1
|
Mazur-Marzec H, Andersson AF, Błaszczyk A, Dąbek P, Górecka E, Grabski M, Jankowska K, Jurczak-Kurek A, Kaczorowska AK, Kaczorowski T, Karlson B, Kataržytė M, Kobos J, Kotlarska E, Krawczyk B, Łuczkiewicz A, Piwosz K, Rybak B, Rychert K, Sjöqvist C, Surosz W, Szymczycha B, Toruńska-Sitarz A, Węgrzyn G, Witkowski A, Węgrzyn A. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol Rev 2024; 48:fuae024. [PMID: 39366767 PMCID: PMC11500664 DOI: 10.1093/femsre/fuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows. (i) Although low salinity causes a reduction in the biodiversity of multicellular species relative to the populations of the North-East Atlantic, no such reduction occurs in bacterial diversity. (ii) Among cyanobacteria, the picocyanobacterial group dominates when considering gene abundance, while filamentous cyanobacteria dominate in means of biomass. (iii) The diversity of diatoms and dinoflagellates is significantly larger than described a few decades ago; however, molecular studies on these groups are still scarce. (iv) Knowledge gaps in other protistan communities are evident. (v) Salinity is the main limiting parameter of pelagic fungal community composition, while the benthic fungal diversity is shaped by water depth, salinity, and sediment C and N availability. (vi) Bacteriophages are the predominant group of viruses, while among viruses infecting eukaryotic hosts, Phycodnaviridae are the most abundant; the Baltic Sea virome is contaminated with viruses originating from urban and/or industrial habitats. These features make the Baltic Sea microbiome specific and unique among other marine environments.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Anders F Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Tomtebodavägen 23A, SE-171 65 Solna, Stockholm, Sweden
| | - Agata Błaszczyk
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Michał Grabski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Agata Jurczak-Kurek
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Anna K Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute
, Research and Development, Oceanography, Göteborgseskaderns plats 3, Västra Frölunda SE-426 71, Sweden
| | - Marija Kataržytė
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipeda, Lithuania
| | - Justyna Kobos
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Ewa Kotlarska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Beata Krawczyk
- Department of Biotechnology and Microbiology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, PL-81-332 Gdynia, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23A, PL-80-204 Gdansk, Poland
| | - Krzysztof Rychert
- Pomeranian University in Słupsk, Arciszewskiego 22a, PL-76-200 Słupsk, Poland
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Henriksgatan 2, FI-20500 Åbo, Finland
| | - Waldemar Surosz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Alicja Węgrzyn
- University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
2
|
Chai Z, Liu Y, Jia S, Li F, Hu Z, Deng Y, Yue C, Tang YZ. DNA and RNA Stability of Marine Microalgae in Cold-Stored Sediments and Its Implications in Metabarcoding Analyses. Int J Mol Sci 2024; 25:1724. [PMID: 38339002 PMCID: PMC10855355 DOI: 10.3390/ijms25031724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The ever-increasing applications of metabarcoding analyses for environmental samples demand a well-designed assessment of the stability of DNA and RNA contained in cells that are deposited or buried in marine sediments. We thus conducted a qPCR quantification of the DNA and RNA in the vegetative cells of three microalgae entrapped in facsimile marine sediments and found that >90% of DNA and up to 99% of RNA for all microalgal species were degraded within 60 days at 4 °C. A further examination of the potential interference of the relic DNA of the vegetative cells with resting cyst detection in sediments was performed via a metabarcoding analysis in artificial marine sediments spiked with the vegetative cells of two Kareniaceae dinoflagellates and the resting cysts of another three dinoflagellates. The results demonstrated a dramatic decrease in the relative abundances of the two Kareniaceae dinoflagellates in 120 days, while those of the three resting cysts increased dramatically. Together, our results suggest that a positive detection of microalgae via metabarcoding analysis in DNA or RNA extracted from marine sediments strongly indicates the presence of intact or viable cysts or spores due to the rapid decay of relic DNA/RNA. This study provides a solid basis for the data interpretation of metabarcoding surveys, particularly in resting cyst detection.
Collapse
Affiliation(s)
- Zhaoyang Chai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.C.); (Y.L.); (F.L.); (Z.H.); (Y.D.); (C.Y.)
- Laoshan Laboratory, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuyang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.C.); (Y.L.); (F.L.); (Z.H.); (Y.D.); (C.Y.)
- Laoshan Laboratory, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Siyang Jia
- Yellow Sea and East Sea Buoy Observation Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
| | - Fengting Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.C.); (Y.L.); (F.L.); (Z.H.); (Y.D.); (C.Y.)
- Laoshan Laboratory, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.C.); (Y.L.); (F.L.); (Z.H.); (Y.D.); (C.Y.)
- Laoshan Laboratory, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.C.); (Y.L.); (F.L.); (Z.H.); (Y.D.); (C.Y.)
- Laoshan Laboratory, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Caixia Yue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.C.); (Y.L.); (F.L.); (Z.H.); (Y.D.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.C.); (Y.L.); (F.L.); (Z.H.); (Y.D.); (C.Y.)
- Laoshan Laboratory, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
3
|
Ye W, Ma X, Liu C, Ye R, Priyadarshani WNC, Jayathilake R, Weerakoon A, Wimalasiri U, Dissanayake PAKN, Pathirana G, Iroshanie RGA, Zhu Y, Li Z, Wang B, Shou L, Ran L, Zhou F, Chen J, Du P. Vertical variation of bacterial production and potential role in oxygen loss in the southern Bay of Bengal. Front Microbiol 2023; 14:1250575. [PMID: 38029132 PMCID: PMC10663246 DOI: 10.3389/fmicb.2023.1250575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Marine environments wherein long-term microbial oxygen consumption exceeds oxygen replenishment can be associated with oxygen minimum zones (OMZ). The Bay of Bengal OMZ (BOB-OMZ) is one of the most intense OMZs globally. To assess the contribution of bacterial oxygen consumption to oxygen loss in BOB-OMZ, we measured bacterial production (BP), temperature, salinity, and dissolved oxygen (DO) in the whole water column. We then compared the estimated bacterial oxygen demand (BOD) with diapycnal oxygen supply (DOS) at depths of 50-200 m in the southern BOB in January 2020. The average BP was 3.53 ± 3.15 μmol C m-3 h-1 in the upper 200 m of four stations, which was lower than those reported in other tropical waters. The vertical distribution of BP differed between the open ocean and nearshore areas. In the open ocean, temperature and DO were the most important predictors for BP in the whole water column. In the nearshore areas, when DO increased sharply from the suboxic state, extremely high BP occurred at 200 m. The average estimated BOD/DOS could reach up to 153% at depths of 50-200 m, indicating advection and anticyclonic eddies probably are important DO replenishment pathways in the BOB.
Collapse
Affiliation(s)
- Wenqi Ye
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou, China
| | - Xiao Ma
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, MNR, Hangzhou, China
| | - Chenggang Liu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou, China
| | - Ruijie Ye
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, MNR, Hangzhou, China
| | - W. N. C. Priyadarshani
- National Institute of Oceanography and Marine Sciences, National Aquatic Resources Research and Development Agency (NARA), Colombo, Sri Lanka
| | - Ruchi Jayathilake
- National Institute of Oceanography and Marine Sciences, National Aquatic Resources Research and Development Agency (NARA), Colombo, Sri Lanka
| | - Ashoka Weerakoon
- National Institute of Oceanography and Marine Sciences, National Aquatic Resources Research and Development Agency (NARA), Colombo, Sri Lanka
| | - Udeshika Wimalasiri
- National Institute of Oceanography and Marine Sciences, National Aquatic Resources Research and Development Agency (NARA), Colombo, Sri Lanka
| | - P. A. K. N. Dissanayake
- Department of Oceanography and Marine Geology, Faculty of Fisheries and Marine Sciences & Technology, University of Ruhuna, Matara, Sri Lanka
| | - Gayan Pathirana
- Department of Oceanography and Marine Geology, Faculty of Fisheries and Marine Sciences & Technology, University of Ruhuna, Matara, Sri Lanka
| | - R. G. A. Iroshanie
- Department of Oceanography and Marine Geology, Faculty of Fisheries and Marine Sciences & Technology, University of Ruhuna, Matara, Sri Lanka
| | - Yuanli Zhu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou, China
| | - Zhongqiao Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou, China
| | - Bin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou, China
| | - Lu Shou
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou, China
| | - Lihua Ran
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou, China
| | - Feng Zhou
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, MNR, Hangzhou, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou, China
| | - Ping Du
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou, China
| |
Collapse
|
4
|
Xue R, Liu S, Stirling E, Wang Y, Zhao K, Matsumoto H, Wang M, Xu J, Ma B. Core community drives phyllosphere bacterial diversity and function in multiple ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165187. [PMID: 37391143 DOI: 10.1016/j.scitotenv.2023.165187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
The phyllosphere provides a habitat for a large sum of microorganisms which are modulated by numerous biotic and abiotic factors. While it is logical that host lineage must have some effect on the phyllosphere habitat, it is unclear if phyllospheres harbor similar microbial core communities across multiple ecosystems at the continental-scale. Here we collected 287 phyllosphere bacterial communities from seven ecosystems (including paddy field, dryland, urban area, protected agricultural land, forest, wetland, and grassland) in east-China to identify the regional core community and to characterize the importance of such communities in maintaining phyllosphere bacterial community structure and function. Despite significantly different bacterial richness and structure, the seven studied ecosystems contained a similar regional core community of 29 OTUs that comprised 44.9 % of the total bacterial abundance. The regional core community was less affected by environmental variables and less connected in the co-occurrence network compared with other non-core OTUs (the whole minus regional core community). Furthermore, the regional core community also had a large proportion (>50 %) of a constrained set of nutrient metabolism related functional potentials and less functional redundancy. This study suggests there is a robust regional core phyllosphere community regardless of ecosystem or spatial and environmental heterogeneity, and supports the argument that core communities are pivotal in maintaining microbial community structure and function.
Collapse
Affiliation(s)
- Ran Xue
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Shan Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Erinne Stirling
- CSIRO Agriculture and Food, Urrbrae 5064, Australia; Acid Sulfate Soils Centre, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Yiling Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kankan Zhao
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haruna Matsumoto
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs, Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bin Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Revived Amplicon Sequence Variants Monitoring in Closed Systems Identifies More Dormant Microorganisms. Microorganisms 2023; 11:microorganisms11030757. [PMID: 36985330 PMCID: PMC10055844 DOI: 10.3390/microorganisms11030757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The large number of dormant microorganisms present in the environment is an important component of microbial diversity, and neglecting dormant microorganisms would be disruptive to all research under the science of microbial diversity. However, current methods can only predict the dormancy potential of microorganisms in a sample and are not yet able to monitor dormant microorganisms directly and efficiently. Based on this, this study proposes a new method for the identification of dormant microorganisms based on high-throughput sequencing technology: Revived Amplicon sequence variants (ASV) Monitoring (RAM). Pao cai (Chinese fermented vegetables) soup was used to construct a closed experimental system, and sequenced samples were collected at 26 timepoints over a 60-day period. RAM was used to identify dormant microorganisms in the samples. The results were then compared with the results of the currently used gene function prediction (GFP), and it was found that RAM was able to identify more dormant microorganisms. In 60 days, GFP monitored 5045 ASVs and 270 genera, while RAM monitored 27,415 ASVs and 616 genera, and the RAM results were fully inclusive of the GFP results. Meanwhile, the consistency of GFP and RAM was also found in the results. The dormant microorganisms monitored by both showed a four-stage distribution pattern over a 60-day period, with significant differences in the community structure between the stages. Therefore, RAM monitoring of dormant microorganisms is effective and feasible. It is worth noting that the results of GFP and RAM can complement and refer to each other. In the future, the results obtained from RAM can be used as a database to extend and improve the monitoring of dormant microorganisms by GFP, and the two can be combined with each other to build a dormant microorganism detection system.
Collapse
|
6
|
Nikitina D, Lehr K, Vilchez-Vargas R, Jonaitis LV, Urba M, Kupcinskas J, Skieceviciene J, Link A. Comparison of genomic and transcriptional microbiome analysis in gastric cancer patients and healthy individuals. World J Gastroenterol 2023; 29:1202-1218. [PMID: 36926663 PMCID: PMC10011954 DOI: 10.3748/wjg.v29.i7.1202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 12/21/2022] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Helicobacter pylori and the stomach microbiome play a crucial role in gastric carcinogenesis, and detailed characterization of the microbiome is necessary for a better understanding of the pathophysiology of the disease. There are two common modalities for microbiome analysis: DNA (16S rRNA gene) and RNA (16S rRNA transcript) sequencing. The implications from the use of one or another sequencing approach on the characterization and comparability of the mucosal microbiome in gastric cancer (GC) are poorly studied. AIM To characterize the microbiota of GC using 16S rRNA gene and its transcript and determine difference in the bacterial composition. METHODS In this study, 316 DNA and RNA samples extracted from 105 individual stomach biopsies were included. The study cohort consisted of 29 healthy control individuals and 76 patients with GC. Gastric tissue biopsy samples were collected from damaged mucosa and healthy mucosa at least 5 cm from the tumor tissue. From the controls, healthy stomach mucosa biopsies were collected. From all biopsies RNA and DNA were extracted. RNA was reverse transcribed into cDNA. V1-V2 region of bacterial 16S rRNA gene from all samples were amplified and sequenced on an Illumina MiSeq platform. Bray-Curtis algorithm was used to construct sample-similarity matrices abundances of taxonomic ranks in each sample type. For significant differences between groups permutational multivariate analysis of variance and Mann-Whitney test followed by false-discovery rate test were used. RESULTS Microbial analysis revealed that only a portion of phylotypes (18%-30%) overlapped between microbial profiles obtained from DNA and RNA samples. Detailed analysis revealed differences between GC and controls depending on the chosen modality, identifying 17 genera at the DNA level and 27 genera at the RNA level. Ten of those bacteria were found to be different from the control group at both levels. The key taxa showed congruent results in various tests used; however, differences in 7 bacteria taxa were found uniquely only at the DNA level, and 17 uniquely only at the RNA level. Furthermore, RNA sequencing was more sensitive for detecting differences in bacterial richness, as well as differences in the relative abundance of Reyranella and Sediminibacterium according to the type of GC. In each study group (control, tumor, and tumor adjacent) were found differences between DNA and RNA bacterial profiles. CONCLUSION Comprehensive microbial study provides evidence for the effect of choice of sequencing modality on the microbiota profile, as well as on the identified differences between case and control.
Collapse
Affiliation(s)
- Darja Nikitina
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Konrad Lehr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg 39120, Germany
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg 39120, Germany
| | | | - Mindaugas Urba
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Juozas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg 39120, Germany
| |
Collapse
|
7
|
Zhang X, Zhang F, Lu X. Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects. Microorganisms 2022; 10:microorganisms10061234. [PMID: 35744751 PMCID: PMC9231115 DOI: 10.3390/microorganisms10061234] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Lepidopteran insects are one of the most widespread and speciose lineages on Earth, with many common pests and beneficial insect species. The evolutionary success of their diversification depends on the essential functions of gut microorganisms. This diverse gut microbiota of lepidopteran insects provides benefits in nutrition and reproductive regulation and plays an important role in the defence against pathogens, enhancing host immune homeostasis. In addition, gut symbionts have shown promising applications in the development of novel tools for biological control, biodegradation of waste, and blocking the transmission of insect-borne diseases. Even though most microbial symbionts are unculturable, the rapidly expanding catalogue of microbial genomes and the application of modern genetic techniques offer a viable alternative for studying these microbes. Here, we discuss the gut structure and microbial diversity of lepidopteran insects, as well as advances in the understanding of symbiotic relationships and interactions between hosts and symbionts. Furthermore, we provide an overview of the function of the gut microbiota, including in host nutrition and metabolism, immune defence, and potential mechanisms of detoxification. Due to the relevance of lepidopteran pests in agricultural production, it can be expected that the research on the interactions between lepidopteran insects and their gut microbiota will be used for biological pest control and protection of beneficial insects in the future.
Collapse
Affiliation(s)
- Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
- Correspondence: (F.Z.); (X.L.)
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
- Correspondence: (F.Z.); (X.L.)
| |
Collapse
|
8
|
Zhang Y, Lin X, Li T, Li H, Lin L, Luo H, Li L, Ji N, Lin S. High throughput sequencing of 18S rRNA and its gene to characterize a Prorocentrum shikokuense (Dinophyceae) bloom. HARMFUL ALGAE 2020; 94:101809. [PMID: 32414502 DOI: 10.1016/j.hal.2020.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Comparing phytoplankton non-bloom and bloom communities using rRNA and its coding gene can help understand the shift of dominant species and its driving processes (e.g., intrinsic growth or grazing). Here we conducted high-throughput sequencing of 18S rRNA and its coding gene for studying non-bloom and bloom plankton communities in East China Sea. The non-bloom community was dominated by diatoms whereas during the bloom it was dominated by the dinoflagellate Prorocentrum shikokuense (formerly P. donghaiense). P. shikokuense rRNA abundance and rRNA:rRNA gene ratio both increased markedly in the bloom, indicating that the bloom arose from active growth. In contrast, some non-bloom species showed low DNA abundances during the bloom albeit high rRNA:rRNA gene ratios, suggesting that cell loss processes such as grazing might have prevented these species from blooming or that these species might be at an early stage of bloom development. Furthermore, Pearson's correlation analysis showed that dinoflagellate abundance was positively correlated with temperature and negatively related to dissolved inorganic phosphate (DIP) concentrations, suggesting warm and DIP-poor environment as a niche space for P. shikokuense. Our results demonstrate the usefulness of combined analysis of rRNA and its gene in characterizing phytoplankton bloom development to shed light on the complex phytoplankton dynamics and regulating mechanisms in the course of bloom development.
Collapse
Affiliation(s)
- Yaqun Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Tangcheng Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Hengde Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Lingxiao Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Hao Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Nanjing Ji
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USEER), Xiamen University, Xiamen 361102, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06405, USA.
| |
Collapse
|
9
|
Wang Y, Ma A, Liu G, Ma J, Wei J, Zhou H, Brandt KK, Zhuang G. Potential feedback mediated by soil microbiome response to warming in a glacier forefield. GLOBAL CHANGE BIOLOGY 2020; 26:697-708. [PMID: 31782204 DOI: 10.1111/gcb.14936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/04/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Mountain glaciers are retreating at an unprecedented rate due to global warming. Glacier retreat is widely believed to be driven by the physiochemical characteristics of glacier surfaces; however, the current knowledge of such biological drivers remains limited. An estimated 130 Tg of organic carbon (OC) is stored in mountain glaciers globally. As a result of global warming, the accelerated microbial decomposition of OC may further accelerate the melting process of mountain glaciers by heat production with the release of greenhouse gases, such as carbon dioxide (CO2 ) and methane. Here, using short-term aerobic incubation data from the forefield of Urumqi Glacier No. 1, we assessed the potential climate feedback mediated by soil microbiomes at temperatures of 5°C (control), 6.2°C (RCP 2.6), 11°C (RCP 8.5), and 15°C (extreme temperature). We observed enhanced CO2 -C release and heat production under warming conditions, which led to an increase in near-surface (2 m) atmospheric temperatures, ranging from 0.9°C to 3.4°C. Warming significantly changed the structures of the RNA-derived (active) and DNA-derived (total) soil microbiomes, and active microbes were more sensitive to increased temperatures than total microbes. Considering the positive effects of temperature and deglaciation age on the CO2 -C release rate, the alterations in the active microbial community structure had a negative impact on the increased CO2 -C release rate. Our results revealed that glacial melting could potentially be significantly accelerated by heat production from increased microbial decomposition of OC. This risk might be true for other high-altitude glaciers under emerging warming, thus improving the predictions of the effects of potential feedback on global warming.
Collapse
Affiliation(s)
- Yuwan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohua Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianpeng Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanchang Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Sino-Danish Center for Education and Research, Beijing, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Zhao Y, Xu C, Ai S, Wang H, Gao Y, Yan L, Mei Z, Wang W. Biological pretreatment enhances the activity of functional microorganisms and the ability of methanogenesis during anaerobic digestion. BIORESOURCE TECHNOLOGY 2019; 290:121660. [PMID: 31326651 DOI: 10.1016/j.biortech.2019.121660] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 06/10/2023]
Abstract
Biological pretreatment can increase the methane production of anaerobic digestion. In this study, stover was pretreated via microbial consortium prior to anaerobic digestion; through 16S rRNA gene and 16S rRNA amplicon sequencing and metatranscriptomic analysis, and the effects of the pretreatment on the microbial community and critical factors of the increased methane production were studied. Microbial community structure was less affected by the pretreatment, which ensures the stable performance of anaerobic digestion. The methane production increased by 62.85% at the peak phase compared to the untreated stover. The activity of Methanosaeta increased from 2.0% to 10.1%, significantly enhancing the ability of the community to capture acetic acid and reduce CO2 to methane. The main contribution to the increase in methane production was a unique acetyl-CoA synthetase, which showed significant up-regulation (121.8%). This research demonstrated the importance of Methanosaeta and its unique metabolic pathways in anaerobic digestion utilizing a biological pretreatment.
Collapse
Affiliation(s)
- Yiquan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Congfeng Xu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shiqi Ai
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Haipeng Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yamei Gao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Zili Mei
- Biogas Institute of Ministry of Agriculture and Rural Affairs, 610041 Chengdu, PR China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| |
Collapse
|
11
|
Honeker LK, Gullo CF, Neilson JW, Chorover J, Maier RM. Effect of Re-acidification on Buffalo Grass Rhizosphere and Bulk Microbial Communities During Phytostabilization of Metalliferous Mine Tailings. Front Microbiol 2019; 10:1209. [PMID: 31214146 PMCID: PMC6554433 DOI: 10.3389/fmicb.2019.01209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/13/2019] [Indexed: 02/01/2023] Open
Abstract
Phytostabilized highly acidic, pyritic mine tailings are susceptible to re-acidification over time despite initial addition of neutralizing amendments. Studies examining plant-associated microbial dynamics during re-acidification of phytostabilized regions are sparse. To address this, we characterized the rhizosphere and bulk bacterial communities of buffalo grass used in the phytostabilization of metalliferous, pyritic mine tailings undergoing re-acidification at the Iron King Mine and Humboldt Smelter Superfund Site in Dewey-Humboldt, AZ. Plant-associated substrates representing a broad pH range (2.35-7.76) were sampled to (1) compare the microbial diversity and community composition of rhizosphere and bulk compartments across a pH gradient, and (2) characterize how re-acidification affects the abundance and activity of the most abundant plant growth-promoting bacteria (PGPB; including N2-fixing) versus acid-generating bacteria (AGB; including Fe-cycling/S-oxidizing). Results indicated that a shift in microbial diversity and community composition occurred at around pH 4. At higher pH (>4) the species richness and community composition of the rhizosphere and bulk compartments were similar, and PGPB, such as Pseudomonas, Arthrobacter, Devosia, Phyllobacterium, Sinorhizobium, and Hyphomicrobium, were present and active in both compartments with minimal presence of AGB. In comparison, at lower pH (<4) the rhizosphere had a significantly higher number of species than the bulk (p < 0.05) and the compartments had significantly different community composition (unweighted UniFrac; PERMANOVA, p < 0.05). Whereas some PGPB persisted in the rhizosphere at lower pH, including Arthrobacter and Devosia, they were absent from the bulk. Meanwhile, AGB dominated in both compartments; the most abundant were the Fe-oxidizer Leptospirillum and Fe-reducers Acidibacter and Acidiphilium, and the most active was the Fe-reducer Aciditerrimonas. This predominance of AGB at lower pH, and even their minimal presence at higher pH, contributes to acidifying conditions and poses a significant threat to sustainable plant establishment. These findings have implications for phytostabilization field site management and suggest re-application of compost or an alternate buffering material may be required in regions susceptible to re-acidification to maintain a beneficial bacterial community conducive to long-term plant establishment.
Collapse
Affiliation(s)
| | | | - Julia W. Neilson
- Department of Soil, Water, and Environmental Science, The University of Arizona, Tucson, AZ, United States
| | | | | |
Collapse
|
12
|
Chen B, Du K, Sun C, Vimalanathan A, Liang X, Li Y, Wang B, Lu X, Li L, Shao Y. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME JOURNAL 2018; 12:2252-2262. [PMID: 29895989 PMCID: PMC6092317 DOI: 10.1038/s41396-018-0174-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 02/02/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022]
Abstract
Bombyx mori, the domesticated silkworm, is of great importance as a silk producer and as a powerful experimental model for the basic and applied research. Similar to other animals, abundant microorganisms live inside the silkworm gut; however, surprisingly, the microbiota of this model insect has not been well characterized to date. Here, we comprehensively characterized the gut microbiota of the domesticated silkworm and its wild relatives. Comparative analyses with the mulberry-feeding moths Acronicta major and Diaphania pyloalis revealed a highly diverse but distinctive silkworm gut microbiota despite thousands of years of domestication, and stage-specific signatures in both total (DNA-based) and active (RNA-based) bacterial populations, dominated by the phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Most fungal sequences were assigned to the phyla Ascomycota and Basidiomycota. Environmental factors, including diet and human manipulation (egg production), likely influence the silkworm gut composition. Despite a lack of spatial variation along the gut, microbial community shifts were apparent between early instars and late instars, in concert with host developmental changes. Our results demonstrate that the gut microbiota of silkworms assembles into increasingly identical community throughout development, which differs greatly from those of other mulberry-feeding lepidopterans from the same niche, highlighting host-specific effects on microbial associations and the potential roles these communities play in host biology.
Collapse
Affiliation(s)
- Bosheng Chen
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Kaiqian Du
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Arunprasanna Vimalanathan
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xili Liang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yong Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Baohong Wang
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China. .,Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Beijing, China.
| |
Collapse
|
13
|
Papp K, Hungate BA, Schwartz E. Microbial rRNA Synthesis and Growth Compared through Quantitative Stable Isotope Probing with H 218O. Appl Environ Microbiol 2018; 84:e02441-17. [PMID: 29439990 PMCID: PMC5881069 DOI: 10.1128/aem.02441-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/07/2018] [Indexed: 02/01/2023] Open
Abstract
Growing bacteria have a high concentration of ribosomes to ensure sufficient protein synthesis, which is necessary for genome replication and cellular division. To elucidate whether metabolic activity of soil microorganisms is coupled with growth, we investigated the relationship between rRNA and DNA synthesis in a soil bacterial community using quantitative stable isotope probing (qSIP) with H218O. Most soil bacterial taxa were metabolically active and grew, and there was no significant difference between the isotopic composition of DNA and RNA extracted from soil incubated with H218O. The positive correlation between 18O content of DNA and rRNA of taxa, with a slope statistically indistinguishable from 1 (slope = 0.96; 95% confidence interval [CI], 0.90 to 1.02), indicated that few taxa made new rRNA without synthesizing new DNA. There was no correlation between rRNA-to-DNA ratios obtained from sequencing libraries and the atom percent excess (APE) 18O values of DNA or rRNA, suggesting that the ratio of rRNA to DNA is a poor indicator of microbial growth or rRNA synthesis. Our results support the notion that metabolic activity is strongly coupled to cellular division and suggest that nondividing taxa do not dominate soil metabolic activity.IMPORTANCE Using quantitative stable isotope probing of microbial RNA and DNA with H218O, we show that most soil taxa are metabolically active and grow because their nucleic acids are significantly labeled with 18O. A majority of the populations that make new rRNA also grow, which argues against the common paradigm that most soil taxa are dormant. Additionally, our results indicate that relative sequence abundance-based RNA-to-DNA ratios, which are frequently used for identifying active microbial populations in the environment, underestimate the number of metabolically active taxa within soil microbial communities.
Collapse
Affiliation(s)
- Katerina Papp
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
14
|
Bajaj JS, Thacker LR, Fagan A, White MB, Gavis EA, Hylemon PB, Brown R, Acharya C, Heuman DM, Fuchs M, Dalmet S, Sikaroodi M, Gillevet PM. Gut microbial RNA and DNA analysis predicts hospitalizations in cirrhosis. JCI Insight 2018. [PMID: 29515036 DOI: 10.1172/jci.insight.98019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cirrhosis is associated with gut microbial changes, but current 16S rDNA techniques sequence both dead and live bacteria. We aimed to determine the rRNA content compared with DNA from the same stool sample to evaluate cirrhosis progression and predict hospitalizations. METHODS Cirrhotics and controls provided stool for RNA and DNA analysis. Comparisons were made between cirrhotics/controls and within cirrhosis (compensated/decompensated, infected/uninfected, renal dysfunction/not, rifaximin use/not) with respect to DNA and RNA bacterial content using linear discriminant analysis. A separate group was treated with omeprazole for 14 days with longitudinal microbiota evaluation. Patients were followed for 90 days for hospitalizations. Multivariable models for hospitalizations with clinical data with and without DNA and RNA microbial data were created. RESULTS Twenty-six controls and 154 cirrhotics (54 infected, 62 decompensated, 20 renal dysfunction, 18 rifaximin) were included. RNA and DNA analysis showed differing potentially pathogenic taxa but similar autochthonous taxa composition. Thirty subjects underwent the omeprazole study, which demonstrated differences between RNA and DNA changes. Thirty-six patients were hospitalized within 90 days. In the RNA model, MELD score and Enterococcus were independently predictive of hospitalizations, while in the DNA model MELD was predictive and Roseburia protective. In both models, adding microbiota significantly added to the MELD score in predicting hospitalizations. CONCLUSION DNA and RNA analysis of the same stool sample demonstrated differing microbiota composition, which independently predicts the hospitalization risk in cirrhosis. RNA and DNA content of gut microbiota in cirrhosis are modulated differentially with disease severity, infections, and omeprazole use. TRIAL REGISTRATION NCT01458990. FUNDING VA Merit I0CX001076.
Collapse
Affiliation(s)
| | | | - Andrew Fagan
- Division of Gastroenterology, Hepatology and Nutrition
| | | | - Edith A Gavis
- Division of Gastroenterology, Hepatology and Nutrition
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia, USA
| | - Robert Brown
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| | | | | | - Michael Fuchs
- Division of Gastroenterology, Hepatology and Nutrition
| | - Swati Dalmet
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| | - Patrick M Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
15
|
Mondav R, McCalley CK, Hodgkins SB, Frolking S, Saleska SR, Rich VI, Chanton JP, Crill PM. Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient. Environ Microbiol 2017; 19:3201-3218. [DOI: 10.1111/1462-2920.13809] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/29/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Rhiannon Mondav
- Department of Ecology and Genetics, LimnologyUppsala UniversityUppsala75236 Sweden
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbane QLD 4072 Australia
| | - Carmody K. McCalley
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucson AZ 85721 USA
- Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurham NH 03824 USA
| | - Suzanne B. Hodgkins
- Department of Earth Ocean and Atmospheric ScienceFlorida State UniversityTallahassee FL 32306‐4320 USA
| | - Steve Frolking
- Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurham NH 03824 USA
| | - Scott R. Saleska
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucson AZ 85721 USA
| | - Virginia I. Rich
- Department of Soil, Water and Environmental ScienceUniversity of ArizonaTucson AZ 85721 USA
| | - Jeff P. Chanton
- Department of Earth Ocean and Atmospheric ScienceFlorida State UniversityTallahassee FL 32306‐4320 USA
| | - Patrick M. Crill
- Department of Geology and GeochemistryStockholm UniversityStockholm 10691 Sweden
| |
Collapse
|
16
|
Negandhi K, Laurion I, Lovejoy C. Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds. FEMS Microbiol Ecol 2016; 92:fiw117. [PMID: 27288196 DOI: 10.1093/femsec/fiw117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2016] [Indexed: 11/15/2022] Open
Abstract
One consequence of High Arctic permafrost thawing is the formation of small ponds, which release greenhouse gases (GHG) from stored carbon through microbial activity. Under a climate with higher summer air temperatures and longer ice-free seasons, sediments of shallow ponds are likely to become warmer, which could influence enzyme kinetics or select for less cryophilic microbes. There is little data on the direct temperature effects on GHG production and consumption or on microbial communities' composition in Arctic ponds. We investigated GHG production over 16 days at 4°C and 9°C in sediments collected from four thaw ponds. Consistent with an enzymatic response, production rates of CO2 and CH4 were significantly greater at higher temperatures, with Q10 varying from 1.2 to 2.5. The bacterial community composition from one pond was followed through the incubation by targeting the V6-V8 variable regions of the 16S rRNA gene and 16S rRNA. Several rare taxa detected from rRNA accounted for significant community compositional changes. At the higher temperature, the relative community contribution from Bacteroidetes decreased by 15% with compensating increases in Betaproteobacteria, Alphaproteobacteria, Firmicutes, Acidobacteria, Verrucomicrobia and Actinobacteria. The increase in experimental GHG production accompanied by changes in community indicates an additional factor to consider in sediment environments when evaluating future climate scenarios.
Collapse
Affiliation(s)
- Karita Negandhi
- Institut national de la recherche Centr Eau Terre Enironnement (INRS-ETE) and Centre for Northern Studies (CEN), Quebec, QC G1K 9A9 Canada
| | - Isabelle Laurion
- Institut national de la recherche Centr Eau Terre Enironnement (INRS-ETE) and Centre for Northern Studies (CEN), Quebec, QC G1K 9A9 Canada
| | - Connie Lovejoy
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, and Centre for Northern Studies (CEN), Université Laval, Quebec, QC G1V 0A6 Canada
| |
Collapse
|
17
|
Lin Q, He G, Rui J, Fang X, Tao Y, Li J, Li X. Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion. Microb Cell Fact 2016; 15:96. [PMID: 27260194 PMCID: PMC4893225 DOI: 10.1186/s12934-016-0491-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/23/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Temperature is an important factor determining the performance and stability of the anaerobic digestion process. However, the microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion systems remain further elusive. To address this issue, we investigated the changes in composition, diversity and activities of microbial communities under temperature gradient from 25 to 55 °C using 16S rRNA gene amplicon sequencing approach based on genomic DNA (refer to as "16S rDNA") and total RNA (refer to as "16S rRNA"). RESULTS Microbial community structure and activities changed dramatically along the temperature gradient, which corresponded to the variations in digestion performance (e.g., daily CH4 production, total biogas production and volatile fatty acids concentration). The ratios of 16S rRNA to 16S rDNA of microbial taxa, as an indicator of the potentially relative activities in situ, and whole activities of microbial community assessed by the similarity between microbial community based on 16S rDNA and rRNA, varied strongly along the temperature gradient, reflecting different metabolic activities. The daily CH4 production increased with temperature from 25 to 50 °C and declined at 55 °C. Among all the examined microbial properties, the whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities showed highest correlations to the performance. CONCLUSIONS The whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities were sensitive indicators for the performance of anaerobic digestion systems under temperature gradient, while beta-diversity could predict functional differences. Microorganism-regulated mechanisms of temperature effects on anaerobic digestion performance were likely realized through increasing alpha-diversity of both microbial communities and potentially relative activities to supply more functional pathways and activities for metabolic network, and increasing the whole activities of microbial community, especially methanogenesis, to improve the strength and efficiency in anaerobic digestion process.
Collapse
Affiliation(s)
- Qiang Lin
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guihua He
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junpeng Rui
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaoyu Fang
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong Tao
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
18
|
Lin Q, De Vrieze J, Li J, Li X. Temperature affects microbial abundance, activity and interactions in anaerobic digestion. BIORESOURCE TECHNOLOGY 2016; 209:228-236. [PMID: 26970926 DOI: 10.1016/j.biortech.2016.02.132] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Temperature is a major factor determining the performance of the anaerobic digestion process. The microbial abundance, activity and interactional networks were investigated under a temperature gradient from 25°C to 55°C through amplicon sequencing, using 16S ribosomal RNA and 16S rRNA gene-based approaches. Comparative analysis of past accumulative elements presented by 16S rRNA gene-based analysis, and the in-situ conditions presented by 16S rRNA-based analysis, provided new insights concerning the identification of microbial functional roles and interactions. The daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. Increased methanogenesis and hydrolysis at 50°C were main factors causing higher methane production which was also closely related with more well-defined methanogenic and/or related modules with comprehensive interactions and increased functional orderliness referred to more microorganisms participating in interactions. This research demonstrated the importance of evaluating functional roles and interactions of microbial community.
Collapse
Affiliation(s)
- Qiang Lin
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jo De Vrieze
- Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
19
|
Klein AM, Bohannan BJM, Jaffe DA, Levin DA, Green JL. Molecular Evidence for Metabolically Active Bacteria in the Atmosphere. Front Microbiol 2016; 7:772. [PMID: 27252689 PMCID: PMC4878314 DOI: 10.3389/fmicb.2016.00772] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/09/2016] [Indexed: 01/02/2023] Open
Abstract
Bacterial metabolisms are responsible for critical chemical transformations in nearly all environments, including oceans, freshwater, and soil. Despite the ubiquity of bacteria in the atmosphere, little is known about the metabolic functioning of atmospheric bacterial communities. To gain a better understanding of the metabolism of bacterial communities in the atmosphere, we used a combined empirical and model-based approach to investigate the structure and composition of potentially active bacterial communities in air sampled at a high elevation research station. We found that the composition of the putatively active bacterial community (assayed via rRNA) differed significantly from the total bacterial community (assayed via rDNA). Rare taxa in the total (rDNA) community were disproportionately active relative to abundant taxa, and members of the order Rhodospirillales had the highest potential for activity. We developed theory to explore the effects of random sampling from the rRNA and rDNA communities on observed differences between the communities. We found that random sampling, particularly in cases where active taxa are rare in the rDNA community, will give rise to observed differences in community composition including the occurrence of “phantom taxa”, taxa which are detected in the rRNA community but not the rDNA community. We show that the use of comparative rRNA/rDNA techniques can reveal the structure and composition of the metabolically active portion of bacterial communities. Our observations suggest that metabolically active bacteria exist in the atmosphere and that these communities may be involved in the cycling of organic compounds in the atmosphere.
Collapse
Affiliation(s)
- Ann M Klein
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR USA
| | - Brendan J M Bohannan
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR USA
| | - Daniel A Jaffe
- Department of Atmospheric Sciences, University of Washington Bothell, Bothell, WA USA
| | - David A Levin
- Department of Mathematics, University of Oregon, Eugene, OR USA
| | - Jessica L Green
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, ORUSA; Santa Fe Institute, Santa Fe, NMUSA
| |
Collapse
|
20
|
Moen B, Røssvoll E, Måge I, Møretrø T, Langsrud S. Microbiota formed on attached stainless steel coupons correlates with the natural biofilm of the sink surface in domestic kitchens. Can J Microbiol 2015; 62:148-60. [PMID: 26758935 DOI: 10.1139/cjm-2015-0562] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stainless steel coupons are frequently used in biofilm studies in the laboratory, as this material is commonly used in the food industry. The coupons are attached to different surfaces to create a "natural" biofilm to be studied further in laboratory trials. However, little has been done to investigate how well the microbiota on such coupons represents the surrounding environment. The microbiota on sink wall surfaces and on new stainless steel coupons attached to the sink wall for 3 months in 8 domestic kitchen sinks was investigated by next-generation sequencing (MiSeq) of the 16S rRNA gene derived from DNA and RNA (cDNA), and by plating and identification of colonies. The mean number of colony-forming units was about 10-fold higher for coupons than sink surfaces, and more variation in bacterial counts between kitchens was seen on sink surfaces than coupons. The microbiota in the majority of biofilms was dominated by Moraxellaceae (genus Moraxella/Enhydrobacter) and Micrococcaceae (genus Kocuria). The results demonstrated that the variation in the microbiota was mainly due to differences between kitchens (38.2%), followed by the different nucleic acid template (DNA vs RNA) (10.8%), and that only 5.1% of the variation was a result of differences between coupons and sink surfaces. The microbiota variation between sink surfaces and coupons was smaller for samples based on their RNA than on their DNA. Overall, our results suggest that new stainless steel coupons are suited to model the dominating part of the natural microbiota of the surrounding environment and, furthermore, are suitable for different downstream studies.
Collapse
Affiliation(s)
- Birgitte Moen
- a Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, N-1430 Aas, Norway
| | - Elin Røssvoll
- a Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, N-1430 Aas, Norway.,b Animalia, Norwegian Meat and Poultry Research Center, P.O. Box 396, Økern, 0513 Oslo, Norway
| | - Ingrid Måge
- a Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, N-1430 Aas, Norway
| | - Trond Møretrø
- a Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, N-1430 Aas, Norway
| | - Solveig Langsrud
- a Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, N-1430 Aas, Norway
| |
Collapse
|
21
|
Wilkins D, Rao S, Lu X, Lee PKH. Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion. Front Microbiol 2015; 6:1114. [PMID: 26528262 PMCID: PMC4602121 DOI: 10.3389/fmicb.2015.01114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/28/2015] [Indexed: 02/01/2023] Open
Abstract
Anaerobic digestion (AD) is a widespread microbial technology used to treat organic waste and recover energy in the form of methane ("biogas"). While most AD systems have been designed to treat a single input, mixtures of digester sludge and solid organic waste are emerging as a means to improve efficiency and methane yield. We examined laboratory anaerobic cultures of AD sludge from two sources amended with food waste, xylose, and xylan at mesophilic temperatures, and with cellulose at meso- and thermophilic temperatures, to determine whether and how the inoculum and substrate affect biogas yield and community composition. All substrate and inoculum combinations yielded methane, with food waste most productive by mass. Pyrosequencing of transcribed bacterial and archaeal 16S rRNA showed that community composition varied across substrates and inocula, with differing ratios of hydrogenotrophic/acetoclastic methanogenic archaea associated with syntrophic partners. While communities did not cluster by either inoculum or substrate, additional sequencing of the bacterial 16S rRNA gene in the source sludge revealed that the bacterial communities were influenced by their inoculum. These results suggest that complete and efficient AD systems could potentially be assembled from different microbial inocula and consist of taxonomically diverse communities that nevertheless perform similar functions.
Collapse
Affiliation(s)
| | | | | | - Patrick K. H. Lee
- School of Energy and Environment, City University of Hong KongKowloon Tong, Hong Kong
| |
Collapse
|
22
|
Potential DMSP-degrading Roseobacter clade dominates endosymbiotic microflora of Pyrodinium bahamense var. compressum (Dinophyceae) in vitro. Arch Microbiol 2015; 197:965-71. [PMID: 26142727 DOI: 10.1007/s00203-015-1133-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/18/2015] [Accepted: 06/28/2015] [Indexed: 10/23/2022]
Abstract
Many aspects of the biology and ecology of the toxic dinoflagellate Pyrodinium bahamense var. compressum are still poorly understood. In this brief note, we present identification of its associated intracellular bacteria or endosymbionts via PCR cloning and 16s rRNA gene sequencing and their localization by confocal microscopy, a first for Pyrodinium. The most frequently observed species in the endosymbiotic microflora were from Roseobacter clade (Alphaproteobacteria, 68%) and Gilvibacter sediminis (Flavobacteriaceae, 20%). Roseobacter lineage, the most abundant taxa in this study, is known to be involved in dimethylsulfoniopropionate metabolism which is highly produced in dinoflagellates-a possible strong factor shaping the structure of the associated bacterial community.
Collapse
|
23
|
Microbial rRNA:rDNA gene ratios may be unexpectedly low due to extracellular DNA preservation in soils. J Microbiol Methods 2015; 115:112-20. [PMID: 26055315 DOI: 10.1016/j.mimet.2015.05.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/30/2015] [Accepted: 05/30/2015] [Indexed: 01/05/2023]
Abstract
We tested a method of estimating the activity of detectable individual bacterial and archaeal OTUs within a community by calculating ratios of absolute 16S rRNA to rDNA copy numbers. We investigated phylogenetically coherent patterns of activity among soil prokaryotes in non-growing soil communities. 'Activity ratios' were calculated for bacteria and archaea in soil sampled from a tropical rainforest and temperate agricultural field and incubated for one year at two levels of moisture availability and with and without carbon additions. Prior to calculating activity ratios, we corrected the relative abundances of OTUs to account for multiple copies of the 16S gene per genome. Although necessary to ensure accurate activity ratios, this correction did not change our interpretation of differences in microbial community composition across treatments. Activity ratios in this study were lower than those previously published (0.0003-210, logarithmic mean=0.24), suggesting significant extracellular DNA preservation. After controlling for the influence of individual incubation jars, significant differences in activity ratios between all members of each phylum were observed. Planctomycetes and Firmicutes had the highest activity ratios and Crenarchaeota had the lowest activity overall. Our results suggest that greater caution should be taken in interpreting soil microbial community data derived from extracted DNA. Indirect extraction methods may be useful in ensuring that microbes identified from extracellular DNA are not erroneously interpreted as components of an active microbial community.
Collapse
|
24
|
Reid NM, Addison SL, West MA, Lloyd-Jones G. The bacterial microbiota of Stolotermes ruficeps (Stolotermitidae), a phylogenetically basal termite endemic to New Zealand. FEMS Microbiol Ecol 2014; 90:678-88. [PMID: 25196080 DOI: 10.1111/1574-6941.12424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 12/01/2022] Open
Abstract
Stolotermes ruficeps is a widespread, primitive, lower termite occupying dead and decaying wood of many tree species in New Zealand's temperate forests. We identified core bacterial taxa involved in gut processes through combined DNA- and RNA (cDNA)-based pyrosequencing analysis of the 16S nucleotide sequence from five S. ruficeps colonies. Most family and many genus-level taxa were common to S. ruficeps colonies despite being sampled from different tree species. Major taxa identified were Spirochaetaceae, Elusimicrobiaceae and Porphyromonadaceae. Others less well known in termite guts were Synergistaceae, Desulfobacteraceae, Rhodocyclaceae, Lachnospiraceae and Ruminococcaceae. Synergistaceae, Lachnospiraceae and Spirochaetaceae were well represented in the RNA data set, indicating a high-protein synthesis potential. Using 130,800 sequences from nine S. ruficeps DNA and RNA data sets, we estimated a high level of bacterial richness (4024 phylotypes at 3% genetic distance). Very few abundant phylotypes were site-specific; almost all (95%) abundant phylotypes, representing 97% of data set sequences, were detected in at least two S. ruficeps colonies. This study of a little-researched phylogenetically basal termite identifies core bacteria taxa. These findings will extend inventories of termite gut microbiota and contribute to the understanding of the specificity of termite gut microbiota.
Collapse
|
25
|
Salter I, Galand PE, Fagervold SK, Lebaron P, Obernosterer I, Oliver MJ, Suzuki MT, Tricoire C. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME JOURNAL 2014; 9:347-60. [PMID: 25238399 PMCID: PMC4303628 DOI: 10.1038/ismej.2014.129] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/29/2014] [Accepted: 06/05/2014] [Indexed: 01/08/2023]
Abstract
A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time<5 h). We propose a conceptual framework in which physical mixing of the water column periodically resets SAR11 communities to a high diversity state and the seasonal evolution of phosphate limitation competitively excludes deeper-dwelling ecotypes to promote low diversity states dominated (>80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q(2)=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study.
Collapse
Affiliation(s)
- Ian Salter
- 1] Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany [2] Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-Sur-Mer, France [3] CNRS, UMR 7621, LOMIC, Observatoire Océanologique, Banyuls-Sur-Mer, France
| | - Pierre E Galand
- 1] Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-Sur-Mer, France [2] CNRS, UMR 8222, LECOB, Observatoire Océanologique, Banyuls-Sur-Mer, France
| | - Sonja K Fagervold
- 1] Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-Sur-Mer, France [2] CNRS, UMR 8222, LECOB, Observatoire Océanologique, Banyuls-Sur-Mer, France [3] CNRS, USR 3579, LBBM, Observatoire Océanologique, Banyuls-Sur-Mer, France
| | - Philippe Lebaron
- 1] Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-Sur-Mer, France [2] CNRS, USR 3579, LBBM, Observatoire Océanologique, Banyuls-Sur-Mer, France
| | - Ingrid Obernosterer
- 1] Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-Sur-Mer, France [2] CNRS, UMR 7621, LOMIC, Observatoire Océanologique, Banyuls-Sur-Mer, France
| | - Matthew J Oliver
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Marcelino T Suzuki
- 1] Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-Sur-Mer, France [2] CNRS, USR 3579, LBBM, Observatoire Océanologique, Banyuls-Sur-Mer, France
| | - Cyrielle Tricoire
- Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-Sur-Mer, France
| |
Collapse
|
26
|
D'Ambrosio L, Ziervogel K, MacGregor B, Teske A, Arnosti C. Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison. ISME JOURNAL 2014; 8:2167-79. [PMID: 24763371 DOI: 10.1038/ismej.2014.67] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 03/19/2014] [Accepted: 03/23/2014] [Indexed: 11/09/2022]
Abstract
We compared the function and composition of free-living and particle-associated microbial communities at an inshore site in coastal North Carolina and across a depth profile on the Blake Ridge (offshore). Hydrolysis rates of six different polysaccharide substrates were compared for particle-associated (>3 μm) and free-living (<3 to 0.2 μm) microbial communities. The 16S rRNA- and rDNA-based clone libraries were produced from the same filters used to measure hydrolysis rates. Particle-associated and free-living communities resembled one another; they also showed similar enzymatic hydrolysis rates and substrate preferences. All six polysaccharides were hydrolyzed inshore. Offshore, only a subset was hydrolyzed in surface water and at depths of 146 and 505 m; just three polysaccharides were hydrolyzed at 505 m. The spectrum of bacterial taxa changed more subtly between inshore and offshore surface waters, but changed greatly with depth offshore. None of the OTUs occurred at all sites: 27 out of the 28 major OTUs defined in this study were found either exclusively in a surface or in a mid-depth/bottom water sample. This distinction was evident with both 16S rRNA and rDNA analyses. At the offshore site, despite the low community overlap, bacterial communities maintained a degree of functional redundancy on the whole bacterial community level with respect to hydrolysis of high-molecular-weight substrates.
Collapse
Affiliation(s)
- Lindsay D'Ambrosio
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kai Ziervogel
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Barbara MacGregor
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carol Arnosti
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Deng J, Brettar I, Luo C, Auchtung J, Konstantinidis KT, Rodrigues JLM, Höfle M, Tiedje JM. Stability, genotypic and phenotypic diversity of Shewanella baltica in the redox transition zone of the Baltic Sea. Environ Microbiol 2014; 16:1854-66. [PMID: 24286373 DOI: 10.1111/1462-2920.12344] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 11/25/2013] [Indexed: 11/30/2022]
Abstract
Studying how bacterial strains diverge over space and time and how divergence leads to ecotype formation is important for understanding structure and dynamics of environmental communities. Here we assess the ecological speciation and temporal dynamics of a collection of Shewanella baltica strains from the redox transition zone of the central Baltic Sea, sampled at three time points over a course of 12 years, with a subcollection containing 46 strains subjected to detailed genetic and physiological characterization. Nine clades were consistently recovered by three different genotyping approaches: gyrB gene sequencing, multilocus sequence typing (MLST) and whole genome clustering of data from comparative genomic hybridization, and indicated specialization according to nutrient availability, particle association and temporal distribution. Genomic analysis suggested higher intra- than inter-clade recombination that might result from niche partitioning. Substantial heterogeneity in carbon utilization and respiratory capabilities suggested rapid diversification within the same 'named' species and physical habitat and showed consistency with genetic relatedness. At least two major ecotypes, represented by MLST clades A and E, were proposed based on genetic, ecological and physiological distinctiveness. This study suggests that genetic analysis in conjunction with phenotypic evaluation can provide better understanding of the ecological framework and evolutionary trajectories of microbial species.
Collapse
Affiliation(s)
- Jie Deng
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lu X, Rao S, Shen Z, Lee PKH. Substrate induced emergence of different active bacterial and archaeal assemblages during biomethane production. BIORESOURCE TECHNOLOGY 2013; 148:517-24. [PMID: 24080290 DOI: 10.1016/j.biortech.2013.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 05/19/2023]
Abstract
This study analyzed the composition of a methane-generating microbial community and the corresponding active members during the transformation of three target substrates (food waste, cellulose or xylan) by barcoded 454 pyrosequencing of the bacterial and archaeal 16S rRNA genes in the DNA and RNA. The number of operational taxonomic units at 97% similarity for bacteria and archaea ranged from 162-261 and 31-166, respectively. Principal coordinates analysis and Venn diagram revealed that there were significant differences in the microbial community structure between the active members transforming each substrate and the inoculum. The active bacterial populations detected were those required for the hydrolysis of the amended substrate. The active archaeal populations were methanogens but the ratio of Methanosarcinales and Methanomicrobiales varied between the cultures. Overall, results of this study showed that a subset of the populations became active and altered in relative abundance during methane production according to the amended substrate.
Collapse
Affiliation(s)
- Xiaoying Lu
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
29
|
Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. THE ISME JOURNAL 2013; 7:2061-8. [PMID: 23823491 PMCID: PMC3806256 DOI: 10.1038/ismej.2013.102] [Citation(s) in RCA: 467] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 05/02/2013] [Accepted: 05/22/2013] [Indexed: 12/26/2022]
Abstract
Microbes exist in a range of metabolic states (for example, dormant, active and growing) and analysis of ribosomal RNA (rRNA) is frequently employed to identify the 'active' fraction of microbes in environmental samples. While rRNA analyses are no longer commonly used to quantify a population's growth rate in mixed communities, due to rRNA concentration not scaling linearly with growth rate uniformly across taxa, rRNA analyses are still frequently used toward the more conservative goal of identifying populations that are currently active in a mixed community. Yet, evidence indicates that the general use of rRNA as a reliable indicator of metabolic state in microbial assemblages has serious limitations. This report highlights the complex and often contradictory relationships between rRNA, growth and activity. Potential mechanisms for confounding rRNA patterns are discussed, including differences in life histories, life strategies and non-growth activities. Ways in which rRNA data can be used for useful characterization of microbial assemblages are presented, along with questions to be addressed in future studies.
Collapse
Affiliation(s)
- Steven J Blazewicz
- The Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Romain L Barnard
- The Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Rebecca A Daly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mary K Firestone
- The Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
30
|
Henne K, Kahlisch L, Höfle MG, Brettar I. Seasonal dynamics of bacterial community structure and composition in cold and hot drinking water derived from surface water reservoirs. WATER RESEARCH 2013; 47:5614-5630. [PMID: 23890873 DOI: 10.1016/j.watres.2013.06.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/29/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
In temperate regions, seasonal variability of environmental factors affects the bacterial community in source water and finished drinking water. Therefore, the bacterial core community and its seasonal variability in cold and the respective hot drinking water was investigated. The bacterial core community was studied by 16S rRNA-based SSCP fingerprint analyses and band sequencing of DNA and RNA extracts of cold and hot water (60 °C). The bacterial communities of cold and hot drinking water showed a highly different structure and phylogenetic composition both for RNA and DNA extracts. For cold drinking water substantial seasonal dynamics of the bacterial community was observed related to environmental factors such as temperature and precipitation affecting source and drinking water. Phylogenetic analyses of the cold water community indicated that the majority of phylotypes were very closely affiliated with those detected in former studies of the same drinking water supply system (DWSS) in the preceding 6 years, indicating a high stability over time. The hot water community was very stable over time and seasons and highly distinct from the cold water with respect to structure and composition. The hot water community displayed a lower diversity and its phylotypes were mostly affiliated with bacteria of high temperature habitats with high growth rates indicated by their high RNA content. The conversion of the cold to the hot water bacterial community is considered as occurring within a few hours by the following two processes, i) by decay of most of the cold water bacteria due to heating, and ii) rapid growth of the high temperature adapted bacteria present in the hot water (co-heated with the cold water in the same device) using the nutrients released from the decaying cold water bacteria. The high temperature adapted bacteria originated partially from low abundant but beforehand detected members of the cold water; additionally, the rare members ("seed bank ") of the cold water are considered as a source.
Collapse
Affiliation(s)
- Karsten Henne
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
31
|
SUP05 dominates the Gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the central Baltic and Black Seas. Appl Environ Microbiol 2013; 79:2767-76. [PMID: 23417000 DOI: 10.1128/aem.03777-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Gammaproteobacterial sulfur oxidizers (GSOs), particularly SUP05-related sequences, have been found worldwide in numerous oxygen-deficient marine environments. However, knowledge regarding their abundance, distribution, and ecological role is scarce. In this study, on the basis of phylogenetic analyses of 16S rRNA gene sequences originating from a Baltic Sea pelagic redoxcline, the in situ abundances of different GSO subgroups were quantified by CARD-FISH (catalyzed reporter fluorescence in situ hybridization) with oligonucleotide probes developed specifically for this purpose. Additionally, ribulose bisphosphate carboxylase/oxygenase form II (cbbM) gene transcript clone libraries were used to detect potential active chemolithoautotrophic GSOs in the Baltic Sea. Taken together, the results obtained by these two approaches demonstrated the existence of two major phylogenetic subclusters embedded within the GSO, one of them affiliated with sequences of the previously described SUP05 subgroup. CARD-FISH analyses revealed that only SUP05 occurred in relatively high numbers, reaching 10 to 30% of the total prokaryotes around the oxic-anoxic interface, where oxygen and sulfide concentrations are minimal. The applicability of the oligonucleotide probes was confirmed with samples from the Black Sea redoxcline, in which the SUP05 subgroup accounted for 10 to 13% of the total prokaryotic abundance. The cbbM transcripts presumably originating from SUP05 cells support previous evidence for the chemolithoautotrophic activity of this phylogenetic group. Our findings on the vertical distribution and high abundance of SUP05 suggest that this group plays an important role in marine redoxcline biogeochemistry, probably as anaerobic or aerobic sulfur oxidizers.
Collapse
|
32
|
Meir A, Bayer EA, Livnah O. Structural adaptation of a thermostable biotin-binding protein in a psychrophilic environment. J Biol Chem 2012; 287:17951-62. [PMID: 22493427 DOI: 10.1074/jbc.m112.357186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Shwanavidin is an avidin-like protein from the marine proteobactrium Shewanella denitrificans, which exhibits an innate dimeric structure while maintaining high affinity toward biotin. A unique residue (Phe-43) from the L3,4 loop and a distinctive disulfide bridge were shown to account for the high affinity toward biotin. Phe-43 emulates the function and position of the critical intermonomeric Trp that characterizes the tetrameric avidins but is lacking in shwanavidin. The 18 copies of the apo-monomer revealed distinctive snapshots of L3,4 and Phe-43, providing rare insight into loop flexibility, binding site accessibility, and psychrophilic adaptation. Nevertheless, as in all avidins, shwanavidin also displays high thermostability properties. The unique features of shwanavidin may provide a platform for the design of a long sought after monovalent form of avidin, which would be ideal for novel types of biotechnological application.
Collapse
Affiliation(s)
- Amit Meir
- Department of Biological Chemistry, the Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | | | | |
Collapse
|
33
|
Analysis of structure and composition of bacterial core communities in mature drinking water biofilms and bulk water of a citywide network in Germany. Appl Environ Microbiol 2012; 78:3530-8. [PMID: 22389373 DOI: 10.1128/aem.06373-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.
Collapse
|
34
|
Marty F, Ghiglione JF, Païssé S, Gueuné H, Quillet L, van Loosdrecht MCM, Muyzer G. Evaluation and optimization of nucleic acid extraction methods for the molecular analysis of bacterial communities associated with corroded carbon steel. BIOFOULING 2012; 28:363-380. [PMID: 22500778 DOI: 10.1080/08927014.2012.672644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Different DNA and RNA extraction approaches were evaluated and protocols optimized on in situ corrosion products from carbon steel in marine environments. Protocols adapted from the PowerSoil DNA/RNA Isolation methods resulted in the best nucleic acid (NA) extraction performances (ie combining high NA yield, quality, purity, representativeness of microbial community and processing time efficiency). The PowerSoil RNA Isolation Kit was the only method which resulted in amplifiable RNA of good quality (ie intact 16S/23S rRNA). Sample homogenization and hot chemical (SDS) cell lysis combined with mechanical (bead-beating) lysis in presence of a DNA competitor (skim milk) contributed to improving substantially (around 23 times) the DNA yield of the PowerSoil DNA Isolation Kit. Apart from presenting NA extraction strategies for optimizing extraction parameters with corrosion samples from carbon steel, this study proposes DNA and RNA extraction procedures suited for comparative molecular analysis of total and active fractions of bacterial communities associated with carbon steel corrosion events, thereby contributing to improved MIC diagnosis and control.
Collapse
Affiliation(s)
- Florence Marty
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | | | | | | | | | | | | |
Collapse
|