02% ± 2.50% after dialysis. There was a significant correlation between changes in adipose tissue LWSrel and ultrafiltration volume (r = 87), as well as with BCM OH (r = 0.66). DATA CONCLUSION MRI-based LWSrel and tissue volume measurements are sensitive to tissue hydration changes occurring during dialysis. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 3.
Collapse
Affiliation(s)
| | - Ainhoa Indurain
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Nephrology, Linköping University Hospital, Linköping, Sweden.,Department of Acute Internal Medicine and Geriatrics, Linköping University Hospital, Linköping, Sweden
| | - Thobias Romu
- AMRA Medical AB, Linköping, Sweden.,Department of Biomedical Engineering, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | | | - Mårten Segelmark
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Division of Nephrology Lund, Skåne University Hospital, Lund, Sweden
| | - Fredrik Uhlin
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Nephrology, Linköping University Hospital, Linköping, Sweden.,Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Anders Fernström
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Nephrology, Linköping University Hospital, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Drabsch T, Junker D, Bayer S, Wu M, Held C, Karampinos DC, Hauner H, Holzapfel C. Association Between Adipose Tissue Proton Density Fat Fraction, Resting Metabolic Rate and FTO Genotype in Humans. Front Endocrinol (Lausanne) 2022; 13:804874. [PMID: 35295982 PMCID: PMC8919670 DOI: 10.3389/fendo.2022.804874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The difference of proton density fat fraction (PDFF) between supraclavicular and gluteal adipose tissue might indicate the presence of brown adipose tissue (BAT). Aim of this cross-sectional study was to investigate the association between PDFF over the supraclavicular fat region as a proxy of BAT proportion and resting metabolic rate (RMR). In addition, the association between the single nucleotide polymorphism (SNP) rs1421085 at the fat mass and obesity associated (FTO) gene locus and both PDFF and RMR was investigated. METHODS Anthropometric, clinical, and lifestyle data from 92 healthy adults (66.3% females, mean age: 36.2 ± 13.0 years, mean body mass index: 24.9 ± 5.4 kg/m2) were included in the analysis. The RMR was measured by indirect calorimetry. The magnetic resonance imaging (MRI) was used for the measurement of visceral and subcutaneous adipose tissue (VAT, SAT) volumes and for the measurement of adipose tissue PDFF. RESULTS Mean RMR of the whole group was 1 474.8 ± 242.2 kcal. Genotype data was available for 90 participants. After adjustment for age, sex, weight change and fat-free mass (FFM), no association was found between supraclavicular PDFF (p = 0.346) and gluteal PDFF (p = 0.252), respectively, and RMR, whereas statistically significant evidence for a negative association between delta PDFF (difference between gluteal PDFF and supraclavicular PDFF) and RMR (p = 0.027) was obtained. No statistically significant evidence was observed for per FTO risk allele change in RMR, gluteal and supraclavicular PDFF maps or volumes of VAT and SAT. CONCLUSIONS Supraclavicular PDFF as a surrogate marker of BAT presence is not a determinant of RMR under basal conditions. In the present study, the FTO rs1421085 variant is not associated with either RMR or PDFF. Further studies are needed to elucidate the effect of BAT on RMR.
Collapse
Affiliation(s)
- Theresa Drabsch
- Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sandra Bayer
- Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Cora Held
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- Else-Kroener-Fresenius Centre of Nutritional Medicine, Chair of Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Christina Holzapfel,
| |
Collapse
|
9
|
Human Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues. Cells 2021; 10:cells10113030. [PMID: 34831253 PMCID: PMC8616549 DOI: 10.3390/cells10113030] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
Obesity-associated metabolic abnormalities comprise a cluster of conditions including dyslipidemia, insulin resistance, diabetes and cardiovascular diseases that has affected more than 650 million people all over the globe. Obesity results from the accumulation of white adipose tissues mainly due to the chronic imbalance of energy intake and energy expenditure. A variety of approaches to treat or prevent obesity, including lifestyle interventions, surgical weight loss procedures and pharmacological approaches to reduce energy intake and increase energy expenditure have failed to substantially decrease the prevalence of obesity. Brown adipose tissue (BAT), the primary source of thermogenesis in infants and small mammals may represent a promising therapeutic target to treat obesity by promoting energy expenditure through non-shivering thermogenesis mediated by mitochondrial uncoupling protein 1 (UCP1). Since the confirmation of functional BAT in adult humans by several groups, approximately a decade ago, and its association with a favorable metabolic phenotype, intense interest on the significance of BAT in adult human physiology and metabolic health has emerged within the scientific community to explore its therapeutic potential for the treatment of obesity and metabolic diseases. A substantially decreased BAT activity in individuals with obesity indicates a role for BAT in the setting of human obesity. On the other hand, BAT mass and its prevalence correlate with lower body mass index (BMI), decreased age and lower glucose levels, leading to a lower incidence of cardio-metabolic diseases. The increased cold exposure in adult humans with undetectable BAT was associated with decreased body fat mass and increased insulin sensitivity. A deeper understanding of the role of BAT in human metabolic health and its interrelationship with body fat distribution and deciphering proper strategies to increase energy expenditure, by either increasing functional BAT mass or inducing white adipose browning, holds the promise for possible therapeutic avenues for the treatment of obesity and associated metabolic disorders.
Collapse
|
10
|
Abe T, Thiebaud RS, Loenneke JP. The Fat Fraction Percentage of White Adipose Tissue at various Ages in Humans: An Updated Review. J Clin Densitom 2021; 24:369-373. [PMID: 33563512 DOI: 10.1016/j.jocd.2021.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 11/30/2022]
Abstract
We recently reported the fat fraction percentage of white adipose tissue in adolescents and adults measured by the water-fat separation method, but there was limited discussion about the change in adipose tissue fat fraction with growth. The purpose of this updated review was to examine the fat content of white (subcutaneous) adipose tissue during the process from birth to adulthood by adding the latest available data. A relevant database was searched through November 2020. Nineteen studies were included. We found that calculated mean values of fat fraction percentage in white adipose tissue were 72.2% in neonates, 87.2% in children, and 87.4% in adults. In contrast, fat fraction percentage of truncal white adipose tissue in the fetuses was from 10% to 24% (29 and 34 wk of gestational age, respectively). Our results suggest that the fat fraction percentage of white adipose tissue may not undergo large changes during the process from birth to adulthood (neonates = 72.2%, children = 87.2%, adults = 87.4%), which was different from the results of a study utilizing a biopsy. The mean value and range of fat fraction percentages for children over 7 years old were especially similar to adults. Further, the fat fraction percentage for neonates was relatively close to the results of children and adults. At the moment, the characteristics of the changes in fat fraction percentage of adipose tissue from birth to preschool children are unclear and future research is needed to clarify this issue.
Collapse
Affiliation(s)
- Takashi Abe
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA.
| | - Robert S Thiebaud
- Department of Human Performance and Recreation, Brigham Young University - Idaho, Rexburg, ID, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| |
Collapse
|
11
|
Burian E, Sollmann N, Mei K, Dieckmeyer M, Juncker D, Löffler M, Greve T, Zimmer C, Kirschke JS, Baum T, Noël PB. Low-dose MDCT: evaluation of the impact of systematic tube current reduction and sparse sampling on quantitative paraspinal muscle assessment. Quant Imaging Med Surg 2021; 11:3042-3050. [PMID: 34249633 DOI: 10.21037/qims-20-1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/18/2021] [Indexed: 11/06/2022]
Abstract
Background Wasting disease entities like cachexia or sarcopenia are associated with a decreasing muscle mass and changing muscle composition. For valid and reliable disease detection and monitoring diagnostic techniques offering quantitative musculature assessment are needed. Multi-detector computed tomography (MDCT) is a broadly available imaging modality allowing for muscle composition analysis. A major disadvantage of using MDCT for muscle composition assessment is the radiation exposure. In this study we evaluated the performance of different methods of radiation dose reduction for paravertebral muscle composition assessment. Methods MDCT scans of eighteen subjects (6 males, age: 71.5±15.9 years, and 12 females, age: 71.0±8.9 years) were retrospectively simulated as if they were acquired at 50%, 10%, 5%, and 3% of the original X-ray tube current or number of projections (i.e., sparse sampling). Images were reconstructed with a statistical iterative reconstruction (SIR) algorithm. Paraspinal muscles (psoas and erector spinae muscles) at the level of L4 were segmented in the original-dose images. Segmentations were superimposed on all low-dose scans and muscle density (MD) extracted. Results Sparse sampling derived mean MD showed no significant changes (P=0.57 and P=0.22) down to 5% of the original projections in the erector spinae and psoas muscles, respectively. All virtually reduced tube current series showed significantly different (P>0.05) mean MD in the psoas and erector spinae muscles as compared to the original dose except for the images of 5% of the original tube current in the erector spinae muscle. Conclusions Our findings demonstrated the possibility of considerable radiation dose reduction using MDCT scans for assessing the composition of the paravertebral musculature. The sparse sampling approach seems to be promising and a potentially superior technique for dose reduction as compared to tube current reduction.
Collapse
Affiliation(s)
- Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kai Mei
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Daniela Juncker
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maximilian Löffler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Greve
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Neurosurgery, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Ruschke S, Syväri J, Dieckmeyer M, Junker D, Makowski MR, Baum T, Karampinos DC. Physiological variation of the vertebral bone marrow water T2 relaxation time. NMR IN BIOMEDICINE 2021; 34:e4439. [PMID: 33205520 DOI: 10.1002/nbm.4439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to investigate physiological variations of the water T2 relaxation time in vertebral bone marrow with respect to age, body mass index (BMI), sex and proton density fat fraction (PDFF) based on single-voxel magnetic resonance spectroscopy (MRS) at 3 T. Multi-TE single-voxel STEAM MRS data of a single lumbar vertebra (L4 or L5) from 260 subjects (160/100 female/male, age: 0.7/37.1/77.7 years, BMI: 13.6/26.2/44.5 kg/m2 [min./median/max.]) with no history of vertebral bone marrow pathologies were retrospectively included. All data were processed using a joint series T2-constrained time domain-based water-fat model. Water T2 and PDFF data were analyzed using (a) Pearson's correlation r and (b) multiple linear regression without interactions of the independent variables. Min./median/max. water T2 and PDFF were 11.2/21.1/42.5 ms and 4.0%/36.8%/82.0%, respectively. Pearson's correlation coefficients were significant (P < .05) for water T2 versus age (r = -0.429/-0.210 female/male) and for water T2 versus PDFF (r = -0.580/-0.546 female/male) for females and males, respectively. Females showed significant higher water T2 values compared with males (P < .001). Multiple linear regression for water T2 without interactions revealed a R2 = 0.407 with PDFF (P < .001) and sex (P < .001) as significant predictors. The current study suggests that under physiological conditions vertebral bone marrow water T2 is negatively correlated with age and PDFF and shows significant differences between females and males. The observed systematic trends are of relevance for the evaluation of T2 values and T2-weighted bone marrow parameters. Further research on the exact mechanisms and drivers of the observed water T2 behavior is required.
Collapse
Affiliation(s)
- Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan Syväri
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
13
|
Yu Q, Huang S, Xu TT, Wang YC, Ju S. Measuring Brown Fat Using MRI and Implications in the Metabolic Syndrome. J Magn Reson Imaging 2020; 54:1377-1392. [PMID: 33047448 DOI: 10.1002/jmri.27340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
Metabolic syndrome is presently becoming a global health concern. Brown adipose tissue (BAT) has the potential for managing the risk factors of metabolic syndrome by adjusting plasma lipids and glucose. Magnetic resonance imaging (MRI) is a noninvasive and radiation-free imaging modality for BAT research and clinical applications in both animals and humans. In the past decade, MRI technologies for detecting and characterizing BAT have developed rapidly, with progress in MRI sequencing and the emerging understanding of BAT. In this review, we focus on the main MRI methods for BAT including currently used imaging techniques and new methods and their implications for the symptoms and complications of metabolic syndrome. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Qian Yu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Shan Huang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Ting-Ting Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yuan-Cheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Abe T, Bell ZW, Dankel SJ, Wong V, Spitz RW, Loenneke JP. The Water-Fat Separation Method for Determining the Fat-free Component of Subcutaneous Adipose Tissue in Humans: A Brief Review. J Clin Densitom 2020; 23:390-394. [PMID: 30679114 DOI: 10.1016/j.jocd.2018.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Fat-free mass as well as lean soft tissue mass is a surrogate for skeletal muscle mass and is often used for the normalization of several physiological variables or for the diagnosing of low muscle mass in older adults. However, both fat-free mass and lean tissue mass include nonskeletal muscle components such as the fat-free component of adipose tissue fat cells. A technique known as water-fat MRI provides a noninvasive and radiation-free assessment of the fat-free component of adipose tissue in humans. However, if this method is impractical or unavailable, some authors suggest that a constant value for the fat-free component of adipose tissue can be used as an indirect estimate. The purpose of this review is to examine the fat fraction percentage of white (subcutaneous) adipose tissue in adolescents and young/middle-aged/older adults measured by water-fat MRI and provide discussion on how the fat-free adipose tissue values from the water-fat separation method compare with the constant value used in previous studies. Calculated mean values for the percentage of fat fraction in subcutaneous adipose tissue were 86.9% in the overall sample, 86.4% in adolescents (3 studies), and 87.1% in young, middle-aged and older adults (7 studies). This is similar to the 85% value proposed in the classical studies but in the majority of studies the 85% estimate was outside of the 95% confidence interval (CI) of the water-fat MRI estimate. There may be several factors to consider that may affect the fat fraction percentage (e.g. reliability of the MRI estimate, age, sex, obesity, etc.), however, at this time there is insufficient evidence to determine the effect of each of these variables. If the measurement is reliable, then this might suggest that the 85% constant may need to be altered to better reflect the water-fat MRI estimate.
Collapse
Affiliation(s)
- Takashi Abe
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA.
| | - Zachary W Bell
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Scott J Dankel
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Vickie Wong
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Robert W Spitz
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| |
Collapse
|
15
|
Age- and BMI-related variations of fat distribution in sacral and lumbar bone marrow and their association with local muscle fat content. Sci Rep 2020; 10:9686. [PMID: 32546722 PMCID: PMC7297969 DOI: 10.1038/s41598-020-66649-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
This analysis investigated the age- and BMI-related variations of fat distribution in sacral and lumbar bone marrow and their association with local muscle fat content in order to detect fat distribution patterns and variations in healthy adults using proton density fat fraction (PDFF) measurements. A six-echo 3D spoiled gradient-echo sequence was used for chemical shift encoding-based water-fat separation at the sacral and lower lumbar region in 103 healthy volunteers. PDFF values of the sacrum, 5th lumbar vertebral body, the gluteal and paraspinal muscles were determined. Correlation with age was significant (p < 0.05) for PDFF of the sacrum (men (m): r = 0.58; women (w): r = 0.54), L5 (m: r = 0.58; w: r = 0.54), the gluteal (m: r = 0.51; w: r = 0.44) and paraspinal (m: r = 0.36; w: r = 0.49) muscles in both genders. BMI correlated significantly with the paraspinal musculature in men (r = 0.46) and women (r = 0.33). Correlation testing revealed significant correlations (p < 0.05) between the two osseous (m: r = 0.63, w: r = 0.75) and the muscle compartments (m: r = 0.63, w: r = 0.33) in both genders. Bone marrow and muscle fat infiltration patterns were not significantly associated with each other at the sacral and lower lumbar spine region. The presented data suggest that the two compartments may have distinct pathophysiological fat infiltration patterns. However, further clinical studies are needed to support the results.
Collapse
|
16
|
Zhang M, Su Y, Quan L, Jiang S, Yao H. Estimates of beta cell function adjusted by anthropometric markers in patients with T2DM. Clin Exp Pharmacol Physiol 2020; 47:1509-1516. [PMID: 32415755 DOI: 10.1111/1440-1681.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/28/2022]
Abstract
We sought to determine whether adjusting the indices used to assess beta cell function by anthropometric markers of obesity improves their clinical value in a diabetic population. We conducted a cross-sectional survey of 3732 diabetic patients who underwent a 100 g carbohydrate meal test. Insulin secretion was estimated using HOMA-B of steady state as well as △C0-30 /△G0-30 , △AUCc30-120 /△AUCG30-120 and CPIn for dynamic state. Body weight index, waist circumference, waist-hip ratio and body surface area were recorded. The final analysis included 2873 T2DM patients. Correlation analyses showed that there was a poor correlation between diabetic duration and CPI30 (r = -.040, P < .05), and there were no remarkable changes in the correlation coefficient after CPI30 was divided by BMI, WC, WHR, or body surface area, respectively. The same was found for the correlation between HbA1c and CPI120 with these measures. The main determinants of diabetic duration were age (β = 0.388, P < .001), log HOMA-IR (β = -0.328, P < .001), CPI30 (β = -0.045, P = .011). There were no remarkable changes in β weights between diabetic duration and CPI30 when it was corrected with anthropometric markers in the multiple stepwise linear regression analyses. The same was found between HbA1c and CPI120 . CPI30 and CPI120 are more practical indexes. Correcting the indices used to estimate the beta cell function by anthropometric markers of obesity may not improve their correlations with diabetic duration or HbA1c in a diabetic population.
Collapse
Affiliation(s)
- Mingchen Zhang
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Postdoctoral Research Station of Public Health, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Yinxia Su
- Health Management Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Quan
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Sheng Jiang
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hua Yao
- Postdoctoral Research Station of Public Health, School of Public Health, Xinjiang Medical University, Urumqi, China.,The Key Laboratory of Xinjiang Metabolic Disease, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
17
|
Toward noninvasive quantification of adipose tissue oxygenation with MRI. Int J Obes (Lond) 2020; 44:1776-1783. [PMID: 32231252 DOI: 10.1038/s41366-020-0567-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Molecular oxygen (O2) plays a key role in normal and pathological adipose tissue function, yet technologies to measure its role in adipose tissue function are limited. O2 is paramagnetic and, in principle, directly influences the magnetic resonance (MR) 1H longitudinal relaxation rate constant of lipids, R1; thus, we hypothesize that MR imaging (MRI) can directly measure adipose O2 via a simple measure of R1. METHODS R1 was measured in a 4.7T preclinical MRI system at discrete oxygen partial pressure (pO2) levels. These measures were made in vitro in an idealized system and in vivo in subcutaneous and visceral white adipose of rodents. pO2 was determined using an invasive fiber-optic oxygen monitor. From the MRI and fiber optic data we determined the "relaxivity" of O2 in lipid, a critical parameter in converting the MRI-based R1 measurement into pO2. We used breathing gas challenge to estimate the changes in lipid pO2 (ΔpO2). RESULTS The relaxivity of O2 in lipid was determined to be 1.7·10-3 ± 4·10-4 mmHg-1s-1 at 4.7T and 37 °C, and was consistent between in vitro and in vivo adipose tissue. There was a strong, significant correlation between MRI- and gold standard OxyLite-based measurements of lipid ΔpO2 for in vivo visceral and subcutaneous fat depots in rodents. CONCLUSION This study lays the foundation for a direct, noninvasive measure of adipose pO2 using MRI and will allow for noninvasive measurement of O2 flux in adipose tissue. The proposed approach would be of particular importance in the interrogation of the pathogenesis of type 2 diabetes, where it has been suggested that adipose tissue hypoxia is an independent driver of insulin resistance pathway.
Collapse
|
18
|
Wu M, Junker D, Branca RT, Karampinos DC. Magnetic Resonance Imaging Techniques for Brown Adipose Tissue Detection. Front Endocrinol (Lausanne) 2020; 11:421. [PMID: 32849257 PMCID: PMC7426399 DOI: 10.3389/fendo.2020.00421] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods can non-invasively assess brown adipose tissue (BAT) structure and function. Recently, MRI and MRS have been proposed as a means to differentiate BAT from white adipose tissue (WAT) and to extract morphological and functional information on BAT inaccessible by other means. Specifically, proton MR (1H) techniques, such as proton density fat fraction mapping, diffusion imaging, and intermolecular multiple quantum coherence imaging, have been employed to access BAT microstructure; MR thermometry, relaxometry, and MRI and MRS with 31P, 2H, 13C, and 129Xe have shown to provide complementary information on BAT function. The purpose of the present review is to provide a comprehensive overview of MR imaging and spectroscopy techniques used to detect BAT in rodents and in humans. The present work discusses common challenges of current methods and provides an outlook on possible future directions of using MRI and MRS in BAT studies.
Collapse
Affiliation(s)
- Mingming Wu
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Mingming Wu
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
19
|
Hamaoka T, Nirengi S, Fuse S, Amagasa S, Kime R, Kuroiwa M, Endo T, Sakane N, Matsushita M, Saito M, Yoneshiro T, Kurosawa Y. Near-Infrared Time-Resolved Spectroscopy for Assessing Brown Adipose Tissue Density in Humans: A Review. Front Endocrinol (Lausanne) 2020; 11:261. [PMID: 32508746 PMCID: PMC7249345 DOI: 10.3389/fendo.2020.00261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/08/2020] [Indexed: 01/24/2023] Open
Abstract
Brown adipose tissue (BAT) mediates adaptive thermogenesis upon food intake and cold exposure, thus potentially contributing to the prevention of lifestyle-related diseases. 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) with computed tomography (CT) (18FDG-PET/CT) is a standard method for assessing BAT activity and volume in humans. 18FDG-PET/CT has several limitations, including high device cost and ionizing radiation and acute cold exposure necessary to maximally stimulate BAT activity. In contrast, near-infrared spectroscopy (NIRS) has been used for measuring changes in O2-dependent light absorption in the tissue in a non-invasive manner, without using radiation. Among NIRS, time-resolved NIRS (NIRTRS) can quantify the concentrations of oxygenated and deoxygenated hemoglobin ([oxy-Hb] and [deoxy-Hb], respectively) by emitting ultrashort (100 ps) light pulses and counts photons, which are scattered and absorbed in the tissue. The basis for assessing BAT density (BAT-d) using NIRTRS is that the vascular density in the supraclavicular region, as estimated using Hb concentration, is higher in BAT than in white adipose tissue. In contrast, relatively low-cost continuous wavelength NIRS (NIRCWS) is employed for measuring relative changes in oxygenation in tissues. In this review, we provide evidence for the validity of NIRTRS and NIRCWS in estimating human BAT characteristics. The indicators (IndNIRS) examined were [oxy-Hb]sup, [deoxy-Hb]sup, total hemoglobin [total-Hb]sup, Hb O2 saturation (StO2sup), and reduced scattering coefficient ( μs sup' ) in the supraclavicular region, as determined by NIRTRS, and relative changes in corresponding parameters, as determined by NIRCWS. The evidence comprises the relationships between the IndNIRS investigated and those determined by 18FDG-PET/CT; the correlation between the IndNIRS and cold-induced thermogenesis; the relationship of the IndNIRS to parameters measured by 18FDG-PET/CT, which responded to seasonal temperature fluctuations; the relationship of the IndNIRS and plasma lipid metabolites; the analogy of the IndNIRS to chronological and anthropometric data; and changes in the IndNIRS following thermogenic food supplementation. The [total-Hb]sup and [oxy-Hb]sup determined by NIRTRS, but not parameters determined by NIRCWS, exhibited significant correlations with cold-induced thermogenesis parameters and plasma androgens in men in winter or analogies to 18FDG-PET. We conclude that NIRTRS can provide useful information for assessing BAT-d in a simple, rapid, non-invasive way, although further validation study is still needed.
Collapse
Affiliation(s)
- Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
- *Correspondence: Takafumi Hamaoka
| | - Shinsuke Nirengi
- Division of Preventive Medicine, National Hospital Organization Kyoto Medical Center, Clinical Research Institute, Kyoto, Japan
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Columbus, OH, United States
| | - Sayuri Fuse
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Shiho Amagasa
- Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo, Japan
| | - Ryotaro Kime
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Tasuki Endo
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Naoki Sakane
- Division of Preventive Medicine, National Hospital Organization Kyoto Medical Center, Clinical Research Institute, Kyoto, Japan
| | | | - Masayuki Saito
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Yoneshiro
- Diabetes Center, University of California San Francisco, San Francisco, CA, United States
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
20
|
Junker D, Syväri J, Weidlich D, Holzapfel C, Drabsch T, Waschulzik B, Rummeny EJ, Hauner H, Karampinos DC. Investigation of the Relationship between MR-Based Supraclavicular Fat Fraction and Thyroid Hormones. Obes Facts 2020; 13:331-343. [PMID: 32564012 PMCID: PMC7445585 DOI: 10.1159/000507294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/13/2020] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Brown adipose tissue (BAT) plays a potential role in energy and glucose metabolism in humans. Thyroid hormones (TH) are main regulators of BAT development and function. However, it remains unknown how the magnetic resonance (MR)-based proton density fat fraction (PDFF) of supraclavicular adipose tissue used as a surrogate marker for BAT presence relates to TH. Therefore, the purpose of this analysis was to investigate the relationship between supraclavicular PDFF and serum levels of TH. METHODS In total, 96 adult volunteers from a large cross-sectional study who underwent additional MR examination of the neck and pelvis were included in this analysis. Segmented PDFF maps of the supraclavicular and gluteal subcutaneous adipose tissue were generated. Delta PDFF was calculated as the difference between gluteal and supraclavicular PDFF and grouped as high (≥12%) or low (<12%) based on the median and the clinical rationale of a high versus low probability of BAT being present. Thyroid-stimulating hormone (mIU/L), free triiodothyronine (FT3, pg/mL) and free thyroxine (FT4, ng/dL) levels were determined in blood samples. Body mass index (BMI) was calculated as weight (kg)/height (m)2. Statistical analyses included the use of paired samples ttest, simple linear regression analysis and a multivariable linear regression analysis. RESULTS The median age of the subjects (77% female) was 33 years, BMI ranged from 17.2 to 43.1 kg/m2. Supraclavicular and gluteal PDFF differed significantly (76.5 ± 4.8 vs. 89.4 ± 3.5 %, p < 0.01). Supraclavicular PDFF was associated with FT3 in subjects with high delta PDFF (R2 = 0.17, p < 0.01), with higher FT3 being associated with lower supraclavicular PDFF (y = 85.2 + -3.6 x). In a multivariable linear regression analysis considering further potential prognostic factors, the interaction between the delta PDFF group and FT3 remained a predictor for supraclavicular PDFF (B = -4.65, p < 0.01). DISCUSSION/CONCLUSIONS Supraclavicular PDFF corresponds to the presence of BAT. In the present analysis, supraclavicular PDFF is correlated with FT3 in subjects with high delta PDFF. Therefore, the present findings suggest that biologically active T3 may be involved in the development of supraclavicular BAT.
Collapse
Affiliation(s)
- Daniela Junker
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany,
| | - Jan Syväri
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Theresa Drabsch
- Institute for Nutritional Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Birgit Waschulzik
- Institute of Medical Informatics, Statistics and Epidemiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- Institute for Nutritional Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Else Kroener-Fresenius-Center of Nutritional Medicine, ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
21
|
Hu HH, Branca RT, Hernando D, Karampinos DC, Machann J, McKenzie CA, Wu HH, Yokoo T, Velan SS. Magnetic resonance imaging of obesity and metabolic disorders: Summary from the 2019 ISMRM Workshop. Magn Reson Med 2019; 83:1565-1576. [PMID: 31782551 DOI: 10.1002/mrm.28103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
More than 100 attendees from Australia, Austria, Belgium, Canada, China, Germany, Hong Kong, Indonesia, Japan, Malaysia, the Netherlands, the Philippines, Republic of Korea, Singapore, Sweden, Switzerland, the United Kingdom, and the United States convened in Singapore for the 2019 ISMRM-sponsored workshop on MRI of Obesity and Metabolic Disorders. The scientific program brought together a multidisciplinary group of researchers, trainees, and clinicians and included sessions in diabetes and insulin resistance; an update on recent advances in water-fat MRI acquisition and reconstruction methods; with applications in skeletal muscle, bone marrow, and adipose tissue quantification; a summary of recent findings in brown adipose tissue; new developments in imaging fat in the fetus, placenta, and neonates; the utility of liver elastography in obesity studies; and the emerging role of radiomics in population-based "big data" studies. The workshop featured keynote presentations on nutrition, epidemiology, genetics, and exercise physiology. Forty-four proffered scientific abstracts were also presented, covering the topics of brown adipose tissue, quantitative liver analysis from multiparametric data, disease prevalence and population health, technical and methodological developments in data acquisition and reconstruction, newfound applications of machine learning and neural networks, standardization of proton density fat fraction measurements, and X-nuclei applications. The purpose of this article is to summarize the scientific highlights from the workshop and identify future directions of work.
Collapse
Affiliation(s)
- Houchun H Hu
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Tübingen, Germany.,Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Charles A McKenzie
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Holden H Wu
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California
| | - Takeshi Yokoo
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore.,Singapore BioImaging Consortium, Agency for Science Technology and Research, Singapore
| |
Collapse
|
22
|
Wang X, Colgan TJ, Hinshaw LA, Roberts NT, Bancroft LCH, Hamilton G, Hernando D, Reeder SB. T 1 -corrected quantitative chemical shift-encoded MRI. Magn Reson Med 2019; 83:2051-2063. [PMID: 31724776 DOI: 10.1002/mrm.28062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/27/2019] [Accepted: 10/11/2019] [Indexed: 11/06/2022]
Abstract
PURPOSE To develop and validate a T1 -corrected chemical-shift encoded MRI (CSE-MRI) method to improve noise performance and reduce bias for quantification of tissue proton density fat-fraction (PDFF). METHODS A variable flip angle (VFA)-CSE-MRI method using joint-fit reconstruction was developed and implemented. In computer simulations and phantom experiments, sources of bias measured using VFA-CSE-MRI were investigated. The effect of tissue T1 on bias using low flip angle (LFA)-CSE-MRI was also evaluated. The noise performance of VFA-CSE-MRI was compared to LFA-CSE-MRI for liver fat quantification. Finally, a prospective pilot study in patients undergoing gadoxetic acid-enhanced MRI of the liver to evaluate the ability of the proposed method to quantify liver PDFF before and after contrast. RESULTS VFA-CSE-MRI was accurate and insensitive to transmit B1 inhomogeneities in phantom experiments and computer simulations. With high flip angles, phase errors because of RF spoiling required modification of the CSE signal model. For relaxation parameters commonly observed in liver, the joint-fit reconstruction improved the noise performance marginally, compared to LFA-CSE-MRI, but eliminated T1 -related bias. A total of 25 patients were successfully recruited and analyzed for the pilot study. Strong correlation and good agreement between PDFF measured with VFA-CSE-MRI and LFA-CSE-MRI (pre-contrast) was observed before (R2 = 0.97; slope = 0.88, 0.81-0.94 95% confidence interval [CI]; intercept = 1.34, -0.77-1.92 95% CI) and after (R2 = 0.93; slope = 0.88, 0.78-0.98 95% CI; intercept = 1.90, 1.01-2.79 95% CI) contrast. CONCLUSION Joint-fit VFA-CSE-MRI is feasible for T1 -corrected PDFF quantification in liver, is insensitive to B1 inhomogeneities, and can eliminate T1 bias, but with only marginal SNR advantage for T1 values observed in the liver.
Collapse
Affiliation(s)
- Xiaoke Wang
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Timothy J Colgan
- Department of Radiology, University of Wisconsin, Madison, Wisconsin
| | - Louis A Hinshaw
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Nathan T Roberts
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin
| | | | - Gavin Hamilton
- Liver Imaging Group, Department of Radiology, University of California San Diego, La Jolla, California
| | - Diego Hernando
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin, Madison, Wisconsin.,Department of Medicine, University of Wisconsin, Madison, Wisconsin.,Department of Emergency Medicine, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
23
|
Sun L, Verma S, Michael N, Chan SP, Yan J, Sadananthan SA, Camps SG, Goh HJ, Govindharajulu P, Totman J, Townsend D, Goh JPN, Sun L, Boehm BO, Lim SC, Sze SK, Henry CJ, Hu HH, Velan SS, Leow MKS. Brown Adipose Tissue: Multimodality Evaluation by PET, MRI, Infrared Thermography, and Whole-Body Calorimetry (TACTICAL-II). Obesity (Silver Spring) 2019; 27:1434-1442. [PMID: 31301122 PMCID: PMC6899540 DOI: 10.1002/oby.22560] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to compare the associations of positron emission tomography (PET), magnetic resonance (MR), and infrared thermography (IRT) imaging modalities with energy expenditure (EE) after brown adipose tissue (BAT) activation using capsinoid ingestion and cold exposure. METHODS Twenty participants underwent PET-MR, IRT imaging, and whole-body calorimetry after capsinoid ingestion and cold exposure. Standardized uptake values (SUV) and the fat fraction (FF) of the supraclavicular brown adipose tissue regions were estimated. The anterior supraclavicular temperature (Tscv) from IRT at baseline and postintervention was measured. Two-hour post-capsinoid ingestion EE and post-cold exposure EE served as a reference to correlate fluorodeoxyglucose uptake, FF, and Tscv for BAT assessment. IRT images were geometrically transformed to overlay on PET-MR for visualization of the hottest regions. RESULTS The supraclavicular hot spot identified on IRT closely corresponded to the area of maximal fluorodeoxyglucose uptake on PET images. Controlling for body weight, post-cold exposure Tscv was a significant variable associated with EE (P = 0.025). The SUV was significantly inversely correlated with FF (P = 0.012) and significantly correlated with peak of Tscv during cold exposure in BAT-positive participants (P = 0.022). CONCLUSIONS Tscv correlated positively with EE and was also significantly correlated with SUV after cold exposure. Both IRT and MR FF are promising methods to study BAT activity noninvasively.
Collapse
Affiliation(s)
- Lijuan Sun
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
| | - Sanjay Verma
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
| | - Navin Michael
- Singapore Institute of Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Siew Pang Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore
- College of Science, Health, and Engineering, La Trobe University, Melbourne, Australia
| | - Jianhua Yan
- Molecular Imaging Precision Medicine Collaborative Innovation Center, Shanxi Medical University, Taiyuan, China
| | - Suresh Anand Sadananthan
- Singapore Institute of Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Stefan G Camps
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
| | - Hui Jen Goh
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
| | - Priya Govindharajulu
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
| | - John Totman
- Clinical Imaging Research Centre, Agency for Science, Technology, and Research, National University of Singapore, Singapore
| | - David Townsend
- Clinical Imaging Research Centre, Agency for Science, Technology, and Research, National University of Singapore, Singapore
| | | | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Bernhard Otto Boehm
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
- Imperial College London, London, UK
| | - Su Chi Lim
- Department of Medicine, Khoo Teck Puat Hospital, Singapore
| | - Siew Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Houchun Harry Hu
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - S Sendhil Velan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
- Singapore Institute of Clinical Sciences, Agency for Science, Technology, and Research, Singapore
- Department of Physiology, National University of Singapore, Singapore
- Department of Medicine, National University of Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
24
|
Lundström E, Ljungberg J, Andersson J, Manell H, Strand R, Forslund A, Bergsten P, Weghuber D, Mörwald K, Zsoldos F, Widhalm K, Meissnitzer M, Ahlström H, Kullberg J. Brown adipose tissue estimated with the magnetic resonance imaging fat fraction is associated with glucose metabolism in adolescents. Pediatr Obes 2019; 14:e12531. [PMID: 31290284 PMCID: PMC6771901 DOI: 10.1111/ijpo.12531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Despite therapeutic potential against obesity and diabetes, the associations of brown adipose tissue (BAT) with glucose metabolism in young humans are relatively unexplored. OBJECTIVES To investigate possible associations between magnetic resonance imaging (MRI) estimates of BAT and glucose metabolism, whilst considering sex, age, and adiposity, in adolescents with normal and overweight/obese phenotypes. METHODS In 143 subjects (10-20 years), MRI estimates of BAT were assessed as cervical-supraclavicular adipose tissue (sBAT) fat fraction (FF) and T2* from water-fat MRI. FF and T2* of neighbouring subcutaneous adipose tissue (SAT) were also assessed. Adiposity was estimated with a standardized body mass index, the waist-to-height ratio, and abdominal visceral and subcutaneous adipose tissue volumes. Glucose metabolism was represented by the 2h plasma glucose concentration, the Matsuda index, the homeostatic model assessment of insulin resistance, and the oral disposition index; obtained from oral glucose tolerance tests. RESULTS sBAT FF and T2* correlated positively with adiposity before and after adjustment for sex and age. sBAT FF, but not T2* , correlated with 2h glucose and Matsuda index, also after adjustment for sex, age, and adiposity. The association with 2h glucose persisted after additional adjustment for SAT FF. CONCLUSIONS The association between sBAT FF and 2h glucose, observed independently of sex, age, adiposity, and SAT FF, indicates a role for BAT in glucose metabolism, which potentially could influence the risk of developing diabetes. The lacking association with sBAT T2* might be due to FF being a superior biomarker for BAT and/or to methodological limitations in the T2* quantification.
Collapse
Affiliation(s)
- Elin Lundström
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden
| | - Joy Ljungberg
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden
| | - Jonathan Andersson
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden
| | - Hannes Manell
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden,Children Obesity ClinicUppsala University HospitalUppsalaSweden,Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Robin Strand
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden,Department of Information TechnologyUppsala UniversityUppsalaSweden
| | - Anders Forslund
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden,Children Obesity ClinicUppsala University HospitalUppsalaSweden
| | - Peter Bergsten
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden,Children Obesity ClinicUppsala University HospitalUppsalaSweden,Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Daniel Weghuber
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria
| | - Katharina Mörwald
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria
| | - Fanni Zsoldos
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria
| | - Kurt Widhalm
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria,Department of PediatricsMedical University of ViennaViennaAustria
| | | | - Håkan Ahlström
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden,Antaros MedicalBioVenture HubMölndalSweden
| | - Joel Kullberg
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden,Antaros MedicalBioVenture HubMölndalSweden
| |
Collapse
|
25
|
Abe T, Dankel SJ, Loenneke JP. Body Fat Loss Automatically Reduces Lean Mass by Changing the Fat-Free Component of Adipose Tissue. Obesity (Silver Spring) 2019; 27:357-358. [PMID: 30706656 DOI: 10.1002/oby.22393] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022]
Abstract
Fat-free mass or lean tissue mass includes nonskeletal muscle components such as the fat-free component of adipose tissue fat cells. This fat-free component of adipose tissue may need to be taken into consideration when large changes in body fat occur following a weight loss intervention. It is not uncommon to see a loss of lean mass with interventions designed to promote the loss of large amounts of fat mass. However, after eliminating the influence of the fat-free component of adipose tissue on dual-energy x-ray absorptiometry (DXA)-derived lean mass, the original loss of lean mass is no longer observed or is markedly reduced. This suggests that the majority of the lean mass lost with dieting may be the fat-free component of adipose tissue. To accurately estimate the change in lean tissue, eliminating the fat-free adipose tissue from DXA-derived lean mass is needed when large changes in body fat occur following an intervention.
Collapse
Affiliation(s)
- Takashi Abe
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, Oxford, Mississippi, USA
| | - Scott J Dankel
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, Oxford, Mississippi, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, Oxford, Mississippi, USA
| |
Collapse
|
26
|
Franz D, Diefenbach MN, Treibel F, Weidlich D, Syväri J, Ruschke S, Wu M, Holzapfel C, Drabsch T, Baum T, Eggers H, Rummeny EJ, Hauner H, Karampinos DC. Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T 2 * mapping using a 20-echo gradient-echo acquisition. J Magn Reson Imaging 2019; 50:424-434. [PMID: 30684282 PMCID: PMC6767392 DOI: 10.1002/jmri.26661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
Background Adipose tissue (AT) can be classified into white and brown/beige subtypes. Chemical shift encoding‐based water–fat MRI‐techniques allowing simultaneous mapping of proton density fat fraction (PDFF) and T2* result in a lower PDFF and a shorter T2* in brown compared with white AT. However, AT T2* values vary widely in the literature and are primarily based on 6‐echo data. Increasing the number of echoes in a multiecho gradient‐echo acquisition is expected to increase the precision of AT T2* mapping. Purpose 1) To mitigate issues of current T2*‐measurement techniques through experimental design, and 2) to investigate gluteal and supraclavicular AT T2* and PDFF and their relationship using a 20‐echo gradient‐echo acquisition. Study Type Prospective. Subjects Twenty‐one healthy subjects. Field Strength/Sequence Assessment First, a ground truth signal evolution was simulated from a single‐T2* water–fat model. Second, a time‐interleaved 20‐echo gradient‐echo sequence with monopolar gradients of neck and abdomen/pelvis at 3 T was performed in vivo to determine supraclavicular and gluteal PDFF and T2*. Complex‐based water–fat separation was performed for the first 6 echoes and the full 20 echoes. AT depots were segmented. Statistical Tests Mann‐Whitney test, Wilcoxon signed‐rank test and simple linear regression analysis. Results Both PDFF and T2* differed significantly between supraclavicular and gluteal AT with 6 and 20 echoes (PDFF: P < 0.0001 each, T2*: P = 0.03 / P < 0.0001 for 6/20 echoes). 6‐echo T2* demonstrated higher standard deviations and broader ranges than 20‐echo T2*. Regression analyses revealed a strong relationship between PDFF and T2* values per AT compartment (R2 = 0.63 supraclavicular, R2 = 0.86 gluteal, P < 0.0001 each). Data Conclusion The present findings suggest that an increase in the number of sampled echoes beyond 6 does not affect AT PDFF quantification, whereas AT T2* is considerably affected. Thus, a 20‐echo gradient‐echo acquisition enables a multiparametric analysis of both AT PDFF and T2* and may therefore improve MR‐based differentiation between white and brown fat. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:424–434.
Collapse
Affiliation(s)
- Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian N Diefenbach
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franziska Treibel
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan Syväri
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Theresa Drabsch
- Institute for Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- Institute for Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
27
|
Karampinos DC, Weidlich D, Wu M, Hu HH, Franz D. Techniques and Applications of Magnetic Resonance Imaging for Studying Brown Adipose Tissue Morphometry and Function. Handb Exp Pharmacol 2019; 251:299-324. [PMID: 30099625 DOI: 10.1007/164_2018_158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present review reports on the current knowledge and recent findings in magnetic resonance imaging (MRI) and spectroscopy (MRS) of brown adipose tissue (BAT). The work summarizes the features and mechanisms that allow MRI to differentiate BAT from white adipose tissue (WAT) by making use of their distinct morphological appearance and the functional characteristics of BAT. MR is a versatile imaging modality with multiple contrast mechanisms as potential candidates in the study of BAT, targeting properties of 1H, 13C, or 129Xe nuclei. Techniques for assessing BAT morphometry based on fat fraction and markers of BAT microstructure, including intermolecular quantum coherence and diffusion imaging, are first described. Techniques for assessing BAT function based on the measurement of BAT metabolic activity, perfusion, oxygenation, and temperature are then presented. The application of the above methods in studies of BAT in animals and humans is described, and future directions in MR study of BAT are finally discussed.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Houchun H Hu
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
28
|
Burian E, Syväri J, Holzapfel C, Drabsch T, Kirschke JS, Rummeny EJ, Zimmer C, Hauner H, Karampinos DC, Baum T, Franz D. Gender- and Age-Related Changes in Trunk Muscle Composition Using Chemical Shift Encoding-Based Water⁻Fat MRI. Nutrients 2018; 10:nu10121972. [PMID: 30551614 PMCID: PMC6315838 DOI: 10.3390/nu10121972] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022] Open
Abstract
Ageing, sarcopenia, and malnutrition are associated with quantitative and qualitative changes of body composition. There are several imaging modalities, including magnetic resonance imaging (MRI), for the assessment of trunk muscle tissue composition. In this study, we investigated the gender- and age-related changes in trunk muscle composition using chemical shift encoding-based water–fat MRI. A total of 79 healthy volunteers (26 men: 38.9 ± 10.4 years; 53 women: 39.5 ± 15.0 years) underwent 3T axial MRI using a six-echo multi-echo 3D spoiled gradient echo sequence, allowing for the calculation of the proton density fat fraction (PDFF) in the trunk muscles. PDFF of the abdominal, psoas, and erector spinae muscles were determined. We detected significant positive correlations for abdominal muscle PDFF with age (r = 0.638, p = 0.0001) in men, and for abdominal muscle PDFF (r = 0.709, p = 0.0001) and erector spinae muscle PDFF (r = 0.674, p = 0.0001) with age in women. After adjustment for body mass index (BMI), only the correlation of age and abdominal muscle PDFF in women remained significant (r = 0.631, p = 0.0001). The findings of this study suggest that an increasing fat deposition in muscle is driven primarily by age, rather than BMI, in women. These results further support that PDFF can be considered a valid imaging biomarker of trunk muscle composition.
Collapse
Affiliation(s)
- Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Jan Syväri
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Christina Holzapfel
- Institute of Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Georg-Brauchle-Ring 62, 80992 Munich, Germany.
| | - Theresa Drabsch
- Institute of Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Georg-Brauchle-Ring 62, 80992 Munich, Germany.
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Hans Hauner
- Institute of Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Georg-Brauchle-Ring 62, 80992 Munich, Germany.
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
29
|
Bush EC, Gifford A, Coolbaugh CL, Towse TF, Damon BM, Welch EB. Fat-Water Phantoms for Magnetic Resonance Imaging Validation: A Flexible and Scalable Protocol. J Vis Exp 2018. [PMID: 30247483 DOI: 10.3791/57704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As new techniques are developed to image adipose tissue, methods to validate such protocols are becoming increasingly important. Phantoms, experimental replicas of a tissue or organ of interest, provide a low cost, flexible solution. However, without access to expensive and specialized equipment, constructing stable phantoms with high fat fractions (e.g., >50% fat fraction levels such as those seen in brown adipose tissue) can be difficult due to the hydrophobic nature of lipids. This work presents a detailed, low cost protocol for creating 5x 100 mL phantoms with fat fractions of 0%, 25%, 50%, 75%, and 100% using basic lab supplies (hotplate, beakers, etc.) and easily accessible components (distilled water, agar, water-soluble surfactant, sodium benzoate, gadolinium-diethylenetriaminepentacetate (DTPA) contrast agent, peanut oil, and oil-soluble surfactant). The protocol was designed to be flexible; it can be used to create phantoms with different fat fractions and a wide range of volumes. Phantoms created with this technique were evaluated in the feasibility study that compared the fat fraction values from fat-water magnetic resonance imaging to the target values in the constructed phantoms. This study yielded a concordance correlation coefficient of 0.998 (95% confidence interval: 0.972-1.00). In summary, these studies demonstrate the utility of fat phantoms for validating adipose tissue imaging techniques across a range of clinically relevant tissues and organs.
Collapse
Affiliation(s)
- Emily C Bush
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center
| | - Aliya Gifford
- Department of Biomedical Informatics, Vanderbilt University Medical Center
| | - Crystal L Coolbaugh
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center
| | - Theodore F Towse
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center; Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center; Department of Biomedical Sciences, Grand Valley State University
| | - Bruce M Damon
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center; Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center; Department of Biomedical Engineering, Vanderbilt University; Department of Molecular Physiology and Biophysics, Vanderbilt University;
| | - E Brian Welch
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center; Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center
| |
Collapse
|
30
|
MacCannell ADV, Sinclair KJ, McKenzie CA, Staples JF. Environmental temperature effects on adipose tissue growth in a hibernator. J Exp Biol 2018; 222:jeb.194548. [DOI: 10.1242/jeb.194548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
Obligate hibernators express circannual patterns of body mass and hibernation, which persist under constant laboratory conditions. Brown Adipose Tissue (BAT) is important for thermogenesis during arousals from hibernation, whereas White Adipose Tissue (WAT) serves as energy storage and thermal insulation. The goal of this study was to investigate the effects of environmental temperature on BAT and WAT. We hypothesized that changes to environmental temperature would not influence the pattern of mass gain or BAT and WAT volume in the thirteen-lined ground squirrel (Ictidomys tridecemlineatus). To test this, we housed animals thermoneutral 25°C (warm-housed) or 5°C (cold-housed), with the same photoperiod (12 h light:12 h dark) over an entire year. Throughout the year we measured the volume and water-fat ratio of WAT and BAT using magnetic resonance imaging (MRI). We found no evidence of torpor in the warm-housed animals, indicating that this species might not be an obligate hibernator, as previously assumed. Regardless of ambient temperature BAT volume increased prior to winter, then decreased in late winter with no change in water-fat ratio. By contrast both body mass and WAT volume of cold-housed animals declined throughout the winter and recovered after hibernation, but thermoneutral housing produced no circannual pattern in body mass, even though WAT volume declined in late winter. Cold exposure appears to be a primary regulator for WAT but BAT may exhibit an endogenous circannual rhythm in terms of depot volume.
Collapse
Affiliation(s)
- Amanda D. V. MacCannell
- Dept. of Biology, University of Western Ontario, London ON, N6A5B8, Canada
- Current address: Discovery and Translational Science Dept., University of Leeds, Leeds, LS29JT, UK
| | - Kevin J. Sinclair
- Dept. of Medical Biophysics, University of Western Ontario, London ON, N6A5B7, Canada
| | - Charles A. McKenzie
- Dept. of Medical Biophysics, University of Western Ontario, London ON, N6A5B7, Canada
| | - James F. Staples
- Dept. of Biology, University of Western Ontario, London ON, N6A5B8, Canada
| |
Collapse
|