1
|
Barreira-Silva P, Lian Y, Kaufmann SHE, Moura-Alves P. The role of the AHR in host-pathogen interactions. Nat Rev Immunol 2025; 25:178-194. [PMID: 39415055 DOI: 10.1038/s41577-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
Host-microorganism encounters take place in many different ways and with different types of outcomes. Three major types of microorganisms need to be distinguished: (1) pathogens that cause harm to the host and must be controlled; (2) environmental microorganisms that can be ignored but must be controlled at higher abundance; and (3) symbiotic microbiota that require support by the host. Recent evidence indicates that the aryl hydrocarbon receptor (AHR) senses and initiates signalling and gene expression in response to a plethora of microorganisms and infectious conditions. It was originally identified as a receptor that binds xenobiotics. However, it was subsequently found to have a critical role in numerous biological processes, including immunity and inflammation and was recently classified as a pattern recognition receptor. Here we review the role of the AHR in host-pathogen interactions, focusing on AHR sensing of different microbial classes, the ligands involved, responses elicited and disease outcomes. Moreover, we explore the therapeutic potential of targeting the AHR in the context of infection.
Collapse
Affiliation(s)
- Palmira Barreira-Silva
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
2
|
Sriram G, Makkar H. Microfluidic organ-on-chip systems for periodontal research: advances and future directions. Front Bioeng Biotechnol 2025; 12:1490453. [PMID: 39840127 PMCID: PMC11747509 DOI: 10.3389/fbioe.2024.1490453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Advances in tissue engineering and microfluidic technologies have enabled the development of sophisticated in vitro models known as organ-on-a-chip (OoC) or microphysiological systems. These systems enable to potential to simulate the dynamic interactions between host tissues and their microenvironment including microbes, biomaterials, mechanical forces, pharmaceutical, and consumer-care products. These fluidic technologies are increasingly being utilized to investigate host-microbe and host-material interactions in oral health and disease. Of interest is their application in understanding periodontal disease, a chronic inflammatory condition marked by the progressive destruction of periodontal tissues, including gingiva, periodontal ligament, and alveolar bone. The pathogenesis of periodontal disease involves a complex interplay between microbial dysbiosis and host immune responses, which can lead to a loss of dental support structures and contribute to systemic conditions such as cardiovascular disease, diabetes, and inflammatory bowel disease. This provides a comprehensive overview of the latest developments in millifluidic and microfluidic systems designed to emulate periodontal host-microbe and host-material interactions. We discuss the critical engineering and biological considerations in designing these platforms, their applications in studying oral biofilms, periodontal tissue responses, and their potential to unravel disease mechanisms and therapeutic targets in periodontal disease.
Collapse
Affiliation(s)
- Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Wei Y, Chen GH, Yaqub M, Kim E, Tillett LE, Joyce LR, Dillon N, Palmer KL, Guan Z. Biosynthesis of mitis group streptococcal glycolipids and their roles in physiology and antibiotic susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621112. [PMID: 39554182 PMCID: PMC11565941 DOI: 10.1101/2024.10.30.621112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Bacterial cell surface components such as lipoteichoic acids (LTAs) play critical roles in host-microbe interactions and alter host responses based on their chemical structures. Mitis group streptococci have commensal and pathogenic interactions with the human host and produce Type IV LTAs that are slightly different in chemical structures between species. To reveal the molecular bases for the intricate interactions between MGS and human hosts, a detailed understanding of the structure and biosynthetic process of MGS LTAs is needed. In this study, we used genomic and lipidomic techniques to elucidate the biosynthetic processes of Type IV LTA and its associated glycolipid anchors, monohexosyl-diacylglycerol and dihexosyl-diacyglycerol, in the infectious endocarditis isolate Streptococcus sp. strain 1643. Through establishing a murine sepsis model, we validated the essentiality of these glycolipids in the full virulence of S. mitis. Additionally, we found that these glycolipids play an important role in protecting the bacteria from antimicrobials. Overall, results obtained through this study both confirm and dispute aspects of the existing model of glycolipids biosynthesis, provide insights into the fundamental roles of bacterial glycolipids, as well as suggest the potential of targeting glycolipids for developing antimicrobial therapeutics.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, Texas, USA
| | - Guan H. Chen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Muneer Yaqub
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Elice Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Lily E Tillett
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Luke R. Joyce
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nicholas Dillon
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
4
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol Biol Rep 2024; 51:814. [PMID: 39008163 DOI: 10.1007/s11033-024-09737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Nagpal S, Mande SS, Hooda H, Dutta U, Taneja B. EnsembleSeq: a workflow towards real-time, rapid, and simultaneous multi-kingdom-amplicon sequencing for holistic and resource-effective microbiome research at scale. Microbiol Spectr 2024; 12:e0415023. [PMID: 38687072 PMCID: PMC11237516 DOI: 10.1128/spectrum.04150-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/30/2024] [Indexed: 05/02/2024] Open
Abstract
Bacterial communities are often concomitantly present with numerous microorganisms in the human body and other natural environments. Amplicon-based microbiome studies have generally paid skewed attention, that too at a rather shallow genus level resolution, to the highly abundant bacteriome, with interest now forking toward the other microorganisms, particularly fungi. Given the generally sparse abundance of other microbes in the total microbiome, simultaneous sequencing of amplicons targeting multiple microbial kingdoms could be possible even with full multiplexing. Guiding studies are currently needed for performing and monitoring multi-kingdom-amplicon sequencing and data capture at scale. Aiming to address these gaps, amplification of full-length bacterial 16S rRNA gene and entire fungal internal-transcribed spacer (ITS) region was performed for human saliva samples (n = 96, including negative and positive controls). Combined amplicon DNA libraries were prepared for nanopore sequencing using a major fraction of 16S molecules and a minor fraction of ITS amplicons. Sequencing was performed in a single run of an R10.4.1 flow cell employing the latest V14 chemistry. An approach for real-time monitoring of the species saturation using dynamic rarefaction was designed as a guiding determinant of optimal run time. Real-time saturation monitoring for both bacterial and fungal species enabled the completion of sequencing within 30 hours, utilizing less than 60% of the total nanopores. Approximately 5 million high quality (HQ) taxonomically assigned reads were generated (~4.2 million bacterial and 0.7 million fungal), providing a wider (beyond bacteriome) snapshot of human oral microbiota at species-level resolution. Among the more than 400 bacterial and 240 fungal species identified in the studied samples, the species of Streptococcus (e.g., Streptococcus mitis and Streptococcus oralis) and Candida (e.g., Candida albicans and Candida tropicalis) were observed to be the dominating microbes in the oral cavity, respectively. This conformed well with the previous reports of the human oral microbiota. EnsembleSeq provides a proof-of-concept toward the identification of both fungal and bacterial species simultaneously in a single fully multiplexed nanopore sequencing run in a time- and resource-effective manner. Details of this workflow, along with the associated codebase, are provided to enable large-scale application for a holistic species-level microbiome study. IMPORTANCE Human microbiome is a sum total of a variety of microbial genomes (including bacteria, fungi, protists, viruses, etc.) present in and on the human body. Yet, a majority of amplicon-based microbiome studies have largely remained skewed toward bacteriome as an assumed proxy of the total microbiome, primarily at a shallow genus level. Cost, time, effort, data quality/management, and importantly lack of guiding studies often limit progress in the direction of moving beyond bacteriome. Here, EnsembleSeq presents a proof-of-concept toward concomitantly capturing multiple-kingdoms of microorganisms (bacteriome and mycobiome) in a fully multiplexed (96-sample) single run of long-read amplicon sequencing. In addition, the workflow captures dynamic tracking of species-level saturation in a time- and resource-effective manner.
Collapse
Affiliation(s)
- Sunil Nagpal
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- TCS Research, Tata Consultancy Services Ltd, Pune, India
| | | | - Harish Hooda
- Department of Gastroenterology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Usha Dutta
- Department of Gastroenterology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Ardila CM, Jiménez-Arbeláez GA, Vivares-Builes AM. Potential Clinical Application of Organs-on-a-Chip in Periodontal Diseases: A Systematic Review of In Vitro Studies. Dent J (Basel) 2023; 11:158. [PMID: 37504224 PMCID: PMC10378380 DOI: 10.3390/dj11070158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
The periodontium is a unique organ from the standpoint of building an organ-on-a-chip (OoC) since it is a system that is continually threatened by microorganisms, their noxious compounds, and antigenic components. At the same time, periodontal health depends on a balanced connection between the host and the bacteria in the oral cavity, which is a complex micro-ecological environment. The objective of this systematic review of in vitro studies is to revise the potential clinical application of OoC in periodontal diseases. PRISMA was used to guide this analysis. The review framework made use of several databases, including SCOPUS, PubMed/MEDLINE, SCIELO, and LILACS as well as the gray literature. This systematic review comprised seven studies. The clinical efficacy of OoC in periodontal diseases was observed in models of the gingival crevice for the research of periodontitis, periodontal medication analysis, the interaction of multiple microbial species, pH measurements in in situ-grown biofilm, testing antimicrobial reagents, evaluation of mucosal interactions with microorganisms, and a device for quantitative exploration of microorganisms. OoC has the potential to advance our understanding of periodontal diseases by providing a more accurate representation of the oral microenvironment and enabling the development of new treatments.
Collapse
Affiliation(s)
- Carlos M. Ardila
- Basic Studies Department, School of Dentistry, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| | - Gustavo A. Jiménez-Arbeláez
- School of Dentistry, Institución Universitaria Visión de Las Américas, Medellín 050031, Colombia; (G.A.J.-A.); (A.M.V.-B.)
| | - Annie Marcela Vivares-Builes
- School of Dentistry, Institución Universitaria Visión de Las Américas, Medellín 050031, Colombia; (G.A.J.-A.); (A.M.V.-B.)
| |
Collapse
|
7
|
Wei Y, Sturges CI, Palmer KL. Human Serum Supplementation Promotes Streptococcus mitis Growth and Induces Specific Transcriptomic Responses. Microbiol Spectr 2023; 11:e0512922. [PMID: 37014220 PMCID: PMC10269507 DOI: 10.1128/spectrum.05129-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/01/2023] [Indexed: 04/05/2023] Open
Abstract
Streptococcus mitis is a normal member of the human oral microbiota and a leading opportunistic pathogen causing infective endocarditis (IE). Despite the complex interactions between S. mitis and the human host, understanding of S. mitis physiology and its mechanisms of adaptation to host-associated environments is inadequate, especially compared with other IE bacterial pathogens. This study reports the growth-promoting effects of human serum on S. mitis and other pathogenic streptococci, including S. oralis, S. pneumoniae, and S. agalactiae. Using transcriptomic analyses, we identified that, with the addition of human serum, S. mitis downregulates uptake systems for metal ions and sugars, fatty acid biosynthetic genes, and genes involved in stress response and other processes related with growth and replication. S. mitis upregulates uptake systems for amino acids and short peptides in response to human serum. Zinc availability and environmental signals sensed by the induced short peptide binding proteins were not sufficient to confer the growth-promoting effects. More investigation is required to establish the mechanism for growth promotion. Overall, our study contributes to the fundamental understanding of S. mitis physiology under host-associated conditions. IMPORTANCE S. mitis is exposed to human serum components during commensalism in the human mouth and bloodstream pathogenesis. However, the physiological effects of serum components on this bacterium remain unclear. Using transcriptomic analyses, S. mitis biological processes that respond to the presence of human serum were revealed, improving the fundamental understanding of S. mitis physiology in human host conditions.
Collapse
Affiliation(s)
- Yahan Wei
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Camille I. Sturges
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
8
|
Kazarina A, Kuzmicka J, Bortkevica S, Zayakin P, Kimsis J, Igumnova V, Sadovska D, Freimane L, Kivrane A, Namina A, Capligina V, Poksane A, Ranka R. Oral microbiome variations related to ageing: possible implications beyond oral health. Arch Microbiol 2023; 205:116. [PMID: 36920536 PMCID: PMC10016173 DOI: 10.1007/s00203-023-03464-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
The global population is getting older due to a combination of longer life expectancy and declining birth rates. Growing evidence suggests that the oral microbiota composition and distribution may have a profound effect on how well we age. The purpose of this study was to investigate age-related oral microbiome variations of supragingival plaque and buccal mucosa samples in the general population in Latvia. Our results indicated significant difference between supragingival plaque bacterial profiles of three age groups (20-40; 40-60; 60 + years). Within supragingival plaque samples, age group 20-40 showed the highest bacterial diversity with a decline during the 40-60 age period and uprise again after the age of 60. Among other differences, the important oral commensal Neisseria had declined after the age of 40. Additionally, prevalence of two well-documented opportunistic pathogens Streptococcus anginosus and Gemella sanguinis gradually rose with age within our samples. Furthermore, supragingival plaque and buccal mucosa samples significantly differed in overall bacterial composition.
Collapse
Affiliation(s)
- Alisa Kazarina
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia.
| | | | - Santa Bortkevica
- Riga Stradins University, 16 Dzirciema Str., Riga, LV-1007, Latvia
| | - Pawel Zayakin
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Janis Kimsis
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Viktorija Igumnova
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Darja Sadovska
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Lauma Freimane
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Agnija Kivrane
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Agne Namina
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Valentina Capligina
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Alise Poksane
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Renate Ranka
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| |
Collapse
|
9
|
Makkar H, Zhou Y, Tan KS, Lim CT, Sriram G. Modeling Crevicular Fluid Flow and Host-Oral Microbiome Interactions in a Gingival Crevice-on-Chip. Adv Healthc Mater 2023; 12:e2202376. [PMID: 36398428 DOI: 10.1002/adhm.202202376] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Gingival crevice and gingival crevicular fluid (GCF) flow play a crucial role at the gingiva-oral microbiome interface which contributes toward maintaining the balance between gingival health and periodontal disease. Interstitial flow of GCF strongly impacts the host-microbiome interactions and tissue responses. However, currently available in vitro preclinical models largely disregard the dynamic nature of gingival crevicular microenvironment, thus limiting the progress in the development of periodontal therapeutics. Here, a proof-of-principle "gingival crevice-on-chip" microfluidic platform to culture gingival connective tissue equivalent (CTE) under dynamic interstitial fluid flow mimicking the GCF is described. On-chip co-culture using oral symbiont (Streptococcus oralis) shows the potential to recapitulate microbial colonization, formation of biofilm-like structures at the tissue-microbiome interface, long-term co-culture, and bacterial clearance secondary to simulated GCF (s-GCF) flow. Further, on-chip exposure of the gingival CTEs to the toll-like receptor-2 (TLR-2) agonist or periodontal pathogen Fusobacterium nucleatum demonstrates the potential to mimic early gingival inflammation. In contrast to direct exposure, the induction of s-GCF flow toward the bacterial front attenuates the secretion of inflammatory mediators demonstrating the protective effect of GCF flow. This proposed in vitro platform offers the potential to study complex host-microbe interactions in periodontal disease and the development of periodontal therapeutics under near-microphysiological conditions.
Collapse
Affiliation(s)
- Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
| | - Ying Zhou
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore.,ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, 119085, Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore.,ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, 119085, Singapore
| |
Collapse
|
10
|
Guevarra RB, Hwang J, Lee H, Kim HJ, Lee Y, Danko D, Ryon KA, Young BG, Mason CE, Jang S. Metagenomic characterization of bacterial community and antibiotic resistance genes found in the mass transit system in Seoul, South Korea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114176. [PMID: 36257123 DOI: 10.1016/j.ecoenv.2022.114176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Mass transit systems, including subways and buses, are useful environments for studying the urban microbiome, as the vast majority of populations in urban areas use public transportation. Microbial communities in urban environments include both human- and environment-associated bacteria that play roles in health and pathogen transmission. In this study, we used shotgun metagenomic sequencing to profile microbial communities sampled from various surfaces found in subway stations and bus stops within the Seoul mass transit system. The metagenomic approach and network analysis were used to investigate broad-spectrum antibiotic resistance genes (ARGs) and their co-occurrence patterns. We uncovered 598 bacterial species in 76 samples collected from various surfaces within the Seoul mass transit system. All samples were dominated by the potential human pathogen Salmonella enterica (40 %) and the human skin bacterium Cutibacterium acnes (19 %). Significantly abundant biomarkers detected in subway station samples were associated with bacteria typically found in the human oral cavity and respiratory tract, whereas biomarkers detected in bus stop samples were associated with bacteria commonly found in soil, water, and plants. Temperature and location had significant effects on microbial community structure and diversity. In total, 41 unique ARG subtypes were identified, associated with single-drug or multidrug resistance to clinically important and extensively used antibiotics, including aminoglycosides, carbapenem, glycopeptide, and sulfonamides. We revealed that Seoul subway stations and bus stops possess unique microbiomes containing potential human pathogens and ARGs. These findings provide insights for refining location-specific responses to reduce exposure to potentially causative agents of infectious diseases, improving public health.
Collapse
Affiliation(s)
- Robin B Guevarra
- Antibacterial Resistance Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Juchan Hwang
- Antibacterial Resistance Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Hyunjung Lee
- Antibacterial Resistance Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Hyung Jun Kim
- Antibacterial Resistance Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Yunmi Lee
- Antibacterial Resistance Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | | | - Krista A Ryon
- Weill Cornell Medicine, New York, NY, USA; The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA
| | | | - Christopher E Mason
- Weill Cornell Medicine, New York, NY, USA; The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Soojin Jang
- Antibacterial Resistance Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
11
|
Brandwein M, Fuks G, Israel A, Hodak E, Sabbah F, Steinberg D, Bentwich Z, Shental N, Meshner S. Biogeographical Landscape of the Human Face Skin Microbiome Viewed in High Definition. Acta Derm Venereol 2021; 101:adv00603. [PMID: 34515801 PMCID: PMC9455318 DOI: 10.2340/00015555-3929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bacterial community that colonizes the human face imparts physiochemical and physiological effects on the facial skin. These skin-microbe interactions impact dermatological, cosmetic and skincare applications due to the centrality of the human face in daily interactions. However, fine-scale characterization of the human face skin microbiome is lacking. Using 16S rRNA sequencing and 3D cartography, this study plotted and characterized the facial skin microbiome in high-definition, based on 1,649 samples from 12 individuals. Analysis yielded a number of novel insights, including that of the relative uniformity of skin microbiome composition within skin sites, site localization of certain microbes, and the interpersonal variability of the skin microbiome. The results show that high-resolution topographical mapping of the skin microbiome is a powerful tool for studying the human skin microbiome. Despite a decade of skin microbiome research, there is still much to be discovered.
Collapse
Affiliation(s)
- Michael Brandwein
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Almeida-da-Silva CLC, Matshik Dakafay H, Liu K, Ojcius DM. Cigarette Smoke Stimulates SARS-CoV-2 Internalization by Activating AhR and Increasing ACE2 Expression in Human Gingival Epithelial Cells. Int J Mol Sci 2021; 22:ijms22147669. [PMID: 34299289 PMCID: PMC8307094 DOI: 10.3390/ijms22147669] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
A large body of evidence shows the harmful effects of cigarette smoke to oral and systemic health. More recently, a link between smoking and susceptibility to coronavirus disease 2019 (COVID-19) was proposed. COVID-19 is due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which uses the receptor ACE2 and the protease TMPRSS2 for entry into host cells, thereby infecting cells of the respiratory tract and the oral cavity. Here, we examined the effects of cigarette smoke on the expression of SARS-CoV-2 receptors and infection in human gingival epithelial cells (GECs). We found that cigarette smoke condensates (CSC) upregulated ACE2 and TMPRSS2 expression in GECs, and that CSC activated aryl hydrocarbon receptor (AhR) signaling in the oral cells. ACE2 was known to mediate SARS-CoV-2 internalization, and we demonstrate that CSC treatment potentiated the internalization of SARS-CoV-2 pseudovirus in GECs in an AhR-dependent manner. AhR depletion using small interference RNA decreased SARS-CoV-2 pseudovirus internalization in CSC-treated GECs compared with control GECs. Our study reveals that cigarette smoke upregulates SARS-CoV-2 receptor expression and infection in oral cells. Understanding the mechanisms involved in SARS-CoV-2 infection in cells of the oral cavity may suggest therapeutic interventions for preventing viral infection and transmission.
Collapse
Affiliation(s)
- Cassio Luiz Coutinho Almeida-da-Silva
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
- Correspondence: (C.L.C.A.-d.-S.); (D.M.O.)
| | - Harmony Matshik Dakafay
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - Kaitlyn Liu
- Dental Surgery Program, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
- Correspondence: (C.L.C.A.-d.-S.); (D.M.O.)
| |
Collapse
|
13
|
Barbour A, Elebyary O, Fine N, Oveisi M, Glogauer M. Metabolites of the Oral Microbiome: Important Mediators of Multi-Kingdom Interactions. FEMS Microbiol Rev 2021; 46:6316110. [PMID: 34227664 DOI: 10.1093/femsre/fuab039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The oral cavity hosts over 700 different microbial species that produce a rich reservoir of bioactive metabolites critical to oral health maintenance. Over the last two decades, new insights into the oral microbiome and its importance in health and disease have emerged mainly due to the discovery of new oral microbial species using next-generation sequencing (NGS). This advancement has revolutionized the documentation of unique microbial profiles associated with different niches and health/disease states within the oral cavity and the relation of the oral bacteria to systemic diseases. However, less work has been done to identify and characterize the unique oral microbial metabolites that play critical roles in maintaining equilibrium between the various oral microbial species and their human hosts. This article discusses the most significant microbial metabolites produced by these diverse communities of oral bacteria that can either foster health or contribute to disease. Finally, we shed light on how advances in genomics and genome mining can provide a high throughput platform for discovering novel bioactive metabolites derived from the human oral microbiome to tackle emerging human infections and systemic diseases.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada, M5G 2M9, Canada
| |
Collapse
|
14
|
Myers S, Do T, Meade JL, Tugnait A, Vernon JJ, Pistolic J, Hancock REW, Marsh PD, Trivedi HM, Chen D, Devine DA. Immunomodulatory streptococci that inhibit CXCL8 secretion and NFκB activation are common members of the oral microbiota. J Med Microbiol 2021; 70. [PMID: 33734952 PMCID: PMC8346732 DOI: 10.1099/jmm.0.001329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction Oral tissues are generally homeostatic despite exposure to many potential inflammatory agents including the resident microbiota. This requires the balancing of inflammation by regulatory mechanisms and/or anti-inflammatory commensal bacteria. Thus, the levels of anti-inflammatory commensal bacteria in resident populations may be critical in maintaining this homeostatic balance. Hypothesis/Gap Statement The incidence of immunosuppressive streptococci in the oral cavity is not well established. Determining the proportion of these organisms and the mechanisms involved may help to understand host-microbe homeostasis and inform development of probiotics or prebiotics in the maintenance of oral health. Aim To determine the incidence and potential modes of action of immunosuppressive capacity in resident oral streptococci. Methodology Supragingival plaque was collected from five healthy participants and supragingival and subgingival plaque from five with gingivitis. Twenty streptococci from each sample were co-cultured with epithelial cells±flagellin or LL-37. CXCL8 secretion was detected by ELISA, induction of cytotoxicity in human epithelial cells by lactate dehydrogenase release and NFκB-activation using a reporter cell line. Bacterial identification was achieved through partial 16S rRNA gene sequencing and next-generation sequencing. Results CXCL8 secretion was inhibited by 94/300 isolates. Immunosuppressive isolates were detected in supragingival plaque from healthy (4/5) and gingivitis (4/5) samples, and in 2/5 subgingival (gingivitis) plaque samples. Most were Streptococcus mitis/oralis. Seventeen representative immunosuppressive isolates all inhibited NFκB activation. The immunosuppressive mechanism was strain specific, often mediated by ultra-violet light-labile factors, whilst bacterial viability was essential in certain species. Conclusion Many streptococci isolated from plaque suppressed epithelial cell CXCL8 secretion, via inhibition of NFκB. This phenomenon may play an important role in oral host-microbe homeostasis.
Collapse
Affiliation(s)
- Sarah Myers
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Josephine L Meade
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Aradhna Tugnait
- Division of Restorative Dentistry, University of Leeds, Leeds, UK
| | - Jon J Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Jelena Pistolic
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Columbia, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Columbia, Canada
| | - Philip D Marsh
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | | | | | - Deirdre A Devine
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| |
Collapse
|
15
|
Murray IA, Perdew GH. How Ah Receptor Ligand Specificity Became Important in Understanding Its Physiological Function. Int J Mol Sci 2020; 21:ijms21249614. [PMID: 33348604 PMCID: PMC7766308 DOI: 10.3390/ijms21249614] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Increasingly, the aryl hydrocarbon receptor (AHR) is being recognized as a sensor for endogenous and pseudo-endogenous metabolites, and in particular microbiota and host generated tryptophan metabolites. One proposed explanation for this is the role of the AHR in innate immune signaling within barrier tissues in response to the presence of microorganisms. A number of cytokine/chemokine genes exhibit a combinatorial increase in transcription upon toll-like receptors and AHR activation, supporting this concept. The AHR also plays a role in the enhanced differentiation of intestinal and dermal epithelium leading to improved barrier function. Importantly, from an evolutionary perspective many of these tryptophan metabolites exhibit greater activation potential for the human AHR when compared to the rodent AHR. These observations underscore the importance of the AHR in barrier tissues and may lead to pharmacologic therapeutic intervention.
Collapse
|
16
|
Shang L, Deng D, Roffel S, Gibbs S. Differential influence of Streptococcus mitis on host response to metals in reconstructed human skin and oral mucosa. Contact Dermatitis 2020; 83:347-360. [PMID: 32677222 PMCID: PMC7693211 DOI: 10.1111/cod.13668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Skin and oral mucosa are continuously exposed to potential metal sensitizers while hosting abundant microbes, which may influence the host response to sensitizers. This host response may also be influenced by the route of exposure that is skin or oral mucosa, due to their different immune properties. OBJECTIVE Determine how commensal Streptococcus mitis influences the host response to nickel sulfate (sensitizer) and titanium(IV) bis(ammonium lactato)dihydroxide (questionable sensitizer) in reconstructed human skin (RHS) and gingiva (RHG). METHODS RHS/RHG was exposed to nickel or titanium, in the presence or absence of S. mitis for 24 hours. Histology, cytokine secretion, and Toll-like receptors (TLRs) expression were assessed. RESULTS S. mitis increased interleukin (IL)-6, CXCL8, CCL2, CCL5, and CCL20 secretion in RHS but not in RHG; co-application with nickel further increased cytokine secretion. In contrast, titanium suppressed S. mitis-induced cytokine secretion in RHS and had no influence on RHG. S. mitis and metals differentially regulated TLR1 and TLR4 in RHS, and predominantly TLR4 in RHG. CONCLUSION Co-exposure of S. mitis and nickel resulted in a more potent innate immune response in RHS than in RHG, whereas titanium remained inert. These results indicate the important influence of commensal microbes and the route of exposure on the host's response to metals.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Molecular Cell Biology and ImmunologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
17
|
Uranga CC, Arroyo P, Duggan BM, Gerwick WH, Edlund A. Commensal Oral Rothia mucilaginosa Produces Enterobactin, a Metal-Chelating Siderophore. mSystems 2020; 5:e00161-20. [PMID: 32345739 PMCID: PMC7190385 DOI: 10.1128/msystems.00161-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Next-generation sequencing studies of saliva and dental plaque from subjects in both healthy and diseased states have identified bacteria belonging to the Rothia genus as ubiquitous members of the oral microbiota. To gain a deeper understanding of molecular mechanisms underlying the chemical ecology of this unexplored group, we applied a genome mining approach that targets functionally important biosynthetic gene clusters (BGCs). All 45 genomes that were mined, representing Rothia mucilaginosa, Rothia dentocariosa, and Rothia aeria, harbored a catechol-siderophore-like BGC. To explore siderophore production further, we grew the previously characterized R. mucilaginosa ATCC 25296 in liquid cultures, amended with glycerol, which led to the identification of the archetype siderophore enterobactin by using tandem liquid chromatography-mass spectrometry (LC-MS/MS), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR) spectroscopy. Normally attributed to pathogenic gut bacteria, R. mucilaginosa is the first commensal oral bacterium found to produce enterobactin. Cocultivation studies including R. mucilaginosa or purified enterobactin revealed that enterobactin reduced growth of certain strains of cariogenic Streptococcus mutans and pathogenic strains of Staphylococcus aureus Commensal oral bacteria were either unaffected, reduced in growth, or induced to grow adjacent to enterobactin-producing R. mucilaginosa or the pure compound. Taken together with Rothia's known capacity to ferment a variety of carbohydrates and amino acids, our findings of enterobactin production add an additional level of explanation to R. mucilaginosa's prevalence in the oral cavity. Enterobactin is the strongest Fe(III) binding siderophore known, and its role in oral health requires further investigation.IMPORTANCE The communication language of the human oral microbiota is vastly underexplored. However, a few studies have shown that specialized small molecules encoded by BGCs have critical roles such as in colonization resistance against pathogens and quorum sensing. Here, by using a genome mining approach in combination with compound screening of growth cultures, we identified that the commensal oral community member R. mucilaginosa harbors a catecholate-siderophore BGC, which is responsible for the biosynthesis of enterobactin. The iron-scavenging role of enterobactin is known to have positive effects on the host's iron pool and negative effects on host immune function; however, its role in oral health remains unexplored. R. mucilaginosa was previously identified as an abundant community member in cystic fibrosis, where bacterial iron cycling plays a major role in virulence development. With respect to iron's broad biological importance, iron-chelating enterobactin may explain R. mucilaginosa's colonization success in both health and disease.
Collapse
Affiliation(s)
- Carla C Uranga
- J. Craig Venter Institute, Genomic Medicine Group, La Jolla, California, USA
| | - Pablo Arroyo
- J. Craig Venter Institute, Genomic Medicine Group, La Jolla, California, USA
| | - Brendan M Duggan
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, California, USA
| | - William H Gerwick
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Anna Edlund
- J. Craig Venter Institute, Genomic Medicine Group, La Jolla, California, USA
- University of California San Diego, School of Medicine, Department of Pediatrics, La Jolla, California, USA
| |
Collapse
|
18
|
Li H, Li W, Wang Q. 1,25-dihydroxyvitamin D 3 suppresses lipopolysaccharide-induced interleukin-6 production through aryl hydrocarbon receptor/nuclear factor-κB signaling in oral epithelial cells. BMC Oral Health 2019; 19:236. [PMID: 31684930 PMCID: PMC6829944 DOI: 10.1186/s12903-019-0935-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/22/2019] [Indexed: 02/05/2023] Open
Abstract
Background Antiinflammatory effect of 1,25-dihydroxyvitamin D3 (1,25D3) has been reported in periodontitis, but the exact mechanisms remain unclear. Oral epithelial cells are recently highlighted as an important regulator of inflammation in this disease. This in vitro study was established to investigate the effect of 1,25D3 on key proinflammatory cytokine IL-6 production and aryl hydrocarbon receptor (AhR)/nuclear factor-κB (NF-κB) signaling in oral epithelial cells upon the stimulation of lipopolysaccharide (LPS) from periodontal pathogens. Methods OKF6/TERT-2 oral keratinocytes were incubated with LPS and different concentrations of 1,25D3, and levels of IL-6 production were determined using enzyme-linked immunosorbent assay (ELISA). Expression of vitamin D receptor (VDR), and activation of AhR was examined using western blot analysis, and phosphorylation of NF-κB was detected using cell-based protein phosphorylation ELISA. Results 1,25D3 inhibited LPS-induced IL-6 overexpression in OKF6/TERT-2 cells. Additionally, 1,25D3 increased VDR expression and AhR activation, and repressed NF-κB phosphorylation. Furthermore, 1,25D3 suppressed IL-6 expression and enhanced VDR expression and regulated AhR/NF-κB signaling activation in a dose-dependent manner after 48 h treatment. Conclusions These results suggest that 1,25D3 may inhibit LPS-induced IL-6 overexpression in human oral epithelial cells through AhR/NF-κB signaling. Our findings may provide an explanation for the antiinflammatory effect and therapeutic benefit of 1,25D3 in periodontitis.
Collapse
Affiliation(s)
- Hao Li
- Department of Prosthodontics, the Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Wei Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 3rd Section S Renmin Road, Chengdu, 610041, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 3rd Section S Renmin Road, Chengdu, 610041, People's Republic of China.,Loma Linda University School of Dentistry, 24876 Taylor Street, Loma Linda, CA, 92354, USA
| |
Collapse
|
19
|
Li H, Zhong X, Li W, Wang Q. Effects of 1,25-dihydroxyvitamin D3 on experimental periodontitis and AhR/NF-κB/NLRP3 inflammasome pathway in a mouse model. J Appl Oral Sci 2019; 27:e20180713. [PMID: 31691738 PMCID: PMC6831029 DOI: 10.1590/1678-7757-2018-0713] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/10/2019] [Indexed: 02/05/2023] Open
Abstract
Vitamin D has been known to have important regulatory functions in inflammation and immune response and shows inhibitory effects on experimental periodontitis in animal models. However, the potential mechanism has yet to be clarified. Recent studies have highlighted Aryl hydrocarbon receptor (AhR) and its downstream signaling as a crucial regulator of immune homeostasis and inflammatory regulation. OBJECTIVE This study aimed to clarify the effect of 1,25-dihydroxyvitamin D3 (VD3) on experimental periodontitis and AhR/nuclear factor-κB (NF-κB)/NLR pyrin domain-containing 3 (NLRP3) inflammasome pathway in the gingival epithelium in a murine model. METHODOLOGY We induced periodontitis in male C57BL/6 wild-type mice by oral inoculation of Porphyromonas gingivalis (P. gingivalis), and subsequently gave intraperitoneal VD3 injection to the mice every other day for 8 weeks. Afterwards, we examined the alveolar bone using scanning electron microscopy (SEM) and detected the gingival epithelial protein using western blot analysis and immunohistochemical staining. RESULTS SEM images demonstrated that alveolar bone loss was reduced in the periodontitis mouse model after VD3 supplementation. Western blot analyses and immunohistochemical staining of the gingival epithelium showed that the expression of vitamin D receptor, AhR and its downstream cytochrome P450 1A1 were enhanced upon VD3 application. Additionally, VD3 decreased NF-κB p65 phosphorylation, and NLRP3, apoptosis-associated speck-like protein, caspase-1, interleukin-1β (IL-1β) and IL-6 protein expression. CONCLUSIONS These results implicate the alleviation of periodontitis and the alteration of AhR/NF-κB/NLRP3 inflammasome pathway by VD3 in the mouse model. The attenuation of this periodontal disease may correlate with the regulation of AhR/NF-κB/NLRP3 inflammasome pathway by VD3.
Collapse
Affiliation(s)
- Hao Li
- Guangxi Medical University, the Affiliated Hospital of Stomatology, Department of Prosthodontics, China
| | - Xinghua Zhong
- Guangxi Medical University, the Affiliated Hospital of Stomatology, Department of Prosthodontics, China
| | - Wei Li
- Sichuan University, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, China
| | - Qi Wang
- Sichuan University, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, China
| |
Collapse
|
20
|
Ji J, Qu H. Cross-regulatory Circuit Between AHR and Microbiota. Curr Drug Metab 2019; 20:4-8. [PMID: 29380692 DOI: 10.2174/1389200219666180129151150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/12/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The gut microbes have a close symbiotic relationship with their host. Interactions between host and the microbiota affect the nutritional, immunological, and physiological status of the host. The Aryl Hydrocarbon Receptor (AHR) is a ligand activated transcription factor that mediates the toxicity of xenobiotics. Recently, the relationship between the gut microbiota and AHR has attracted the attention of many researchers. METHODS We undertook a structured search of bibliographic databases for peer-reviewed research literature. RESULTS We found and reviewed 49 peer-reviewed papers dealing with the major aspects related to the crosstalk between AHR and microbiota. The AHR influences the intestinal microbiota population and mediates host-microbe homeostasis. Interestingly, the gut microbiota also produces ligands of AHR from bacterial metabolism and thereby activates the AHR signaling pathway. Concusion: This review presents current knowledge of the cross-regulatory circuit between the AHR and intestinal microbiota. The findings of this review confirm the importance of AHR-microbiota interactions in health and disease.
Collapse
Affiliation(s)
- Jian Ji
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Qu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
21
|
Engen SA, Schreurs O, Petersen F, Blix IJS, Baekkevold ES, Schenck K. The Regulatory Role of the Oral Commensal Streptococcus mitis on Human Monocytes. Scand J Immunol 2017; 87:80-87. [PMID: 29194752 DOI: 10.1111/sji.12636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/25/2017] [Indexed: 01/15/2023]
Abstract
Streptococcus mitis colonizes all niches of the human oral cavity from early infancy and throughout life. Monocytes patrol blood vessels, lymphoid and non-lymphoid tissues and migrate into infected tissue where they participate in the inflammatory cascade and immune regulation. Here, we studied the effect of S. mitis on monocytes. Transcriptome analysis of monocytes exposed to S. mitis (SmMo) revealed increased transcription of chemotactic factors (CCL2, CCL3, CCL20, CXCL1, CXCL2) and cytokines (IL1A, IL1B, IL6, IL23, IL36G, TNF), indicating that S. mitis may trigger recruitment of leucocytes and initiate inflammation. Increased transcription in SmMo of IL1B, IL6 and IL23 indicated that S. mitis may participate in the induction of Th17 responses and agreed with our earlier findings of S. mitis-mediated memory Th17 reactivity. Furthermore, S. mitis inhibited tetanus toxoid-specific CD4 T cell proliferation. This can be due to the increased secretion of IL-10 and expression of PD-L1 that was observed in SmMo. PGE2 can modulate IL-10 and PD-L1 expression, concomitant with that of CCR7, IL-12 and IL-23 that also were changed. This, along with increased SmMo transcription of PTGS2 (COX2) and PTGER4 (EP4), pointed to a role of PGE2. Measurement of PGE2 secretion by SmMo showed indeed a marked increase, and chemical inhibition of PGE2 production lowered the PD-L1 expression on SmMo. In conclusion, our findings show that S. mitis may trigger immune modulation by recruiting immune cells to the site of infection, while at the same time dampening the severity of the response through expression of IL-10, PGE2 and PD-L1.
Collapse
Affiliation(s)
- S A Engen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - O Schreurs
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - F Petersen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - I J S Blix
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - E S Baekkevold
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Pathology, Centre for Immune Regulation, University of Oslo and Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - K Schenck
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Krzyżek P. Commentary: Proteomics Analysis Revealed that Crosstalk between Helicobacter pylori and Streptococcus mitis May Enhance Bacterial Survival and Reduces Carcinogenesis. Front Microbiol 2017; 8:2381. [PMID: 29238340 PMCID: PMC5712572 DOI: 10.3389/fmicb.2017.02381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/17/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|