1
|
Zhao Y, Zhu Y, Huang J, Song Z, Tang W. Influence of in situ biochar capping on microbial dynamics and ammonia nitrogen release in sediment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123524. [PMID: 39644550 DOI: 10.1016/j.jenvman.2024.123524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
To study the influence of in situ biochar (BC) capping technique on the release of ammonia nitrogen (NH4+-N) from sediments, a field mesocosm experiment was conducted in Baiyangdian Lake (BYDL), a critical water body often referred to as the "kidney of North China" where sediment pollution poses a significant threat to water quality. This study also assessed the impact of BC on sediment microorganisms. The results showed that the NH4+-N concentration in the overlying water of the BC-treated mesocosms was the lowest among four treatments, decreasing to 0.051 mg L-1 by the 60th day. More importantly, the BC treatment showed the least increase in NH4+-N concentrations in sediments compared to other treatments. For sediments capped with a 4 cm layer of BC, the potential release flux of NH4+-N was reduced from 1.84 mg m-2 d-1 to -0.76 mg m-2 d-1. This reduction is likely due to the negatively charged surfaces of biochar, which enhance NH4+-N adsorption through electrostatic interactions. Additionally, BC modified the physical and chemical properties of the surface sediment, improving pH and increasing both organic content and the carbon/nitrogen (C/N) ratio. These changes influenced the microbial community structure within the sediments, enhancing NH4+-N removal. After 60 days, a significant alteration in the microbial community was observed in the BC-treated surface sediments. The addition of BC significantly increased the abundance of Proteobacteria and Firmicutes of the phyla in the sediments. Furthermore, BC enhanced the expression of functional genes including amoA, amoB, nirK, nirS, hzsB, nrfA and ureC, which are likely the primary microbial mechanisms promoting NH4+-N conversion in sediments for final removal.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaoyao Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Enterprises Water Group Limited, Beijing, 100102, China
| | - Jianyin Huang
- Sustainable Infrastructure and Resource Management (SIRM), STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, 5095, Australia; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| | - Zhixin Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China.
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
2
|
Kujala K, Schmidt O, Horn MA. Synergy and competition during the anaerobic degradation of N-acetylglucosamine in a methane-emitting, subarctic, pH-neutral fen. Front Microbiol 2024; 15:1428517. [PMID: 39726964 PMCID: PMC11670324 DOI: 10.3389/fmicb.2024.1428517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Peatlands are invaluable but threatened ecosystems that store huge amounts of organic carbon globally and emit the greenhouse gasses carbon dioxide (CO2) and methane (CH4). Trophic interactions of microbial groups essential for methanogenesis are poorly understood in such systems, despite their importance. Thus, the present study aimed at unraveling trophic interactions between fermenters and methanogens in a nitrogen-limited, subarctic, pH-neutral fen. In situ CH4 emission measurements indicated that the fen is a source of CH4, and that CH4 emissions were higher in plots supplemented with ammonium compared to unsupplemented plots. The amino sugar N-acetylglucosamine was chosen as model substrate for peat fermenters since it can serve as organic carbon and nitrogen source and is a monomer of chitin and peptidoglycan, two abundant biopolymers in the fen. Supplemental N-acetylglucosamine was fermented to acetate, ethanol, formate, and CO2 during the initial incubation of anoxic peat soil microcosms without preincubation. Subsequently, ethanol and formate were converted to acetate and CH4. When methanogenesis was inhibited by bromoethanesulfonate, acetate and propionate accumulated. Long-term preincubation considerably increased CH4 production in unsupplemented microcosms and microcosms supplemented with methanogenic substrates. Supplemental H2-CO2 and formate stimulated methanogenesis the most, whereas acetate had an intermediary and methanol a minor stimulatory effect on methane production in preincubated microcosms. Activity of acetogens was suggested by net acetate production in microcosms supplemented with H2-CO2, formate, and methanol. Microbial community analysis of field fresh soil indicated the presence of many physiologically unresolved bacterial taxa, but also known primary and secondary fermenters, acetogens, iron reducers, sulfate reducers, and hydrogenotrophic methanogens (predominately Methanocellaceae and Methanoregulaceae). Aceticlastic methanogens were either not abundant (Methanosarcinaceae) or could not be detected due to limited coverage of the used primers (Methanotrichaceae). The collective results indicate a complex interplay of synergy and competition between fermenters, methanogens, acetogens, and potentially iron as well as sulfate reducers. While acetate derived from fermentation or acetogenesis in this pH-neutral fen likely plays a crucial role as carbon source for the predominant hydrogenotrophic methanogens, it remains to be resolved whether acetate is also converted to CH4 via aceticlastic methanogenesis and/or syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Katharina Kujala
- Water, Energy and Environmental Engineering Research Unit, University of Oulu, Oulu, Finland
| | - Oliver Schmidt
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Marcus A. Horn
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
3
|
Li R, Ren XP, Fan X, Zhang Z, Gao TP, Liu Y. Efficient enriching high-performance denitrifiers using bio-cathode of microbial fuel cells. iScience 2024; 27:110965. [PMID: 39435140 PMCID: PMC11492332 DOI: 10.1016/j.isci.2024.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advancements in microbial fuel cells (MFC) technology have significantly contributed to the development of bio-cathode denitrification as a promising method for eco-friendly wastewater treatment. This study utilized an efficient repeated replacement method to enrich a mixed bio-cathode denitrifying culture (MBD) within a bio-cathode MFC, achieving a stable maximum output voltage of 120 ± 5 mV and a NO3 --N removal efficiency of 69.99 ± 0.60%. The electrotrophic denitrification process appears to be facilitated by electron shuttles. Microbial community analysis revealed a predominance of Proteobacteria, with Paracoccus and Pseudomonas as functional genera. Additionally, the isolated strain Lyy (belonging to Stutzerimonas) from MBD demonstrated exceptional denitrification efficiencies exceeding 98% when treating wastewater with a broad range of C/N (2-12) ratios and KNO3 concentrations (500-3000 mg/L) within 60 h. These results demonstrated the effectiveness of the repeated replacement method in enriching bio-cathode denitrifiers and advancing MFC application in sustainable wastewater management.
Collapse
Affiliation(s)
- Ruitao Li
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Xiang-peng Ren
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Xinxin Fan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Zhen Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Tian-peng Gao
- The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou City University, Lanzhou, Gansu Province 730070, China
- Xi’an Key Laboratory of Plant Stress Physiology and Ecological Remediation Technology, College of Biological and Environmental Engineering, Xi’an University, Xi’an, Shaanxi Province 710065, China
| | - Ying Liu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
4
|
Hashemi J, Lipson DA, Arndt KA, Davidson SJ, Kalhori A, Lunneberg K, van Delden L, Oechel WC, Zona D. Thermokarst landscape exhibits large nitrous oxide emissions in Alaska's coastal polygonal tundra. COMMUNICATIONS EARTH & ENVIRONMENT 2024; 5:473. [PMID: 39220210 PMCID: PMC11364506 DOI: 10.1038/s43247-024-01583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Global atmospheric concentrations of nitrous oxide have been increasing over previous decades with emerging research suggesting the Arctic as a notable contributor. Thermokarst processes, increasing temperature, and changes in drainage can cause degradation of polygonal tundra landscape features resulting in elevated, well-drained, unvegetated soil surfaces that exhibit large nitrous oxide emissions. Here, we outline the magnitude and some of the dominant factors controlling variability in emissions for these thermokarst landscape features in the North Slope of Alaska. We measured strong nitrous oxide emissions during the growing season from unvegetated high centered polygons (median (mean) = 104.7 (187.7) µg N2O-N m-2 h-1), substantially higher than mean rates associated with Arctic tundra wetlands and of similar magnitude to unvegetated hotspots in peat plateaus and palsa mires. In the absence of vegetation, isotopic enrichment of 15N in these thermokarst features indicates a greater influence of microbial processes, (denitrification and nitrification) from barren soil. Findings reveal that the thermokarst features discussed here (~1.5% of the study area) are likely a notable source of nitrous oxide emissions, as inferred from chamber-based estimates. Growing season emissions, estimated at 16 (28) mg N2O-N ha-1 h-1, may be large enough to affect landscape-level greenhouse gas budgets.
Collapse
Affiliation(s)
- Josh Hashemi
- Biology Department, San Diego State University, San Diego, CA USA
- Department of Land, Air and Water Resources, University of California Davis, Davis, CA USA
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - David A. Lipson
- Biology Department, San Diego State University, San Diego, CA USA
| | | | - Scott J. Davidson
- University of Plymouth School of Geography, Earth and Environmental Sciences, Plymouth, UK
| | - Aram Kalhori
- GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Kyle Lunneberg
- Biology Department, San Diego State University, San Diego, CA USA
| | - Lona van Delden
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Walter C. Oechel
- Biology Department, San Diego State University, San Diego, CA USA
- Department of Geography, University of Exeter, Exeter, UK
| | - Donatella Zona
- Biology Department, San Diego State University, San Diego, CA USA
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
He G, Chen G, Xie Y, Swift CM, Ramirez D, Cha G, Konstantinidis KT, Radosevich M, Löffler FE. Sustained bacterial N 2O reduction at acidic pH. Nat Commun 2024; 15:4092. [PMID: 38750010 PMCID: PMC11096178 DOI: 10.1038/s41467-024-48236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Nitrous oxide (N2O) is a climate-active gas with emissions predicted to increase due to agricultural intensification. Microbial reduction of N2O to dinitrogen (N2) is the major consumption process but microbial N2O reduction under acidic conditions is considered negligible, albeit strongly acidic soils harbor nosZ genes encoding N2O reductase. Here, we study a co-culture derived from acidic tropical forest soil that reduces N2O at pH 4.5. The co-culture exhibits bimodal growth with a Serratia sp. fermenting pyruvate followed by hydrogenotrophic N2O reduction by a Desulfosporosinus sp. Integrated omics and physiological characterization revealed interspecies nutritional interactions, with the pyruvate fermenting Serratia sp. supplying amino acids as essential growth factors to the N2O-reducing Desulfosporosinus sp. Thus, we demonstrate growth-linked N2O reduction between pH 4.5 and 6, highlighting microbial N2O reduction potential in acidic soils.
Collapse
Affiliation(s)
- Guang He
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Gao Chen
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Yongchao Xie
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Cynthia M Swift
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Diana Ramirez
- Department of Microbiology, The University of Tennessee Knoxville, Knoxville, TN, 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gyuhyon Cha
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Frank E Löffler
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
- Department of Microbiology, The University of Tennessee Knoxville, Knoxville, TN, 37996, USA.
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
6
|
Sun Y, Yin Y, He G, Cha G, Ayala-del-Río HL, González G, Konstantinidis KT, Löffler FE. pH selects for distinct N 2O-reducing microbiomes in tropical soil microcosms. ISME COMMUNICATIONS 2024; 4:ycae070. [PMID: 38808123 PMCID: PMC11131594 DOI: 10.1093/ismeco/ycae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
Nitrous oxide (N2O), a greenhouse gas with ozone destruction potential, is mitigated by the microbial reduction to dinitrogen catalyzed by N2O reductase (NosZ). Bacteria with NosZ activity have been studied at circumneutral pH but the microbiology of low pH N2O reduction has remained elusive. Acidic (pH < 5) tropical forest soils were collected in the Luquillo Experimental Forest in Puerto Rico, and microcosms maintained with low (0.02 mM) and high (2 mM) N2O assessed N2O reduction at pH 4.5 and 7.3. All microcosms consumed N2O, with lag times of up to 7 months observed in microcosms with 2 mM N2O. Comparative metagenome analysis revealed that Rhodocyclaceae dominated in circumneutral microcosms under both N2O feeding regimes. At pH 4.5, Peptococcaceae dominated in high-N2O, and Hyphomicrobiaceae in low-N2O microcosms. Seventeen high-quality metagenome-assembled genomes (MAGs) recovered from the N2O-reducing microcosms harbored nos operons, with all eight MAGs derived from acidic microcosms carrying the Clade II type nosZ and lacking nitrite reductase genes (nirS/K). Five of the eight MAGs recovered from pH 4.5 microcosms represent novel taxa indicating an unexplored N2O-reducing diversity exists in acidic tropical soils. A survey of pH 3.5-5.7 soil metagenome datasets revealed that nosZ genes commonly occur, suggesting broad distribution of N2O reduction potential in acidic soils.
Collapse
Affiliation(s)
- Yanchen Sun
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Present address: Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Yongchao Yin
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Present address: Department of Biology, Antimicrobial Discovery Center, Northeastern University, Boston, MA 02148, United States
| | - Guang He
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
| | - Gyuhyon Cha
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | | | - Grizelle González
- USDA Forest Service, International Institute of Tropical Forestry, San Juan 00926, Puerto Rico
| | | | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
| |
Collapse
|
7
|
Wei C, Su F, Yue H, Song F, Li H. Spatial distribution characteristics of denitrification functional genes and the environmental drivers in Liaohe estuary wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1064-1078. [PMID: 38030842 DOI: 10.1007/s11356-023-30938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Genes nirS, nirK, and nosZ are specific for the denitrification process, which is associated with greenhouse gas N2O emission. The abundances and diversities of community containing these three genes are usually used as a common index to reflect the denitrification process, and they would be affected by differences in environmental factors caused by changes from warm to cold conditions. The quantification of denitrification in natural wetlands is complex, and straightforward identification of spatial distribution and drivers affecting the process is still developing. In this study, the bacterial communities, gene diversities, and relative abundances involved in denitrification were investigated in Liaohe Estuary Wetland. We analyzed the relative abundances, diversities, and communities of bacteria containing the three genes at warm and cold conditions using Illumina MiSeq sequencing and detected the potential environmental factors influencing their distribution by using a random forest algorithm. There are great differences in the community composition of the bacteria containing genes nirS, nirK, and nosZ. All the abundant taxa of nirS and nirK communities belonged to phylum Proteobacteria. Compared with the community composition of bacteria containing nirS and nirK, the community of bacteria containing nosZ is more diverse, and the subdivision taxa of phylum Euryarchaeota was also abundant in the community containing nosZ. The distribution characteristics of the relative abundance of nirS and nirK showed obvious differences both at warm and cold climate conditions. The oxidation-reduction potential, nitrite nitrogen, and salinity were detected as potential variables that might explain the diversity of nirS. The total nitrogen and nitrite nitrogen were the important variables for predicting the relative abundance of nirS at warm climate condition, while oxidation-reduction potential and pH contributed to the diversity of nirS at cold condition. The bulk density of sediment was detected as a potential variable affecting the relative abundance of nirK at warm and cold conditions, and diversity of nirK at warm condition, while nitrite nitrogen was detected as an important environmental factor for predicting the diversity of nirK at cold condition. Overall, our results show that the key environmental factors, which affect the relative abundance, diversity, and community of bacteria containing the functional denitrification genes, are not exactly the same, and the diversities of nirS, nirK, and nosZ have a higher environmental sensitivity than their relative abundances.
Collapse
Affiliation(s)
- Chao Wei
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China
| | - Fangli Su
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China.
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China.
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China.
| | - Hangyu Yue
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Fei Song
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China
| | - Haifu Li
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China
| |
Collapse
|
8
|
Li L, Zhao C, Wang X, Tan Y, Wang X, Liu X, Guo B. Effects of nitrification and urease inhibitors on ammonia-oxidizing microorganisms, denitrifying bacteria, and greenhouse gas emissions in greenhouse vegetable fields. ENVIRONMENTAL RESEARCH 2023; 237:116781. [PMID: 37517488 DOI: 10.1016/j.envres.2023.116781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Soil microorganisms and N cycling are important components of biogeochemical cycling processes. In addition, the study of the effects of nitrification and urease inhibitors on N and microorganisms in greenhouse vegetable fields is essential to reducing N loss and greenhouse gas emissions. The effects of nitrification inhibitors [2-chloro-6-(trichloromethyl) pyridine (CP), dicyandiamide (DCD)], and urease inhibitor [N-(n-butyl) thiophosphoric triamide (NBPT)] on soil inorganic N (NH4+-N, NO2--N and NO3--N) concentrations and the production rates of greenhouse gases (N2O, CH4, and CO2) in greenhouse vegetable fields were investigated via indoor incubation experiments. Polymerase chain reaction amplification and high-throughput sequencing technology (Illumina Miseq) were used to explore the community structure and abundance changes of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and denitrifying bacteria (nirK and nirS). The results showed that CP and DCD obviously inhibited NH4+-N conversion, and NO2--N, and NO3--N accumulation, NBPT slowed down urea hydrolysis and NH4+-N production, and the apparent nitrification rates of soil were in the following order: NBPT > DCD > DCD + NBPT > CP + NBPT > CP. Compared with urea treatment, the peak N2O production rate of inhibitor treatment decreased by 73.30-99.30%, and the production rate of CH4 and CO2 decreased by more than 66.16%. DCD and CP reduced the abundance of AOA and AOB, respectively. Furthermore, NBPT hindered the growth of ammonia-oxidizing microorganisms and nirS-type denitrifying bacteria, and urea and nitrification inhibitors were detrimental to the growth of Ensifer and Sinorhizobium in the nirK community. Nitrification and urease inhibitors can effectively slow down nitrification and greenhouse gas emissions, reduce N loss and improve soil quality by inhibiting the growth of ammonia-oxidizing microorganisms and denitrifying bacteria.
Collapse
Affiliation(s)
- Luzhen Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Changsheng Zhao
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Xinghua Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yu Tan
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiaokai Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xuzhen Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Beibei Guo
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| |
Collapse
|
9
|
Yang S, Huang T, Zhang H, Guo H, Hu R, Lin Z, Li Y, Cheng Y. Activation of indigenous denitrifying bacteria and enhanced nitrogen removal via artificial mixing in a drinking water reservoir: Insights into gene abundance, community structure, and co-existence model. ENVIRONMENTAL RESEARCH 2023; 236:116830. [PMID: 37543131 DOI: 10.1016/j.envres.2023.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Nitrogen pollution poses a severe threat to aquatic ecosystems and human health. This study investigated the use of water lifting aerators for in situ nitrogen reduction in a drinking water reservoir. The reservoir was thoroughly mixed and oxygenated after using water-lifting aerators for 42 days. The average total nitrogen concentration, nitrate nitrogen, and ammonium nitrogen-in all water layers-decreased significantly (P < 0.01), with a reduction efficiency of 35 ± 3%, 34 ± 2%, and 70 ± 6%, respectively. Other pollutants, including organic matter, phosphorus, iron, and manganese, were also effectively removed. Quantitative polymerase chain reactions indicated that bacterial nirS gene abundance was enhanced 26.34-fold. High-throughput sequencing, phylogenetic tree, and network analysis suggested that core indigenous nirS-type denitrifying bacteria, such as Dechloromonas, Simplicispira, Thauera, and Azospira, played vital roles in nitrogen and other pollutant removal processes. Furthermore, structural equation modeling revealed that nitrogen removal responded positively to WT, DO, and nirS gene abundance. Our findings provide a promising strategy for nitrogen removal in oligotrophic drinking water reservoirs with carbon deficiencies.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruzhu Hu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zishen Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yanqing Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
10
|
Gao J, Zhi Y, Huang Y, Shi S, Tan Q, Wang C, Han L, Yao J. Effects of benthic bioturbation on anammox in nitrogen removal at the sediment-water interface in eutrophic surface waters. WATER RESEARCH 2023; 243:120287. [PMID: 37451126 DOI: 10.1016/j.watres.2023.120287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Anaerobic ammonium oxidation (anammox) significantly contributes to nitrogen loss in freshwater ecosystems. The sediment-water interface (SWI), known as a "hot spot" for anammox, also harbors numerous macroinvertebrates. However, the impact of their bioturbation on anammox has generally been overlooked. This study compared the effects of three representative macroinvertebrates (i.e., Propsilocerus akamusi, Branchiura sowerbyi and Radix swinhoei) with different bioturbation modes on anammox and the N-removal processes at the SWI by using a microcosmic system. The results demonstrated that all three benthic macroinvertebrates promoted anammox in addition to denitrification processes. The highest N-removal was achieved in the presence of P. akamusi considered as a gallery-diffuser, where the relative abundance of Planctomycetes (to which the anammox bacteria belong) increased by 70%. P. akamusi increased the abundance of anammox hzsB gene by 2.58-fold and promoted potential anammox rate by 12.79 nmol N g-1 h-1, which in turn facilitated total N-removal mass increased by 2.42-fold. In the presence of B. sowerbyi and R. swinhoei, the potential anammox rates increased by 4.81 and 5.57 nmol N g-1 h-1, respectively. These results underscore the substantial impact of macroinvertebrates on anammox and N-removal processes, highlighting their crucial role in N pollution control, and sustaining the overall health and stability of eutrophic water bodies.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yue Zhi
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yuyue Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Sijie Shi
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Qiujun Tan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chengcheng Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Le Han
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jingmei Yao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
11
|
Sun Y, Xu Y, Zhang J, Bello A, Li X, Liu W, Egbeagu UU, Zhao L, Han Y, Cheng L, Zhang W, Meng Q, Bi R, Zhao M, Liu X, Sun L, Gai Z, Shi S, Jong C, Xu X. Investigation of underlying links between nitrogen transformation and microorganisms' network modularity in the novel static aerobic composting of dairy manure by "stepwise verification interaction analysis". THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163674. [PMID: 37100152 DOI: 10.1016/j.scitotenv.2023.163674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/21/2023] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
Conventional composting is a viable method treating agricultural solid waste, and microorganisms and nitrogen transformation are the two major components of this proces. Unfortunately, conventional composting is time-consuming and laborious, and limited efforts have been made to mitigate these problems. Herein, a novel static aerobic composting technology (NSACT) was developed and employed for the composting of cow manure and rice straw mixtures. During the composting process, physicochemical parameters were analyzed to evaluate the quality of compost products, and microbial abundance dynamics were determined using high-throughput sequencing technique. The results showed that NSACT achieved compost maturity within 17 days as the thermophilic stage (≥55 °C) lasted for 11 days. GI, pH, and C/N were 98.71 %, 8.38, and 19.67 in the top layer, 92.32 %, 8.24, and 22.38 in the middle layer, 102.08 %, 8.33, and 19.95 in the bottom layer. These observations indicate compost products maturated and met the requirements of current legislation. Compared with fungi, bacterial communities dominated NSACT composting system. Based on the stepwise verification interaction analysis (SVIA), the novel combination utilization of multiple statistical analyses (Spearman, RDA/CCA, Network modularity, and Path analyses), bacterial genera Norank Anaerolineaceae (-0.9279*), norank Gemmatimonadetes (1.1959*), norank Acidobacteria (0.6137**) and unclassified Proteobacteria (-0.7998*), and fungi genera Myriococcum thermophilum (-0.0445), unclassified Sordariales (-0.0828*), unclassified Lasiosphaeriaceae (-0.4174**), and Coprinopsis calospora (-0.3453*) were the identified key microbial taxa affecting NH4+-N, NO3--N, TKN and C/N transformation in the NSACT composting matrix respectively. This work revealed that NSACT successfully managed cow manure-rice straw wastes and significantly shorten the composting period. Interestingly, most microorganisms observed in this composting matrix acted in a synergistic manner, promoting nitrogen transformation.
Collapse
Affiliation(s)
- Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yonghui Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jining Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liyan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lijun Cheng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wenhao Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingxin Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ruixin Bi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mingming Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinda Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhaoxue Gai
- School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chol Jong
- College of Agriculture, Kimjewon Haeju University of Agriculture, Haeju City, Hwanghae South Province 999093, Republic of Korea
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Liu H, Dong W, Zhao Z, Wang H, Hou Z, Li Y, Zeng Z, Xie J, Wang F, Liu X, Yan Y, Qu Y. Advanced nitrogen removal from low carbon nitrogen ratio domestic sewage via continuous plug-flow anaerobic/oxic/anoxic system: Enhanced by endogenous denitrification. BIORESOURCE TECHNOLOGY 2023; 378:128987. [PMID: 37001701 DOI: 10.1016/j.biortech.2023.128987] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
An anaerobic/oxic/anoxic continuous plug-flow biorereactor was established to derive stable advanced nitrogen removal of oligotrophic domestic wastewater by setting a sludge dual-reflux system and a mixed liquid cross-flow system, while extending the hydraulic retention time in anoxic section. The effluent total inorganic nitrogen was 7.9 ± 2.2 mg N/L, with removal efficiency of 84 ± 3.9%. Results of nitrogen balance calculations indicated that the contribution of simultaneous nitrification and denitrification to total inorganic nitrogen loss in oxic region was 15% during stable stage, and the total inorganic nitrogen removal by endogenous-denitrification and enhanced exogenous-denitrification in the anoxic region was 39.9%. Prolongation of hydraulic retention time in anoxic segment is the critical reason for enhancing endogenous-denitrification, and cross-flow system is an important measure to improve exogenous-denitrification. This study provides new insights into bridging the gap between energy-saving and high-level nitrogen removal from municipal wastewater with low carbon to nitrogen ratios.
Collapse
Affiliation(s)
- Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yanchen Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhiwei Zeng
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jin Xie
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Fupeng Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xueyon Liu
- China Northeast Municipal Engineering Design & Research Institute Co. Ltd., Changchun 130021, China
| | - Yu Yan
- China Northeast Municipal Engineering Design & Research Institute Co. Ltd., Changchun 130021, China
| | - Yanhui Qu
- China Northeast Municipal Engineering Design & Research Institute Co. Ltd., Changchun 130021, China
| |
Collapse
|
13
|
Wang X, Wang S, Yang Y, Tian H, Jetten MSM, Song C, Zhu G. Hot moment of N 2O emissions in seasonally frozen peatlands. THE ISME JOURNAL 2023; 17:792-802. [PMID: 36864114 PMCID: PMC10203296 DOI: 10.1038/s41396-023-01389-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Since the start of the Anthropocene, northern seasonally frozen peatlands have been warming at a rate of 0.6 °C per decade, twice that of the Earth's average rate, thereby triggering increased nitrogen mineralization with subsequent potentially large losses of nitrous oxide (N2O) to the atmosphere. Here we provide evidence that seasonally frozen peatlands are important N2O emission sources in the Northern Hemisphere and the thawing periods are the hot moment of annual N2O emissions. The flux during the hot moment of thawing in spring was 1.20 ± 0.82 mg N2O m-2 d-1, significantly higher than that during the other periods (freezing, -0.12 ± 0.02 mg N2O m-2 d-1; frozen, 0.04 ± 0.04 mg N2O m-2 d-1; thawed, 0.09 ± 0.01 mg N2O m-2 d-1) or observed for other ecosystems at the same latitude in previous studies. The observed emission flux is even higher than those of tropical forests, the World's largest natural terrestrial N2O source. Furthermore, based on soil incubation with 15N and 18O isotope tracing and differential inhibitors, heterotrophic bacterial and fungal denitrification was revealed as the main source of N2O in peatland profiles (0-200 cm). Metagenomic, metatranscriptomic, and qPCR assays further revealed that seasonally frozen peatlands have high N2O emission potential, but thawing significantly stimulates expression of genes encoding N2O-producing protein complexes (hydroxylamine dehydrogenase (hao) and nitric oxide reductase (nor)), resulting in high N2O emissions during spring. This hot moment converts seasonally frozen peatlands into an important N2O emission source when it is otherwise a sink. Extrapolation of our data to all northern peatland areas reveals that the hot moment emissions could amount to approximately 0.17 Tg of N2O yr-1. However, these N2O emissions are still not routinely included in Earth system models and global IPCC assessments.
Collapse
Affiliation(s)
- Xiaomin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Hanqin Tian
- Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences, Boston College, Boston, Chestnut Hill, MA 02467, USA
| | - Mike S M Jetten
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Changchun Song
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
14
|
Peng X, Yang W, Jin Q, Su S, Guo P, Li M, Liu H, Li W. Biofilter-constructed wetland-trophic pond system: A new strategy for effective sewage treatment and agricultural irrigation in rural area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117436. [PMID: 36738715 DOI: 10.1016/j.jenvman.2023.117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Artificial ecosystems with high biological complexity are generally considered to be efficient in metabolizing substances and resistant to temperature shock. In this study, a novel near-natural system (BCT system), which consisted of simple biofilter, constructed wetland and trophic biology pond, was conducted to treat rural sewage in situ for irrigation into farmland. Water quality related to carbon and nutrients and microbial community were analyzed along the system to reveal the effect of each unit. The annual average removals of BCT system for TN, NH4+-N, TP and COD could reach 46.53%, 52.18%, 41.48%, and 53.21%, respectively. There was no significant decrease for removal efficiencies from high temperature period (HTP, ≥15 °C) to low temperature period (LTP, <15 °C). In LTP, the trophic pond (TRP) removed 34.85% of TN, 33.93% of NH4+-N, 13.71% of TP and 18.77% of COD, while the removal efficiencies of constructed wetland fluctuated greatly. The TRP facilitated the BCT system to maintain the removal capability during low temperature period. The relative abundance of denitrification functional genes in TRP increased nearly tenfold from HTP to LTP. The effluent quality from the system can meet the agricultural irrigation standards, demonstrating the effect of BCT system on sewage treatment and agricultural irrigation in rural area.
Collapse
Affiliation(s)
- Xinxin Peng
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 40045, PR China
| | - Wei Yang
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 40045, PR China
| | - Qiu Jin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, PR China
| | - Shihua Su
- Guilin Center Station of Farmland Irrigation Test, Guangxi, 541004, PR China
| | - Pan Guo
- Guilin Center Station of Farmland Irrigation Test, Guangxi, 541004, PR China
| | - Ming Li
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou, 215011, PR China
| | - Huazu Liu
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 40045, PR China; Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyushu University, Fukuka, 819-0395, Japan
| | - Wei Li
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 40045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
15
|
Cui H, Feng Y, Yin Z, Qu K, Wang L, Li J, Jin T, Bai Y, Cui Z. Organic carbon release, denitrification performance and microbial community of solid-phase denitrification reactors using the blends of agricultural wastes and artificial polymers for the treatment of mariculture wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114791. [PMID: 36934547 DOI: 10.1016/j.ecoenv.2023.114791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
This paper explored the possibility of heterotrophic denitrification driven by composite solid carbon sources in low carbon/nitrogen ratio marine recirculating aquaculture wastewater. In this study, two agricultural wastes, reed straw (RS), corn cob (CC) and two artificial polymers, polycaprolactone (PCL), poly3-hydroxybutyrate-hydroxypropionate (PHBV) were mixed in a 1:1 ratio to compare the carbon release characteristics of the four composite carbon sources (RS+PCL, RS+PHBV, CC+PCL, and CC+PHBV) and their effects on improving the mariculture wastewater for denitrification. Dissolved organic carbon (DOC) after carbon source release (4.96-1.07 mg/g), total organic carbon/chemical oxygen demand (1.9-0.79) and short-chain fatty acids (SCFAs) (4.23-0.21 mg/g) showed that all the four composite solid carbon sources had excellent organic carbon release ability, and the CC+PCL group had the highest release of DOC and SCFAs. Energy-dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared spectroscopy were used to observe the changes in the surface characteristics of the composite carbon source before and after application. And results showed that the stable internal structure enabled CC+PCL group to have continuous carbon release performance and achieved the maximum denitrification efficiency (93.32 %). The NRE results were supported by the abundance of the Proteobacteria microbial community at the phylum level and Marinobacter at the genus level. Quantitative real-time PCR (q-PCR) indicated CC-containing composite carbon source groups have good nitrate reduction ability, while PCL-containing composite carbon source groups have better nitrite reduction level. In conclusion, the carbon source for agricultural wastes and artificial polymers can be used as an economic and effective solid carbon source for denitrification and treatment of marine recirculating aquaculture wastewater.
Collapse
Affiliation(s)
- Hongwu Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Yuna Feng
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; National Experimental Teaching Demonstration Center for Aquatic Science, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhendong Yin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Lu Wang
- Laoshan Laboratory, Qingdao 266237, China
| | - Jiaxin Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tongtong Jin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Bai
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
16
|
Xie J, Gu J, Wang X, Hu T, Sun W, Song Z, Zhang K, Lei L, Wang J, Sun Y. Response characteristics of denitrifying bacteria and denitrifying functional genes to woody peat during pig manure composting. BIORESOURCE TECHNOLOGY 2023; 374:128801. [PMID: 36842510 DOI: 10.1016/j.biortech.2023.128801] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to explore the impacts of adding different proportions of woody peat (WP) (0%(CK), 5%(T1), and 15%(T2)) on denitrification during composting. The results demonstrated that compared with CK, T1 and T2 increased the total Kjeldahl nitrogen content (8% and 14%, respectively) and reduced the nitrate nitrogen (7% and 23%) content after composting. After composting, the abundances of nirK and nirS decreased by 4-9% and 33-35% under T1 and T2, respectively. Adding 15% WP reduced the abundances of key denitrifying bacteria such as Pseudomonas, Pusillimonas, Achromobacter, and Rhizobiales by 5-90%. The main factors that affected denitrification genes were the carbon content, nitrogen form (nitrite nitrogen and ammonium nitrogen), and denitrifying bacteria community. In summary, adding 15% WP has the best ability to reduce nitrogen loss by decreasing the abundances of denitrifying bacteria and denitrifying functional genes, thereby improving the agricultural value of composting products.
Collapse
Affiliation(s)
- Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiyu Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Sciences, Yulin University, Yulin, Shaanxi 719000, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
17
|
Jin Q, Liu H, Xu X, Zhao L, Chen L, Chen L, Shi R, Li W. Emission dynamics of greenhouse gases regulated by fluctuation of water level in river-connected wetland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117091. [PMID: 36584511 DOI: 10.1016/j.jenvman.2022.117091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The application of reservoirs in the upper reaches of rivers will change the hydrological rhythm of river-connected wetlands in the lower reaches, causing changes in the distribution of wetland vegetation. The differences of carbon and nitrogen sequestration and emission potential in different vegetations may lead to the dynamics of greenhouse gas emissions from wetlands during hydrological periods. For a wetland connected to the Yangzi River, China, the dynamic changes of vegetation and water areas were identified by remote sensing, and the water level, the emission fluxes of greenhouse gases and the functional bacteria of carbon and nitrogen in soil were measured in-situ. Compared with drought period, the area of phragmites zone in flooding period increased by 28.2%, while the areas of carex and phalaris zones decreased by 42.9%. The carbon and nitrogen accumulation in the soil of phragmites zone is the highest, while the cumulative amount of phalaris is the lowest. The emission fluxes of CH4 and N2O in mud/water and various vegetations were positively correlated with water level and reached the maximum during flooding period. Although the global warming potential of mud/water was highest than that of vegetations, carex zone had the highest warming potential among vegetation zones. CH4 contributes 8-37 times as much as N2O to global warming potential in the wetland. The increase of flooding time promoted the emissions of CH4 and N2O in the wetland. The anaerobic condition caused by flooding stimulated the activities of denitrifying and methanogenic bacteria, thus increasing the emission of greenhouse gases. The sequestrations and emissions of carbon and nitrogen regulated by a reservoir in the upstream suggest that the operation of water conservancies should be considered to alleviate the greenhouse gas emission from river-connected wetland.
Collapse
Affiliation(s)
- Qiu Jin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210003, China
| | - Huazu Liu
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyushu University, Fukuka, 819-0395, Japan
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Li Zhao
- Chongqing Academy of Environmental Science, Chongqing, 401120, China
| | - Liangang Chen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210003, China
| | - Liming Chen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210003, China
| | - Ruijie Shi
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Wei Li
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
18
|
Feng Y, Wang L, Yin Z, Cui Z, Qu K, Wang D, Wang Z, Zhu S, Cui H. Comparative investigation on heterotrophic denitrification driven by different biodegradable polymers for nitrate removal in mariculture wastewater: Organic carbon release, denitrification performance, and microbial community. Front Microbiol 2023; 14:1141362. [PMID: 36891393 PMCID: PMC9986267 DOI: 10.3389/fmicb.2023.1141362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Heterotrophic denitrification is widely studied to purify freshwater wastewater, but its application to seawater wastewater is rarely reported. In this study, two types of agricultural wastes and two types of synthetic polymers were selected as solid carbon sources in denitrification process to explore their effects on the purification capacity of low-C/N marine recirculating aquaculture wastewater (NO3 --N 30 mg/L, salinity 32‰). The surface properties of reed straw (RS), corn cob (CC), polycaprolactone (PCL) and poly3-hydroxybutyrate-hydroxypropionate (PHBV) were evaluated by Brunauer-Emmett-Teller, Scanning electron microscope and Fourier-transform infrared spectroscopy. Short-chain fatty acids, dissolved organic carbon (DOC), and chemical oxygen demand (COD) equivalents were used to analyze the carbon release capacity. Results showed that agricultural waste had higher carbon release capacity than PCL and PHBV. The cumulative DOC and COD of agricultural waste were 0.56-12.65 and 1.15-18.75 mg/g, respectively, while those for synthetic polymers were 0.07-1.473 and 0.045-1.425 mg/g, respectively. The removal efficiency of nitrate nitrogen (NO3 --N) was CC 70.80%, PCL 53.64%, RS 42.51%, and PHBV 41.35%. Microbial community analysis showed that Proteobacteria and Firmicutes were the most abundant phyla in agricultural wastes and biodegradable natural or synthetic polymers. Quantitative real-time PCR indicated the conversion from nitrate to nitrogen was achieved in all four carbon source systems, and all six genes had the highest copy number in CC. The contents of medium nitrate reductase, nitrite reductase and nitrous oxide reductase genes in agricultural wastes were higher than those in synthetic polymers. In summary, CC is an ideal carbon source for denitrification technology to purify low C/N recirculating mariculture wastewater.
Collapse
Affiliation(s)
- Yuna Feng
- National Experimental Teaching Demonstration Center for Aquatic Science, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Lu Wang
- Marine Life Research Center, Laoshan Laboratory, Qingdao, China
| | - Zhendong Yin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Marine Life Research Center, Laoshan Laboratory, Qingdao, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Marine Life Research Center, Laoshan Laboratory, Qingdao, China
| | - Dawei Wang
- National Experimental Teaching Demonstration Center for Aquatic Science, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhanying Wang
- National Experimental Teaching Demonstration Center for Aquatic Science, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Shengmin Zhu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Hongwu Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Marine Life Research Center, Laoshan Laboratory, Qingdao, China
| |
Collapse
|
19
|
Liu X, Wang H, Wang W, Cheng X, Wang Y, Li Q, Li L, Ma L, Lu X, Tuovinen OH. Nitrate determines the bacterial habitat specialization and impacts microbial functions in a subsurface karst cave. Front Microbiol 2023; 14:1115449. [PMID: 36846803 PMCID: PMC9947541 DOI: 10.3389/fmicb.2023.1115449] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Karst caves are usually considered as natural laboratories to study pristine microbiomes in subsurface biosphere. However, effects of the increasingly detected nitrate in underground karst ecosystem due to the acid rain impact on microbiota and their functions in subsurface karst caves have remained largely unknown. In this study, samples of weathered rocks and sediments were collected from the Chang Cave, Hubei province and subjected to high-throughput sequencing of 16S rRNA genes. The results showed that nitrate significantly impacted bacterial compositions, interactions, and functions in different habitats. Bacterial communities clustered according to their habitats with distinguished indicator groups identified for each individual habitat. Nitrate shaped the overall bacterial communities across two habitats with a contribution of 27.2%, whereas the pH and TOC, respectively, structured bacterial communities in weathered rocks and sediments. Alpha and beta diversities of bacterial communities increased with nitrate concentration in both habitats, with nitrate directly affecting alpha diversity in sediments, but indirectly on weathered rocks by lowering pH. Nitrate impacted more on bacterial communities in weathered rocks at the genus level than in sediments because more genera significantly correlated with nitrate concentration in weathered rocks. Diverse keystone taxa involved in nitrogen cycling were identified in the co-occurrence networks such as nitrate reducers, ammonium-oxidizers, and N2-fixers. Tax4Fun2 analysis further confirmed the dominance of genes involved in nitrogen cycling. Genes of methane metabolism and carbon fixation were also dominant. The dominance of dissimilatory and assimilatory nitrate reduction in nitrogen cycling substantiated nitrate impact on bacterial functions. Our results for the first time revealed the impact of nitrate on subsurface karst ecosystem in terms of bacterial compositions, interactions, and functions, providing an important reference for further deciphering the disturbance of human activities on the subsurface biosphere.
Collapse
Affiliation(s)
- Xiaoyan Liu
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Weiqi Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaoyu Cheng
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yiheng Wang
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Qing Li
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Lu Li
- State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaolu Lu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Olli H. Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH, United States
| |
Collapse
|
20
|
Buessecker S, Sarno AF, Reynolds MC, Chavan R, Park J, Fontánez Ortiz M, Pérez-Castillo AG, Panduro Pisco G, Urquiza-Muñoz JD, Reis LP, Ferreira-Ferreira J, Furtunato Maia JM, Holbert KE, Penton CR, Hall SJ, Gandhi H, Boëchat IG, Gücker B, Ostrom NE, Cadillo-Quiroz H. Coupled abiotic-biotic cycling of nitrous oxide in tropical peatlands. Nat Ecol Evol 2022; 6:1881-1890. [PMID: 36202923 DOI: 10.1038/s41559-022-01892-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/26/2022] [Indexed: 12/15/2022]
Abstract
Atmospheric nitrous oxide (N2O) is a potent greenhouse gas thought to be mainly derived from microbial metabolism as part of the denitrification pathway. Here we report that in unexplored peat soils of Central and South America, N2O production can be driven by abiotic reactions (≤98%) highly competitive to their enzymatic counterparts. Extracted soil iron positively correlated with in situ abiotic N2O production determined by isotopic tracers. Moreover, we found that microbial N2O reduction accompanied abiotic production, essentially closing a coupled abiotic-biotic N2O cycle. Anaerobic N2O consumption occurred ubiquitously (pH 6.4-3.7), with proportions of diverse clade II N2O reducers increasing with consumption rates. Our findings show that denitrification in tropical peat soils is not a purely biological process but rather a 'mosaic' of abiotic and biotic reduction reactions. We predict that hydrological and temperature fluctuations differentially affect abiotic and biotic drivers and further contribute to the high N2O flux variation in the region.
Collapse
Affiliation(s)
- Steffen Buessecker
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Analissa F Sarno
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Mark C Reynolds
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ramani Chavan
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jin Park
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | - Ana G Pérez-Castillo
- Environmental Pollution Research Center (CICA), University of Costa Rica, Montes de Oca, Costa Rica
| | - Grober Panduro Pisco
- School of Forestry and Environmental Sciences, Ucayali National University, Ucayali, Peru
| | - José David Urquiza-Muñoz
- Laboratory of Soil Research, Research Institute of Amazonia's Natural Resources, National University of the Peruvian Amazon, Iquitos, Loreto, Peru
- School of Forestry, National University of the Peruvian Amazon, Iquitos, Loreto, Peru
- Department for Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Leonardo P Reis
- Mamiraua Institute for Sustainable Development, Amazonia, Brazil
| | | | - Jair M Furtunato Maia
- Normal Superior School, Amazonas State University, Manaus, Amazonia, Brazil
- National Institute of Amazonian Research, Manaus, Amazonia, Brazil
| | - Keith E Holbert
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
| | - C Ryan Penton
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, USA
| | - Sharon J Hall
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Hasand Gandhi
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Iola G Boëchat
- Applied Limnology Laboratory, Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, Brazil
| | - Björn Gücker
- Applied Limnology Laboratory, Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, Brazil
| | - Nathaniel E Ostrom
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
21
|
Microbiogeochemical Traits to Identify Nitrogen Hotspots in Permafrost Regions. NITROGEN 2022. [DOI: 10.3390/nitrogen3030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Permafrost-affected tundra soils are large carbon (C) and nitrogen (N) reservoirs. However, N is largely bound in soil organic matter (SOM), and ecosystems generally have low N availability. Therefore, microbial induced N-cycling processes and N losses were considered negligible. Recent studies show that microbial N processing rates, inorganic N availability, and lateral N losses from thawing permafrost increase when vegetation cover is disturbed, resulting in reduced N uptake or increased N input from thawing permafrost. In this review, we describe currently known N hotspots, particularly bare patches in permafrost peatland or permafrost soils affected by thermokarst, and their microbiogeochemical characteristics, and present evidence for previously unrecorded N hotspots in the tundra. We summarize the current understanding of microbial N cycling processes that promote the release of the potent greenhouse gas (GHG) nitrous oxide (N2O) and the translocation of inorganic N from terrestrial into aquatic ecosystems. We suggest that certain soil characteristics and microbial traits can be used as indicators of N availability and N losses. Identifying N hotspots in permafrost soils is key to assessing the potential for N release from permafrost-affected soils under global warming, as well as the impact of increased N availability on emissions of carbon-containing GHGs.
Collapse
|
22
|
Pessi IS, Viitamäki S, Virkkala AM, Eronen-Rasimus E, Delmont TO, Marushchak ME, Luoto M, Hultman J. In-depth characterization of denitrifier communities across different soil ecosystems in the tundra. ENVIRONMENTAL MICROBIOME 2022; 17:30. [PMID: 35690846 PMCID: PMC9188126 DOI: 10.1186/s40793-022-00424-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In contrast to earlier assumptions, there is now mounting evidence for the role of tundra soils as important sources of the greenhouse gas nitrous oxide (N2O). However, the microorganisms involved in the cycling of N2O in this system remain largely uncharacterized. Since tundra soils are variable sources and sinks of N2O, we aimed at investigating differences in community structure across different soil ecosystems in the tundra. RESULTS We analysed 1.4 Tb of metagenomic data from soils in northern Finland covering a range of ecosystems from dry upland soils to water-logged fens and obtained 796 manually binned and curated metagenome-assembled genomes (MAGs). We then searched for MAGs harbouring genes involved in denitrification, an important process driving N2O emissions. Communities of potential denitrifiers were dominated by microorganisms with truncated denitrification pathways (i.e., lacking one or more denitrification genes) and differed across soil ecosystems. Upland soils showed a strong N2O sink potential and were dominated by members of the Alphaproteobacteria such as Bradyrhizobium and Reyranella. Fens, which had in general net-zero N2O fluxes, had a high abundance of poorly characterized taxa affiliated with the Chloroflexota lineage Ellin6529 and the Acidobacteriota subdivision Gp23. CONCLUSIONS By coupling an in-depth characterization of microbial communities with in situ measurements of N2O fluxes, our results suggest that the observed spatial patterns of N2O fluxes in the tundra are related to differences in the composition of denitrifier communities.
Collapse
Affiliation(s)
- Igor S. Pessi
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Yliopistonkatu 3, 00014 Helsinki, Finland
| | - Sirja Viitamäki
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Anna-Maria Virkkala
- Woodwell Climate Research Center, 149 Woods Hole Road, Falmouth, MA 02540-1644 USA
- Department of Geosciences and Geography, University of Helsinki, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
| | - Eeva Eronen-Rasimus
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
- Marine Research Centre, Finnish Environment Institute (SYKE), Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | - Tom O. Delmont
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Université d’Evry, Université Paris-Saclay, 91057 Evry, France
| | - Maija E. Marushchak
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Miska Luoto
- Department of Geosciences and Geography, University of Helsinki, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
| | - Jenni Hultman
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Yliopistonkatu 3, 00014 Helsinki, Finland
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
23
|
Liu H, Zheng X, Li Y, Yu J, Ding H, Sveen TR, Zhang Y. Soil moisture determines nitrous oxide emission and uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153566. [PMID: 35104523 DOI: 10.1016/j.scitotenv.2022.153566] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Soils are major sources and sinks of nitrous oxide (N2O). The main pathway of N2O emission is performed through soil denitrification; however, the uptake phenomenon in denitrification is overlooked, leading to an underestimation of N2O production. Soil moisture strongly influences denitrification rates, but exact quantifications coupled with nosZ, nirK, and nirS gene analysis remain inadequately unaccounted for. In this study, a 15N-N2O pool dilution (15N2OPD) method was used to measure N2O production rates under different soil moisture levels. Therefore, 20%, 40%, 60%, 80% and 100% soil water holding capacity (WHC) were used. The results revealed that N2O uptake rates increased proportionally with soil moisture content and peaked at 80% WHC with 4.17 ± 2.74 μg N kg-1 soil h-1. The N2O production and net emission rates similarly peaked at 80% WHC, reading at 32.50 ± 4.86 and 27.63 ± 3.09 μg N kg-1 soil h-1 during the incubation period (18 days). Soil moisture content increased the gene copy number of the nosZ, NH4+ content, and denitrification potential in soil. N2O uptake at WHC 80-100% was significantly greater than that at WHC 20-60%. It was attributed to a decrease in O2 and the high NO3- concentration inhibition (> 50 mg N kg-1 of soil NO3--N content). Principal components analysis (PCA) indicated that the number of nosZ genes was the major driver of N2O uptake, especially nosZ clade II. Thus, the results of this study deepen our understanding of the mechanisms underpinning N2O sources and sinks in soils and provide a useful gene-based indicator to estimate N2O uptake.
Collapse
Affiliation(s)
- Hongshan Liu
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou 350013, PR China; College of Earth Sciences, Jilin University, Changchun 130061, PR China
| | - Xiangzhou Zheng
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou 350013, PR China
| | - Yuefen Li
- College of Earth Sciences, Jilin University, Changchun 130061, PR China
| | - Juhua Yu
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou 350013, PR China
| | - Hong Ding
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou 350013, PR China
| | - Tord Ranheim Sveen
- Swedish University of Agricultural Sciences (SLU), Uppsala SE-756 51, Sweden
| | - Yushu Zhang
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou 350013, PR China.
| |
Collapse
|
24
|
Abstract
Arid ecosystems cover ∼40% of the Earth's terrestrial surface and store a high proportion of the global nitrogen (N) pool. They are low-productivity, low-biomass, and polyextreme ecosystems, i.e., with (hyper)arid and (hyper)oligotrophic conditions and high surface UV irradiation and evapotranspiration. These polyextreme conditions severely limit the presence of macrofauna and -flora and, particularly, the growth and productivity of plant species. Therefore, it is generally recognized that much of the primary production (including N-input processes) and nutrient biogeochemical cycling (particularly N cycling) in these ecosystems are microbially mediated. Consequently, we present a comprehensive survey of the current state of knowledge of biotic and abiotic N-cycling processes of edaphic (i.e., open soil, biological soil crust, or plant-associated rhizosphere and rhizosheath) and hypo/endolithic refuge niches from drylands in general, including hot, cold, and polar desert ecosystems. We particularly focused on the microbially mediated biological nitrogen fixation, N mineralization, assimilatory and dissimilatory nitrate reduction, and nitrification N-input processes and the denitrification and anaerobic ammonium oxidation (anammox) N-loss processes. We note that the application of modern meta-omics and related methods has generated comprehensive data sets on the abundance, diversity, and ecology of the different N-cycling microbial guilds. However, it is worth mentioning that microbial N-cycling data from important deserts (e.g., Sahara) and quantitative rate data on N transformation processes from various desert niches are lacking or sparse. Filling this knowledge gap is particularly important, as climate change models often lack data on microbial activity and environmental microbial N-cycling communities can be key actors of climate change by producing or consuming nitrous oxide (N2O), a potent greenhouse gas.
Collapse
|
25
|
Zhao W, Gu J, Wang X, Song Z, Hu T, Dai X, Wang J. Insights into the associations of copper and zinc with nitrogen metabolism during manure composting with shrimp shell powder. BIORESOURCE TECHNOLOGY 2022; 349:126431. [PMID: 34861387 DOI: 10.1016/j.biortech.2021.126431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
The application of shrimp shell powder (SSP) in manure composting can promote the maturation of compost and reduce the associated environmental risk. This study investigated the response of adding SSP at different levels (CK: 0, L: 5%, M: 10%, and H: 15%) on heavy metal resistance genes (MRGs), nitrogen functional genes, enzymes, and microorganisms. SSP inhibited nitrification and denitrification via decreasing the abundances of functional genes and key enzymes related to Cu, Zn, and MRGs. The nitrate reductase and nitrous-oxide reductase in the denitrification pathway were lower under H. Phylogenetic trees indicated that Burkholderiales sp. had strong relationships with OTU396 and OTU333, with important roles in the nitrogen cycle and plant growth. Redundancy analysis and structural equation modeling showed the complex response between heavy metal and nitrogen that bio-Cu and bio-Zn had positive significantly relationships with nirK-type and amoA-type bacteria, and amoA-type bacteria might be hotspot of cueO.
Collapse
Affiliation(s)
- Wenya Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
26
|
Dinga L, Hana B, Zhoua J. Characterization of the facultative anaerobic Pseudomonas stutzeri strain HK13 to achieve efficient nitrate and nitrite removal. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Bahram M, Espenberg M, Pärn J, Lehtovirta-Morley L, Anslan S, Kasak K, Kõljalg U, Liira J, Maddison M, Moora M, Niinemets Ü, Öpik M, Pärtel M, Soosaar K, Zobel M, Hildebrand F, Tedersoo L, Mander Ü. Structure and function of the soil microbiome underlying N 2O emissions from global wetlands. Nat Commun 2022; 13:1430. [PMID: 35301304 PMCID: PMC8931052 DOI: 10.1038/s41467-022-29161-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/23/2022] [Indexed: 01/16/2023] Open
Abstract
Wetland soils are the greatest source of nitrous oxide (N2O), a critical greenhouse gas and ozone depleter released by microbes. Yet, microbial players and processes underlying the N2O emissions from wetland soils are poorly understood. Using in situ N2O measurements and by determining the structure and potential functional of microbial communities in 645 wetland soil samples globally, we examined the potential role of archaea, bacteria, and fungi in nitrogen (N) cycling and N2O emissions. We show that N2O emissions are higher in drained and warm wetland soils, and are correlated with functional diversity of microbes. We further provide evidence that despite their much lower abundance compared to bacteria, nitrifying archaeal abundance is a key factor explaining N2O emissions from wetland soils globally. Our data suggest that ongoing global warming and intensifying environmental change may boost archaeal nitrifiers, collectively transforming wetland soils to a greater source of N2O.
Collapse
Affiliation(s)
- Mohammad Bahram
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia. .,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Mikk Espenberg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Jaan Pärn
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | | | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Kuno Kasak
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Urmas Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Jaan Liira
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martin Maddison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural & Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Kaido Soosaar
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich, Norfolk, UK.,Digital Biology, Earlham Institute, Norwich, Norfolk, UK
| | - Leho Tedersoo
- College of Science, King Saud University, Riyadh, Saudi Arabia.,Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Ülo Mander
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
28
|
Yang Y, Liu H, Lv J. Response of N 2O emission and denitrification genes to different inorganic and organic amendments. Sci Rep 2022; 12:3940. [PMID: 35273224 PMCID: PMC8913736 DOI: 10.1038/s41598-022-07753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
Denitrification is a key biochemical process in nitrogen cycling and nitrous oxide (N2O) production. In this study, the impacts of different inorganic and organic amendments (OAs) on the abundance of denitrifying genes (nirS, nirK and nosZ) and the level of N2O emission were examined with incubation experiments. Six treatments included the indicated applications: (i) no fertilization (CK); (ii) urea application alone (U); (iii) wheat straw plus urea (U + WS); (iv) pig manure plus urea (U + PM); (v) compost product plus urea (U + CP); and (vi) improved compost product plus urea (U + IC). The results indicated that all fertilization treatments increased accumulative N2O emissions compared with the CK treatment. The U + WS, U + PM and U + CP treatments increased N2O emissions by 2.12–141.3%, and the U + IC treatment decreased N2O emissions by 23.24% relative to the U treatment. nirK was the dominant denitrification gene rather than nirS and nosZ found in soil. Additionally, the highest abundance of nirK gene was that with the U + PM treatment, and the lowest was that with the U + IC treatment. Additionally, changes in the nirK gene were highly correlated with levels of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and nitrate nitrogen (NO3–N). Automatic linear modeling revealed that N2O emission was closely related to the nirK gene, DOC and NO3–N. Overall, the use of urea and improved compost as co-amendments retarded N2O emission to a considerable degree compared with other OA additions.
Collapse
Affiliation(s)
- Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, People's Republic of China
| | - Hexiang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, People's Republic of China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, People's Republic of China.
| |
Collapse
|
29
|
Burnett MS, Schütte UM, Harms TK. WIDESPREAD CAPACITY FOR DENITRIFICATION ACROSS A BOREAL FOREST LANDSCAPE. BIOGEOCHEMISTRY 2022; 158:215-232. [PMID: 36186670 PMCID: PMC9518932 DOI: 10.1007/s10533-022-00895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/18/2022] [Indexed: 06/16/2023]
Abstract
A warming climate combined with frequent and severe fires cause permafrost to thaw, especially in the region of discontinuous permafrost, where soil temperatures may only be a few degrees below 0 °C. Soil thaw releases carbon (C) and nitrogen (N) into the actively cycling pools, and whereas C emissions following permafrost thaw are well documented, the fates of N remain unclear. Denitrification could release N from ecosystems as nitrous oxide (N2O) or nitrogen gas (N2), but the contributions of these processes to the high-latitude N cycle remain uncertain. We quantified microbial capacity for denitrification and N2O production in boreal soils, lakes, and streams using anoxic C- and N-amended assays, and assessed correlates of denitrifying enzyme activity (DEA) in Interior Alaska. Riparian soils and stream sediments supported the highest potential rates of denitrification, upland soils were intermediate, and lakes supported lower rates, whereas deep permafrost soils supported little denitrification. Time since fire had no effect on denitrification potential in upland soils. Across all landscape positions, DEA was negatively correlated with ammonium pools. Within each landscape position, potential rate of denitrification increased with soil or sediment organic matter content. Widespread N loss to denitrification in boreal forests could constrain the capacity for N-limited primary producers to maintain C stocks in soils following permafrost thaw.
Collapse
Affiliation(s)
- Melanie S. Burnett
- Institute of Arctic Biology and Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States of America
- Department of Earth and Planetary Science, McGill University, Montréal, Quebec H3A 2A7, Canada
| | - Ursel M.E. Schütte
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States of America
| | - Tamara K. Harms
- Institute of Arctic Biology and Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States of America
| |
Collapse
|
30
|
Liu H, Jin Q, Luo J, He Y, Qian S, Li W. Synergistic Effects of Aquatic Plants and Cyanobacterial Blooms on the Nitrous Oxide Emission from Wetlands. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:579-584. [PMID: 34232326 DOI: 10.1007/s00128-021-03332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Wetlands provide a habitat for the symbiosis of multiple plants and play a significant role in global N2O emissions. The metabolic traits and effects on microorganisms, which regulate the conversion of nitrogen to N2O, varies with plant species. The frequent occurrences of cyanobacterial blooms in wetlands can also have a positive or negative effect on denitrification, entangling N2O emissions. In situ observations of the Dongting Lake reveal that the fluxes in N2O emissions vary with the vegetation. Maximum emissions occurred in the mud flat, while the zone with the minimum emissions was populated with carex. In 210-day batch cultures, the addition of cyanobacteria synergistically enhanced N2O production during the degredation of phalaris and reed. The abundance of the nirS and nirK genes decreased over time except in the phalaris-algae group. To mitigate the N2O emissions from wetlands, the macrophyte communities need to be protected, and the cyanobacterial blooms need to be avoided by reducing the nitrogen pollution.
Collapse
Affiliation(s)
- Huazu Liu
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Qiu Jin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Junxiao Luo
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yan He
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Shenhua Qian
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Wei Li
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
31
|
Ding L, Zhou J, Li Q, Tang J, Chen X. Effects of Land-Use Type and Flooding on the Soil Microbial Community and Functional Genes in Reservoir Riparian Zones. MICROBIAL ECOLOGY 2022; 83:393-407. [PMID: 33893533 DOI: 10.1007/s00248-021-01746-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Ecological processes (e.g., nutrient cycling) in riparian zones are often affected by land-use type and flooding. The extent to which land-use types and flooding conditions affect soil microorganisms and their ecological functions in riparian zones is not well known. By using high-throughput sequencing and quantitative PCR (q-PCR), we tested the effects of three land-use types (i.e., forest, wetland, and grassland) and two flooding conditions (i.e., landward locations and waterward locations within the land-use types) on soil microbial communities and microbial functional genes in the riparian zones of a reservoir. Land-use type but not flooding significantly affected soil microbial community composition at the phylum level, while both land-use type and flooding significantly affected the orders Nitrosotaleales and Nitrososphaerales. Alpha diversity was higher in the wetland and forest regardless of flooding conditions. Functional gene abundance differed among the three land-use types. Archaeal amoA (AOA) and nirS genes were more abundant in the wetland than in the grassland or forest. Bacterial amoA (AOB), nirK, nirS, and nosZ genes were more abundant in the waterward location than in the landward location but only in the wetland. Soil pH, moisture, and concentrations of soil organic matter and total soil nitrogen were significantly associated with the composition of archaeal and bacterial communities as well as with their gene abundance. This study revealed that soil microorganisms putatively involved in nitrogen cycling in riparian zones were more affected by land-use type than flooding.
Collapse
Affiliation(s)
- Lilian Ding
- College of Life Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Jingyi Zhou
- College of Life Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Qiyao Li
- College of Life Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Jianjun Tang
- College of Life Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.
| | - Xin Chen
- College of Life Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
32
|
Pan J, Liu Y, Yang Y, Cheng Z, Lan X, Hu W, Shi G, Zhang Q, Feng H. Slope aspect determines the abundance and composition of nitrogen-cycling microbial communities in an alpine ecosystem. Environ Microbiol 2022; 24:3598-3611. [PMID: 35048487 DOI: 10.1111/1462-2920.15900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Abstract
Slope aspect is an important topographic feature that can influence local environmental conditions. While strong effects of slope aspect on aboveground and belowground communities have been frequently elucidated, how slope aspect affects soil nitrogen (N) cycling microbes remains unclear. Here, we characterized the communities of soil N-cycling microbes on south- and north-facing slopes in an alpine ecosystem, by quantifying (qPCR) and high-throughput sequencing six genes involved in N-fixation (nifH), nitrification (archaeal and bacterial amoA) and denitrification (nirK, nirS and nosZ). We found that the abundance, diversity and community composition of major N-cycling microbes differed dramatically between the two slope aspects, and these variances could be well explained by the aspect-driven differences in environmental conditions, especially soil temperature and moisture. The response patterns of different N-cycling groups to slope aspect were much inconsistent, especially for those with similar functions (i.e. ammonia-oxidizing archaea vs. bacteria, nirK- vs. nirS-reducers), indicating strong niche differentiation between these counterparts. We also observed strong preferences and distinct co-occurrence patterns of N-cycling microbial taxa for the two slope aspects. These findings highlight the importance of slope aspect in determining the abundance, species distribution and community structure of N-cycling microbes, and consequently influencing N-cycling processes and ecosystem functioning. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jianbin Pan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongjun Liu
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.,State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China
| | - Yue Yang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongxia Cheng
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaomei Lan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Weigang Hu
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guoxi Shi
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741000, China
| | - Qi Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huyuan Feng
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
33
|
The Effect of the Conversion from Natural Broadleaved Forests into Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) Plantations on Soil Microbial Communities and Nitrogen Functional Genes. FORESTS 2022. [DOI: 10.3390/f13020158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The conversion of forests could change soil characteristics and, in turn, impact the microbial community. However, the long-term effect of forest transformation on bacterial and archaeal composition and diversity, especially on nitrogen functional communities, is poorly understood. This study aimed to explore the response of soil bacterial and archaeal communities, as well as nitrogen functional groups, to the conversion from natural broadleaved forests to Chinese fir (Cunninghamia lanceolate (Lamb.) Hook.) plantations in subtropical China by 16S rRNA amplicon sequencing. Except for soil bulk density (BD) and ammonium nitrogen (NH4+–N) content, other soil properties all decreased with the conversion from natural forests to plantations. Alpha diversity of bacteria and archaea declined with the transformation from natural forests to plantations. The composition of bacteria and archaea was significantly different between natural forests and plantations, which could be mainly attributed to the change in the content of soil organic carbon (SOC), total nitrogen (TN), nitrate nitrogen (NO3−–N), and available phosphorus (AP). The conversion of natural forests to plantations decreased the gene copies of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nifH (nitrogen fixation function) but increased denitrification gene copies (i.e., nirS, nirK, and nosZ). In summary, our study emphasizes the long-term negative effect of the conversion from natural broadleaved forests into Chinese fir plantations on the diversity and richness of soil microbial communities, thereby deeply impacting the cycling of soil nitrogen.
Collapse
|
34
|
Takatsu Y, Miyamoto T, Tahvanainen T, Hashidoko Y. Nitrous Oxide Emission in Response to pH from Degrading Palsa Mire Peat Due to Permafrost Thawing. Curr Microbiol 2022; 79:56. [PMID: 34982223 DOI: 10.1007/s00284-021-02690-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
N2O, a greenhouse gas, is increasingly emitted from degrading permafrost mounds of palsa mires because of the global warming effects on microbial activity. In the present study, we hypothesized that N2O emission could be affected by a change in pH conditions because the collapse of acidic palsa mounds (pH 3.4-4.6) may result in contact with minerogenic ground water (pH 4.8-6.3), thereby increasing the pH. We compared the effects of pH change on N2O emission from cultures inoculated with peat suspensions. Peat samples were collected on a transect from a still intact high part to the collapsing edge of a degrading palsa mound in northwestern Finland, assuming the microbial communities could be different. We adjusted the pH of peat suspensions prepared from a collapsing palsa mound and compared the N2O emission in a pH gradient from 4.5 to 8.5. The collapsing edge had the highest N2O emission from the peat suspensions among all points on the transect under natural acidic conditions (pH 4.5). The N2O emission was reduced with a moderate rise in pH (pH 5.0-6.0) by approximately 85% compared with natural acidic level (pH 4.5). The bacterial communities in acidic cultures differed considerably from those in alkaline cultures. When pH was adjusted to alkaline conditions, N2O-emitting bacteria different from those present in acidic conditions appeared to emit N2O. The bacterial communities could be characterized by changing pH conditions after thawing and collapse of permafrost have contrasting impacts on N2O production that calls for further attention in future studies.
Collapse
Affiliation(s)
- Yuta Takatsu
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshizumi Miyamoto
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Teemu Tahvanainen
- Department of Biology, University of Eastern Finland, Joensuu, Finland
| | - Yasuyuki Hashidoko
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
35
|
Frostegård Å, Vick SHW, Lim NYN, Bakken LR, Shapleigh JP. Linking meta-omics to the kinetics of denitrification intermediates reveals pH-dependent causes of N 2O emissions and nitrite accumulation in soil. THE ISME JOURNAL 2022; 16:26-37. [PMID: 34211102 PMCID: PMC8692524 DOI: 10.1038/s41396-021-01045-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022]
Abstract
Soil pH is a key controller of denitrification. We analysed the metagenomics/transcriptomics and phenomics of two soils from a long-term liming experiment, SoilN (pH 6.8) and un-limed SoilA (pH 3.8). SoilA had severely delayed N2O reduction despite early transcription of nosZ (mainly clade I), encoding N2O reductase, by diverse denitrifiers. This shows that post-transcriptionally hampered maturation of the NosZ apo-protein at low pH is a generic phenomenon. Identification of transcript reads of several accessory genes in the nos cluster indicated that enzymes for NosZ maturation were present across a range of organisms, eliminating their absence as an explanation for the failure to produce a functional enzyme. nir transcript abundances (for NO2- reductase) in SoilA suggest that low NO2- concentrations in acidic soils, often ascribed to abiotic degradation, are primarily due to biological activity. The accumulation of NO2- in neutral soil was ascribed to high nar expression (nitrate reductase). The -omics results revealed dominance of nirK over nirS in both soils while qPCR showed the opposite, demonstrating that standard primer pairs only capture a fraction of the nirK pool. qnor encoding NO reductase was strongly expressed in SoilA, implying an important role in controlling NO. Production of HONO, for which some studies claim higher, others lower, emissions from NO2- accumulating soil, was estimated to be ten times higher from SoilA than from SoilN. The study extends our understanding of denitrification-driven gas emissions and the diversity of bacteria involved and demonstrates that gene and transcript quantifications cannot always reliably predict community phenotypes.
Collapse
Affiliation(s)
- Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Silas H W Vick
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Natalie Y N Lim
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | |
Collapse
|
36
|
Yang W, Yao J, He Y, Huang Y, Liu H, Zhi Y, Qian S, Yan X, Jian S, Li W. Nitrogen removal enhanced by benthic bioturbation coupled with biofilm formation: A new strategy to alleviate freshwater eutrophication. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112814. [PMID: 34030016 DOI: 10.1016/j.jenvman.2021.112814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Excessive nitrogen input into the water caused eutrophication thereby reducing biodiversity and degrades freshwater function. Nitrogen pollution in sediments is one key reason that makes eutrophication difficult to control. The physicochemical technologies such as dredging and coverage for sediment pollution easily destroyed and homogenized aquatic habitats. To alleviate freshwater eutrophication in ecological way, this work combined the functions of bioturbation and biofilm to test their effect on the removal of nitrogen from sediment and water. The total nitrogen removal by employing the coupled function (bioturbation + biofilm, SCB) was greater than that of the single function (bioturbation or biofilm). The mean efficiency of total nitrogen removal in SCB treatment was 3.19 times that of the control without chironomids nor biofilm medium. Chironomid bioturbation promoted nitrogen release from sediments to the overlying water. Biofilm enhanced the conversion and removal of nitrogen stirred up by chironomids, resulting the lowest concentration of total nitrogen in overlying water of SCB treatment. The enhancement of nitrogen removal may be due to the coupled function increased the abundance of denitrifying and anammox functional bacteria in sediment and biofilm. Therefore, the method of combining benthic animals with biofilm medium is not only a viable solution for reducing sedimentary nitrogen loading in freshwater ecosystems, but also a solution to mitigate eutrophication in the overlying water. The restoration and management for aquatic ecosystems should consider protecting habitat for benthic organisms while maintaining heterogeneity for biofilm.
Collapse
Affiliation(s)
- Wei Yang
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, PR China
| | - Jingmei Yao
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yan He
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, PR China
| | - Yuyue Huang
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, PR China
| | - Huazu Liu
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, PR China
| | - Yue Zhi
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shenhua Qian
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Xiaoman Yan
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, PR China
| | - Shuai Jian
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, PR China
| | - Wei Li
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
37
|
Zhang C, Wang X, Wei L, Wang B, Chen S. Time-resolved characteristics and production pathways of simulated landfilling N 2O emission under different oxygen concentrations. ENVIRONMENT INTERNATIONAL 2021; 149:106396. [PMID: 33524669 DOI: 10.1016/j.envint.2021.106396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/24/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Nitrous oxide (N2O), an important greenhouse gas, is emitted from landfill reservoirs, especially in the working face, where nitrification and denitrification occur under different O2 concentrations. In order to explore the effects of O2 concentration on N2O emissions and production pathways, the production of N2O from simulated fresh waste landfilling under 0%, 5%, 10%, and 21% (vol/vol) O2 concentrations were examined, and 15N isotopes were used as tracers to determine the contributions of nitrification (NF), heterotrophic denitrification (HD), and nitrification-coupled denitrification (NCD) to N2O production over a 72-h incubation period. Equal amounts of total nitrogen consumption occurred for all studied O2 concentration and the simulated waste tended to release more N2O under 0% and 21% O2. Heterotrophic denitrification was the main source of N2O release at the studied oxygen concentrations, contributing 90.51%, 69.04%, 80.75%, and 57.51% of N2O under O2 concentrations of 0%, 5%, 10%, and 21%, respectively. Only denitrification was observed in the simulated fresh waste when the oxygen concentration of the bulk atmosphere was 0%. The nitrate reductase (nirS)-encoding denitrifiers in the simulated landfill were also studied and significant differences were observed in the richness and diversity of the denitrifying community at different taxonomic levels. It was determined that optimising the O2 content is a crucial factor in N2O production that may allow greenhouse gas emissions and N turnover during landfill aeration to be minimised.
Collapse
Affiliation(s)
- Chengliang Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaojun Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lai Wei
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Shaohua Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
38
|
Community Composition and Spatial Distribution of N-Removing Microorganisms Optimized by Fe-Modified Biochar in a Constructed Wetland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18062938. [PMID: 33805608 PMCID: PMC8000742 DOI: 10.3390/ijerph18062938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
Microbial nitrogen (N) removal capability can be significantly enhanced in a horizontal subsurface flow constructed wetland (HSCW) amended by Fe-modified biochar (FeB). To further explore the microbiological mechanism of FeB enhancing N removal, nirS- and nirK-denitrifier community diversities, as well as spatial distributions of denitrifiers and anaerobic ammonium oxidation (anammox) bacteria, were investigated in HSCWs (C-HSCW: without biochar and FeB; B-HSCW: amended by biochar; FeB-HSCW: amended by FeB) treating tailwater from a wastewater treatment plant, with C-HSCW without biochar and FeB and B-HSCW amended by biochar as control. The community structures of nirS- and nirK-denitrifiers in FeB-HSCW were significantly optimized for improved N removal compared with the two other HSCWs, although no significant differences in their richness and diversity were detected among the HSCWs. The spatial distributions of the relative abundance of genes involved in denitrification and anammox were more heterogeneous and complex in FeB-HSCW than those in other HSCWs. More and larger high-value patches were observed in FeB-HSCW. These revealed that FeB provides more appropriate habitats for N-removing microorganisms, which can prompt the bacteria to use the habitats more differentially, without competitive exclusion. Overall, the Fe-modified biochar enhancement of the microbial N-removal capability of HSCWs was a result of optimized microbial community structures, higher functional gene abundance, and improved spatial distribution of N-removing microorganisms.
Collapse
|
39
|
Hetz SA, Horn MA. Burkholderiaceae Are Key Acetate Assimilators During Complete Denitrification in Acidic Cryoturbated Peat Circles of the Arctic Tundra. Front Microbiol 2021; 12:628269. [PMID: 33613495 PMCID: PMC7892595 DOI: 10.3389/fmicb.2021.628269] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/18/2021] [Indexed: 01/23/2023] Open
Abstract
Cryoturbated peat circles (pH 4) in the Eastern European Tundra harbor up to 2 mM pore water nitrate and emit the greenhouse gas N2O like heavily fertilized agricultural soils in temperate regions. The main process yielding N2O under oxygen limited conditions is denitrification, which is the sequential reduction of nitrate/nitrite to N2O and/or N2. N2O reduction to N2 is impaired by pH < 6 in classical model denitrifiers and many environments. Key microbes of peat circles are important but largely unknown catalysts for C- and N-cycling associated N2O fluxes. Thus, we hypothesized that the peat circle community includes hitherto unknown taxa and is essentially unable to efficiently perform complete denitrification, i.e., reduce N2O, due to a low in situ pH. 16S rRNA analysis indicated a diverse active community primarily composed of the bacterial class-level taxa Alphaproteobacteria, Acidimicrobiia, Acidobacteria, Verrucomicrobiae, and Bacteroidia, as well as archaeal Nitrososphaeria. Euryarchaeota were not detected. 13C2- and 12C2-acetate supplemented anoxic microcosms with endogenous nitrate and acetylene at an in situ near pH of 4 were used to assess acetate dependent carbon flow, denitrification and N2O production. Initial nitrate and acetate were consumed within 6 and 11 days, respectively, and primarily converted to CO2 and N2, suggesting complete acetate fueled denitrification at acidic pH. Stable isotope probing coupled to 16S rRNA analysis via Illumina MiSeq amplicon sequencing identified acetate consuming key players of the family Burkholderiaceae during complete denitrification correlating with Rhodanobacter spp. The archaeal community consisted primarily of ammonia-oxidizing Archaea of Nitrososphaeraceae, and was stable during the incubation. The collective data indicate that peat circles (i) host acid-tolerant denitrifiers capable of complete denitrification at pH 4-5.5, (ii) other parameters like carbon availability rather than pH are possible reasons for high N2O emissions in situ, and (iii) Burkholderiaceae are responsive key acetate assimilators co-occurring with Rhodanobacter sp. during denitrification, suggesting both organisms being associated with acid-tolerant denitrification in peat circles.
Collapse
Affiliation(s)
- Stefanie A Hetz
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
40
|
Huang Y, Li W, Gao J, Wang F, Yang W, Han L, Lin D, Min B, Zhi Y, Grieger K, Yao J. Effect of microplastics on ecosystem functioning: Microbial nitrogen removal mediated by benthic invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142133. [PMID: 32916494 DOI: 10.1016/j.scitotenv.2020.142133] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
While ecotoxicological impacts of microplastics on aquatic organisms have started to be investigated recently, impacts on ecosystem functions mediated by benthic biota remain largely unknown. We investigated the effect of microplastics on nitrogen removal in freshwater sediments where microorganisms and benthic invertebrates (i.e., chironomid larvae) co-existed. Using microcosm experiments, sediments with and without invertebrate chironomid larvae were exposed to microplastics (polyethylene) at concentrations of 0, 0.1, and 1 wt%. After 28 days of exposure, the addition of microplastics or chironomid larvae promoted the growth of denitrifying and anammox bacteria, leading to increased total nitrogen removal, in both cases. However, in microcosms with chironomid larvae and microplastics co-existing, nitrogen removal was less than the sum of their individual effects, especially at microplastics concentration of 1 wt%, indicating an adverse effect on microbial nitrogen removal mediated by macroinvertebrates. This study reveals that the increasing concentration of microplastics entangled the nitrogen cycling mediated by benthic invertebrates in freshwater ecosystems. These findings highlight the pursuit of a comprehensive understanding of the impacts of microplastics on the functioning in freshwater ecosystems.
Collapse
Affiliation(s)
- Yuyue Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Wei Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Jie Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Fang Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Wei Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Dunmei Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Bolin Min
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yue Zhi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Khara Grieger
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jingmei Yao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
41
|
Liang D, Ouyang Y, Tiemann L, Robertson GP. Niche Differentiation of Bacterial Versus Archaeal Soil Nitrifiers Induced by Ammonium Inhibition Along a Management Gradient. Front Microbiol 2020; 11:568588. [PMID: 33281763 PMCID: PMC7689314 DOI: 10.3389/fmicb.2020.568588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023] Open
Abstract
Soil nitrification, mediated mainly by ammonia oxidizing archaea (AOA) and bacteria (AOB), converts ammonium (NH4+) to nitrite (NO2−) and thence nitrate (NO3−). To better understand ecological differences between AOA and AOB, we investigated the nitrification kinetics of AOA and AOB under eight replicated cropped and unmanaged ecosystems (including two fertilized natural systems) along a long-term management intensity gradient in the upper U.S. Midwest. For five of eight ecosystems, AOB but not AOA exhibited Haldane kinetics (inhibited by high NH4+ additions), especially in perennial and successional systems. In contrast, AOA predominantly exhibited Michaelis-Menten kinetics, suggesting greater resistance to high nitrogen inputs than AOB. These responses suggest the potential for NH4+-induced niche differentiation between AOA and AOB. Additionally, long-term fertilization significantly enhanced maximum nitrification rates (Vmax) in the early successional systems for both AOA and AOB, but not in the deciduous forest systems. This was likely due to pH suppression of nitrification in the acidic forest soils, corroborated by a positive correlation of Vmax with soil pH but not with amoA gene abundance. Results also demonstrated that soil nitrification potentials were relatively stable, as there were no seasonal differences. Overall, results suggest that (1) NH4+ inhibition of AOB but not AOA could be another factor contributing to niche differentiation between AOA and AOB in soil, and (2) nitrification by both AOA and AOB can be significantly promoted by long-term nitrogen inputs.
Collapse
Affiliation(s)
- Di Liang
- Department of Plant, Soil and Microbial Sciences and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States.,W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
| | - Yang Ouyang
- Department of Plant, Soil and Microbial Sciences and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - Lisa Tiemann
- Department of Plant, Soil and Microbial Sciences and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - G Philip Robertson
- Department of Plant, Soil and Microbial Sciences and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States.,W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
| |
Collapse
|
42
|
Huang R, Zeng J, Zhao D, Yong B, Yu Z. Co-association of Two nir Denitrifiers Under the Influence of Emergent Macrophytes. MICROBIAL ECOLOGY 2020; 80:809-821. [PMID: 32577778 DOI: 10.1007/s00248-020-01545-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Diverse microorganisms perform similar metabolic process in biogeochemical cycles, whereas they are found of highly genomic differentiation. Biotic interactions should be considered in any community survey of these functional groups, as they contribute to community assembly and ultimately alter ecosystem properties. Current knowledge has mainly been achieved based on functional community characterized by a single gene using co-occurrence network analysis. Biotic interactions between functionally equivalent microorganisms, however, have received much less attention. Herein, we propose the nirK- and nirS-type denitrifier communities represented by these two nitrite reductase (nir)-encoding genes, as model communities to investigate the potential interactions of two nir denitrifiers. We evaluated co-occurrence patterns and co-association network structures of nir denitrifier community from an emergent macrophyte-dominated riparian zone of highly active denitrification in Lake Taihu, China. We found a more segregated pattern in combined nir communities than in individual communities. Network analyses revealed a modularized structure of associating nir denitrifiers. An increased proportion of negative associations among combined communities relative to those of individual communities indicated potential interspecific competition between nirK and nirS denitrifiers. pH and NH4+-N were the most important factors driving co-occurrence and mutual exclusion between nirK and nirS denitrifiers. We also showed the topological importance of nirK denitrifiers acting as module hubs for constructing entire association networks. We revealed previously unexplored co-association relationships between nirK and nirS denitrifiers, which were previously neglected in network analyses of individual communities. Using nir denitrifier community as a model, these findings would be helpful for us to understand the biotic interactions and mechanisms underlying how functional groups co-exist in performing biogeochemical cycles.
Collapse
Affiliation(s)
- Rui Huang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098, China
| | - Bin Yong
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098, China
| | - Zhongbo Yu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
43
|
Dai HT, Zhu RB, Sun BW, Che CS, Hou LJ. Effects of Sea Animal Activities on Tundra Soil Denitrification and nirS- and nirK-Encoding Denitrifier Community in Maritime Antarctica. Front Microbiol 2020; 11:573302. [PMID: 33162954 PMCID: PMC7581892 DOI: 10.3389/fmicb.2020.573302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
In maritime Antarctica, sea animals, such as penguins or seals, provide a large amount of external nitrogen input into tundra soils, which greatly impact nitrogen cycle in tundra ecosystems. Denitrification, which is closely related with the denitrifiers, is a key step in nitrogen cycle. However, effects of sea animal activities on tundra soil denitrification and denitrifier community structures still have received little attention. Here, the abundance, activity, and diversity of nirS- and nirK-encoding denitrifiers were investigated in penguin and seal colonies, and animal-lacking tundra in maritime Antarctica. Sea animal activities increased the abundances of nirS and nirK genes, and the abundances of nirS genes were significantly higher than those of nirK genes (p < 0.05) in all tundra soils. Soil denitrification rates were significantly higher (p < 0.05) in animal colonies than in animal-lacking tundra, and they were significantly positively correlated (p < 0.05) with nirS gene abundances instead of nirK gene abundances, indicating that nirS-encoding denitrifiers dominated the denitrification in tundra soils. The diversity of nirS-encoding denitrifiers was higher in animal colonies than in animal-lacking tundra, but the diversity of nirK-encoding denitrifiers was lower. Both the compositions of nirS- and nirK-encoding denitrifiers were similar in penguin or seal colony soils. Canonical correspondence analysis indicated that the community structures of nirS- and nirK-encoding denitrifiers were closely related to tundra soil biogeochemical processes associated with penguin or seal activities: the supply of nitrate and ammonium from penguin guano or seal excreta, and low C:N ratios. In addition, the animal activity-induced vegetation presence or absence had an important effect on tundra soil denitrifier activities and nirK-encoding denitrifier diversities. This study significantly enhanced our understanding of the compositions and dynamics of denitrifier community in tundra ecosystems of maritime Antarctica.
Collapse
Affiliation(s)
- Hai-Tao Dai
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Ren-Bin Zhu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Bo-Wen Sun
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Chen-Shuai Che
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
44
|
Whole-Genome Sequences of Two New Caballeronia Strains Isolated from Cryoturbated Peat Circles of the Permafrost-Affected Eastern European Tundra. Microbiol Resour Announc 2020; 9:9/31/e00731-20. [PMID: 32732239 PMCID: PMC7393968 DOI: 10.1128/mra.00731-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Annotated genomes of Caballeronia strains SBC1 and SBC2 from acidic permafrost suggest a new species with a facultative lifestyle via oxygen and nitrate respiration. Thus, a contribution to nitrogen cycling in cold and low-pH environments is anticipated. Annotated genomes of Caballeronia strains SBC1 and SBC2 from acidic permafrost suggest a new species with a facultative lifestyle via oxygen and nitrate respiration. Thus, a contribution to nitrogen cycling in cold and low-pH environments is anticipated.
Collapse
|
45
|
Guo H, Gu J, Wang X, Yu J, Nasir M, Zhang K, Sun W. Microbial driven reduction of N 2O and NH 3 emissions during composting: Effects of bamboo charcoal and bamboo vinegar. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121292. [PMID: 31810805 DOI: 10.1016/j.jhazmat.2019.121292] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/31/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
In this study, we systematically analyzed the microbial-driven effects of bamboo charcoal (BC) and bamboo vinegar (BV) on reducing NH3 and N2O emissions during aerobic composting. The results showed that BC and BV improved the nitrogen conversion and compost quality, but the combined BC + BV treatment obtained the best improvements. The BC, BV, and BC + BV treatments reduced the NH3 emissions by 14.35%, 17.90%, and 29.83%, respectively, and the N2O emissions by 44.83%, 55.96%, and 74.53%. BC and BV reduced the NH3 and N2O emissions during composting by controlling ammonia oxidation, where napA, nirK, and nosZ served as useful indicators of the N2O emissions from compost, especially the nirK gene. The dominant nitrifying and denitrifying bacteria belonged to Proteobacteria, and the changes in environmental factors during composting significantly affected the succession of the nitrifying and denitrifying bacterial communities. Nitrosomonas was a key nitrifying bacterial genus in the mesophilic composting period, and BC and BV may have reduced the NH3 emissions by enhancing its conversion to NH4+-N by Nitrosomonas. In addition, norank_p__environmental_samples, unclassified_k__norank_d__Bacteria, and unclassified_p__Proteobacteria were jointly responsible for driving the production of N2O during the compost maturity stage.
Collapse
Affiliation(s)
- Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiyu Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
46
|
Yang Z, Guan Y, Bello A, Wu Y, Ding J, Wang L, Ren Y, Chen G, Yang W. Dynamics of ammonia oxidizers and denitrifiers in response to compost addition in black soil, Northeast China. PeerJ 2020; 8:e8844. [PMID: 32341890 PMCID: PMC7182023 DOI: 10.7717/peerj.8844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/02/2020] [Indexed: 11/20/2022] Open
Abstract
Organic fertilizer application could have an impact on the nitrogen cycle mediated by microorganisms in arable soils. However, the dynamics of soil ammonia oxidizers and denitrifiers in response to compost addition are less understood. In this study, we examined the effect of four compost application rates (0, 11.25, 22.5 and 45 t/ha) on soil ammonia oxidizers and denitrifiers at soybean seedling, flowering and mature stage in a field experiment in Northeast China. As revealed by quantitative PCR, compost addition significantly enhanced the abundance of ammonia oxidizing bacteria (AOB) at seedling stage, while the abundance of ammonia oxidizing archaea was unaffected across the growing season. The abundance of genes involved in denitrification (nirS, nirK and nosZ) were generally increased along with compost rate at seedling and flowering stages, but not in mature stage. The non-metric multidimensional scaling analysis revealed that moderate and high level of compost addition consistently induced shift in AOB and nirS containing denitrifers community composition across the growing season. Among AOB lineages, Nitrosospira cluster 3a gradually decreased along with the compost rate across the growing season, while Nitrosomonas exhibited an opposite trend. Network analysis indicated that the complexity of AOB and nirS containing denitrifiers network gradually increased along with the compost rate. Our findings highlighted the positive effect of compost addition on the abundance of ammonia oxidizers and denitrifiers and emphasized that compost addition play crucial roles in shaping their community compositions and co-occurrence networks in black soil of Northeast China.
Collapse
Affiliation(s)
- Zhongzan Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yupeng Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yanxiang Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jiayi Ding
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Leiqi Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuqing Ren
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Guangxin Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wei Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
47
|
Meng Q, Han Y, Zhu H, Yang W, Bello A, Deng L, Jiang X, Wu X, Sheng S, Xu Y, Xu X. Differences in distribution of functional microorganism at DNA and cDNA levels in cow manure composting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110161. [PMID: 31954219 DOI: 10.1016/j.ecoenv.2019.110161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Denitrification and nitrification processes are the two prominent pathways of nitrogen (N) transformation in composting matrix. This study explored the dynamics of denitrifying and nitrifying bacteria at different composting stages of cow manure and corn straw using functional gene sequencing at DNA and cDNA levels. Corresponding agreement among OTUs, NMDS, mental test and network analyses revealed that functional bacteria community compositions and responses to physicochemical factors were different at DNA and cDNA levels. Specifically, some OTUs were detected at the DNA level but were not observed at cDNA level, differences were also found in the distribution patterns of nitrifying and denitrifying bacteria communities at both levels. Furthermore, co-occurrence network analysis indicated that Pseudomonas, Paracoccus and Nitrosomonas were identified as the keystone OTUs at the DNA level, while Paracoccus, Agrobacterium and Nitrosospira were keystone OTUs at the cDNA level. Mantel test revealed that TN, C/N and moisture content significantly influenced both the denitrifying bacteria and ammonia-oxidizing bacteria (AOB) communities at the DNA level. NO3--N, NH4+-N, TN, C/N, and moisture content only registered significant correlation with the nosZ-type denitrifiers and ammonia-oxidizing bacteria (AOB) communities at the cDNA level. Structural equation model (SEM) showed that TN, NH4+-N, and pH were direct and significantly influenced the gene abundance of denitrifying bacteria. Howbeit, TN, NH4+-N, and NO3--N had significant direct effects on amoA gene abundance.
Collapse
Affiliation(s)
- Qingxin Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Haifeng Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xin Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaotong Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Siyuan Sheng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yingying Xu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161006, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
48
|
Avşar C, Aras ES. Quantification of denitrifier genes population size and its relationship with environmental factors. Arch Microbiol 2020; 202:1181-1192. [PMID: 32076734 DOI: 10.1007/s00203-020-01826-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
The objectives of this study were to use real-time PCR for culture-independent quantification of the copy numbers of 16S rRNA and denitrification functional genes, and also the relationships between gene copy numbers and soil physicochemical properties. In this study, qPCR analysis of the soil samples showed 16S rRNA, nirS, nirK, nosZI and nosZII average densities of 3.0 × 108, 2.25 × 107, 2.9 × 105, 4.0 × 106 and 1.75 × 107 copies per gram of dry soil, respectively. In addition, the abundances of (nirS + nirK), nosZI and nosZII relative to 16S rRNA genes were 1.4-34.1%, 0.06-3.95% and 1.3-39%, respectively, confirming the low proportion of denitrifiers to total bacteria in soil. This showed that the non-denitrifying nosZII-type bacteria may contribute significantly to N2O consumption in the soil. Furthermore, the shifts in abundance and diversity of the total bacteria and denitrification functional gene copy numbers correlated significantly with the various soil factors. It is the first study in Turkey about the population size of denitrification functional genes in different soil samples. It also aims to draw attention to nitrous oxide-associated global warming.
Collapse
Affiliation(s)
- Cumhur Avşar
- Department of Biology, Faculty of Arts and Sciences, Sinop University, Sinop, Turkey.
| | - E Sümer Aras
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
49
|
Jiang Y, Huang H, Ma T, Ru J, Blank S, Kurmayer R, Deng L. Temperature Response of Planktonic Microbiota in Remote Alpine Lakes. Front Microbiol 2019; 10:1714. [PMID: 31417513 PMCID: PMC6685043 DOI: 10.3389/fmicb.2019.01714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/11/2019] [Indexed: 02/01/2023] Open
Abstract
Alpine lakes are considered pristine freshwater ecosystems and sensitive to direct and indirect changes in water temperature as induced by climate change. The bacterial plankton constitutes a key component in the water column and bacterial metabolic activity has direct consequences for water quality. In order to understand bacterial response to global temperature rise in five alpine lakes located in the Austrian Alps (1700-2188 m a.S.L.) water temperature was compared within a decadal period. Depth-integrated samples were characterized in community composition by 16S rDNA deep-amplicon sequencing early [56 ± 16 (SD) days after ice break up] and later (88 ± 16 days) in the growing season. Within the 10 years period, temperature rise was observed through reduced ice cover duration and increased average water temperature. During the early growing season, the average water temperature recorded between circulation in spring until sampling date (WAS), and the day of autumn circulation, as well as chemical composition including dissolved organic carbon influenced bacterial community composition. In contrast, only nutrients (such as nitrate) were found influential later in the growing season. Metabolic theory of ecology (MTE) was applied to explain the dependence of taxonomic richness on WAS in mathematical terms. The calculated activation energy exceeded the frequently reported prediction emphasizing the role of WAS during early growing season. Accordingly, the relative abundance of predicted metabolism related genes increased with WAS. Thus, the dominant influence of temperature after ice break up could be explained by overall climate change effects, such as a more intense warming in spring and an overall higher amplitude of temperature variation.
Collapse
Affiliation(s)
- Yiming Jiang
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Haiying Huang
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Tianli Ma
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Jinlong Ru
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Stephan Blank
- Research Department for Limnology, Mondsee, University of Innsbruck, Innsbruck, Austria
| | - Rainer Kurmayer
- Research Department for Limnology, Mondsee, University of Innsbruck, Innsbruck, Austria
| | - Li Deng
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Virology, Technical University of Munich, Munich, Germany
| |
Collapse
|
50
|
Altshuler I, Ronholm J, Layton A, Onstott TC, W. Greer C, Whyte LG. Denitrifiers, nitrogen-fixing bacteria and N2O soil gas flux in high Arctic ice-wedge polygon cryosols. FEMS Microbiol Ecol 2019; 95:5481522. [DOI: 10.1093/femsec/fiz049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ianina Altshuler
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Alice Layton
- Center for Environmental Biotechnology, University of Tennessee – Knoxville, 676 Dabney-Buehler Hall, 1416 Circle Drive, TN 37996-1605, USA
| | - Tullis C Onstott
- Geomicrobiology, Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Charles W. Greer
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
- National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|