1
|
Weaver AA, Shrout JD. Use of analytical strategies to understand spatial chemical variation in bacterial surface communities. J Bacteriol 2025; 207:e0040224. [PMID: 39873490 PMCID: PMC11841061 DOI: 10.1128/jb.00402-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Not only do surface-growing microbes such as biofilms display specific traits compared to planktonic cells, but also they display many heterogeneous behaviors over many spatial and temporal contexts. While the application of molecular genetics tools to extract or visualize gene expression or regulatory function data is now common in studying surface growth, the use of analytical chemistry tools to visualize the spatiotemporal distribution of chemical products synthesized by these surface microbes is less common. Here, we review chemical imaging tools that have been used to inform our understanding of surface-growing microbes. We highlight the use of confocal Raman Microscopy, surface-enhanced Raman spectroscopy, matrix-assisted laser desorption/ionization, secondary ion mass spectrometry, desorption electrospray ionization, and electrochemical imaging that have been applied to assess two-dimensional chemical profiles of bacteria. We specifically discuss the use of these tools to study rhamnolipids, alkylquinolones, and phenazines of the bacterium Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Abigail A. Weaver
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
Seibel E, Um S, Bodawatta KH, Komor AJ, Decker T, Fricke J, Murphy R, Maiah G, Iova B, Maus H, Schirmeister T, Jønsson KA, Poulsen M, Beemelmanns C. Bacteria from the Amycolatopsis genus associated with a toxic bird secrete protective secondary metabolites. Nat Commun 2024; 15:8524. [PMID: 39358325 PMCID: PMC11446937 DOI: 10.1038/s41467-024-52316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Uropygial gland secretions of birds consist of host and bacteria derived compounds and play a major sanitary and feather-protective role. Here we report on our microbiome studies of the New Guinean toxic bird Pachycephala schlegelii and the isolation of a member of the Amycolatopsis genus from the uropygial gland secretions. Bioactivity studies in combination with co-cultures, MALDI imaging and HR-MS/MS-based network analyses unveil the basis of its activity against keratinolytic bacteria and fungal skin pathogens. We trace the protective antimicrobial activity of Amycolatopsis sp. PS_44_ISF1 to the production of rifamycin congeners, ciromicin A and of two yet unreported compound families. We perform NMR and HR-MS/MS studies to determine the relative structures of six members belonging to a yet unreported lipopeptide family of pachycephalamides and of one representative of the demiguisins, a new hexapeptide family. We then use a combination of phylogenomic, transcriptomic and knock-out studies to identify the underlying biosynthetic gene clusters responsible for the production of pachycephalamides and demiguisins. Our metabolomics data allow us to map molecular ion features of the identified metabolites in extracts of P. schlegelii feathers, verifying their presence in the ecological setting where they exert their presumed active role for hosts. Our study shows that members of the Actinomycetota may play a role in avian feather protection.
Collapse
Affiliation(s)
- Elena Seibel
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Soohyun Um
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy Yonsei University, Songdogwahak-ro 85, Incheon, 21983, Republic of Korea
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, Research and Collections University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Anna J Komor
- Department of Biomolecular Chemistry, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Tanya Decker
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Janis Fricke
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Robert Murphy
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Gibson Maiah
- The New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Bulisa Iova
- Papua New Guinea National Museum and Art Gallery, Port Moresby, Papua New Guinea
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Knud Andreas Jønsson
- Natural History Museum of Denmark, Research and Collections University of Copenhagen, 2100, Copenhagen East, Denmark
- Swedish Museum of Natural History, Department of Bioinformatics and Genetics, P.O. Box 50007, SE-10405, Stockholm, Sweden
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Christine Beemelmanns
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany.
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
- Saarland University, Campus, 66123, Saarbrücken, Germany.
| |
Collapse
|
3
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
4
|
Villette C, Maurer L, Zumsteg J, Mutterer J, Wanko A, Heintz D. Mass spectrometry imaging for biosolids characterization to assess ecological or health risks before reuse. Nat Commun 2023; 14:4244. [PMID: 37454165 PMCID: PMC10349827 DOI: 10.1038/s41467-023-40051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Biosolids are byproducts of wastewater treatment. With the increasing global population, the amounts of wastewater to be treated are expanding, along with the amounts of biosolids generated. The reuse of biosolids is now accepted for diversified applications in fields such as agriculture, engineering, agro-forestry. However, biosolids are known to be potential carriers of compounds that can be toxic to living beings or alter the environment. Therefore, biosolid reuse is subject to regulations, mandatory analyses are performed on heavy metals, persistent organic pollutants or pathogens. Conventional methods for the analysis of heavy metals and persistent organic pollutants are demanding, lengthy, and sometimes unsafe. Here, we propose mass spectrometry imaging as a faster and safer method using small amounts of material to monitor heavy metals and persistent organic pollutants in different types of biosolids, allowing for ecological and health risk assessment before reuse. Our methodology can be extended to other soil-like matrices.
Collapse
Affiliation(s)
- Claire Villette
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Loïc Maurer
- Université de Strasbourg, CNRS, ENGEES, ICube UMR 7357, F-67000, Strasbourg, France
| | - Julie Zumsteg
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Jérôme Mutterer
- Microscopie et Imagerie Cellulaire, Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Adrien Wanko
- Université de Strasbourg, CNRS, ENGEES, ICube UMR 7357, F-67000, Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France.
| |
Collapse
|
5
|
Lima NM, Dos Santos GF, da Silva Lima G, Vaz BG. Advances in Mass Spectrometry-Metabolomics Based Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:101-122. [PMID: 37843807 DOI: 10.1007/978-3-031-41741-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Highly selective and sensitive analytical techniques are necessary for microbial metabolomics due to the complexity of the microbial sample matrix. Hence, mass spectrometry (MS) has been successfully applied in microbial metabolomics due to its high precision, versatility, sensitivity, and wide dynamic range. The different analytical tools using MS have been employed in microbial metabolomics investigations and can contribute to the discovery or accelerate the search for bioactive substances. The coupling with chromatographic and electrophoretic separation techniques has resulted in more efficient technologies for the analysis of microbial compounds occurring in trace levels. This book chapter describes the current advances in the application of mass spectrometry-based metabolomics in the search for new biologically active agents from microbial sources; the development of new approaches for in silico annotation of natural products; the different technologies employing mass spectrometry imaging to deliver more comprehensive analysis and elucidate the metabolome involved in ecological interactions as they enable visualization of the spatial dispersion of small molecules. We also describe other ambient ionization techniques applied to the fingerprint of microbial natural products and modern techniques such as ion mobility mass spectrometry used to microbial metabolomic analyses and the dereplication of natural microbial products through MS.
Collapse
|
6
|
Li H, Li Z. The Exploration of Microbial Natural Products and Metabolic Interaction Guided by Mass Spectrometry Imaging. Bioengineering (Basel) 2022; 9:707. [PMID: 36421108 PMCID: PMC9687252 DOI: 10.3390/bioengineering9110707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 10/17/2023] Open
Abstract
As an impressive mass spectrometry technology, mass spectrometric imaging (MSI) can provide mass spectra data and spatial distribution of analytes simultaneously. MSI has been widely used in diverse fields such as clinical diagnosis, the pharmaceutical industry and environmental study due to its accuracy, high resolution and developing reproducibility. Natural products (NPs) have been a critical source of leading drugs; almost half of marketed drugs are derived from NPs or their derivatives. The continuous search for bioactive NPs from microorganisms or microbiomes has always been attractive. MSI allows us to analyze and characterize NPs directly in monocultured microorganisms or a microbial community. In this review, we briefly introduce current mainstream ionization technologies for microbial samples and the key issue of sample preparation, and then summarize some applications of MSI in the exploration of microbial NPs and metabolic interaction, especially NPs from marine microbes. Additionally, remaining challenges and future prospects are discussed.
Collapse
Affiliation(s)
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Imaging Mass Spectrometry Reveals Complex Lipid Distributions Across Staphylococcus aureus Biofilm Layers. J Mass Spectrom Adv Clin Lab 2022; 26:36-46. [PMID: 36388058 PMCID: PMC9641601 DOI: 10.1016/j.jmsacl.2022.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Although Staphylococcus aureus is the leading cause of biofilm-related infections, the lipidomic distributions within these biofilms is poorly understood. Here, lipidomic mapping of S. aureus biofilm cross-sections was performed to investigate heterogeneity between horizontal biofilm layers. Methods S. aureus biofilms were grown statically, embedded in a mixture of carboxymethylcellulose/gelatin, and prepared for downstream matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS). Trapped ion mobility spectrometry (TIMS) was also applied prior to mass analysis. Results Implementation of TIMS led to a ∼ threefold increase in the number of lipid species detected. Washing biofilm samples with ammonium formate (150 mM) increased signal intensity for some bacterial lipids by as much as tenfold, with minimal disruption of the biofilm structure. MALDI TIMS IMS revealed that most lipids localize primarily to a single biofilm layer, and species from the same lipid class such as cardiolipins CL(57:0) - CL(66:0) display starkly different localizations, exhibiting between 1.5 and 6.3-fold intensity differences between layers (n = 3, p < 0.03). No horizontal layers were observed within biofilms grown anaerobically, and lipids were distributed homogenously. Conclusions High spatial resolution analysis of S. aureus biofilm cross-sections by MALDI TIMS IMS revealed stark lipidomic heterogeneity between horizontal S. aureus biofilm layers demonstrating that each layer was molecularly distinct. Finally, this workflow uncovered an absence of layers in biofilms grown under anaerobic conditions, possibly indicating that oxygen contributes to the observed heterogeneity under aerobic conditions. Future applications of this workflow to study spatially localized molecular responses to antimicrobials could provide new therapeutic strategies.
Collapse
|
8
|
Bauermeister A, Mannochio-Russo H, Costa-Lotufo LV, Jarmusch AK, Dorrestein PC. Mass spectrometry-based metabolomics in microbiome investigations. Nat Rev Microbiol 2022; 20:143-160. [PMID: 34552265 PMCID: PMC9578303 DOI: 10.1038/s41579-021-00621-9] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Microbiotas are a malleable part of ecosystems, including the human ecosystem. Microorganisms affect not only the chemistry of their specific niche, such as the human gut, but also the chemistry of distant environments, such as other parts of the body. Mass spectrometry-based metabolomics is one of the key technologies to detect and identify the small molecules produced by the human microbiota, and to understand the functional role of these microbial metabolites. This Review provides a foundational introduction to common forms of untargeted mass spectrometry and the types of data that can be obtained in the context of microbiome analysis. Data analysis remains an obstacle; therefore, the emphasis is placed on data analysis approaches and integrative analysis, including the integration of microbiome sequencing data.
Collapse
Affiliation(s)
- Anelize Bauermeister
- Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil,Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Helena Mannochio-Russo
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, SP, Brazil,Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | | | - Alan K. Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA.,Department of Pediatrics, University of California, San Diego, CA, USA.,Center for Microbiome Innovation, University of California, San Diego, CA, USA
| |
Collapse
|
9
|
Abstract
Bacillus subtilis is a soil bacterium that can form biofilms, which are communities of cells encased by an extracellular matrix. In these complex communities, cells perform numerous metabolic processes and undergo differentiation into functionally distinct phenotypes as a survival strategy. Because biofilms are often studied in bulk, it remains unclear how metabolite production spatially correlates with B. subtilis phenotypes within biofilm structures. In many cases, we still do not know where these biological processes are occurring in the biofilm. Here, we developed a method to analyze the localization of molecules within sagittal thin sections of B. subtilis biofilms using high-resolution mass spectrometry imaging. We correlated the organization of specific molecules to the localization of well-studied B. subtilis phenotypic reporters determined by confocal laser scanning fluorescence microscopy within analogous biofilm thin sections. The correlations between these two data sets suggest the role of surfactin as a signal for extracellular matrix gene expression in the biofilm periphery and the role of bacillibactin as an iron-scavenging molecule. Taken together, this method will help us generate hypotheses to discover relationships between metabolites and phenotypic cell states in B. subtilis and other biofilm-forming bacteria. IMPORTANCE Bacterial biofilms are complex and heterogeneous structures. Cells within biofilms carry out numerous metabolic processes in a nuanced and organized manner, details of which are still being discovered. Here, we used multimodal imaging to analyze B. subtilis biofilm processes at the metabolic and gene expression levels in biofilm sagittal thin sections. Often, imaging techniques analyze only the top of the surface of the biofilm and miss the multifaceted interactions that occur deep within the biofilm. Our analysis of the sagittal planes of B. subtilis biofilms revealed the distributions of metabolic processes throughout the depths of these structures and allowed us to draw correlations between metabolites and phenotypically important subpopulations of B. subtilis cells. This technique provides a platform to generate hypotheses about the role of specific molecules and their relationships to B. subtilis subpopulations of cells.
Collapse
|
10
|
Díaz-Pascual F, Lempp M, Nosho K, Jeckel H, Jo JK, Neuhaus K, Hartmann R, Jelli E, Hansen MF, Price-Whelan A, Dietrich LEP, Link H, Drescher K. Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies. eLife 2021; 10:e70794. [PMID: 34751128 PMCID: PMC8579308 DOI: 10.7554/elife.70794] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022] Open
Abstract
Bacteria commonly live in spatially structured biofilm assemblages, which are encased by an extracellular matrix. Metabolic activity of the cells inside biofilms causes gradients in local environmental conditions, which leads to the emergence of physiologically differentiated subpopulations. Information about the properties and spatial arrangement of such metabolic subpopulations, as well as their interaction strength and interaction length scales are lacking, even for model systems like Escherichia coli colony biofilms grown on agar-solidified media. Here, we use an unbiased approach, based on temporal and spatial transcriptome and metabolome data acquired during E. coli colony biofilm growth, to study the spatial organization of metabolism. We discovered that alanine displays a unique pattern among amino acids and that alanine metabolism is spatially and temporally heterogeneous. At the anoxic base of the colony, where carbon and nitrogen sources are abundant, cells secrete alanine via the transporter AlaE. In contrast, cells utilize alanine as a carbon and nitrogen source in the oxic nutrient-deprived region at the colony mid-height, via the enzymes DadA and DadX. This spatially structured alanine cross-feeding influences cellular viability and growth in the cross-feeding-dependent region, which shapes the overall colony morphology. More generally, our results on this precisely controllable biofilm model system demonstrate a remarkable spatiotemporal complexity of metabolism in biofilms. A better characterization of the spatiotemporal metabolic heterogeneities and dependencies is essential for understanding the physiology, architecture, and function of biofilms.
Collapse
Affiliation(s)
| | - Martin Lempp
- Max Planck Institute for Terrestrial
MicrobiologyMarburgGermany
| | - Kazuki Nosho
- Max Planck Institute for Terrestrial
MicrobiologyMarburgGermany
| | - Hannah Jeckel
- Max Planck Institute for Terrestrial
MicrobiologyMarburgGermany
- Department of Physics,
Philipps-Universität MarburgMarburgGermany
- Biozentrum, University of
BaselBaselSwitzerland
| | - Jeanyoung K Jo
- Department of Biological Sciences,
Columbia UniversityNew YorkUnited
States
| | - Konstantin Neuhaus
- Max Planck Institute for Terrestrial
MicrobiologyMarburgGermany
- Department of Physics,
Philipps-Universität MarburgMarburgGermany
- Biozentrum, University of
BaselBaselSwitzerland
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial
MicrobiologyMarburgGermany
| | - Eric Jelli
- Max Planck Institute for Terrestrial
MicrobiologyMarburgGermany
- Department of Physics,
Philipps-Universität MarburgMarburgGermany
| | | | - Alexa Price-Whelan
- Department of Biological Sciences,
Columbia UniversityNew YorkUnited
States
| | - Lars EP Dietrich
- Department of Biological Sciences,
Columbia UniversityNew YorkUnited
States
| | - Hannes Link
- Max Planck Institute for Terrestrial
MicrobiologyMarburgGermany
- Interfaculty Institute for Microbiology
and Infection Medicine, Eberhard Karls Universität
TübingenTübingenGermany
| | - Knut Drescher
- Max Planck Institute for Terrestrial
MicrobiologyMarburgGermany
- Department of Physics,
Philipps-Universität MarburgMarburgGermany
- Biozentrum, University of
BaselBaselSwitzerland
| |
Collapse
|
11
|
Jones ML, Rivett DW, Pascual-García A, Bell T. Relationships between community composition, productivity and invasion resistance in semi-natural bacterial microcosms. eLife 2021; 10:e71811. [PMID: 34662276 PMCID: PMC8523168 DOI: 10.7554/elife.71811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/19/2021] [Indexed: 01/03/2023] Open
Abstract
Common garden experiments that inoculate a standardised growth medium with synthetic microbial communities (i.e. constructed from individual isolates or using dilution cultures) suggest that the ability of the community to resist invasions by additional microbial taxa can be predicted by the overall community productivity (broadly defined as cumulative cell density and/or growth rate). However, to the best of our knowledge, no common garden study has yet investigated the relationship between microbial community composition and invasion resistance in microcosms whose compositional differences reflect natural, rather than laboratory-designed, variation. We conducted experimental invasions of two bacterial strains (Pseudomonas fluorescens and Pseudomonas putida) into laboratory microcosms inoculated with 680 different mixtures of bacteria derived from naturally occurring microbial communities collected in the field. Using 16S rRNA gene amplicon sequencing to characterise microcosm starting composition, and high-throughput assays of community phenotypes including productivity and invader survival, we determined that productivity is a key predictor of invasion resistance in natural microbial communities, substantially mediating the effect of composition on invasion resistance. The results suggest that similar general principles govern invasion in artificial and natural communities, and that factors affecting resident community productivity should be a focal point for future microbial invasion experiments.
Collapse
Affiliation(s)
- Matt Lloyd Jones
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscotUnited Kingdom
| | - Damian William Rivett
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscotUnited Kingdom
| | - Alberto Pascual-García
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscotUnited Kingdom
| | - Thomas Bell
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscotUnited Kingdom
| |
Collapse
|
12
|
Bai H, Linder KE, Muddiman DC. Three-dimensional (3D) imaging of lipids in skin tissues with infrared matrix-assisted laser desorption electrospray ionization (MALDESI) mass spectrometry. Anal Bioanal Chem 2021; 413:2793-2801. [PMID: 33388847 DOI: 10.1007/s00216-020-03105-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
Three-dimensional (3D) mass spectrometry imaging (MSI) has become a growing frontier as it has the potential to provide a 3D representation of analytes in a label-free, untargeted, and chemically specific manner. The most common 3D MSI is accomplished by the reconstruction of 2D MSI from serial cryosections; however, this presents significant challenges in image alignment and registration. An alternative method would be to sequentially image a sample by consecutive ablation events to create a 3D image. In this study, we describe the use of infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) in ablation-based 3D MSI for analyses of lipids within fresh frozen skin tissue. Depth resolution using different laser energy levels was explored with a confocal laser scanning microscope to establish the imaging parameters for skin. The lowest and highest laser energy level resulted in a depth resolution of 7 μm and 18 μm, respectively. A total of 594 lipids were putatively detected and detailed lipid profiles across different skin layers were revealed in a 56-layer 3D imaging experiment. Correlated with histological information, the skin structure was characterized with differential lipid distributions with a lateral resolution of 50 μm and a z resolution of 7 μm.
Collapse
Affiliation(s)
- Hongxia Bai
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Keith E Linder
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27695, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA. .,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA. .,Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
13
|
Grainha T, Jorge P, Alves D, Lopes SP, Pereira MO. Unraveling Pseudomonas aeruginosa and Candida albicans Communication in Coinfection Scenarios: Insights Through Network Analysis. Front Cell Infect Microbiol 2020; 10:550505. [PMID: 33262953 PMCID: PMC7686562 DOI: 10.3389/fcimb.2020.550505] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Modern medicine is currently facing huge setbacks concerning infection therapeutics as microorganisms are consistently knocking down every antimicrobial wall set before them. The situation becomes more worrying when taking into account that, in both environmental and disease scenarios, microorganisms present themselves as biofilm communities that are often polymicrobial. This comprises a competitive advantage, with interactions between different species altering host responses, antimicrobial effectiveness, microbial pathogenesis and virulence, usually augmenting the severity of the infection and contributing for the recalcitrance towards conventional therapy. Pseudomonas aeruginosa and Candida albicans are two opportunistic pathogens often co-isolated from infections, mainly from mucosal tissues like the lung. Despite the billions of years of co-existence, this pair of microorganisms is a great example on how little is known about cross-kingdom interactions, particularly within the context of coinfections. Given the described scenario, this study aimed to collect, curate, and analyze all published experimental information on the molecular basis of P. aeruginosa and C. albicans interactions in biofilms, in order to shed light into key mechanisms that may affect infection prognosis, increasing this area of knowledge. Publications were optimally retrieved from PubMed and Web of Science and classified as to their relevance. Data was then systematically and manually curated, analyzed, and further reconstructed as networks. A total of 641 interactions between the two pathogens were annotated, outputting knowledge on important molecular players affecting key virulence mechanisms, such as hyphal growth, and related genes and proteins, constituting potential therapeutic targets for infections related to these bacterial-fungal consortia. Contrasting interactions were also analyzed, and quorum-sensing inhibition approaches were highlighted. All annotated data was made publicly available at www.ceb.uminho.pt/ISCTD, a database already containing similar data for P. aeruginosa and Staphylococcus aureus communication. This will allow researchers to cut on time and effort when studying this particular subject, facilitating the understanding of the basis of the inter-species and inter-kingdom interactions and how it can be modulated to help design alternative and more effective tailored therapies. Finally, data deposition will serve as base for future dataset integration, whose analysis will hopefully give insights into communications in more complex and varied biofilm communities.
Collapse
Affiliation(s)
- Tânia Grainha
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Paula Jorge
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Diana Alves
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Susana Patrícia Lopes
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Maria Olívia Pereira
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
14
|
Alexandrov T. Spatial Metabolomics and Imaging Mass Spectrometry in the Age of Artificial Intelligence. Annu Rev Biomed Data Sci 2020; 3:61-87. [PMID: 34056560 DOI: 10.1146/annurev-biodatasci-011420-031537] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spatial metabolomics is an emerging field of omics research that has enabled localizing metabolites, lipids, and drugs in tissue sections, a feat considered impossible just two decades ago. Spatial metabolomics and its enabling technology-imaging mass spectrometry-generate big hyper-spectral imaging data that have motivated the development of tailored computational methods at the intersection of computational metabolomics and image analysis. Experimental and computational developments have recently opened doors to applications of spatial metabolomics in life sciences and biomedicine. At the same time, these advances have coincided with a rapid evolution in machine learning, deep learning, and artificial intelligence, which are transforming our everyday life and promise to revolutionize biology and healthcare. Here, we introduce spatial metabolomics through the eyes of a computational scientist, review the outstanding challenges, provide a look into the future, and discuss opportunities granted by the ongoing convergence of human and artificial intelligence.
Collapse
Affiliation(s)
- Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
15
|
Bernstein DB, Dewhirst FE, Segrè D. Metabolic network percolation quantifies biosynthetic capabilities across the human oral microbiome. eLife 2019; 8:39733. [PMID: 31194675 PMCID: PMC6609349 DOI: 10.7554/elife.39733] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The biosynthetic capabilities of microbes underlie their growth and interactions, playing a prominent role in microbial community structure. For large, diverse microbial communities, prediction of these capabilities is limited by uncertainty about metabolic functions and environmental conditions. To address this challenge, we propose a probabilistic method, inspired by percolation theory, to computationally quantify how robustly a genome-derived metabolic network produces a given set of metabolites under an ensemble of variable environments. We used this method to compile an atlas of predicted biosynthetic capabilities for 97 metabolites across 456 human oral microbes. This atlas captures taxonomically-related trends in biomass composition, and makes it possible to estimate inter-microbial metabolic distances that correlate with microbial co-occurrences. We also found a distinct cluster of fastidious/uncultivated taxa, including several Saccharibacteria (TM7) species, characterized by their abundant metabolic deficiencies. By embracing uncertainty, our approach can be broadly applied to understanding metabolic interactions in complex microbial ecosystems.
Collapse
Affiliation(s)
- David B Bernstein
- Department of Biomedical Engineering, Boston University, Boston, United States.,Biological Design Center, Boston University, Boston, United States
| | - Floyd E Dewhirst
- The Forsyth Institute, Cambridge, United States.,Harvard School of Dental Medicine, Boston, United States
| | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, United States.,Biological Design Center, Boston University, Boston, United States.,Bioinformatics Program, Boston University, Boston, United States.,Department of Biology, Boston University, Boston, United States.,Department of Physics, Boston University, Boston, United States
| |
Collapse
|
16
|
Kuo TH, Huang HC, Hsu CC. Mass spectrometry imaging guided molecular networking to expedite discovery and structural analysis of agarwood natural products. Anal Chim Acta 2019; 1080:95-103. [PMID: 31409479 DOI: 10.1016/j.aca.2019.05.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 02/04/2023]
Abstract
Structural analysis of biomolecules is essential to natural product discovery, especially for precious biomaterials such as agarwood. However, one of the greatest challenges to the characterization of natural products is the profound cost in time and manpower to the structural elucidation of these highly diverse compounds. Here, we demonstrate a multi-modal mass spectrometric strategy, integrating matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) and mass spectral molecular networking, to uncover agarwood natural products of Aquilaria sinensis trees. A simple workflow for preparing wood sections for MALDI-MSI analysis was demonstrated. Notably, tens of natural products in the agarwood region in wood stem section of A. sinensis were spatially revealed by MALDI-MSI. For the first time, such a great number of plant specialized metabolites is obtained by a single wood section MSI. Guided by the spatially resolved features, mass spectral molecular networking was subsequently applied for structural analysis of the agarwood natural products, in which three major classes of 2-(2-phenylethyl)chromones and their analogues were putatively characterized. These results suggest an efficient strategy to the dereplication of plant natural products.
Collapse
Affiliation(s)
- Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Hou-Chun Huang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
17
|
In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nat Microbiol 2019; 4:527-538. [PMID: 30718847 PMCID: PMC6420086 DOI: 10.1038/s41564-018-0336-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/04/2018] [Indexed: 01/02/2023]
Abstract
Tapping into the metabolic cross-talk between a host and its virus can reveal unique strategies employed during infection. Viral infection is a dynamic process that generates an evolving metabolic landscape. Gaining a continuous view into the infection process is highly challenging and is limited by current metabolomics approaches, which typically measure the average of the entire population at various stages of infection. Here, we took an innovative approach to study the metabolic basis of host-virus interactions between the bloom-forming alga Emiliania huxleyi and its specific virus. We combined a classical method in virology, the plaque assay, with advanced mass spectrometry imaging (MSI), an approach we termed ‘in plaque-MSI’. Taking advantage of the spatial characteristics of the plaque, we mapped the metabolic landscape induced during infection in a high spatiotemporal resolution, unfolding the infection process in a continuous manner. Further unsupervised spatially-aware clustering, combined with known lipid biomarkers, revealed a systematic metabolic shift during infection towards lipids containing the odd-chain fatty acid pentadecanoic acid (C15:0). Applying ‘in plaque-MSI’ might facilitate the discovery of bioactive compounds that mediate the chemical arms race of host-virus interactions in diverse model systems.
Collapse
|
18
|
Vaysse PM, Heeren RMA, Porta T, Balluff B. Mass spectrometry imaging for clinical research - latest developments, applications, and current limitations. Analyst 2018. [PMID: 28642940 DOI: 10.1039/c7an00565b] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry is being used in many clinical research areas ranging from toxicology to personalized medicine. Of all the mass spectrometry techniques, mass spectrometry imaging (MSI), in particular, has continuously grown towards clinical acceptance. Significant technological and methodological improvements have contributed to enhance the performance of MSI recently, pushing the limits of throughput, spatial resolution, and sensitivity. This has stimulated the spread of MSI usage across various biomedical research areas such as oncology, neurological disorders, cardiology, and rheumatology, just to name a few. After highlighting the latest major developments and applications touching all aspects of translational research (i.e. from early pre-clinical to clinical research), we will discuss the present challenges in translational research performed with MSI: data management and analysis, molecular coverage and identification capabilities, and finally, reproducibility across multiple research centers, which is the largest remaining obstacle in moving MSI towards clinical routine.
Collapse
Affiliation(s)
- Pierre-Maxence Vaysse
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Tiffany Porta
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
19
|
Zink K, Dean M, Burdette JE, Sanchez LM. Imaging Mass Spectrometry Reveals Crosstalk between the Fallopian Tube and the Ovary that Drives Primary Metastasis of Ovarian Cancer. ACS CENTRAL SCIENCE 2018; 4:1360-1370. [PMID: 30410974 PMCID: PMC6202655 DOI: 10.1021/acscentsci.8b00405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 05/05/2023]
Abstract
High grade serous ovarian cancer (HGSOC) is the fifth leading cause of cancer deaths among women. New evidence suggests that HGSOC arises in the fallopian tube and then colonizes the ovary before spreading into the peritoneal space. Therefore, due to the proximity of this metastasis, an experimental design was optimized using imaging mass spectrometry to capture the spatial composition of small molecules uniquely expressed when fallopian-tube-derived tumor cells were grown in the microenvironment of the ovary as a model of primary metastasis. The observed mass-to-charge ratios (m/z's) that were induced specifically in coculture represent small molecules that may contribute to the metastasis of HGSOC selectively to the ovary. Human fallopian tube epithelial HGSOC and tumorigenic murine oviductal epithelial cells, but not normal cell types, repeatedly induced a signal from the ovary at m/z 170. This signal was identified as norepinephrine, which was confirmed to stimulate invasion of ovarian cancer cells lacking wild-type p53. These molecules may reveal pathways that contribute to metastasis and biological targets for therapeutic intervention to block ovarian metastasis of fallopian-tube-derived HGSOC. The developed mass spectrometry method can be adapted to other mammalian-based model systems for investigation of untargeted metabolomics that facilitate metastasis.
Collapse
|
20
|
Veličković D, Agtuca BJ, Stopka SA, Vertes A, Koppenaal DW, Paša-Tolić L, Stacey G, Anderton CR. Observed metabolic asymmetry within soybean root nodules reflects unexpected complexity in rhizobacteria-legume metabolite exchange. THE ISME JOURNAL 2018. [PMID: 29899508 DOI: 10.1038/s41396-018-0188-188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In this study, the three-dimensional spatial distributions of a number of metabolites involved in regulating symbiosis and biological nitrogen fixation (BNF) within soybean root nodules were revealed using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). While many metabolites exhibited distinct spatial compartmentalization, some metabolites were asymmetrically distributed throughout the nodule (e.g., S-adenosylmethionine). These results establish a more complex metabolic view of plant-bacteria symbiosis (and BNF) within soybean nodules than previously hypothesized. Collectively these findings suggest that spatial perspectives in metabolic regulation should be considered to unravel the overall complexity of interacting organisms, like those relating to associations of nitrogen-fixing bacteria with host plants.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA.
| |
Collapse
|
21
|
Veličković D, Agtuca BJ, Stopka SA, Vertes A, Koppenaal DW, Paša-Tolić L, Stacey G, Anderton CR. Observed metabolic asymmetry within soybean root nodules reflects unexpected complexity in rhizobacteria-legume metabolite exchange. THE ISME JOURNAL 2018; 12:2335-2338. [PMID: 29899508 PMCID: PMC6092352 DOI: 10.1038/s41396-018-0188-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/02/2018] [Accepted: 02/26/2018] [Indexed: 11/30/2022]
Abstract
In this study, the three-dimensional spatial distributions of a number of metabolites involved in regulating symbiosis and biological nitrogen fixation (BNF) within soybean root nodules were revealed using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). While many metabolites exhibited distinct spatial compartmentalization, some metabolites were asymmetrically distributed throughout the nodule (e.g., S-adenosylmethionine). These results establish a more complex metabolic view of plant-bacteria symbiosis (and BNF) within soybean nodules than previously hypothesized. Collectively these findings suggest that spatial perspectives in metabolic regulation should be considered to unravel the overall complexity of interacting organisms, like those relating to associations of nitrogen-fixing bacteria with host plants.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA.
| |
Collapse
|
22
|
Chen PY, Hsieh CY, Shih CJ, Lin YJ, Tsao CW, Yang YL. Exploration of Fungal Metabolic Interactions Using Imaging Mass Spectrometry on Nanostructured Silicon. JOURNAL OF NATURAL PRODUCTS 2018; 81:1527-1533. [PMID: 29916245 DOI: 10.1021/acs.jnatprod.7b00866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Application of matrix-assisted laser desorption/ionization imaging mass spectrometry to microbiology and natural product research has opened the door to the exploration of microbial interactions and the consequent discovery of new natural products and their functions in the interactions. However, several drawbacks of matrix-assisted laser desorption/ionization imaging mass spectrometry have limited its application especially to complicated and uneven microbial samples. Here, we applied nanostructured silicon as a substrate for surface-assisted laser desorption/ionization mass spectrometry for microbial imaging mass spectrometry to explore fungal metabolic interactions. We chose Phellinus noxius and Aspergillus strains to evaluate the potential of microbial imaging mass spectrometry on nanostructured silicon because both fungi produce a dense mass of aerial mycelia, which is known to complicate the collection of high-quality imaging mass spectrometry data. Our simple and straightforward sample imprinting method and low background interference resulted in an efficient analysis of small metabolites from the complex microbial interaction samples.
Collapse
Affiliation(s)
- Pi-Yu Chen
- Agricultural Biotechnology Research Center , Academia Sinica , 11529 Taipei , Taiwan
| | - Chi-Ying Hsieh
- Agricultural Biotechnology Research Center , Academia Sinica , 11529 Taipei , Taiwan
| | - Chao-Jen Shih
- Agricultural Biotechnology Research Center , Academia Sinica , 11529 Taipei , Taiwan
- Bioresource Collection and Research Center , Food Industry Research and Development Institute , 30062 Hsinchu , Taiwan
| | - Yuan-Jing Lin
- Department of Mechanical Engineering , National Central University , 32001 Taoyuan , Taiwan
| | - Chia-Wen Tsao
- Department of Mechanical Engineering , National Central University , 32001 Taoyuan , Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center , Academia Sinica , 11529 Taipei , Taiwan
| |
Collapse
|
23
|
Sandrin TR, Demirev PA. Characterization of microbial mixtures by mass spectrometry. MASS SPECTROMETRY REVIEWS 2018; 37:321-349. [PMID: 28509357 DOI: 10.1002/mas.21534] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 05/27/2023]
Abstract
MS applications in microbiology have increased significantly in the past 10 years, due in part to the proliferation of regulator-approved commercial MALDI MS platforms for rapid identification of clinical infections. In parallel, with the expansion of MS technologies in the "omics" fields, novel MS-based research efforts to characterize organismal as well as environmental microbiomes have emerged. Successful characterization of microorganisms found in complex mixtures of other organisms remains a major challenge for researchers and clinicians alike. Here, we review recent MS advances toward addressing that challenge. These include sample preparation methods and protocols, and established, for example, MALDI, as well as newer, for example, atmospheric pressure ionization (API) techniques. MALDI mass spectra of intact cells contain predominantly information on the highly expressed house-keeping proteins used as biomarkers. The API methods are applicable for small biomolecule analysis, for example, phospholipids and lipopeptides, and facilitate species differentiation. MS hardware and techniques, for example, tandem MS, including diverse ion source/mass analyzer combinations are discussed. Relevant examples for microbial mixture characterization utilizing these combinations are provided. Chemometrics and bioinformatics methods and algorithms, including those applied to large scale MS data acquisition in microbial metaproteomics and MS imaging of biofilms, are highlighted. Select MS applications for polymicrobial culture analysis in environmental and clinical microbiology are reviewed as well.
Collapse
Affiliation(s)
- Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona
| | - Plamen A Demirev
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland
| |
Collapse
|
24
|
Lin LE, Su PR, Wu HY, Hsu CC. A Simple Sonication Improves Protein Signal in Matrix-Assisted Laser Desorption Ionization Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:796-799. [PMID: 29392685 DOI: 10.1007/s13361-018-1889-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
Proper matrix application is crucial in obtaining high quality matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). Solvent-free sublimation was essentially introduced as an approach of homogeneous coating that gives small crystal size of the organic matrix. However, sublimation has lower extraction efficiency of analytes. Here, we present that a simple sonication step after the hydration in standard sublimation protocol significantly enhances the sensitivity of MALDI MSI. This modified procedure uses a common laboratory ultrasonicator to immobilize the analytes from tissue sections without noticeable delocalization. Improved imaging quality with additional peaks above 10 kDa in the spectra was thus obtained upon sonication treatment. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Li-En Lin
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan, Republic of China
| | - Pin-Rui Su
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan, Republic of China
| | - Hsin-Yi Wu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan, Republic of China
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan, Republic of China.
| |
Collapse
|
25
|
Stasulli NM, Shank EA. Profiling the metabolic signals involved in chemical communication between microbes using imaging mass spectrometry. FEMS Microbiol Rev 2018; 40:807-813. [PMID: 28204504 DOI: 10.1093/femsre/fuw032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/11/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023] Open
Abstract
The ability of microbes to secrete bioactive chemical signals into their environment has been known for over a century. However, it is only in the last decade that imaging mass spectrometry has provided us with the ability to directly visualize the spatial distributions of these microbial metabolites. This technology involves collecting mass spectra from multiple discrete locations across a biological sample, yielding chemical ‘maps’ that simultaneously reveal the distributions of hundreds of metabolites in two dimensions. Advances in microbial imaging mass spectrometry summarized here have included the identification of novel strain- or coculture-specific compounds, the visualization of biotransformation events (where one metabolite is converted into another by a neighboring microbe), and the implementation of a method to reconstruct the 3D subsurface distributions of metabolites, among others. Here we review the recent literature and discuss how imaging mass spectrometry has spurred novel insights regarding the chemical consequences of microbial interactions.
Collapse
Affiliation(s)
- Nikolas M Stasulli
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
| | - Elizabeth A Shank
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, NC, USA.,Curriculum of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
26
|
Preston GM. Profiling the extended phenotype of plant pathogens: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:443-456. [PMID: 28026146 PMCID: PMC6638297 DOI: 10.1111/mpp.12530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 05/18/2023]
Abstract
One of the most fundamental questions in plant pathology is what determines whether a pathogen grows within a plant? This question is frequently studied in terms of the role of elicitors and pathogenicity factors in the triggering or overcoming of host defences. However, this focus fails to address the basic question of how the environment in host tissues acts to support or restrict pathogen growth. Efforts to understand this aspect of host-pathogen interactions are commonly confounded by several issues, including the complexity of the plant environment, the artificial nature of many experimental infection systems and the fact that the physiological properties of a pathogen growing in association with a plant can be very different from the properties of the pathogen in culture. It is also important to recognize that the phenotype and evolution of pathogen and host are inextricably linked through their interactions, such that the environment experienced by a pathogen within a host, and its phenotype within the host, is a product of both its interaction with its host and its evolutionary history, including its co-evolution with host plants. As the phenotypic properties of a pathogen within a host cannot be defined in isolation from the host, it may be appropriate to think of pathogens as having an 'extended phenotype' that is the product of their genotype, host interactions and population structure within the host environment. This article reflects on the challenge of defining and studying this extended phenotype, in relation to the questions posed below, and considers how knowledge of the phenotype of pathogens in the host environment could be used to improve disease control. What determines whether a pathogen grows within a plant? What aspects of pathogen biology should be considered in describing the extended phenotype of a pathogen within a host? How can we study the extended phenotype in ways that provide insights into the phenotypic properties of pathogens during natural infections?
Collapse
Affiliation(s)
- Gail M. Preston
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| |
Collapse
|
27
|
Petras D, Jarmusch AK, Dorrestein PC. From single cells to our planet-recent advances in using mass spectrometry for spatially resolved metabolomics. Curr Opin Chem Biol 2017; 36:24-31. [PMID: 28086192 DOI: 10.1016/j.cbpa.2016.12.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/10/2016] [Accepted: 12/15/2016] [Indexed: 11/16/2022]
Abstract
Spatial information in the form of 3D digital content has been increasingly integrated into our daily lives. Metabolomic studies parallel this trend with spatial and time resolved information being acquired. Mass spectrometry imaging (MSI), which combines qualitative and quantitative molecular information with spatial information, plays a crucial role in mass spectrometry-based metabolomics. The lateral spatial resolution obtained by MSI continues to improve and allows mass spectrometers to be used as molecular microscopes-enabling the exploration of the cellular and subcellular metabolome. Towards the other end of the scale, MS is also being used to map (image) molecules on our skin, habitats, and entire ecosystems. In this article, we provide a perspective of imaging mass spectrometry for metabolomic studies from the subcellular to planetary scale.
Collapse
Affiliation(s)
- Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Alan K Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
28
|
Noecker C, McNally CP, Eng A, Borenstein E. High-resolution characterization of the human microbiome. Transl Res 2017; 179:7-23. [PMID: 27513210 PMCID: PMC5164958 DOI: 10.1016/j.trsl.2016.07.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 12/29/2022]
Abstract
The human microbiome plays an important and increasingly recognized role in human health. Studies of the microbiome typically use targeted sequencing of the 16S rRNA gene, whole metagenome shotgun sequencing, or other meta-omic technologies to characterize the microbiome's composition, activity, and dynamics. Processing, analyzing, and interpreting these data involve numerous computational tools that aim to filter, cluster, annotate, and quantify the obtained data and ultimately provide an accurate and interpretable profile of the microbiome's taxonomy, functional capacity, and behavior. These tools, however, are often limited in resolution and accuracy and may fail to capture many biologically and clinically relevant microbiome features, such as strain-level variation or nuanced functional response to perturbation. Over the past few years, extensive efforts have been invested toward addressing these challenges and developing novel computational methods for accurate and high-resolution characterization of microbiome data. These methods aim to quantify strain-level composition and variation, detect and characterize rare microbiome species, link specific genes to individual taxa, and more accurately characterize the functional capacity and dynamics of the microbiome. These methods and the ability to produce detailed and precise microbiome information are clearly essential for informing microbiome-based personalized therapies. In this review, we survey these methods, highlighting the challenges each method sets out to address and briefly describing methodological approaches.
Collapse
Affiliation(s)
- Cecilia Noecker
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Colin P McNally
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Alexander Eng
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle, WA
- Department of Computer Science and Engineering, University of Washington, Seattle, WA
- Santa Fe Institute, Santa Fe, NM
| |
Collapse
|
29
|
Nguyen SN, Liyu AV, Chu RK, Anderton CR, Laskin J. Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography. Anal Chem 2016; 89:1131-1137. [PMID: 27973782 DOI: 10.1021/acs.analchem.6b03293] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new approach for constant-distance mode mass spectrometry imaging (MSI) of biological samples using nanospray desorption electrospray ionization (nano-DESI) was developed by integrating a shear-force probe with the nano-DESI probe. The technical concept and basic instrumental setup, as well as the general operation of the system are described. Mechanical dampening of resonant oscillations due to the presence of shear forces between the probe and the sample surface enabled the constant-distance imaging mode via a computer-controlled closed-feedback loop. The capability of simultaneous chemical and topographic imaging of complex biological samples is demonstrated using living Bacillus subtilis ATCC 49760 colonies on agar plates. The constant-distance mode nano-DESI MSI enabled imaging of many metabolites, including nonribosomal peptides (surfactin, plipastatin, and iturin) on the surface of living bacterial colonies, ranging in diameter from 10 to 13 mm, with height variations up to 0.8 mm above the agar plate. Co-registration of ion images to topographic images provided higher-contrast images. Based on this effort, constant-mode nano-DESI MSI proved to be ideally suited for imaging biological samples of complex topography in their native states.
Collapse
Affiliation(s)
- Son N Nguyen
- Physical Sciences Division and ‡Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington, United States
| | - Andrey V Liyu
- Physical Sciences Division and ‡Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington, United States
| | - Rosalie K Chu
- Physical Sciences Division and ‡Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington, United States
| | - Christopher R Anderton
- Physical Sciences Division and ‡Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington, United States
| | - Julia Laskin
- Physical Sciences Division and ‡Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington, United States
| |
Collapse
|
30
|
Spatial Molecular Architecture of the Microbial Community of a Peltigera Lichen. mSystems 2016; 1:mSystems00139-16. [PMID: 28028548 PMCID: PMC5183598 DOI: 10.1128/msystems.00139-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/17/2016] [Indexed: 11/25/2022] Open
Abstract
Microbial communities have evolved over centuries to live symbiotically. The direct visualization of such communities at the chemical and functional level presents a challenge. Overcoming this challenge may allow one to visualize the spatial distributions of specific molecules involved in symbiosis and to define their functional roles in shaping the community structure. In this study, we examined the diversity of microbial genes and taxa and the presence of biosynthetic gene clusters by metagenomic sequencing and the compartmentalization of organic chemical components within a lichen using mass spectrometry. This approach allowed the identification of chemically distinct sections within this composite organism. Using our multipronged approach, various fungal natural products, not previously reported from lichens, were identified and two different fungal layers were visualized at the chemical level. Microbes are commonly studied as individual species, but they exist as mixed assemblages in nature. At present, we know very little about the spatial organization of the molecules, including natural products that are produced within these microbial networks. Lichens represent a particularly specialized type of symbiotic microbial assemblage in which the component microorganisms exist together. These composite microbial assemblages are typically comprised of several types of microorganisms representing phylogenetically diverse life forms, including fungi, photosymbionts, bacteria, and other microbes. Here, we employed matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) imaging mass spectrometry to characterize the distributions of small molecules within a Peltigera lichen. In order to probe how small molecules are organized and localized within the microbial consortium, analytes were annotated and assigned to their respective producer microorganisms using mass spectrometry-based molecular networking and metagenome sequencing. The spatial analysis of the molecules not only reveals an ordered layering of molecules within the lichen but also supports the compartmentalization of unique functions attributed to various layers. These functions include chemical defense (e.g., antibiotics), light-harvesting functions associated with the cyanobacterial outer layer (e.g., chlorophyll), energy transfer (e.g., sugars) surrounding the sun-exposed cyanobacterial layer, and carbohydrates that may serve a structural or storage function and are observed with higher intensities in the non-sun-exposed areas (e.g., complex carbohydrates). IMPORTANCE Microbial communities have evolved over centuries to live symbiotically. The direct visualization of such communities at the chemical and functional level presents a challenge. Overcoming this challenge may allow one to visualize the spatial distributions of specific molecules involved in symbiosis and to define their functional roles in shaping the community structure. In this study, we examined the diversity of microbial genes and taxa and the presence of biosynthetic gene clusters by metagenomic sequencing and the compartmentalization of organic chemical components within a lichen using mass spectrometry. This approach allowed the identification of chemically distinct sections within this composite organism. Using our multipronged approach, various fungal natural products, not previously reported from lichens, were identified and two different fungal layers were visualized at the chemical level.
Collapse
|
31
|
Abstract
Imagine a scenario where personal belongings such as pens, keys, phones, or handbags are found at an investigative site. It is often valuable to the investigative team that is trying to trace back the belongings to an individual to understand their personal habits, even when DNA evidence is also available. Here, we develop an approach to translate chemistries recovered from personal objects such as phones into a lifestyle sketch of the owner, using mass spectrometry and informatics approaches. Our results show that phones' chemistries reflect a personalized lifestyle profile. The collective repertoire of molecules found on these objects provides a sketch of the lifestyle of an individual by highlighting the type of hygiene/beauty products the person uses, diet, medical status, and even the location where this person may have been. These findings introduce an additional form of trace evidence from skin-associated lifestyle chemicals found on personal belongings. Such information could help a criminal investigator narrowing down the owner of an object found at a crime scene, such as a suspect or missing person.
Collapse
|
32
|
Johns NI, Blazejewski T, Gomes AL, Wang HH. Principles for designing synthetic microbial communities. Curr Opin Microbiol 2016; 31:146-153. [PMID: 27084981 DOI: 10.1016/j.mib.2016.03.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 01/21/2023]
Abstract
Advances in synthetic biology to build microbes with defined and controllable properties are enabling new approaches to design and program multispecies communities. This emerging field of synthetic ecology will be important for many areas of biotechnology, bioenergy and bioremediation. This endeavor draws upon knowledge from synthetic biology, systems biology, microbial ecology and evolution. Fully realizing the potential of this discipline requires the development of new strategies to control the intercellular interactions, spatiotemporal coordination, robustness, stability and biocontainment of synthetic microbial communities. Here, we review recent experimental, analytical and computational advances to study and build multi-species microbial communities with defined functions and behavior for various applications. We also highlight outstanding challenges and future directions to advance this field.
Collapse
Affiliation(s)
- Nathan I Johns
- Department of Systems Biology, Columbia University Medical Center, New York, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, USA
| | - Tomasz Blazejewski
- Department of Systems Biology, Columbia University Medical Center, New York, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, USA
| | - Antonio Lc Gomes
- Department of Systems Biology, Columbia University Medical Center, New York, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University Medical Center, New York, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, USA.
| |
Collapse
|
33
|
Miyamoto S, Hsu CC, Hamm G, Darshi M, Diamond-Stanic M, Declèves AE, Slater L, Pennathur S, Stauber J, Dorrestein PC, Sharma K. Mass Spectrometry Imaging Reveals Elevated Glomerular ATP/AMP in Diabetes/obesity and Identifies Sphingomyelin as a Possible Mediator. EBioMedicine 2016; 7:121-34. [PMID: 27322466 PMCID: PMC4909366 DOI: 10.1016/j.ebiom.2016.03.033] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is suppressed in diabetes and may be due to a high ATP/AMP ratio, however the quantitation of nucleotides in vivo has been extremely difficult. Via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to localize renal nucleotides we found that the diabetic kidney had a significant increase in glomerular ATP/AMP ratio. Untargeted MALDI-MSI analysis revealed that a specific sphingomyelin species (SM(d18:1/16:0)) accumulated in the glomeruli of diabetic and high-fat diet-fed mice compared with wild-type controls. In vitro studies in mesangial cells revealed that exogenous addition of SM(d18:1/16:0) significantly elevated ATP via increased glucose consumption and lactate production with a consequent reduction of AMPK and PGC1α. Furthermore, inhibition of sphingomyelin synthases reversed these effects. Our findings suggest that AMPK is reduced in the diabetic kidney due to an increase in the ATP/AMP ratio and that SM(d18:1/16:0) could be responsible for the enhanced ATP production via activation of the glycolytic pathway. MALDI-MSI revealed an increase in glomerular ATP/AMP ratio in the diabetic kidney. SM(d18:1/16:0) is increased in the glomeruli of diabetic and high-fat diet-fed mice. SM(d18:1/16:0) stimulated ATP production via enhanced aerobic glycolysis and reduced AMPK activity in mesangial cells. AMPK is known to be suppressed in states of high ATP/AMP ratio but the measurement of nucleotides in vivo has been difficult. Miyamoto et al. utilize matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate the distribution of nucleotides and find an increase in glomerular ATP/AMP ratio in the diabetic kidney. Untargeted MALDI-MSI revealed that sphingomyelin(d18:1/16:0) is accumulated in the glomeruli of diabetic and high-fat diet-fed mice compared with controls. Sphingomyelin(d18:1/16:0) promotes ATP production in mesangial cells via activation of the glycolytic pathway. The inhibition of sphingomyelin(d18:1/16:0) synthesis may lead to novel therapeutic targets for the treatment of caloric-induced CKD.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Cheng-Chih Hsu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA; Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Gregory Hamm
- ImaBiotech, MS Imaging Department, Lille 59120, France
| | - Manjula Darshi
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA
| | - Maggie Diamond-Stanic
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA
| | - Anne-Emilie Declèves
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA
| | - Larkin Slater
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA
| | | | | | - Pieter C Dorrestein
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kumar Sharma
- Institute of Metabolomic Medicine, University of California San Diego, La Jolla, CA 92093, USA; Center for Renal Translational Medicine, Division of Nephrology-Hypertension, University of California San Diego, La Jolla, CA 92093, USA; Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, La Jolla, CA 92093, USA.
| |
Collapse
|
34
|
Anderton CR, Chu RK, Tolić N, Creissen A, Paša-Tolić L. Utilizing a Robotic Sprayer for High Lateral and Mass Resolution MALDI FT-ICR MSI of Microbial Cultures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:556-9. [PMID: 26729451 DOI: 10.1007/s13361-015-1324-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 05/18/2023]
Abstract
The ability to visualize biochemical interactions between microbial communities using MALDI MSI has provided tremendous insights into a variety of biological fields. Matrix application using a sieve proved to be incredibly useful, but it has many limitations that include uneven matrix coverage and limitation in the types of matrices that could be employed in studies. Recently, there has been a concerted effort to improve matrix application for studying agar plated microbial cultures, many of which utilized automated matrix sprayers. Here, we describe the usefulness of using a robotic sprayer for matrix application. The robotic sprayer has two-dimensional control over where matrix is applied, and a heated capillary that allows for rapid drying of the applied matrix. This method provided a significant increase in MALDI sensitivity over the sieve method, as demonstrated by FT-ICR MS analysis, facilitating the ability to gain higher lateral resolution MS images of Bacillus subtilis than previously reported. This method also allowed for the use of different matrices to be applied to the culture surfaces.
Collapse
Affiliation(s)
- Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nikola Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
35
|
Venturi V, Keel C. Signaling in the Rhizosphere. TRENDS IN PLANT SCIENCE 2016; 21:187-198. [PMID: 26832945 DOI: 10.1016/j.tplants.2016.01.005] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 05/20/2023]
Abstract
Signaling studies in the rhizosphere have focused on close interactions between plants and symbiotic microorganisms. However, this focus is likely to expand to other microorganisms because the rhizomicrobiome is important for plant health and is able to influence the structure of the microbial community. We discuss here the shaping of the rhizomicrobiome and define which aspects can be considered signaling. We divide signaling in the rhizosphere into three categories: (i) between microbes, (ii) from plants to microorganisms, and (iii) from microorganisms to plants. Signals act on diverse organisms including the plant. Mycorrhizal and rhizobial interkingdom signaling has revealed its pivotal role in establishing associations, and the recent discovery of signaling with non-symbiotic microorganisms indicates the important role of communication in shaping the rhizomicrobiome.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy.
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
36
|
Anderson DMG, Van de Plas R, Rose KL, Hill S, Schey KL, Solga AC, Gutmann DH, Caprioli RM. 3-D imaging mass spectrometry of protein distributions in mouse Neurofibromatosis 1 (NF1)-associated optic glioma. J Proteomics 2016; 149:77-84. [PMID: 26883872 DOI: 10.1016/j.jprot.2016.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/02/2016] [Accepted: 02/10/2016] [Indexed: 11/24/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common neurogenetic disorder, in which affected individuals develop tumors of the nervous system. Children with NF1 are particularly prone to brain tumors (gliomas) involving the optic pathway that can result in impaired vision. Since tumor formation and expansion requires a cooperative tumor microenvironment, it is important to identify the cellular and acellular components associated with glioma development and growth. In this study, we used 3-D matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) to measure the distributions of multiple molecular species throughout optic nerve tissue in mice with and without glioma, and to explore their spatial relationships within the 3-D volume of the optic nerve and chiasm. 3-D IMS studies often involve extensive workflows due to the high volume of sections required to generate high quality 3-D images. Herein, we present a workflow for 3-D data acquisition and volume reconstruction using mouse optic nerve tissue. The resulting 3-D IMS data yield both molecular similarities and differences between glioma-bearing and wild-type (WT) tissues, including protein distributions localizing to different anatomical subregions. BIOLOGICAL SIGNIFICANCE The current work addresses a number of challenges in 3-D MALDI IMS, driven by the small size of the mouse optic nerve and the need to maintain consistency across multiple 2-D IMS experiments. The 3-D IMS data yield both molecular similarities and differences between glioma-bearing and wild-type (WT) tissues, including protein distributions localizing to different anatomical subregions, which could then be targeted for identification and related back to the biology observed in gliomas of the optic nerve.
Collapse
Affiliation(s)
- David M G Anderson
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Raf Van de Plas
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States; Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
| | - Kristie L Rose
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Salisha Hill
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Kevin L Schey
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Anne C Solga
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Richard M Caprioli
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
37
|
Debois D, Ongena M, Cawoy H, De Pauw E. In Situ Analysis of Bacterial Lipopeptide Antibiotics by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Methods Mol Biol 2016; 1401:161-173. [PMID: 26831708 DOI: 10.1007/978-1-4939-3375-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a technique developed in the late 1990s enabling the two-dimensional mapping of a broad variety of biomolecules present at the surface of a sample. In many applications including pharmaceutical studies or biomarker discovery, the distribution of proteins, lipids or drugs, and metabolites may be visualized within tissue sections. More recently, MALDI MSI has become increasingly applied in microbiology where the versatility of the technique is perfectly suited to monitor the metabolic dynamics of bacterial colonies. The work described here is focused on the application of MALDI MSI to map secondary metabolites produced by Bacilli, especially lipopeptides, produced by bacterial cells during their interaction with their environment (bacteria, fungi, plant roots, etc.). This chapter addresses the advantages and challenges that the implementation of MALDI MSI to microbiological samples entails, including detailed protocols on sample preparation (from both microbiologist and mass spectrometrist points of view), matrix deposition, and data acquisition and interpretation. Lipopeptide images recorded from confrontation plates are also presented.
Collapse
Affiliation(s)
- Delphine Debois
- Mass Spectrometry Laboratory (LSM-GIGA-R), Chemistry Department, University of Liege - Allee du 6 aout, 11 - B6c - Chimie Licence et Recherche - Quartier Agora, Liege-1 (Sart Tilman), B-4000, Belgium.
| | - Marc Ongena
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Hélène Cawoy
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory (LSM-GIGA-R), Chemistry Department, University of Liege - Allee du 6 aout, 11 - B6c - Chimie Licence et Recherche - Quartier Agora, Liege-1 (Sart Tilman), B-4000, Belgium
| |
Collapse
|
38
|
Luzzatto-Knaan T, Melnik AV, Dorrestein PC. Mass spectrometry tools and workflows for revealing microbial chemistry. Analyst 2015; 140:4949-66. [PMID: 25996313 PMCID: PMC5444374 DOI: 10.1039/c5an00171d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the time Van Leeuwenhoek was able to observe microbes through a microscope, an innovation that led to the birth of the field of microbiology, we have aimed to understand how microorganisms function, interact and communicate. The exciting progress in the development of analytical technologies and workflows has demonstrated that mass spectrometry is a very powerful technique for the interrogation of microbiology at the molecular level. In this review, we aim to highlight the available and emerging tools in mass spectrometry for microbial analysis by overviewing the methods and workflow advances for taxonomic identification, microbial interaction, dereplication and drug discovery. We emphasize their potential for future development and point out unsolved problems and future directions that would aid in the analysis of the chemistry produced by microbes.
Collapse
Affiliation(s)
- Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
39
|
Debois D, Fernandez O, Franzil L, Jourdan E, de Brogniez A, Willems L, Clément C, Dorey S, De Pauw E, Ongena M. Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:570-582. [PMID: 25731631 DOI: 10.1111/1758-2229.12286] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/16/2015] [Accepted: 02/22/2015] [Indexed: 06/04/2023]
Abstract
Some plant-associated bacteria such as Bacillus sp. can protect their host from pathogen ingress and this biocontrol activity correlates with their potential to form multiple antibiotics upon in vitro growth. However, our knowledge on antibiotic production by soil bacilli evolving on roots in natural conditions is still limited. In this work, antibiome imaging first revealed that the lipopeptide surfactin is the main bacterial ingredient produced in planta within the first hours of interaction with root tissues. We further demonstrated that surfactin synthesis is specifically stimulated upon perception of plant cell wall polymers such as xylan or arabinogalactan, leading to fast accumulation of micromolar amounts in the root environment. At such concentrations, the lipopeptide may not only favour the ecological fitness of the producing strain in term of root colonization, but also triggers systemic resistance in the host plant. This surfactin-induced immunity primes the plant to better resist further pathogen ingress, and involves only limited expression of defence-related molecular events and does not provoke seedling growth inhibition. By contrast with the strong response mounted upon perception of pathogens, this strongly attenuated defensive reaction induced by surfactin in plant tissues should help Bacillus to be tolerated as saprophytic partner by its host.
Collapse
Affiliation(s)
- Delphine Debois
- Mass Spectrometry Laboratory (LSM/GIGA-R), Chemistry Department, University of Liège, Liège, 4000, Belgium
| | - Olivier Fernandez
- URVVC-EA 4707, Stress, Défenses et Reproduction des Plantes, Université de Champagne-Ardenne, Reims, BP 1039, France
| | - Laurent Franzil
- Wallon Center for Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Emmanuel Jourdan
- Wallon Center for Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Alix de Brogniez
- Molecular Biology (GxABT), Molecular and Cellular Epigenetics (GIGA), University of Liège, Gembloux, 5030, Belgium
| | - Luc Willems
- Molecular Biology (GxABT), Molecular and Cellular Epigenetics (GIGA), University of Liège, Gembloux, 5030, Belgium
| | - Christophe Clément
- URVVC-EA 4707, Stress, Défenses et Reproduction des Plantes, Université de Champagne-Ardenne, Reims, BP 1039, France
| | - Stephan Dorey
- URVVC-EA 4707, Stress, Défenses et Reproduction des Plantes, Université de Champagne-Ardenne, Reims, BP 1039, France
| | - Edwin De Pauw
- Mass Spectrometry Laboratory (LSM/GIGA-R), Chemistry Department, University of Liège, Liège, 4000, Belgium
| | - Marc Ongena
- Wallon Center for Industrial Biology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| |
Collapse
|
40
|
Antoraz S, Santamaría RI, Díaz M, Sanz D, Rodríguez H. Toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Front Microbiol 2015; 6:461. [PMID: 26029195 PMCID: PMC4429630 DOI: 10.3389/fmicb.2015.00461] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/28/2015] [Indexed: 11/13/2022] Open
Abstract
Emergence of antibiotic resistant pathogens is changing the way scientists look for new antibiotic compounds. This race against the increased prevalence of multi-resistant strains makes it necessary to expedite the search for new compounds with antibiotic activity and to increase the production of the known. Here, we review a variety of new scientific approaches aiming to enhance antibiotic production in Streptomyces. These include: (i) elucidation of the signals that trigger the antibiotic biosynthetic pathways to improve culture media, (ii) bacterial hormone studies aiming to reproduce intra and interspecific communications resulting in antibiotic burst, (iii) co-cultures to mimic competition-collaboration scenarios in nature, and (iv) the very recent in situ search for antibiotics that might be applied in Streptomyces natural habitats. These new research strategies combined with new analytical and molecular techniques should accelerate the discovery process when the urgency for new compounds is higher than ever.
Collapse
Affiliation(s)
- Sergio Antoraz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - Ramón I Santamaría
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - Margarita Díaz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - David Sanz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - Héctor Rodríguez
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
41
|
Oetjen J, Veselkov K, Watrous J, McKenzie JS, Becker M, Hauberg-Lotte L, Kobarg JH, Strittmatter N, Mróz AK, Hoffmann F, Trede D, Palmer A, Schiffler S, Steinhorst K, Aichler M, Goldin R, Guntinas-Lichius O, von Eggeling F, Thiele H, Maedler K, Walch A, Maass P, Dorrestein PC, Takats Z, Alexandrov T. Benchmark datasets for 3D MALDI- and DESI-imaging mass spectrometry. Gigascience 2015; 4:20. [PMID: 25941567 PMCID: PMC4418095 DOI: 10.1186/s13742-015-0059-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/09/2015] [Indexed: 01/16/2023] Open
Abstract
Background Three-dimensional (3D) imaging mass spectrometry (MS) is an analytical chemistry technique for the 3D molecular analysis of a tissue specimen, entire organ, or microbial colonies on an agar plate. 3D-imaging MS has unique advantages over existing 3D imaging techniques, offers novel perspectives for understanding the spatial organization of biological processes, and has growing potential to be introduced into routine use in both biology and medicine. Owing to the sheer quantity of data generated, the visualization, analysis, and interpretation of 3D imaging MS data remain a significant challenge. Bioinformatics research in this field is hampered by the lack of publicly available benchmark datasets needed to evaluate and compare algorithms. Findings High-quality 3D imaging MS datasets from different biological systems at several labs were acquired, supplied with overview images and scripts demonstrating how to read them, and deposited into MetaboLights, an open repository for metabolomics data. 3D imaging MS data were collected from five samples using two types of 3D imaging MS. 3D matrix-assisted laser desorption/ionization imaging (MALDI) MS data were collected from murine pancreas, murine kidney, human oral squamous cell carcinoma, and interacting microbial colonies cultured in Petri dishes. 3D desorption electrospray ionization (DESI) imaging MS data were collected from a human colorectal adenocarcinoma. Conclusions With the aim to stimulate computational research in the field of computational 3D imaging MS, selected high-quality 3D imaging MS datasets are provided that could be used by algorithm developers as benchmark datasets. Electronic supplementary material The online version of this article (doi:10.1186/s13742-015-0059-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janina Oetjen
- MALDI Imaging Lab, University of Bremen, Bremen, Germany
| | - Kirill Veselkov
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Jeramie Watrous
- Department of Medicine, Biomedical Research Facility II, University of California, San Diego, USA
| | - James S McKenzie
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | - Nicole Strittmatter
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Anna K Mróz
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Franziska Hoffmann
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Jena, Germany ; Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Dennis Trede
- Steinbeis Center SCiLS Research, Bremen, Germany ; SCiLS GmbH, Bremen, Germany
| | - Andrew Palmer
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | - Michaela Aichler
- Research Unit Analytical Pathology, Institute of Pathology, Helmholtz Center Munich, Munich, Germany
| | - Robert Goldin
- Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | | | - Ferdinand von Eggeling
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Jena, Germany ; Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany ; Leibnitz Institute of Photonic Technology (IPHT), Jena, Germany ; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Kathrin Maedler
- MALDI Imaging Lab, University of Bremen, Bremen, Germany ; Islet Research Lab, Center for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Institute of Pathology, Helmholtz Center Munich, Munich, Germany
| | - Peter Maass
- Center for Industrial Mathematics, University of Bremen, Bremen, Germany
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, USA
| | - Zoltan Takats
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Theodore Alexandrov
- Steinbeis Center SCiLS Research, Bremen, Germany ; SCiLS GmbH, Bremen, Germany ; European Molecular Biology Laboratory, Heidelberg, Germany ; Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, USA
| |
Collapse
|
42
|
Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry. Nat Commun 2015; 6:6944. [PMID: 25903827 PMCID: PMC4423227 DOI: 10.1038/ncomms7944] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/17/2015] [Indexed: 01/07/2023] Open
Abstract
Analytical probes capable of mapping molecular composition at the nanoscale are of critical importance to materials research, biology and medicine. Mass spectral imaging makes it possible to visualize the spatial organization of multiple molecular components at a sample's surface. However, it is challenging for mass spectral imaging to map molecular composition in three dimensions (3D) with submicron resolution. Here we describe a mass spectral imaging method that exploits the high 3D localization of absorbed extreme ultraviolet laser light and its fundamentally distinct interaction with matter to determine molecular composition from a volume as small as 50 zl in a single laser shot. Molecular imaging with a lateral resolution of 75 nm and a depth resolution of 20 nm is demonstrated. These results open opportunities to visualize chemical composition and chemical changes in 3D at the nanoscale.
Collapse
|
43
|
Palmer AD, Alexandrov T. Serial 3D imaging mass spectrometry at its tipping point. Anal Chem 2015; 87:4055-62. [PMID: 25817912 DOI: 10.1021/ac504604g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since biology is by and large a 3-dimensional phenomenon, it is hardly surprising that 3D imaging has had a significant impact on many challenges in the life sciences. Imaging mass spectrometry (MS) is a spatially resolved label-free analytical technique that recently maturated into a powerful tool for in situ localization of hundreds of molecular species. Serial 3D imaging MS reconstructs 3D molecular images from serial sections imaged with mass spectrometry. As such, it provides a novel 3D imaging modality inheriting the advantages of imaging MS. Serial 3D imaging MS has been steadily developing over the past decade, and many of the technical challenges have been met. Essential tools and protocols were developed, in particular to improve the reproducibility of sample preparation, speed up data acquisition, and enable computationally intensive analysis of the big data generated. As a result, experimental data is starting to emerge that takes advantage of the extra spatial dimension that 3D imaging MS offers. Most studies still focus on method development rather than on exploring specific biological problems. The future success of 3D imaging MS requires it to find its own niche alongside existing 3D imaging modalities through finding applications that benefit from 3D imaging and at the same time utilize the unique chemical sensitivity of imaging mass spectrometry. This perspective critically reviews the challenges encountered during the development of serial-sectioning 3D imaging MS and discusses the steps needed to tip it from being an academic curiosity into a tool of choice for answering biological and medical questions.
Collapse
Affiliation(s)
- Andrew D Palmer
- †European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.,‡Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany
| | - Theodore Alexandrov
- †European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.,‡Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany.,§SCiLS GmbH, 28359 Bremen, Germany.,∥Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, California 92161, United States
| |
Collapse
|
44
|
Abstract
The human skin is an organ with a surface area of 1.5-2 m(2) that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health.
Collapse
|
45
|
Verstraete W. The technological side of the microbiome. NPJ Biofilms Microbiomes 2015; 1:15001. [PMID: 28721225 PMCID: PMC5515207 DOI: 10.1038/npjbiofilms.2015.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 11/21/2022] Open
Affiliation(s)
- Willy Verstraete
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Gent, Belgium
| |
Collapse
|
46
|
Floyd KA, Moore JL, Eberly AR, Good JAD, Shaffer CL, Zaver H, Almqvist F, Skaar EP, Caprioli RM, Hadjifrangiskou M. Adhesive fiber stratification in uropathogenic Escherichia coli biofilms unveils oxygen-mediated control of type 1 pili. PLoS Pathog 2015; 11:e1004697. [PMID: 25738819 PMCID: PMC4349694 DOI: 10.1371/journal.ppat.1004697] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/22/2015] [Indexed: 12/02/2022] Open
Abstract
Bacterial biofilms account for a significant number of hospital-acquired infections and complicate treatment options, because bacteria within biofilms are generally more tolerant to antibiotic treatment. This resilience is attributed to transient bacterial subpopulations that arise in response to variations in the microenvironment surrounding the biofilm. Here, we probed the spatial proteome of surface-associated single-species biofilms formed by uropathogenic Escherichia coli (UPEC), the major causative agent of community-acquired and catheter-associated urinary tract infections. We used matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) to analyze the spatial proteome of intact biofilms in situ. MALDI-TOF IMS revealed protein species exhibiting distinct localizations within surface-associated UPEC biofilms, including two adhesive fibers critical for UPEC biofilm formation and virulence: type 1 pili (Fim) localized exclusively to the air-exposed region, while curli amyloid fibers localized to the air-liquid interface. Comparison of cells grown aerobically, fermentatively, or utilizing an alternative terminal electron acceptor showed that the phase-variable fim promoter switched to the “OFF” orientation under oxygen-deplete conditions, leading to marked reduction of type 1 pili on the bacterial cell surface. Conversely, S pili whose expression is inversely related to fim expression were up-regulated under anoxic conditions. Tethering the fim promoter in the “ON” orientation in anaerobically grown cells only restored type 1 pili production in the presence of an alternative terminal electron acceptor beyond oxygen. Together these data support the presence of at least two regulatory mechanisms controlling fim expression in response to oxygen availability and may contribute to the stratification of extracellular matrix components within the biofilm. MALDI IMS facilitated the discovery of these mechanisms, and we have demonstrated that this technology can be used to interrogate subpopulations within bacterial biofilms. Bacteria are commonly found in multicellular communities known as biofilms. Biofilms can form on a variety of surfaces, both outside and within living things, and can have detrimental effects on human health. The characteristics of bacteria occupying different areas within biofilms are not well understood, and such knowledge is critical for understanding how biofilms form and for developing strategies to treat biofilm-related infections. Here, we adapted a technique to sample how proteins cluster within bacterial biofilms as a means to identify the location of bacteria with differential protein expression within the community. We observed that with uropathogenic E. coli, which is the major cause of urinary tract and catheter-associated urinary tract infections, bacteria close to the air-exposed region of the biofilm expressed different adhesive fibers compared to those at the liquid interface. We went on to show that lack of oxygen shuts down the production of fibers known to be critical for adherence to host bladder cells and to catheter material. This discovery was enabled by a new application of an existing technology that allowed us to gain insights into the spatial regulation of proteins within bacterial biofilms and to elucidate pathways that could be targeted to inhibit bacterial adherence.
Collapse
Affiliation(s)
- Kyle A. Floyd
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jessica L. Moore
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Allison R. Eberly
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - James A. D. Good
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research, Umeå University, Umeå, Sweden
| | - Carrie L. Shaffer
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Himesh Zaver
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Biology and Department of Chemistry, Belmont University, Nashville, Tennessee, United States of America
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research, Umeå University, Umeå, Sweden
| | - Eric P. Skaar
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Richard M. Caprioli
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Departments of Biochemistry and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (RMC); (MH)
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (RMC); (MH)
| |
Collapse
|
47
|
Golf O, Strittmatter N, Karancsi T, Pringle SD, Speller AVM, Mroz A, Kinross JM, Abbassi-Ghadi N, Jones EA, Takats Z. Rapid evaporative ionization mass spectrometry imaging platform for direct mapping from bulk tissue and bacterial growth media. Anal Chem 2015; 87:2527-34. [PMID: 25671656 DOI: 10.1021/ac5046752] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid evaporative ionization mass spectrometry (REIMS) technology allows real time intraoperative tissue classification and the characterization and identification of microorganisms. In order to create spectral libraries for training the classification models, reference data need to be acquired in large quantities as classification accuracy generally improves as a function of number of training samples. In this study, we present an automated high-throughput method for collecting REIMS data from heterogeneous organic tissue. The underlying instrumentation consists of a 2D stage with an additional high-precision z-axis actuator that is equipped with an electrosurgical diathermy-based sampling probe. The approach was validated using samples of human liver with metastases and bacterial strains, cultured on solid medium, belonging to the species P. aeruginosa, B. subtilis, and S. aureus. For both sample types, spatially resolved spectral information was obtained that resulted in clearly distinguishable multivariate clustering between the healthy/cancerous liver tissues and between the bacterial species.
Collapse
Affiliation(s)
- Ottmar Golf
- Section of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London , SW7 2AZ London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Siegrist MS, Swarts BM, Fox DM, Lim SA, Bertozzi CR. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiol Rev 2015; 39:184-202. [PMID: 25725012 DOI: 10.1093/femsre/fuu012] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology.
Collapse
Affiliation(s)
- M Sloan Siegrist
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Benjamin M Swarts
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Douglas M Fox
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Shion An Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, CA 94720, USA Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Dean SN, Walsh C, Goodman H, van Hoek ML. Analysis of mixed biofilm (Staphylococcus aureus and Pseudomonas aeruginosa) by laser ablation electrospray ionization mass spectrometry. BIOFOULING 2015; 31:151-161. [PMID: 25672229 DOI: 10.1080/08927014.2015.1011067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are ubiquitous pathogens often found together in polymicrobial, biofilm-associated infections. This study is the first to use laser ablation electrospray ionization mass spectrometry (LAESI-MS) to rapidly study bacteria within a mixed biofilm. Fast, direct, non-invasive LAESI-MS analysis of biofilm could significantly accelerate biofilm studies and provide previously unavailable information on both biofilm composition and the effects of antibiofilm treatment. LAESI-MS was applied directly to a polymicrobial biofilm and analyzed with respect to whether P. aeruginosa and S. aureus were co-localized or self-segregated within the mixed biofilm. LAESI-MS was also used to analyze ions following LL-37 antimicrobial peptide treatment of the biofilm. This ambient ionization method holds promise for future biofilm studies. The use of this innovative technique has profound implications for the study of biofilms, as LAESI-MS eliminates the need for lengthy and disruptive sample preparation while permitting rapid analysis of unfixed and wet biofilms.
Collapse
Affiliation(s)
- Scott N Dean
- a School of Systems Biology and National Center for Biodefense and Infectious Diseases , George Mason University , Manassas , VA , USA
| | | | | | | |
Collapse
|
50
|
Three-dimensional imaging of lipids and metabolites in tissues by nanospray desorption electrospray ionization mass spectrometry. Anal Bioanal Chem 2014; 407:2063-71. [PMID: 25395201 DOI: 10.1007/s00216-014-8174-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Three-dimensional (3D) imaging of tissue sections is a new frontier in mass spectrometry imaging (MSI). Here, we report on fast 3D imaging of lipids and metabolites associated with mouse uterine decidual cells and embryo at the implantation site on day 6 of pregnancy. 2D imaging of 16-20 serial tissue sections deposited on the same glass slide was performed using nanospray desorption electrospray ionization (nano-DESI)-an ambient ionization technique that enables sensitive localized analysis of analytes on surfaces without special sample pretreatment. In this proof-of-principle study, nano-DESI was coupled to a high-resolution Q-Exactive instrument operated at high repetition rate of >5 Hz with moderate mass resolution of 35,000 (m/Δm at m/z 200), which enabled acquisition of the entire 3D image with a spatial resolution of ∼150 μm in less than 4.5 h. The results demonstrate localization of acetylcholine in the primary decidual zone (PDZ) of the implantation site throughout the depth of the tissue examined, indicating an important role of this signaling molecule in decidualization. Choline and phosphocholine-metabolites associated with cell growth-are enhanced in the PDZ and abundant in other cellular regions of the implantation site. Very different 3D distributions were obtained for fatty acids (FA), oleic acid and linoleic acid (FA 18:1 and FA 18:2), differing only by one double bond. Localization of FA 18:2 in the PDZ indicates its important role in decidualization while FA 18:1 is distributed more evenly throughout the tissue. In contrast, several lysophosphatidylcholines (LPC) observed in this study show donut-like distributions with localization around the PDZ. Complementary distributions with minimal overlap were observed for LPC 18:0 and FA 18:2 while the 3D image of the potential precursor phosphatidylcholine 36:2 (PC 36:2) showed a significant overlap with both LPC 18:0 and FA 18:2.
Collapse
|