1
|
Weitzman CL, Day K, Brown GP, Gibb K, Christian K. Differential Temporal Shifts in Skin Bacteria on Wild and Captive Toads. MICROBIAL ECOLOGY 2025; 88:35. [PMID: 40301143 PMCID: PMC12040999 DOI: 10.1007/s00248-025-02537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025]
Abstract
Skin bacteria on amphibian hosts play an important role in host health, but those communities are also constantly shifting based on environmental and host-related feedback. On some hosts, stability of skin communities depends on relatively abundant taxa, with less abundant taxa more readily entering and exiting the system. Cane toads (Rhinella marina) have invaded widespread, diverse tropical ecosystems, with varying ecology, physiology, and behaviour in different environments. In this study, we described temporal patterns of skin bacterial communities on cane toads at a site in northern Australia through the wet and dry seasons over two years. Toads in the wild population were paired with a captive-held population, housed in a semi-natural environment, to detect effects of time and season on wild toads, explore bacterial transience and volatility in skin taxa, and determine the extent to which skin communities on captive toads represent those on the wild population. We found community differences by captivity status, sampling timepoint, and season, with increased richness in the wet season on wild toads. Bacterial communities also became more similar among individuals (lower dispersion) in the wet season. Captive toads harboured more stable communities over time, likely owing to the reduced bacterial reservoirs experienced while in captivity. We propose that cane toads, with varied movement patterns among their diverse invaded habitats, provide an interesting direction for future work understanding the influences of habitat and movement on skin microbes, and the flexibility of microbial symbiotic interactions in invasive hosts.
Collapse
Affiliation(s)
- Chava L Weitzman
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT, Australia.
| | - Kimberley Day
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT, Australia
| | - Gregory P Brown
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT, Australia
| | - Keith Christian
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT, Australia
| |
Collapse
|
2
|
Wang Z, Wang Y, He Z, Wu S, Wang S, Zhao N, Zhu W, Jiang J, Wang S. Research Status and Prospect of Amphibian Symbiotic Microbiota. Animals (Basel) 2025; 15:934. [PMID: 40218328 PMCID: PMC11987896 DOI: 10.3390/ani15070934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Amphibians are the most severely threatened vertebrate group in terms of biodiversity. The microbiota that coexist in a mutualistic relationship with amphibians play a crucial role in shaping their health status, reproductive efficiency, and environmental adaptability. Understanding the relationship between amphibians and microbiota is vital for elucidating the causes of amphibian diseases and developing effective prevention and control techniques, which in turn is significant for enhancing the effectiveness of amphibian diversity conservation. The main findings of this article are as follows: Firstly, it provides an overview of the systematic assessment and analysis methods regarding the importance of amphibians and their symbiotic microbiota, detailing the primary research techniques currently employed. Secondly, it discusses the impacts of environmental and biological factors on the characteristics of amphibian symbiotic microbial communities, including dimensions such as altitude, temperature fluctuations, and host dietary habits. Finally, the future directions of research on amphibian symbiotic microbiota are examined, with five recommendations presented: (1) Establish a comprehensive sample library and database of amphibians and their symbiotic microbiota to create a solid foundation for scientific research. (2) Explore the coevolutionary paths between amphibians and symbiotic microbiota to clarify the dynamic evolutionary patterns and principles of their interactions. (3) Strengthen research on specific areas of amphibians, especially the microbial communities in the oral cavity and cloaca. (4) Enhance research on the symbiotic microbiota of the Gymnophiona. (5) Strengthen international cooperation to build cross-border research platforms and jointly promote the rapid development of global amphibian symbiotic microbiology. This article summarizes the current research progress on the interaction between amphibians and their symbiotic microbiota (not necessarily mutualistic). It discusses the conservation of amphibian biodiversity from the perspective of their symbiotic microbial communities and provides a forward-looking analysis of future research directions. It aims to provide rich background information for understanding the complexity of this symbiotic system, while also having significant value in enhancing the effectiveness of amphibian biodiversity conservation.
Collapse
Affiliation(s)
- Ziyi Wang
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Z.W.); (Y.W.); (Z.H.); (S.W.); (S.W.); (N.Z.)
| | - Yuting Wang
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Z.W.); (Y.W.); (Z.H.); (S.W.); (S.W.); (N.Z.)
| | - Zhirong He
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Z.W.); (Y.W.); (Z.H.); (S.W.); (S.W.); (N.Z.)
| | - Siyu Wu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Z.W.); (Y.W.); (Z.H.); (S.W.); (S.W.); (N.Z.)
| | - Suyue Wang
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Z.W.); (Y.W.); (Z.H.); (S.W.); (S.W.); (N.Z.)
| | - Na Zhao
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Z.W.); (Y.W.); (Z.H.); (S.W.); (S.W.); (N.Z.)
| | - Wei Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
| | - Supen Wang
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (Z.W.); (Y.W.); (Z.H.); (S.W.); (S.W.); (N.Z.)
| |
Collapse
|
3
|
Leng H, Li A, Li Z, Hoyt JR, Dai W, Xiao Y, Feng J, Sun K. Variation and assembly mechanisms of Rhinolophus ferrumequinum skin and cave environmental fungal communities during hibernation periods. Microbiol Spectr 2025; 13:e0223324. [PMID: 39846756 PMCID: PMC11878040 DOI: 10.1128/spectrum.02233-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
Animal skin acts as the barrier against invasion by pathogens and microbial colonizers. Environmental microbiota plays a significant role in shaping these microbial communities, which, in turn, have profound implications for host health. Previous research has focused on characterizing microorganisms on bats' skin and in their roosting environments, particularly bacterial communities. The emergence of white-nose syndrome, caused by the fungal-pathogen Pseudogymnoascus destructans, highlights the importance of understanding fungal dynamics in cave ecosystems and on bats' skin. In this study, we employed ITS amplicon sequencing to investigate the fungal community associated with the skin of Rhinolophus ferrumequinum and surfaces within hibernacula. In addition, we utilized neutral community and null models to assess the relative importance of stochastic and deterministic processes in fungal community assembly. The infection status of P. destructans did not significantly impact fungal community composition either on bat skin or cave environments. However, fungal diversity was significantly higher in cave environments compared to bat skin. Notably, potentially inhibitory genera of fungal pathogens were present in both bats and cave environments during hibernation. Furthermore, the composition and structure of fungal communities on both bat skin and cave environments varied across hibernation periods. Our findings suggest neutral processes primarily drive the assembly of fungal communities associated with hibernating R. ferrumequinum and cave environments, with dispersal limitation exerting a significant influence. This study provides insights into the fungal communities associated with hibernating R. ferrumequinum and cave environments.IMPORTANCEAnimal habitats provide sources and reservoirs for host microorganisms, making it critical to understand changes in microbial communities between habitats and hosts. While most studies have focused on bacterial microorganisms, research on fungal communities is lacking. This study investigated how community dynamics and assembly processes differ between the skin of hibernating Rhinolophus ferrumequinum and the cave environments under pathogen stress. We found significant differences in the composition and structure of the fungal communities between bat skin and roosting cave environments. Fungal genera with potential inhibitory effects on pathogens were found in all bat skin and cave environments. In addition, dispersal limitations during stochastic processes were a key factor in the formation of environmental fungal communities on bat skin and in caves. These findings offer new insights for exploring pathogen-host-environment-microbe interactions.
Collapse
Affiliation(s)
- Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Aoqiang Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhongle Li
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Joseph R. Hoyt
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| |
Collapse
|
4
|
WAN B, CHEN G, POON ESK, FUNG HS, LAU A, SIN SYW. Environmental factors and host sex influence the skin microbiota structure of Hong Kong newt (Paramesotriton hongkongensis) in a coldspot of chytridiomycosis in subtropical East Asia. Integr Zool 2025; 20:236-255. [PMID: 38872359 PMCID: PMC11897979 DOI: 10.1111/1749-4877.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Chytridiomycosis, an infectious skin disease caused by the chytrid fungi, Batrachochytrium dendrobatidis and B. salamandrivorans, poses a significant threat to amphibian biodiversity worldwide. Antifungal bacteria found on the skin of chytrid-resistant amphibians could potentially provide defense against chytridiomycosis and lower mortality rates among resistant individuals. The Hong Kong newt (Paramesotriton hongkongensis) is native to East Asia, a region suspected to be the origin of chytrids, and has exhibited asymptomatic infection, suggesting a long-term coexistence with the chytrids. Therefore, the skin microbiota of this resistant species warrant investigation, along with other factors that can affect the microbiota. Among the 149 newts sampled in their natural habitats in Hong Kong, China, putative antifungal bacteria were found in all individuals. There were 314 amplicon sequence variants distributed over 25 genera of putative antifungal bacteria; abundant ones included Acinetobacter, Flavobacterium, and Novosphingobium spp. The skin microbiota compositions were strongly influenced by the inter-site geographical distances. Despite inter-site differences, we identified some core skin microbes across sites that could be vital to P. hongkongensis. The dominant cores included the family Comamonadaceae, family Chitinophagaceae, and class Betaproteobacteria. Moreover, habitat elevation and host sex also exhibited significant effects on skin microbiota compositions. The antifungal bacteria found on these newts offer an important resource for conservation against chytridiomycosis, such as developing probiotic treatments for susceptible species.
Collapse
Affiliation(s)
- Bowen WAN
- School of Biological SciencesThe University of Hong KongHong KongChina
| | - Guoling CHEN
- School of Biological SciencesThe University of Hong KongHong KongChina
| | | | - Hon Shing FUNG
- School of Biological SciencesThe University of Hong KongHong KongChina
| | - Anthony LAU
- Science UnitLingnan UniversityHong KongChina
| | - Simon Yung Wa SIN
- School of Biological SciencesThe University of Hong KongHong KongChina
| |
Collapse
|
5
|
Ghose SL, Eisen JA. Skin microbiomes of frogs vary among individuals and body regions, revealing differences that reflect known patterns of chytrid infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636728. [PMID: 39975414 PMCID: PMC11839087 DOI: 10.1101/2025.02.05.636728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The amphibian skin microbiome is an important line of defense against pathogens including the deadly chytrid fungus, Batrachochytrium dendrobatidis (Bd). Intra-species variation in disease susceptibility and intra-individual variation in infection distribution across the skin, therefore, may relate to differences in skin microbiomes. However, characterization of microbiome variation within and among amphibian individuals is needed. We utilized 16S rRNA gene amplicon sequencing to compare microbiomes of ten body regions from nine captive R. sierrae individuals and their tank environments. While frogs harbored distinct microbial communities compared to their tank environments, tank identity was associated with more variation in frog microbiomes than individual frog identity. Within individuals, we detected differences between microbiomes of body regions where Bd infection would be expected compared to regions that infrequently experience infection. Notably, the bacterial families Burkholderiaceae (phylum Proteobacteria) and Rubritaleaceae (phylum Verrucomicrobia) were dominant on frog skin, and the relative abundances of undescribed members of these families were important to describing differences among and within individuals. Two undescribed Burkholderiaceae taxa were found to be putatively Bd-inhibitory, and both showed higher relative abundance on body regions where Bd infection is often localized. These findings highlight the importance of considering intrapopulation and intraindividual heterogeneities, which could provide insights relevant to predicting localized interactions with pathogens.
Collapse
Affiliation(s)
- Sonia L. Ghose
- Genome Center, University of California, Davis, CA, USA
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Jonathan A. Eisen
- Genome Center, University of California, Davis, CA, USA
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| |
Collapse
|
6
|
Su R, Chen F, Zhang X, Qin Y, Zhang Y, Zhang W. Immune defense adaptation of Strauchbufo raddei population in heavy metal polluted area: Insights from developmental and environmental perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123126. [PMID: 39500166 DOI: 10.1016/j.jenvman.2024.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024]
Abstract
The adjustment of immune defense mechanisms is a crucial aspect of biological adaptation to stressful environments. Amphibians, with their unique metamorphic process, experience distinct life stages and exhibit diverse immune defense components. While previous studies have focused on specific immune changes during particular life stages under stress, this research addresses a critical gap by exploring the adaptive immune defense strategies of Strauchbufo raddei in heavy metal-polluted environments. We conducted laboratory experiments, exposing offspring from both polluted and unpolluted areas to control and heavy metal treatments, while continuously monitoring changes in immune components during key metamorphic stages. Notably, we examined the role of the skin microbiome, a crucial but often overlooked barrier against pathogens. The results indicated that individuals from polluted areas exhibited some tolerance to heavy metal exposure, though overall immune function remained diminished. During metamorphosis, when immune defenses are most vulnerable, the skin microbiome rapidly enriched beneficial bacteria, preventing pathogenic colonization and playing a pivotal role in maintaining immune defense in contaminated environments. Moreover, our research highlights energy allocation strategies involving corticosterone and body fat content, enabling populations to maintain development despite immune compromise. The immune adaptations observed may be fixed through genetic assimilation, suggesting a rapid evolutionary response to environmental stress. However, this reduces phenotypic plasticity, making populations more vulnerable to future environmental changes. This study provides key insights into the survival strategies of amphibian populations in heavy metal-contaminated areas, laying the foundation for future research on molecular and evolutionary adaptations.
Collapse
Affiliation(s)
- Rui Su
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Fanrui Chen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Xueying Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yuting Qin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Wenya Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Soto-Cortés E, Marroquín-Rodríguez M, Basanta MD, Maldonado-López Y, Parra-Olea G, Rebollar EA. Host Species and Environment Shape the Skin Microbiota of Mexican Axolotls. MICROBIAL ECOLOGY 2024; 87:98. [PMID: 39046491 PMCID: PMC11269437 DOI: 10.1007/s00248-024-02411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Skin microbiomes in amphibians are complex systems that can be influenced by biotic and abiotic factors. In this study, we examined the effect of host species and environmental conditions on the skin bacterial and fungal microbiota of four obligate paedomorphic salamander species, commonly known as axolotls (Ambystoma andersoni, A. dumerilii, A. mexicanum, and A. taylori), all of them endemic to the Trans-Mexican Volcanic Belt. We found that despite their permanent aquatic lifestyle, these species present a host-specific skin microbiota that is distinct from aquatic communities. We identified skin-associated taxa that were unique to each host species and that differentiated axolotl species based on alpha and beta diversity metrics. Moreover, we identified a set of microbial taxa that were shared across hosts with high relative abundances across skin samples. Specifically, bacterial communities were dominated by Burkholderiales and Pseudomonadales bacterial orders and Capnodiales and Pleosporales fungal orders. Host species and environmental variables collectively explained more microbial composition variation in bacteria (R2 = 0.46) in comparison to fungi (R2 = 0.2). Our results contribute to a better understanding of the factors shaping the diversity and composition of skin microbial communities in Ambystoma. Additional studies are needed to disentangle the effects of specific host associated and environmental factors that could influence the skin microbiome of these endangered species.
Collapse
Affiliation(s)
- Enrique Soto-Cortés
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | - Maria Delia Basanta
- Department of Biology, University of Nevada Reno, Reno, NV, USA
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México
| | - Yurixhi Maldonado-López
- Cátedras CONAHCYT - Instituto de Investigaciones Sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Gabriela Parra-Olea
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México.
| |
Collapse
|
8
|
Hill MS, Gilbert JA. Microbiology of the built environment: harnessing human-associated built environment research to inform the study and design of animal nests and enclosures. Microbiol Mol Biol Rev 2023; 87:e0012121. [PMID: 38047636 PMCID: PMC10732082 DOI: 10.1128/mmbr.00121-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
SUMMARYOver the past decade, hundreds of studies have characterized the microbial communities found in human-associated built environments (BEs). These have focused primarily on how the design and use of our built spaces have shaped human-microbe interactions and how the differential selection of certain taxa or genetic traits has influenced health outcomes. It is now known that the more removed humans are from the natural environment, the greater the risk for the development of autoimmune and allergic diseases, and that indoor spaces can be harsh, selective environments that can increase the emergence of antimicrobial-resistant and virulent phenotypes in surface-bound communities. However, despite the abundance of research that now points to the importance of BEs in determining human-microbe interactions, only a fraction of non-human animal structures have been comparatively explored. It is here, in the context of human-associated BE research, that we consider the microbial ecology of animal-built natural nests and burrows, as well as artificial enclosures, and point to areas of primary interest for future research.
Collapse
Affiliation(s)
- Megan S. Hill
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
9
|
Du C, Xu R, Zhao X, Liu Y, Zhou X, Zhang W, Zhou X, Hu N, Zhang Y, Sun Z, Wang Z. Association between host nitrogen absorption and root-associated microbial community in field-grown wheat. Appl Microbiol Biotechnol 2023; 107:7347-7364. [PMID: 37747613 DOI: 10.1007/s00253-023-12787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
Plant roots and rhizosphere soils assemble diverse microbial communities, and these root-associated microbiomes profoundly influence host development. Modern wheat has given rise to numerous cultivars for its wide range of ecological adaptations and commercial uses. Variations in nitrogen uptake by different wheat cultivars are widely observed in production practices. However, little is known about the composition and structure of the root-associated microbiota in different wheat cultivars, and it is not sure whether root-associated microbial communities are relevant in host nitrogen absorption. Therefore, there is an urgent need for systematic assessment of root-associated microbial communities and their association with host nitrogen absorption in field-grown wheat. Here, we investigated the root-associated microbial community composition, structure, and keystone taxa in wheat cultivars with different nitrogen absorption characteristics at different stages and their relationships with edaphic variables and host nitrogen uptake. Our results indicated that cultivar nitrogen absorption characteristics strongly interacted with bacterial and archaeal communities in the roots and edaphic physicochemical factors. The impact of host cultivar identity, developmental stage, and spatial niche on bacterial and archaeal community structure and network complexity increased progressively from rhizosphere soils to roots. The root microbial community had a significant direct effect on plant nitrogen absorption, while plant nitrogen absorption and soil temperature also significantly influenced root microbial community structure. The cultivar with higher nitrogen absorption at the jointing stage tended to cooperate with root microbial community to facilitate their own nitrogen absorption. Our work provides important information for further wheat microbiome manipulation to influence host nitrogen absorption. KEY POINTS: • Wheat cultivar and developmental stage affected microbiome structure and network. • The root microbial community strongly interacted with plant nitrogen absorption. • High nitrogen absorption cultivar tended to cooperate with root microbiome.
Collapse
Affiliation(s)
- Chenghang Du
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Runlai Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ying Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaohan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wanqing Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaonan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Naiyue Hu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhencai Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Li Y, Rong S, Zhang C, Chu H, Wei P, Tao S. Mesocosm experimental study on sustainable riparian restoration using sediment-modified planting eco-concrete. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165452. [PMID: 37467989 DOI: 10.1016/j.scitotenv.2023.165452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
The continued deterioration of riparian ecosystems is a worldwide concern, which can lead to soil erosion, plant degradation, biodiversity loss, and water quality decline. Here, taking into account waste resource utilization and eco-environmental friendliness, the sediment-modified planting eco-concrete with both H. verticillata and T. orientalis (SEC-H&T) was prepared and explored for the first time to achieve sustainable riparian restoration. Concrete mechanical characterizations showed that the compressive strength and porosity of SEC with 30% sediment content could reach up to 15.8 MPa and 21.25%, respectively. The mechanical properties and the sediment utilization levels of SEC were appropriately balanced, and potentially toxic element leaching results verified the environmental safety of eco-concrete modified with dredged sediments. Plant physiological parameters of both aquatic plants (biomass, chlorophyll, protein and starch) were observed to reach the normal levels in SEC during the 30-day culture period, and T. orientalis seemed better adapted to SEC environment than H. verticillate. Importantly, compared to SEC-H and SEC-T, SEC-H&T could effectively reduce the concentrations of COD, TN and TP by 58.59%, 74.00% and 79.98% in water, respectively. Notably, water purification mechanisms by SEC-H&T were further elucidated from the perspective of microbial community responses. Shannon index of bacterial diversity and proliferation of specific populations dominating nutrient transformation (such as Bacillus and Nitrospira) was increased under the synergy of SEC and aquatic plants. Correspondingly, functional genes involved in nitrogen and phosphorus transformation (such as nosZ and phoU) were also enriched. Our study can not only showcase an effective and flexible approach to recycle dredged sediments into eco-concrete with low environment impacts, but also provide a promising alternative for sustainable riparian restoration.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Shengxiang Rong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - Hongqiang Chu
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Pengcheng Wei
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Shiqiang Tao
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| |
Collapse
|
11
|
Mulla L, Hernández-Gómez O. Wildfires disturb the natural skin microbiota of terrestrial salamanders. Environ Microbiol 2023; 25:2203-2215. [PMID: 37340556 DOI: 10.1111/1462-2920.16452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/04/2023] [Indexed: 06/22/2023]
Abstract
Environmental change can disturb natural associations between wildlife and microbial symbionts, in many cases to the detriment of host health. We used a North American terrestrial salamander system to assess how the skin microbiota of amphibians responds to wildfires. In northern California's redwood/oak forests, we assessed how recent wildfires affected the skin microbiota of three different salamander species (Taricha sp., Batrachoseps attenuatus, and Ensatina eschscholtzii) over two different sampling seasons in 2018 and 2021. We found species-specific responses to wildfire disturbance on the alpha diversity of the skin microbiota of terrestrial salamanders, although burning in general altered the composition of the skin microbiota. The effect of burning on alpha diversities and body condition indices varied by sampling season, suggesting an additional effect of annual climatic conditions on body condition and skin microbiota response. We tested all salamanders for Batrachochytrium dendrobatidis and found four infected individuals in 2018 and none in 2021. Our study documents correlations in the skin microbiota response to an increasing source of disturbance in western North American ecosystems. In addition, our results highlight the need to consider the effects of increased wildfire regimes/intensities and longitudinal effects on wildlife-associated microbiota and animal health.
Collapse
Affiliation(s)
- Lubna Mulla
- Department of Natural Sciences and Mathematics, School of Health and Natural Sciences, Dominican University of California, San Rafael, California, USA
| | - Obed Hernández-Gómez
- Department of Natural Sciences and Mathematics, School of Health and Natural Sciences, Dominican University of California, San Rafael, California, USA
| |
Collapse
|
12
|
Korpita TM, Muths EL, Watry MK, McKenzie VJ. Captivity, Reintroductions, and the Rewilding of Amphibian-associated Bacterial Communities. MICROBIAL ECOLOGY 2023; 86:2271-2281. [PMID: 37222806 DOI: 10.1007/s00248-023-02229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/23/2023] [Indexed: 05/25/2023]
Abstract
Many studies have noted differences in microbes associated with animals reared in captivity compared to their wild counterparts, but few studies have examined how microbes change when animals are reintroduced to the wild after captive rearing. As captive assurance populations and reintroduction programs increase, a better understanding of how microbial symbionts respond during animal translocations is critical. We examined changes in microbes associated with boreal toads (Anaxyrus boreas), a threatened amphibian, after reintroduction to the wild following captive rearing. Previous studies demonstrate that developmental life stage is an important factor in amphibian microbiomes. We collected 16S marker-gene sequencing datasets to investigate: (i) comparisons of the skin, mouth, and fecal bacteria of boreal toads across four developmental life stages in captivity and the wild, (ii) tadpole skin bacteria before and after reintroduction to the wild, and (iii) adult skin bacteria during reintroduction to the wild. We demonstrated that differences occur across skin, fecal, and mouth bacterial communities in captive versus wild boreal toads, and that the degree of difference depends on developmental stage. Skin bacterial communities from captive tadpoles were more similar to their wild counterparts than captive post-metamorphic individuals were to their wild counterparts. When captive-reared tadpoles were introduced to a wild site, their skin bacteria changed rapidly to resemble wild tadpoles. Similarly, the skin bacterial communities of reintroduced adult boreal toads also shifted to resemble those of wild toads. Our results indicate that a clear microbial signature of captivity in amphibians does not persist after release into natural habitat.
Collapse
Affiliation(s)
- Timothy M Korpita
- Dept. of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Erin L Muths
- United States Geological Survey, Fort Collins Science Center, 2150 Centre Ave. Bldg C, Fort Collins, CO, 80526, USA
| | - Mary Kay Watry
- National Park Service, Rocky Mountain National Park, 1000 US Highway 36, Estes Park, CO, 80517, USA
| | - Valerie J McKenzie
- Dept. of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
13
|
Leonhardt F, Keller A, Arranz Aveces C, Ernst R. From Alien Species to Alien Communities: Host- and Habitat-Associated Microbiomes in an Alien Amphibian. MICROBIAL ECOLOGY 2023; 86:2373-2385. [PMID: 37233803 PMCID: PMC10640505 DOI: 10.1007/s00248-023-02227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Alien species can host diverse microbial communities. These associated microbiomes may be important in the invasion process and their analysis requires a holistic community-based approach. We analysed the skin and gut microbiome of Eleutherodactylus johnstonei from native range populations in St Lucia and exotic range populations in Guadeloupe, Colombia, and European greenhouses along with their respective environmental microbial reservoir through a 16S metabarcoding approach. We show that amphibian-associated and environmental microbial communities can be considered as meta-communities that interact in the assembly process. High proportions of bacteria can disperse between frogs and environment, while respective abundances are rather determined by niche effects driven by the microbial community source and spatial environmental properties. Environmental transmissions appeared to have higher relevance for skin than for gut microbiome composition and variation. We encourage further experimental studies to assess the implications of turnover in amphibian-associated microbial communities and potentially invasive microbiota in the context of invasion success and impacts. Within this novel framework of "nested invasions," (meta-)community ecology thinking can complement and widen the traditional perspective on biological invasions.
Collapse
Affiliation(s)
- Franziska Leonhardt
- Faculty of Biology, Technical University of Dresden, 01062, Dresden, Germany.
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109, Dresden, Germany.
| | - Alexander Keller
- Faculty of Biology, Ludwig-Maximilians-University of Munich, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Clara Arranz Aveces
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70173, Stuttgart, Germany
| | - Raffael Ernst
- Faculty of Biology, Technical University of Dresden, 01062, Dresden, Germany.
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109, Dresden, Germany.
| |
Collapse
|
14
|
Ettinger CL, Wu-Woods J, Kurbessoian T, Brown DJ, de Souza Pacheco I, Vindiola BG, Walling LL, Atkinson PW, Byrne FJ, Redak R, Stajich JE. Geographical survey of the mycobiome and microbiome of Southern California glassy-winged sharpshooters. mSphere 2023; 8:e0026723. [PMID: 37800904 PMCID: PMC10597469 DOI: 10.1128/msphere.00267-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
The glassy-winged sharpshooter, Homalodisca vitripennis Germar, is an invasive xylem-feeding leafhopper with a devastating economic impact on California agriculture through transmission of the plant pathogen, Xylella fastidiosa. While studies have focused on X. fastidiosa or known symbionts of H. vitripennis, little work has been done at the scale of the microbiome (the bacterial community) or mycobiome (the fungal community). Here, we characterize the mycobiome and the microbiome of H. vitripennis across Southern California and explore correlations with captivity and host insecticide resistance status. Using high-throughput sequencing of the ribosomal internal transcribed spacer 1 region and the 16S rRNA gene to profile the mycobiome and microbiome, respectively, we found that while the H. vitripennis mycobiome significantly varied across Southern California, the microbiome did not. We also observed a significant difference in both the mycobiome and microbiome between captive and wild H. vitripennis. Finally, we found that the mycobiome, but not the microbiome, was correlated with insecticide resistance status in wild H. vitripennis. This study serves as a foundational look at the H. vitripennis mycobiome and microbiome across Southern California. Future work should explore the putative link between microbes and insecticide resistance status and investigate whether microbial communities should be considered in H. vitripennis management practices. IMPORTANCE The glassy-winged sharpshooter is an invasive leafhopper that feeds on the xylem of plants and transmits the devastating pathogen, Xylella fastidiosa, resulting in significant economic damage to California's agricultural system. While studies have focused on this pathogen or obligate symbionts of the glassy-winged sharpshooter, there is limited knowledge of the bacterial and fungal communities that make up its microbiome and mycobiome. To address this knowledge gap, we explored the composition of the mycobiome and the microbiome of the glassy-winged sharpshooter across Southern California and identified differences associated with geography, captivity, and host insecticide resistance status. Understanding sources of variation in the microbial communities associated with the glassy-winged sharpshooter is an important consideration for developing management strategies to control this invasive insect. This study is a first step toward understanding the role microbes may play in the glassy-winged sharpshooter's resistance to insecticides.
Collapse
Affiliation(s)
- Cassandra L. Ettinger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Jessica Wu-Woods
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Tania Kurbessoian
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Dylan J. Brown
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | | | - Beatriz G. Vindiola
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | - Linda L. Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California, USA
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
| | - Peter W. Atkinson
- Department of Entomology, University of California, Riverside, Riverside, California, USA
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
| | - Frank J. Byrne
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | - Richard Redak
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
15
|
Ramírez-Barahona S, González-Serrano FM, Martínez-Ugalde E, Soto-Pozos A, Parra-Olea G, Rebollar EA. Host phylogeny and environment shape the diversity of salamander skin bacterial communities. Anim Microbiome 2023; 5:52. [PMID: 37828573 PMCID: PMC10571319 DOI: 10.1186/s42523-023-00271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
The composition and diversity of animal-associated microbial communities are shaped by multiple ecological and evolutionary processes acting at different spatial and temporal scales. Skin microbiomes are thought to be strongly influenced by the environment due to the direct interaction of the host's skin with the external media. As expected, the diversity of amphibian skin microbiomes is shaped by climate and host sampling habitats, whereas phylogenetic effects appear to be weak. However, the relative strength of phylogenetic and environmental effects on salamander skin microbiomes remains poorly understood. Here, we analysed sequence data from 1164 adult salamanders of 44 species to characterise and compare the diversity and composition of skin bacteria. We assessed the relative contribution of climate, host sampling habitat, and host phylogeny to the observed patterns of bacterial diversity. We found that bacterial alpha diversity was mainly associated with host sampling habitat and climate, but that bacterial beta diversity was more strongly associated with host taxonomy and phylogeny. This phylogenetic effect predominantly occurred at intermediate levels of host divergence (0-50 Mya). Our results support the importance of environmental factors shaping the diversity of salamander skin microbiota, but also support host phylogenetic history as a major factor shaping these bacterial communities.
Collapse
Affiliation(s)
- S Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - F M González-Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - E Martínez-Ugalde
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - A Soto-Pozos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - G Parra-Olea
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - E A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
16
|
Santos B, Martins FMS, Sabino-Pinto J, Licata F, Crottini A. Skin and gut microbiomes of tadpoles vary differently with host and water environment: a short-term experiment using 16S metabarcoding. Sci Rep 2023; 13:16321. [PMID: 37770544 PMCID: PMC10539280 DOI: 10.1038/s41598-023-43340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/22/2023] [Indexed: 09/30/2023] Open
Abstract
The host-microbiome community is influenced by several host and environmental factors. In order to disentangle the individual effects of host and environment, we performed a laboratory experiment to assess the effects of the exposure to different water sources on the skin and gut microbiome of two amphibian species (Pelophylax perezi and Bufo spinosus). We observed that the bacterial communities greatly varied with water environment and host identity. Tadpoles of B. spinosus collected from a waterbody with poorer bacterial diversity exhibited a more diverse skin and gut microbiome after exposed to a richer water source. Tadpoles of P. perezi, originally collected from a richer water environment, exhibited less marked alterations in diversity patterns independently of the water source but showed alterations in gut composition. These results highlight that environment alterations, such as the water source, combined with the host effect, impact the microbiome of amphibian species in different ways; the population history (e.g., previous water environment and habitat) of the host species may also influence future alterations on tadpole microbiome.
Collapse
Affiliation(s)
- Bárbara Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| | - Filipa M S Martins
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Joana Sabino-Pinto
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Fulvio Licata
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
| |
Collapse
|
17
|
Woodhams DC, McCartney J, Walke JB, Whetstone R. The adaptive microbiome hypothesis and immune interactions in amphibian mucus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104690. [PMID: 37001710 PMCID: PMC10249470 DOI: 10.1016/j.dci.2023.104690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/20/2023]
Abstract
The microbiome is known to provide benefits to hosts, including extension of immune function. Amphibians are a powerful immunological model for examining mucosal defenses because of an accessible epithelial mucosome throughout their developmental trajectory, their responsiveness to experimental treatments, and direct interactions with emerging infectious pathogens. We review amphibian skin mucus components and describe the adaptive microbiome as a novel process of disease resilience where competitive microbial interactions couple with host immune responses to select for functions beneficial to the host. We demonstrate microbiome diversity, specificity of function, and mechanisms for memory characteristic of an adaptive immune response. At a time when industrialization has been linked to losses in microbiota important for host health, applications of microbial therapies such as probiotics may contribute to immunotherapeutics and to conservation efforts for species currently threatened by emerging diseases.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Julia McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jenifer B Walke
- Department of Biology, Eastern Washington University, Cheney, WA, 99004-2440, USA
| | - Ross Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|
18
|
Rollins-Smith LA, Le Sage EH. Heat stress and amphibian immunity in a time of climate change. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220132. [PMID: 37305907 PMCID: PMC10258666 DOI: 10.1098/rstb.2022.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 06/13/2023] Open
Abstract
As a class of vertebrates, amphibians, are at greater risk for declines or extinctions than any other vertebrate group, including birds and mammals. There are many threats, including habitat destruction, invasive species, overuse by humans, toxic chemicals and emerging diseases. Climate change which brings unpredictable temperature changes and rainfall constitutes an additional threat. Survival of amphibians depends on immune defences functioning well under these combined threats. Here, we review the current state of knowledge of how amphibians respond to some natural stressors, including heat and desiccation stress, and the limited studies of the immune defences under these stressful conditions. In general, the current studies suggest that desiccation and heat stress can activate the hypothalamus pituitary-interrenal axis, with possible suppression of some innate and lymphocyte-mediated responses. Elevated temperatures can alter microbial communities in amphibian skin and gut, resulting in possible dysbiosis that fosters reduced resistance to pathogens. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Louise A. Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily H. Le Sage
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
19
|
Tornabene BJ, Smalling KL, Givens CE, Oja EB, Hossack BR. Energy-related wastewater contamination alters microbial communities of sediment, water, and amphibian skin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163160. [PMID: 37003337 DOI: 10.1016/j.scitotenv.2023.163160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 05/27/2023]
Abstract
To inform responsible energy development, it is important to understand the ecological effects of contamination events. Wastewaters, a common byproduct of oil and gas extraction, often contain high concentrations of sodium chloride (NaCl) and heavy metals (e.g., strontium and vanadium). These constituents can negatively affect aquatic organisms, but there is scarce information for how wastewaters influence potentially distinct microbiomes in wetland ecosystems. Additionally, few studies have concomitantly investigated effects of wastewaters on the habitat (water and sediment) and skin microbiomes of amphibians or relationships among these microbial communities. We sampled microbiomes of water, sediment, and skin of four larval amphibian species across a gradient of chloride contamination (0.04-17,500 mg/L Cl) in the Prairie Pothole Region of North America. We detected 3129 genetic phylotypes and 68 % of those phylotypes were shared among the three sample types. The most common shared phylotypes were Proteobacteria, Firmicutes, and Bacteroidetes. Salinity of wastewaters increased dissimilarity within all three microbial communities, but not the diversity or richness of water and skin microbial communities. Strontium was associated with lower diversity and richness of sediment microbial communities, but not those of water or amphibian skin, likely because metal deposition occurs in sediment when wetlands dry. Based on Bray Curtis distance matrices, sediment microbiomes were similar to those of water, but neither had substantial overlap with amphibian microbiomes. Species identity was the strongest predictor of amphibian microbiomes; frog microbiomes were similar but differed from that of the salamander, whose microbiome had the lowest richness and diversity. Understanding how effects of wastewaters on the dissimilarity, richness, and diversity of microbial communities also influence the ecosystem function of communities will be an important next step. However, our study provides novel insight into the characteristics of, and associations among, different wetland microbial communities and effects of wastewaters from energy production.
Collapse
Affiliation(s)
- Brian J Tornabene
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Missoula, MT 59812, USA.
| | - Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike, Suite 110, Lawrenceville, NJ 08648, USA
| | - Carrie E Givens
- U.S. Geological Survey, Upper Midwest Water Science Center, 5840 Enterprise Drive, Lansing, MI 48911, USA
| | - Emily B Oja
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Missoula, MT 59812, USA
| | - Blake R Hossack
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Missoula, MT 59812, USA; Wildlife Biology Program, W. A. Franke College of Forestry & Conservation, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
20
|
Dallas JW, Warne RW. Captivity and Animal Microbiomes: Potential Roles of Microbiota for Influencing Animal Conservation. MICROBIAL ECOLOGY 2023; 85:820-838. [PMID: 35316343 DOI: 10.1007/s00248-022-01991-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/07/2022] [Indexed: 05/04/2023]
Abstract
During the ongoing biodiversity crisis, captive conservation and breeding programs offer a refuge for species to persist and provide source populations for reintroduction efforts. Unfortunately, captive animals are at a higher disease risk and reintroduction efforts remain largely unsuccessful. One potential factor in these outcomes is the host microbiota which includes a large diversity and abundance of bacteria, fungi, and viruses that play an essential role in host physiology. Relative to wild populations, the generalized pattern of gut and skin microbiomes in captivity are reduced alpha diversity and they exhibit a significant shift in community composition and/or structure which often correlates with various physiological maladies. Many conditions of captivity (antibiotic exposure, altered diet composition, homogenous environment, increased stress, and altered intraspecific interactions) likely lead to changes in the host-associated microbiome. To minimize the problems arising from captivity, efforts can be taken to manipulate microbial diversity and composition to be comparable with wild populations through methods such as increasing dietary diversity, exposure to natural environmental reservoirs, or probiotics. For individuals destined for reintroduction, these strategies can prime the microbiota to buffer against novel pathogens and changes in diet and improve reintroduction success. The microbiome is a critical component of animal physiology and its role in species conservation should be expanded and included in the repertoire of future management practices.
Collapse
Affiliation(s)
- Jason W Dallas
- Department of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA.
| | - Robin W Warne
- Department of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA
| |
Collapse
|
21
|
Monteiro FAC, Bezerra SGDS, Castro LGZD, Oliveira FADS, Normando LRO, Melo VMM, Hissa DC. Neotropical Frog Foam Nest’s Microbiomes. Microorganisms 2023; 11:microorganisms11040900. [PMID: 37110323 PMCID: PMC10146838 DOI: 10.3390/microorganisms11040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Amphibian foam nests are unique microenvironments that play a crucial role in the development of tadpoles. They contain high levels of proteins and carbohydrates, yet little is known about the impact of their microbiomes on tadpole health. This study provides a first characterization of the microbiome of foam nests from three species of Leptodactylids (Adenomera hylaedactyla, Leptodactylus vastus, and Physalaemus cuvieri) by investigating the DNA extracted from foam nests, adult tissues, soil, and water samples, analyzed via 16S rRNA gene amplicon sequencing to gain insight into the factors driving its composition. The results showed that the dominant phyla were proteobacteria, bacteroidetes, and firmicutes, with the most abundant genera being Pseudomonas, Sphingobacterium, and Paenibacillus. The foam nest microbiomes of A. hylaedactyla and P. cuvieri were more similar to each other than to that of L. vastus, despite their phylogenetic distance. The foam nests demonstrated a distinct microbiome that clustered together and separated from the microbiomes of the environment and adult tissue samples. This suggests that the peculiar foam nest composition shapes its microbiome, rather than vertical or horizontal transference forces. We expanded this knowledge into amphibian foam nest microbiomes, highlighting the importance of preserving healthy foam nests for amphibian conservation.
Collapse
|
22
|
Yang J, Sooksa-nguan T, Kannan B, Cano-Alfanar S, Liu H, Kent A, Shanklin J, Altpeter F, Howe A. Microbiome differences in sugarcane and metabolically engineered oilcane accessions and their implications for bioenergy production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:56. [PMID: 36998044 PMCID: PMC10064762 DOI: 10.1186/s13068-023-02302-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/12/2023] [Indexed: 04/01/2023]
Abstract
Oilcane is a metabolically engineered sugarcane (Saccharum spp. hybrid) that hyper-accumulates lipids in its vegetable biomass to provide an advanced feedstock for biodiesel production. The potential impact of hyper-accumulation of lipids in vegetable biomass on microbiomes and the consequences of altered microbiomes on plant growth and lipid accumulation have not been explored so far. Here, we explore differences in the microbiome structure of different oilcane accessions and non-modified sugarcane. 16S SSU rRNA and ITS rRNA amplicon sequencing were performed to compare the characteristics of the microbiome structure from different plant compartments (leaf, stem, root, rhizosphere, and bulk soil) of four greenhouse-grown oilcane accessions and non-modified sugarcane. Significant differences were only observed in the bacterial microbiomes. In leaf and stem microbiomes, more than 90% of the entire microbiome of non-modified sugarcane and oilcane was dominated by similar core taxa. Taxa associated with Proteobacteria led to differences in the non-modified sugarcane and oilcane microbiome structure. While differences were observed between multiple accessions, accession 1566 was notable in that it was consistently observed to differ in its microbial membership than other accessions and had the lowest abundance of taxa associated with plant-growth-promoting bacteria. Accession 1566 is also unique among oilcane accessions in that it has the highest constitutive expression of the WRI1 transgene. The WRI1 transcription factor is known to contribute to significant changes in the global gene expression profile, impacting plant fatty acid biosynthesis and photomorphogenesis. This study reveals for the first time that genetically modified oilcanes associate with distinct microbiomes. Our findings suggest potential relationships between core taxa, biomass yield, and TAG in oilcane accessions and support further research on the relationship between plant genotypes and their microbiomes.
Collapse
Affiliation(s)
- Jihoon Yang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Ames, IA USA
| | - Thanwalee Sooksa-nguan
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Ames, IA USA
| | - Baskaran Kannan
- Present Address: Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL USA
| | - Sofia Cano-Alfanar
- Present Address: Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL USA
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Upton, NY USA
| | - Angela Kent
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, IL USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Upton, NY USA
| | - Fredy Altpeter
- Present Address: Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL USA
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Ames, IA USA
| |
Collapse
|
23
|
Loudon AH, Park J, Parfrey LW. Identifying the core microbiome of the sea star Pisaster ochraceus in the context of sea star wasting disease. FEMS Microbiol Ecol 2023; 99:6998556. [PMID: 36690340 DOI: 10.1093/femsec/fiad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Sea stars are keystone species and their mass die-offs due to sea star wasting disease (SSWD) impact marine communities and have fueled recent interest in the microbiome of sea stars. We assessed the host specificity of the microbiome associated with three body regions of the sea star Pisaster ochraceus using 16S rRNA gene amplicon surveys of the bacterial communities living on and in Pisaster, their environment, and sympatric marine hosts across three populations in British Columbia, Canada. Overall, the bacterial communities on Pisaster are distinct from their environment and differ by both body region and geography. We identified core bacteria specifically associated with Pisaster across populations and nearly absent in other hosts and the environment. We then investigated the distribution of these core bacteria on SSWD-affected Pisaster from one BC site and by reanalyzing a study of SSWD on Pisaster from California. We find no differences in the distribution of core bacteria in early disease at either site and two core taxa differ in relative abundance in advanced disease in California. Using phylogenetic analyses, we find that most core bacteria have close relatives on other sea stars and marine animals, suggesting these clades have evolutionary adaptions to an animal-associated lifestyle.
Collapse
Affiliation(s)
- Andrew H Loudon
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jungsoo Park
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Laura Wegener Parfrey
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Hakai Institute, PO Box 25039, Campbell River, BC V9W 0B7, Canada
| |
Collapse
|
24
|
Loudon AH, Terrell KA, Davis RW, Umile TP, Lipps GJ, Greathouse J, Chapman E, Roblee K, Kleopfer JD, Bales EK, Hyman OJ, Harris RN, Minbiole KPC. Metabolite compositions on skins of eastern hellbenders Cryptobranchus alleganiensis alleganiensis differ with location and captivity. DISEASES OF AQUATIC ORGANISMS 2023; 153:9-16. [PMID: 36727687 DOI: 10.3354/dao03715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Eastern hellbenders Cryptobranchus alleganiensis alleganiensis, large aquatic salamanders, are declining over most of their range. The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has contributed to global amphibian declines and has been detected on eastern hellbenders, but infection intensities were lower than those of species that are more susceptible to Bd. The factors limiting Bd on hellbenders may include antifungal metabolites produced by their skin microbiota. We used a metabolite fingerprinting technique to noninvasively identify the presence, but not identity, of metabolites associated with eastern hellbenders. We surveyed the skin of wild eastern hellbenders to test whether the composition and richness (i.e. number of metabolites) of their metabolites are explained by Bd status or location. Furthermore, we surveyed for metabolites on captive eastern hellbenders to test whether metabolite compositions were different between captive and wild eastern hellbenders. Bd detection was not associated with either metabolite richness or composition. Both metabolite composition and richness differed significantly on hellbenders from different locations (i.e. states). For metabolite composition, there was a statistical interaction between location and Bd status. Metabolite richness was greater on captive eastern hellbenders compared to wild hellbenders, and metabolite compositions differed between wild and captive eastern hellbenders. The methods we employed to detect metabolite profiles effectively grouped individuals by location even though metabolite composition and richness have high levels of intraspecific variation. Understanding the drivers and functional consequences of assemblages of skin metabolites on amphibian health will be an important step toward understanding the mechanisms that result in disease vulnerability.
Collapse
Affiliation(s)
- Andrew H Loudon
- Biology Department, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Su R, Zhang S, Zhang X, Wang S, Zhang W. Neglected skin-associated microbial communities: a unique immune defense strategy of Bufo raddei under environmental heavy metal pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22330-22342. [PMID: 36284045 DOI: 10.1007/s11356-022-23803-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Amphibians defend against pathogens using skin microbial communities, in addition to innate and adaptive immunity. Despite skin microbial communities play a key role in the immune function of amphibians, few studies have focused on the changes in its composition and function. In the present study, we identified the variation in adaptive immunity, as well as the corresponding changes in skin microbiome of Bufo raddei living in a heavy metal polluted area. The adaptive immunity of B. raddei in heavy metal polluted area was significantly lower than that in relatively unpolluted area. Further, different skin bacterial communities were found in the two areas. In the heavy metal polluted area, Actinobacteria and Microbacterium were the dominant bacteria in the skin microbiome of B. raddei, which showed broad-spectrum antibacterial activity. Besides, the antibiotic synthesis was also increased in metabolic pathways. The present study suggested that the adaptive immunity of B. raddei was weakened under long-term heavy metal stress. However, the toads increased the abundance of bacteriostatic bacteria by regulating the composition of skin microbiome, which released a large number of bacteriostatic metabolites and enhanced the host resistance to external pathogens in turn.
Collapse
Affiliation(s)
- Rui Su
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Sheng Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shengnan Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenya Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
26
|
Fieschi-Méric L, Van Leeuwen P, Hopkins K, Bournonville M, Denoël M, Lesbarrères D. Strong restructuration of skin microbiota during captivity challenges ex-situ conservation of amphibians. Front Microbiol 2023; 14:1111018. [PMID: 36891392 PMCID: PMC9986596 DOI: 10.3389/fmicb.2023.1111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
In response to the current worldwide amphibian extinction crisis, conservation instances have encouraged the establishment of ex-situ collections for endangered species. The resulting assurance populations are managed under strict biosecure protocols, often involving artificial cycles of temperature and humidity to induce active and overwintering phases, which likely affect the bacterial symbionts living on the amphibian skin. However, the skin microbiota is an important first line of defense against pathogens that can cause amphibian declines, such as the chytrid Batrachochytrium dendrobatidis (Bd). Determining whether current husbandry practices for assurance populations might deplete amphibians from their symbionts is therefore essential to conservation success. Here, we characterize the effect of the transitions from the wild to captivity, and between aquatic and overwintering phases, on the skin microbiota of two newt species. While our results confirm differential selectivity of skin microbiota between species, they underscore that captivity and phase-shifts similarly affect their community structure. More specifically, the translocation ex-situ is associated with rapid impoverishment, decrease in alpha diversity and strong species turnover of bacterial communities. Shifts between active and overwintering phases also cause changes in the diversity and composition of the microbiota, and on the prevalence of Bd-inhibitory phylotypes. Altogether, our results suggest that current husbandry practices strongly restructure the amphibian skin microbiota. Although it remains to be determined whether these changes are reversible or have deleterious effects on their hosts, we discuss methods to limit microbial diversity loss ex-situ and emphasize the importance of integrating bacterial communities to applied amphibian conservation.
Collapse
Affiliation(s)
- Léa Fieschi-Méric
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), Université de Liège, Liège, Belgium.,Biology Department, Laurentian University, Sudbury, ON, Canada
| | | | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London (ZSL), London, United Kingdom
| | - Marie Bournonville
- Aquarium-Muséum de l'Université de Liège, Freshwater and OCeanic science Unit of reSearch (FOCUS), Liège, Belgium
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), Université de Liège, Liège, Belgium
| | - David Lesbarrères
- Biology Department, Laurentian University, Sudbury, ON, Canada.,Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
| |
Collapse
|
27
|
Martínez-Ugalde E, Ávila-Akerberg V, González Martínez TM, Vázquez Trejo M, Zavala Hernández D, Anaya-Morales SL, Rebollar EA. The skin microbiota of the axolotl Ambystoma altamirani is highly influenced by metamorphosis and seasonality but not by pathogen infection. Anim Microbiome 2022; 4:63. [PMID: 36503640 PMCID: PMC9743558 DOI: 10.1186/s42523-022-00215-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Microbiomes have been increasingly recognized as major contributors to host health and survival. In amphibians, bacterial members of the skin microbiota protect their hosts by inhibiting the growth of the fungal pathogen Batrachochytrium dendrobatidis (Bd). Even though several studies describe the influence of biotic and abiotic factors over the skin microbiota, it remains unclear how these symbiotic bacterial communities vary across time and development. This is particularly relevant for species that undergo metamorphosis as it has been shown that host physiology and ecology drastically influence diversity of the skin microbiome. RESULTS We found that the skin bacterial communities of the axolotl A. altamirani are largely influenced by the metamorphic status of the host and by seasonal variation of abiotic factors such as temperature, pH, dissolved oxygen and conductivity. Despite high Bd prevalence in these samples, the bacterial diversity of the skin microbiota did not differ between infected and non-infected axolotls, although relative abundance of particular bacteria were correlated with Bd infection intensity. CONCLUSIONS Our work shows that metamorphosis is a crucial process that shapes skin bacterial communities and that axolotls under different developmental stages respond differently to environmental seasonal variations. Moreover, this study greatly contributes to a better understanding of the factors that shape amphibian skin microbiota, especially in a largely underexplored group like axolotls (Mexican Ambystoma species).
Collapse
Affiliation(s)
| | - Víctor Ávila-Akerberg
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | | | | | - Sara Lucia Anaya-Morales
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| |
Collapse
|
28
|
Feng J, Zhu W, Jiang J, Zhao C, Sun Z, Jiang W, Luo Q, Zhao T. Reintroduction modifies the intraspecific variations of symbiotic microbes in captive bred Chinese giant salamander. Front Microbiol 2022; 13:1062604. [PMID: 36532427 PMCID: PMC9751345 DOI: 10.3389/fmicb.2022.1062604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 09/11/2024] Open
Abstract
Microorganisms play as fundamental contributors to maintain hosts' fitness, which can be shaped by external environment. Moreover, symbiotic microbiome also varied within species (e.g., between sexes and developmental stages). However, we still need more studies to quantify whether the intraspecific variation patterns of symbiotic microbes can be modified with the change of environment. The Chinese giant salamander (CGS; Andrias davidianus) is a Critically Endangered species. Despite quantitative captive bred individuals were released to rebuild wild populations, the effectiveness is limited. More importantly, no studies have revealed the adaptation of released CGSs to the complex field conditions. In the present study, we explored whether reintroduction can reshape the intraspecific variations of symbiotic microbiota in captive bred CGSs using high-throughput amplicon sequencing of the16S rRNA gene. We found no significant difference of symbiotic microbiome in captive bred males and females, but released males and females differed significantly in skin microbiome. Juveniles had higher diversity of microbial symbiont than adults in hatchery, but lower diversity in field. Moreover, dominant bacterial taxa differed between juveniles and adults in both hatchery and field. Importantly, this symbiotic microbiome variations within species can be modified (alpha and beta diversity, and community composition) when captive bred individuals were released to the field. Overall, we observed a lower alpha diversity and higher relative abundance of Chryseobacterium, Plesiomonas, and Acinetobacter in the bacterial community of captive bred individuals. Instead, higher alpha diversity of symbiotic microbiota and higher relative abundance of S24-7 and Lactobacillus was detected in released individuals. These modifications may associate with the change of living environment, as well as the specific behavior within CGSs (e.g., movement patterns and foraging activities). Future studies can incorporate other approaches (e.g., blood physiology) to better evaluate the growth and health of reintroduced CGSs.
Collapse
Affiliation(s)
- Jianyi Feng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunlin Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zijian Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Wansheng Jiang
- Hunan Engineering Laboratory for Chinese Giant Salamander's Resource Protection and Comprehensive Utilization, and Key Laboratory of Hunan Forest and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
| | - Qinghua Luo
- Hunan Engineering Laboratory for Chinese Giant Salamander's Resource Protection and Comprehensive Utilization, and Key Laboratory of Hunan Forest and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
29
|
Bartlow AW, Moser SK, Ellis JE, Hathcock CD, Fair JM. Comparing western (Megascops kennicottii) and whiskered (M. trichopsis) screech-owl microbiomes in southern Arizona using a novel 16S rRNA sequencing method. Anim Microbiome 2022; 4:45. [PMID: 35908068 PMCID: PMC9338619 DOI: 10.1186/s42523-022-00196-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Microbiomes are essential to a host’s physiology and health. Despite the overall importance of microbiomes to animal health, they remain understudied in wildlife. Microbiomes function as physical barriers to invading pathogens, and changes in the diversity or composition of microbes within a host may disrupt this barrier. In order to use microbiomes in wildlife ecology, knowledge of the natural variation within and among species is essential. We compare the diversity and composition of two avian species that share the same habitat and niche in our study area, the western screech-owl (Megascops kennicottii) and the whiskered screech-owl (M. trichopsis). We used a targeted 16S sequencing method to improve the taxonomic resolution of microbiomes. We found similar measures of alpha diversity between species and sample types (cloacal samples vs. fecal samples). However, there were significant differences in bacterial species richness among nestlings from different nest boxes, and the composition differed between the two bird species and among nestlings from different nest boxes. Western screech-owls had more variation in alpha diversity and composition and had fewer bacterial species in their core microbiome than whiskered screech-owls. Siblings are likely to yield similar findings for microbiomes; thus, sampling nestlings from different nests may be most informative for monitoring population-level changes.
Collapse
|
30
|
Liu X, Fan Y, Mo T, Chen Q, Chen W. Comparative Study of the Gut Microbiota Community between the Farmed and Wild Mastacembelus armatus (Zig-Zag Eel). Metabolites 2022; 12:metabo12121193. [PMID: 36557231 PMCID: PMC9781078 DOI: 10.3390/metabo12121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Cultivated and wild fish of the same species may exhibit different characteristics, such as in their flavor, growth and development. In some wild fish species, reproductive functions may even be retarded when wild individuals are moved into cultivated conditions. The gut microbiota may be one of the reasons for these phenomena as they have been reported to play an important role in host growth and development, as well as in normal reproductive functioning. Here, we used Mastacembelus armatus (zig-zag eel), a freshwater fish which shows anormal reproductive function in cultivated conditions, as a model to comparatively study the diversity, structure and function of gut microbiota in cultivated and wild groups by analyzing the 16S rRNA sequence of each group's microbiota. The results showed that Proteobacteria and Firmicutes were the dominant phyla in the gut microbiota of wild (accounting for 45.8% and 20.3% of the total number of Proteobacteria and Firmicutes, respectively) and farmed (accounting for 21.4% and 75.6% of the total number of Proteobacteria and Firmicutes, respectively) zig-zag eel. Wild zig-zag eels (Shannon = 3.56; Chao = 583.08; Ace = 579.18) had significantly higher alpha diversity than those in cultivated populations (Shannon = 2.09; Chao = 85.45; Ace = 86.14). A significant difference in the community structure of the gut microbiota was found between wild and cultivated populations. The wild zig-zag eel showed a high abundance of functional pathways in metabolism, genetic information processing and organismal system function. These results suggested that the diversity and function of gut microbiota in zig-zag eel were correlated with their diet and habitat conditions, which indicated that the management of cultivated populations should mimic the wild diet and habitat to improve the productivity and quality of farmed zig-zag eel.
Collapse
|
31
|
Hill AJ, Grisnik M, Walker DM. Bacterial Skin Assemblages of Sympatric Salamanders Are Primarily Shaped by Host Genus. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02127-0. [PMID: 36318280 DOI: 10.1007/s00248-022-02127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Bacterial assemblages on the skins of amphibians are known to influence pathogen resistance and other important physiological functions in the host. Host-specific factors and the environment play significant roles in structuring skin assemblages. This study used high-throughput 16S rRNA sequencing and multivariate analyses to examine differences in skin-bacterial assemblages from 246 salamanders belonging to three genera in the lungless family Plethodontidae along multiple spatial gradients. Composition and α- and β-diversity of bacterial assemblages were defined, indicator species were identified for each host group, and the relative influences of host- versus environment-specific ecological factors were evaluated. At the broadest spatial scale, host genus, host species, and sampling site were predictive of skin assemblage structure, but host genus and species were more influential after controlling for the marginal effects of site, as well as nestedness of site. Furthermore, assemblage similarity within each host genus did not change with increasing geographic distance. At the smallest spatial scale, site-specific climate analyses revealed different relationships to climatic variables for each of the three genera, and these relationships were determined by host ecomode. Variation in bacterial assemblages of terrestrial hosts correlated with landscape-level climatic variability, and this pattern decayed with increasing water dependence of the host. Results from this study highlight host-specific considerations for researchers studying wildlife diseases in co-occurring, yet ecologically divergent, species.
Collapse
Affiliation(s)
- Aubree J Hill
- Department of Biology, Tennessee Technological University, 1100 North Dixie Avenue, Box 5063, Cookeville, TN, 38505, USA.
| | - Matthew Grisnik
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN, 37209, USA
| | - Donald M Walker
- Department of Biology, Middle Tennessee State University, 1672 Greenland Drive, Murfreesboro, TN, 37132, USA
| |
Collapse
|
32
|
Afonso M, Coelho L, Jesus F, Campos I, Abrantes N, Gonçalves FJM, Marques S, Serpa D. Effects of Pine and Eucalypt ashes on bacterial isolates from the skin microbiome of the fire salamander (Salamandra salamandra). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156677. [PMID: 35710008 DOI: 10.1016/j.scitotenv.2022.156677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination influences the diversity of the resident skin microbial community of amphibians, ultimately affecting the individual's immune system. Wildfires are expected to impact the skin microbiome, since post-fire runoff typically transports hazardous substances, that can affect terrestrial and aquatic ecosystems. The present study is the first to assess the effects of Eucalypt and Pine wildfire ash on cultivable bacterial isolates from the skin microbiome of amphibians, in particular the fire salamander (Salamandra salamandra), a common species in fire-prone Mediterranean ecosystems. To achieve this goal, samples of skin bacteria of adult individuals of S. salamandra were collected at a site without influence of wildfires. The bacterial isolates were tested against the pathogenic agent Aeromonas salmonicida for assessing their antimicrobial activity, before exposing them to a series of dilutions of aqueous extracts of Eucalypt and Pine ashes (AAEs) from high severity wildfires. From the 80 bacterial isolates collected, 48 (mostly Pseudomonas spp.) showed antimicrobial activity. Exposure of bacteria with antimicrobial activity to the Eucalypt and Pine AAEs at concentrations of 0, 6.25, 12.5, 25, 50, 75, and 100%, revealed that bacterial growth could be significantly inhibited, stimulated or unaffected by ash. Growth inhibition was found for Pine and Eucalypt AAEs at concentrations as low as 6.25% and 12.5%, respectively, but were more expressive at concentrations equal or above 50%. Eucalypt AAEs had a higher negative impact on bacterial growth than Pine AAEs, likely due to differences in metal concentrations between ash types. These findings raise concern about the future of amphibians in fire-prone regions since the foreseen increase in fire frequency and severity owing to climate changes are likely to alter the skin microbiome of amphibians, weaken the immune system and consequently increasing the incidence of infections or diseases, further contributing to the decline of the populations.
Collapse
Affiliation(s)
- Mariana Afonso
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Laura Coelho
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fátima Jesus
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel Campos
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Nelson Abrantes
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fernando J M Gonçalves
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sérgio Marques
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Dalila Serpa
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
33
|
Abstract
Temporal changes and transmission patterns in host-associated microbial communities have important implications for host health. The diversity of amphibian skin microbial communities is associated with disease outcome in amphibians exposed to the fungal pathogen Batrachochytrium dendrobatidis (Bd). To successfully develop conservation strategies against Bd, we need a comprehensive understanding of how skin microbes are maintained and transmitted over time within populations. We used 16S rRNA sequence analysis to compare Epipedobates anthonyi frogs housed with one conspecific to frogs housed singly at four time points over the course of 1 year. We found that both α and β diversity of frog skin bacterial communities changed significantly over the course of the experiment. Specifically, we found that bacterial communities of cohabitating frogs became more similar over time. We also observed that some bacterial taxa were differentially abundant between frogs housed singly and frogs housed with a conspecific. These results suggest that conspecific contact may play a role in mediating amphibian skin microbial diversity and that turnover of skin microbial communities can occur across time. Our findings provide rationale for future studies exploring horizontal transmission as a potential mechanism of host-associated microbial maintenance in amphibians.
Collapse
Affiliation(s)
- Ariel Kruger
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Spencer Roth
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
34
|
Hendrycks W, Delatte H, Moquet L, Bourtzis K, Mullens N, De Meyer M, Backeljau T, Virgilio M. Eating eggplants as a cucurbit feeder: Dietary shifts affect the gut microbiome of the melon fly Zeugodacus cucurbitae (Diptera, Tephritidae). Microbiologyopen 2022; 11:e1307. [PMID: 36031958 PMCID: PMC9380402 DOI: 10.1002/mbo3.1307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 11/10/2022] Open
Abstract
While contemporary changes in feeding preferences have been documented in phytophagous insects, the mechanisms behind these processes remain to be fully clarified. In this context, the insect gut microbiome plays a central role in adaptation to novel host plants. The cucurbit frugivorous fruit fly Zeugodacus cucurbitae (Diptera, Tephritidae) has occasionally been reported on "unconventional" host plants from different families, including Solanaceae. In this study, we focus on wild parental (F0 ) adults and semiwild first filial (F1 ) larvae of Z. cucurbitae from multiple sites in La Réunion and explore how the gut microbiome composition changes when this fly is feeding on a noncucurbit host (Solanum melongena). Our analyses show nonobvious gut microbiome responses following the F0 -F1 host shift and the importance of not just diet but also local effects, which heavily affected the diversity and composition of microbiomes. We identified the main bacterial genera responsible for differences between treatments. These data further stress the importance of a careful approach when drawing general conclusions based on laboratory populations or inadequately replicated field samples.
Collapse
Affiliation(s)
- Wouter Hendrycks
- Department of BiologyRoyal Museum for Central Africa (RMCA)TervurenBelgium
- Evolutionary Ecology Group, Department of BiologyUniversity of AntwerpWilrijkBelgium
| | | | | | - Kostas Bourtzis
- Insect Pest Control LaboratoryJoint FAO/IAEA Centre of Nuclear Techniques in Food and AgricultureViennaAustria
| | - Nele Mullens
- Department of BiologyRoyal Museum for Central Africa (RMCA)TervurenBelgium
- Evolutionary Ecology Group, Department of BiologyUniversity of AntwerpWilrijkBelgium
| | - Marc De Meyer
- Department of BiologyRoyal Museum for Central Africa (RMCA)TervurenBelgium
| | - Thierry Backeljau
- Evolutionary Ecology Group, Department of BiologyUniversity of AntwerpWilrijkBelgium
- OD Taxonomy and PhylogenyRoyal Belgian Institute of Natural Sciences (RBINS)BrusselsBelgium
| | | |
Collapse
|
35
|
Estrada A, Medina D, Gratwicke B, Ibáñez R, Belden LK. Body condition, skin bacterial communities and disease status: insights from the first release trial of the limosa harlequin frog,
Atelopus limosus. Proc Biol Sci 2022; 289:20220586. [PMID: 35858072 PMCID: PMC9277274 DOI: 10.1098/rspb.2022.0586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many endangered amphibian species survive in captive breeding facilities, but there have been few attempts to reintroduce captive-born individuals to rebuild wild populations. We conducted a soft-release trial of limosa harlequin frogs,
Atelopus limosus,
which are highly susceptible to the amphibian chytrid fungus
Batrachochytrium dendrobatidis
(Bd), to understand changes associated with the transition from captivity to the wild. Specifically, we assessed changes in body condition, skin-associated bacterial communities and disease status after release. Frogs were housed individually in field mesocosms and monitored for 27 days. Body condition did not significantly change in the mesocosms, and was similar to, or higher than, that of wild conspecifics at day 27. The skin bacteria of captive-born frogs, based on 16S rRNA gene amplicons, became similar to that of wild conspecifics after 27 days in mesocosms. Prevalence of Bd in wild conspecifics was 13–27%, and 15% of the
A. limosus
in mesocosms became infected with Bd, but no mortality of infected frogs was observed. We conclude that mesocosms are suitable for systematically and repeatedly monitoring amphibians during release trials, and that body condition, the skin microbiome, and Bd status can all change within one month of placement of captive-born individuals back into the wild.
Collapse
Affiliation(s)
- Angie Estrada
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0131, USA
| | - Daniel Medina
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0131, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
- Sistema Nacional de Investigación, SENACYT, Panama
| | - Brian Gratwicke
- Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panama City, Panama
- Sistema Nacional de Investigación, SENACYT, Panama
| | - Lisa K. Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0131, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
36
|
McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. The interplay of fungal and bacterial microbiomes on rainforest frogs following a disease outbreak. Ecosphere 2022. [DOI: 10.1002/ecs2.4037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Donald T. McKnight
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Roger Huerlimann
- College of Science and Engineering James Cook University Townsville Queensland Australia
- Marine Climate Change Unit Okinawa Institute of Science and Technology Onnason Okinawa Japan
| | - Deborah S. Bower
- College of Science and Engineering James Cook University Townsville Queensland Australia
- School of Environmental and Rural Science University of New England Armidale New South Wales Australia
| | - Lin Schwarzkopf
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Ross A. Alford
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Kyall R. Zenger
- College of Science and Engineering James Cook University Townsville Queensland Australia
| |
Collapse
|
37
|
Forsythe A, Fontaine N, Bissonnette J, Hayashi B, Insuk C, Ghosh S, Kam G, Wong A, Lausen C, Xu J, Cheeptham N. Microbial isolates with Anti-Pseudogymnoascus destructans activities from Western Canadian bat wings. Sci Rep 2022; 12:9895. [PMID: 35701553 PMCID: PMC9198084 DOI: 10.1038/s41598-022-14223-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Pseudogymnoascus destructans (Pd) is the causative agent of white-nose syndrome, which has resulted in the death of millions of bats in North America (NA) since 2006. Based on mortalities in eastern NA, the westward spread of infections likely poses a significant threat to western NA bats. To help prevent/reduce Pd infections in bats in western NA, we isolated bacteria from the wings of wild bats and screened for inhibitory activity against Pd. In total, we obtained 1,362 bacterial isolates from 265 wild bats of 13 species in western Canada. Among the 1,362 isolates, 96 showed inhibitory activity against Pd based on a coculture assay. The inhibitory activities varied widely among these isolates, ranging from slowing fungal growth to complete inhibition. Interestingly, host bats containing isolates with anti-Pd activities were widely distributed, with no apparent geographic or species-specific pattern. However, characteristics of roosting sites and host demography showed significant associations with the isolation of anti-Pd bacteria. Specifically, anthropogenic roosts and swabs from young males had higher frequencies of anti-Pd bacteria than those from natural roosts and those from other sex and age-groups, respectively. These anti-Pd bacteria could be potentially used to help mitigate the impact of WNS. Field trials using these as well as additional microbes from future screenings are needed in order to determine their effectiveness for the prevention and treatment against WNS.
Collapse
Affiliation(s)
- Adrian Forsythe
- Department of Biology, Faculty of Science, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nick Fontaine
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Julianna Bissonnette
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Brandon Hayashi
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Chadabhorn Insuk
- Department of Biology, Faculty of Science, McMaster University, Hamilton, ON, L8S 4K1, Canada.,Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Soumya Ghosh
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada.,Department of Genetics, Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Gabrielle Kam
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Aaron Wong
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Cori Lausen
- Wildlife Conservation Society Canada, P.O. Box 606, Kaslo, BC, V0G 1M0, Canada.
| | - Jianping Xu
- Department of Biology, Faculty of Science, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada.
| |
Collapse
|
38
|
Zhu W, Zhao C, Feng J, Chang J, Zhu W, Chang L, Liu J, Xie F, Li C, Jiang J, Zhao T. Effects of Habitat River Microbiome on the Symbiotic Microbiota and Multi-Organ Gene Expression of Captive-Bred Chinese Giant Salamander. Front Microbiol 2022; 13:884880. [PMID: 35770173 PMCID: PMC9234736 DOI: 10.3389/fmicb.2022.884880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
The reintroduction of captive-bred individuals is a primary approach to rebuild the wild populations of the Chinese giant salamander (Andrias davidianus), the largest extant amphibian species. However, the complexity of the wild habitat (e.g., diverse microorganisms and potential pathogens) potentially threatens the survival of reintroduced individuals. In this study, fresh (i.e., containing environmental microbiota) or sterilized river sediments (120°C sterilized treatment) were added to the artificial habitats to treat the larvae of the Chinese giant salamander (control group—Cnt: 20 individuals, treatment group 1 with fresh river sediments—T1: 20 individuals, and treatment group 2 with sterilized river sediments—T2: 20 individuals). The main objective of this study was to test whether this procedure could provoke their wild adaptability from the perspective of commensal microbiotas (skin, oral cavity, stomach, and gut) and larvae transcriptomes (skin, spleen, liver, and brain). Our results indicated that the presence of habitat sediments (whether fresh or sterilized) reshaped the oral bacterial community composition. Specifically, Firmicutes decreased dramatically from ~70% to ~20–25% (mainly contributed by Lactobacillaceae), while Proteobacteria increased from ~6% to ~31–36% (mainly contributed by Gammaproteobacteria). Consequently, the proportion of antifungal operational taxonomic units (OTUs) increased, and the function of oral microbiota likely shifted from growth-promoting to pathogen defense. Interestingly, the skin microbiota, rather than the colonization of habitat microbiota, was the major source of the pre-treated oral microbiota. From the host perspective, the transcriptomes of all four organs were changed for treated individuals. Specifically, the proteolysis and apoptosis in the skin were promoted, and the transcription of immune genes was activated in the skin, spleen, and liver. Importantly, more robust immune activation was detected in individuals treated with sterilized sediments. These results suggested that the pathogen defense of captive-bred individuals was improved after being treated, which may benefit their survival in the wild. Taken together, our results suggested that the pre-exposure of captive-bred Chinese giant salamander individuals to habitat sediments could be considered and added into the reintroduction processes to help them better adapt to wild conditions.
Collapse
Affiliation(s)
- Wei Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Chunlin Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianyi Feng
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wenbo Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Liming Chang
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Jiongyu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Feng Xie
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Cheng Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Jianping Jiang
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- *Correspondence: Jianping Jiang
| | - Tian Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- Tian Zhao
| |
Collapse
|
39
|
Luo L, Xu Y, Chang Y, Sun B, Zhang L, Zhao Z, Liang L. Microbiota Comparison of Amur ide ( Leuciscus waleckii) Intestine and Waters at Alkaline Water and Freshwater as the Living Environment. Front Microbiol 2022; 13:881132. [PMID: 35602074 PMCID: PMC9114670 DOI: 10.3389/fmicb.2022.881132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The intestinal microbiota of marine animals was influenced by the water and environment in which they live. The Amur ide (Leuciscus waleckii) adapts to extremely high alkalinity and is an ideal material for aquacultural studies of alkaline adaptation. In this study, we screened intestinal indicator flora and functional redundancy of intestinal colonies in alkaline-water species (AW) and freshwater species (FW) of Amur ide (L. waleckii) in these different aquatic environments. The available vs. community composition correlations were then predicted by contrasting each other with the flora contained in environmental water samples. Here, five microbial species and six genera were identified owing to the classifiable sequence. The intestinal microbiota that existed in AW and FW had approximately 1/3 of the operational taxonomic units in the respective living water environments, meaning gut microbes in the aqueous habitats will have an influential association with gut microbes in AW and FW. Compared to the bacterial composition of the FW intestine and that present in freshwater, Moraxella osloensis, Psychrobacter maritimus, and Psychrobacter faecalis were significantly enriched in the intestine of AW and alkaline water samples. In the FW intestine and freshwater samples, however, Cryptomonas curvata and Polynucleobacter asymbioticus were highly improved, which can be summarized as Enterobacter sp., the predominant population in the AW gut, while Aeromonas and Ralstonia being primarily present in FW intestines. Photosynthetic bacteria were most significant in both water samples. The results indicated that the intestinal microbiota composition, abundance, and diversity of AW and FW were quite different. In contrast, the microbial composition of the additional alkaline water and freshwater environments showed slight differences. This study expects to enhance our understanding of the alkalinity tolerance of L. waleckii, which will be provided for the breeding of fish living in alkaline water, and push the development of alkaline water resources with increased efficiency.
Collapse
Affiliation(s)
- Liang Luo
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Yue Xu
- The Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Yumei Chang
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Bo Sun
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Limin Zhang
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Zhigang Zhao
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Liqun Liang
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
40
|
Chen Z, Chen J, Liu Y, Zhang J, Chen X, Qu Y. Comparative study on gut microbiota in three Anura frogs from a mountain stream. Ecol Evol 2022; 12:e8854. [PMID: 35475186 PMCID: PMC9021931 DOI: 10.1002/ece3.8854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/25/2022] Open
Abstract
Composition and diversity in gut microbiota are impacted by a wide variety of factors. The similarity of gut microbiota in related or sympatric species has been gaining recent traction. Here, 16S rRNA gene sequencing technology was employed to study the gut microbiota of three sympatric frog species, namely Odorrana tormota, O. graminea, and Amolops wuyiensis. In these three frog species, the most abundant phylum was Proteobacteria, followed by Bacteroidetes, Verrucomicrobia, and Firmicutes. The most abundant family was Burkholderiaceae in three species. The most dominant genera were Burkholderia, Caballeronia, and Paraburkholderia with the highest relative abundance in O. tormota, O. graminea, and A. wuyiensis, respectively. No differences were observed in alpha diversity indexes among the three frog species. However, bacterial similarity of gut microbiota was significantly different between O. tormota and A. wuyiensis and between O. graminea and A. wuyiensis. Metabolism‐related gene function was predominantly enriched in the gut microbiota of the three evaluated frog species. From these findings, that the relative abundance of the gut microbiota and predicted gene functions differed in three species, we conclude that there were significant differences in the gut microbiota of the three species. Similar alpha diversity and interspecific bacterial similarity in the gut might be related to bacterial transmission among the three Anura frogs evaluated in this study.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
| | - Jun‐Qiong Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| | - Yao Liu
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
| | - Jie Zhang
- College of Fisheries Henan Normal University Xinxiang Henan China
| | - Xiao‐Hong Chen
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| | - Yan‐Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| |
Collapse
|
41
|
Zou Y, Han C, Zhang X, Nan X. The associations between intestinal bacteria of Eospalax cansus and soil bacteria of its habitat. BMC Vet Res 2022; 18:129. [PMID: 35366866 PMCID: PMC8976338 DOI: 10.1186/s12917-022-03223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Intestinal bacteria of mammal can be influenced by many factors, environmental bacteria is an important factor. However, there are few studies on the interactions between environmental bacteria and intestinal bacteria in wild mammals. To explore the associations between the intestinal bacteriome and the related environmental bacteriome, the intestinal bacterial communities of Eospalax cansus at three different sites and the bacterial communities of the surrounding soil (outside and inside the cave) at each site were investigated by 16S rRNA sequencing. Results The composition and structure between zokor intestinal bacteria and related soil bacteria were distinct, and the soil of zokor habitat harbored significantly higher diversity than that of zokor intestinal bacteria. We have found that host factors may be more important than environmental factors in shaping intestinal bacteriome. In addition, it was found that the relative abundances of shared OTUs between zokors and related soil were significantly negatively related. These shared OTUs were present in the soil at relatively low abundance. However, these shared OTUs between zokors and soil were affiliated with diverse bacterial taxa, and they were related to the degradation of complex carbohydrates. Conclusions These results suggested that the zokor gut may mainly select for low-abundance but diverse soil bacteria, which may be a host- specific choice for zokor to meet the needs of its phytophagous dietary. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03223-6.
Collapse
|
42
|
Li Z, Li A, Dai W, Leng H, Liu S, Jin L, Sun K, Feng J. Skin Microbiota Variation Among Bat Species in China and Their Potential Defense Against Pathogens. Front Microbiol 2022; 13:808788. [PMID: 35432245 PMCID: PMC9009094 DOI: 10.3389/fmicb.2022.808788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Host-associated skin bacteria are essential for resisting pathogen infections and maintaining health. However, we have little understanding of how chiropteran skin microbiota are distributed among bat species and their habitats, or of their putative roles in defending against Pseudogymnoascus destructans in China. In this study, we characterized the skin microbiomes of four bat species at five localities using 16S rRNA gene amplicon sequencing to understand their skin microbial composition, structure, and putative relationship with disease. The alpha- and beta-diversities of skin microbiota differed significantly among the bat species, and the differences were affected by environmental temperature, sampling sites, and host body condition. The chiropteran skin microbial communities were enriched in bacterial taxa that had low relative abundances in the environment. Most of the potential functions of skin microbiota in bat species were associated with metabolism. Focusing on their functions of defense against pathogens, we found that skin microbiota could metabolize a variety of active substances that could be potentially used to fight P. destructans. The skin microbial communities of bats in China are related to the environment and the bat host, and may be involved in the host's defense against pathogens.
Collapse
Affiliation(s)
- Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Sen Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
43
|
Abstract
In mammals, the composition of the gut microbiota is associated with host phylogenetic history, and host-lineage specific microbiota have been shown, in some cases, to contribute to fitness-related traits of their hosts. However, in primates, captivity can disrupt the native microbiota through a process of humanization in which captive hosts acquire gut microbiota constituents found in humans. Despite the potential importance of this process for the health of captive hosts, the degree to which captivity humanizes the gut microbiota of other mammalian taxa has not been explored. Here, we analyzed hundreds of published gut microbiota profiles generated from wild and captive hosts spanning seven mammalian families to investigate the extent of humanization of the gut microbiota in captivity across the mammalian phylogeny. Comparisons of these hosts revealed compositional convergence between captive mammal and human gut microbiota in the majority of mammalian families examined. This convergence was driven by a diversity of microbial lineages, including members of the Archaea, Clostridium, and Bacteroides. However, the gut microbiota of two families—Giraffidae and Bovidae—were remarkably robust to humanization in captivity, showing no evidence of gut microbiota acquisition from humans relative to their wild confamiliars. These results demonstrate that humanization of the gut microbiota is widespread in captive mammals, but that certain mammalian lineages are resistant to colonization by human-associated gut bacteria.
Collapse
Affiliation(s)
- Brian K Trevelline
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, United States.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
44
|
Hughey MC, Rebollar EA, Harris RN, Ibáñez R, Loftus SC, House LL, Minbiole KPC, Bletz MC, Medina D, Shoemaker WR, Swartwout MC, Belden LK. An experimental test of disease resistance function in the skin-associated bacterial communities of three tropical amphibian species. FEMS Microbiol Ecol 2022; 98:6536914. [PMID: 35212765 DOI: 10.1093/femsec/fiac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/14/2022] Open
Abstract
Variation in the structure of host-associated microbial communities has been correlated with the occurrence and severity of disease in diverse host taxa, suggesting a key role of the microbiome in pathogen defense. However, whether these correlations are typically a cause or consequence of pathogen exposure remains an open question, and requires experimental approaches to disentangle. In amphibians, infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) alters the skin microbial community in some host species, whereas in other species, the skin microbial community appears to mediate infection dynamics. In this study, we completed experimental Bd exposures in three species of tropical frogs (Agalychnis callidryas, Dendropsophus ebraccatus, Craugastor fitzingeri) that were sympatric with Bd at the time of the study. For all three species, we identified key taxa within the skin bacterial communities that were linked to Bd infection dynamics. We also measured higher Bd infection intensities in D. ebraccatus and C. fitzingeri that were associated with higher mortality in C. fitzingeri. Our findings indicate that microbially-mediated pathogen resistance is a complex trait that can vary within and across host species, and suggest that symbiont communities that have experienced prior selection for defensive microbes may be less likely to be disturbed by pathogen exposure.
Collapse
Affiliation(s)
- Myra C Hughey
- Biology Department; Vassar College; 124 Raymond Avenue; Poughkeepsie, NY 12604; USA
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, México
| | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama. Sistema Nacional de Investigación, SENACYT, Panamá, Republic of Panama
| | | | | | | | - Molly C Bletz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - William R Shoemaker
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | | | - Lisa K Belden
- Department of Biological Sciences, VA Tech, Blacksburg, VA, USA
| |
Collapse
|
45
|
Chen MY, Kueneman JG, González A, Humphrey G, Knight R, McKenzie VJ. Predicting fungal infection rate and severity with skin-associated microbial communities on amphibians. Mol Ecol 2022; 31:2140-2156. [PMID: 35076975 DOI: 10.1111/mec.16372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
Pathogen success (risk and severity) is influenced by host-associated microbiota, but the degree to which variation in microbial community traits predict future infection presence/absence (risk) and load (severity) for the host is unknown. We conducted a time-series experiment by sampling the skin-associated bacterial communities of five amphibian species before and after exposure to the fungal pathogen, Batrachochytrium dendrobaditis (Bd). We ask whether microbial community traits are predictors of, or are affected by, Bd infection risk and intensity. Our results show that richness of putative Bd-inhibitory bacteria strongly predicts infection risk, while the proportion of putative Bd-inhibitory bacteria predicts future infection intensity. Variation in microbial community composition is high across time and individual, and bacterial prevalence is low. Our findings demonstrate how ecological community traits of host-associated microbiota may be used to predict infection risk by pathogenic microbes.
Collapse
Affiliation(s)
- Melissa Y Chen
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N-122, UCB 334, Boulder, CO, 80309, USA
| | - Jordan G Kueneman
- Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper, Balboa Ancon, Panama, Republic of Panama
| | - Antonio González
- Department of Pediatrics, Bioengineering and Computer Science and Engineering, and Center for Microbiome Innovation, University of California, Gilman Drive, La Jolla, San Diego, CA, 92093, USA
| | - Greg Humphrey
- Department of Pediatrics, Bioengineering and Computer Science and Engineering, and Center for Microbiome Innovation, University of California, Gilman Drive, La Jolla, San Diego, CA, 92093, USA
| | - Rob Knight
- Department of Pediatrics, Bioengineering and Computer Science and Engineering, and Center for Microbiome Innovation, University of California, Gilman Drive, La Jolla, San Diego, CA, 92093, USA
| | - Valerie J McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N-122, UCB 334, Boulder, CO, 80309, USA
| |
Collapse
|
46
|
Adams NE, Becker MA, Edmands S. Effect of Geography and Captivity on Scat Bacterial Communities in the Imperiled Channel Island Fox. Front Microbiol 2021; 12:748323. [PMID: 34925262 PMCID: PMC8672056 DOI: 10.3389/fmicb.2021.748323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
With developing understanding that host-associated microbiota play significant roles in individual health and fitness, taking an interdisciplinary approach combining microbiome research with conservation science is increasingly favored. Here we establish the scat microbiome of the imperiled Channel Island fox (Urocyon littoralis) and examine the effects of geography and captivity on the variation in bacterial communities. Using high throughput 16S rRNA gene amplicon sequencing, we discovered distinct bacterial communities in each island fox subspecies. Weight, timing of the sample collection, and sex contributed to the geographic patterns. We uncovered significant taxonomic differences and an overall decrease in bacterial diversity in captive versus wild foxes. Understanding the drivers of microbial variation in this system provides a valuable lens through which to evaluate the health and conservation of these genetically depauperate foxes. The island-specific bacterial community baselines established in this study can make monitoring island fox health easier and understanding the implications of inter-island translocation clearer. The decrease in bacterial diversity within captive foxes could lead to losses in the functional services normally provided by commensal microbes and suggests that zoos and captive breeding programs would benefit from maintaining microbial diversity.
Collapse
Affiliation(s)
- Nicole E Adams
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Madeleine A Becker
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
47
|
McGrath-Blaser S, Steffen M, Grafe TU, Torres-Sánchez M, McLeod DS, Muletz-Wolz CR. Early life skin microbial trajectory as a function of vertical and environmental transmission in Bornean foam-nesting frogs. Anim Microbiome 2021; 3:83. [PMID: 34930504 PMCID: PMC8686334 DOI: 10.1186/s42523-021-00147-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The amphibian skin microbiome is an important mediator of host health and serves as a potential source of undiscovered scientifically significant compounds. However, the underlying modalities of how amphibian hosts obtain their initial skin-associated microbiome remains unclear. Here, we explore microbial transmission patterns in foam-nest breeding tree frogs from Southeast Asia (Genus: Polypedates) whose specialized breeding strategy allows for better delineation between vertically and environmentally derived microbes. To facilitate this, we analyzed samples associated with adult frog pairs taken after mating-including adults of each sex, their foam nests, environments, and tadpoles before and after environmental interaction-for the bacterial communities using DNA metabarcoding data (16S rRNA). Samples were collected from frogs in-situ in Brunei, Borneo, a previously unsampled region for amphibian-related microbial diversity. RESULTS Adult frogs differed in skin bacterial communities among species, but tadpoles did not differ among species. Foam nests had varying bacterial community composition, most notably in the nests' moist interior. Nest interior bacterial communities were discrete for each nest and overall displayed a narrower diversity compared to the nest exteriors. Tadpoles sampled directly from the foam nest displayed a bacterial composition less like the nest interior and more similar to that of the adults and nest exterior. After one week of pond water interaction the tadpole skin microbiome shifted towards the tadpole skin and pond water microbial communities being more tightly coupled than between tadpoles and the internal nest environment, but not to the extent that the skin microbiome mirrored the pond bacterial community. CONCLUSIONS Both vertical influence and environmental interaction play a role in shaping the tadpole cutaneous microbiome. Interestingly, the interior of the foam nest had a distinct bacterial community from the tadpoles suggesting a limited environmental effect on tadpole cutaneous bacterial selection at initial stages of life. The shift in the tadpole microbiome after environmental interaction indicates an interplay between underlying host and ecological mechanisms that drive community formation. This survey serves as a baseline for further research into the ecology of microbial transmission in aquatic animals.
Collapse
Affiliation(s)
- Sarah McGrath-Blaser
- Department of Biology, University of Florida, 421 Carr Hall, Gainesville, FL 32611 USA
| | - Morgan Steffen
- Department of Biology, James Madison University, 951 Carrier Dr, Harrisonburg, VA 22807 USA
| | - T. Ulmar Grafe
- Universiti Brunei Darussalam, Tungku Link, Gadong, BE 1410 Brunei
| | - María Torres-Sánchez
- Department of Biology, University of Florida, 421 Carr Hall, Gainesville, FL 32611 USA
| | - David S. McLeod
- Department of Biology, James Madison University, 951 Carrier Dr, Harrisonburg, VA 22807 USA
- North Carolina Museum of Natural Sciences, 11 West Jones Street, Raleigh, NC 27601 USA
| | - Carly R. Muletz-Wolz
- Smithsonian National Zoo and Conservation Biology Institute, Center for Conservation Genomics, 3001 Connecticut Ave., Washington, DC 20008 USA
| |
Collapse
|
48
|
Buttimer S, Hernández-Gómez O, Rosenblum EB. Skin bacterial metacommunities of San Francisco Bay Area salamanders are structured by host genus and habitat quality. FEMS Microbiol Ecol 2021; 97:6464136. [PMID: 34918086 DOI: 10.1093/femsec/fiab162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Host-associated microbial communities can influence physiological processes of macroorganisms, including contributing to infectious disease resistance. For instance, some bacteria that live on amphibian skin produce antifungal compounds that inhibit two lethal fungal pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). Therefore, differences in microbiome composition among host species or populations within a species can contribute to variation in susceptibility to Bd/Bsal. This study applies 16S rRNA sequencing to characterize the skin bacterial microbiomes of three widespread terrestrial salamander genera native to the western United States. Using a metacommunity structure analysis, we identified dispersal barriers for these influential bacteria between salamander families and localities. We also analyzed the effects of habitat characteristics such as percent natural cover and temperature seasonality on the microbiome. We found that certain environmental variables may influence the skin microbial communities of some salamander genera more strongly than others. Each salamander family had a somewhat distinct community of putative anti-Bd skin bacteria, suggesting that salamanders may select for a functional assembly of cutaneous symbionts that could differ in its ability to protect these amphibians from disease. Our observations raise the need to consider host identity and environmental heterogeneity during the selection of probiotics to treat wildlife diseases.
Collapse
Affiliation(s)
- Shannon Buttimer
- Department of Environmental Science, Policy, and Management - The University of California, Berkeley, Berkeley, CA, U.S.A.,Department of Biological Sciences - The University of Alabama, Tuscaloosa, AL, U.S.A
| | - Obed Hernández-Gómez
- Department of Environmental Science, Policy, and Management - The University of California, Berkeley, Berkeley, CA, U.S.A.,School of Health and Natural Sciences - Dominican University of California, San Rafael, CA, U.S.A
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management - The University of California, Berkeley, Berkeley, CA, U.S.A
| |
Collapse
|
49
|
Li A, Li Z, Dai W, Parise KL, Leng H, Jin L, Liu S, Sun K, Hoyt JR, Feng J. Bacterial community dynamics on bats and the implications for pathogen resistance. Environ Microbiol 2021; 24:1484-1498. [PMID: 34472188 DOI: 10.1111/1462-2920.15754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 02/02/2023]
Abstract
The bats skin microbiota plays an important role in reducing pathogen infection, including the deadly fungal pathogen Pseudogymnoascus destructans, the causative agent of white-nose syndrome. However, the dynamic of skin bacterial communities response to environmental perturbations remains poorly described. We characterized skin bacterial community over time and space in Rhinolophus ferrumequinum, a species with high resistance to the infection with P. destructans. We collected environmental covariate data to determine what factors influenced changes in community structure. We observed significant temporal and spatial shifts in the skin bacterial community, which was mainly associated with variation in operational taxonomic units. The skin bacterial community differed by the environmental microbial reservoirs and was most influenced by host body condition, bat roosting temperature and geographic distance between sites, but was not influenced by pathogen infection. Furthermore, the skin microbiota was enriched in particular taxa with antifungal abilities, such as Enterococcus, Burkholderia, Flavobacterium, Pseudomonas, Corynebacterium and Rhodococcus. And specific strains of Pseudomonas, Corynebacterium and Rhodococcus even inhibited P. destructans growth. Our findings provide new insights in characterizing the variation in bacterial communities can inform us about the processes of driving community assembly and predict the host's ability to resist or survive pathogen infection.
Collapse
Affiliation(s)
- Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.,Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China
| | - Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Katy L Parise
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Sen Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Joseph R Hoyt
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, VA, 24060, USA
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.,College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
50
|
Barnes EM, Kutos S, Naghshineh N, Mesko M, You Q, Lewis JD. Assembly of the amphibian microbiome is influenced by the effects of land-use change on environmental reservoirs. Environ Microbiol 2021; 23:4595-4611. [PMID: 34190389 DOI: 10.1111/1462-2920.15653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023]
Abstract
A growing focus in microbial ecology is understanding how beneficial microbiome function is created and maintained through various assembly mechanisms. This study explores the role of both the environment and disease in regulating the composition of microbial species in the soil and on amphibian hosts. We compared the microbial communities of Plethodon cinereus salamanders along a land-use gradient in the New York metropolitan area and paired these with associated soil cores. Additionally, we characterized the diversity of bacterial and fungal symbionts that putatively inhibit the pathogenic fungus Batrachochytrium dendrobatidis. We predicted that variation in skin microbial community composition would correlate with changes seen in the soil which functions as the regional species pool. We found that salamanders and soil share many microbial taxa but that these two communities exhibit differences in the relative abundances of the bacterial phyla Acidobacteria, Actinobacteria, and Proteobacteria and the fungal phyla Ascomycota and genus Basidiobolus. Microbial community composition varies with changes in land-use associated factors creating site-specific compositions. By employing a quantitative, null-based assembly model, we identified that dispersal limitation, variable selection, and drift guide assembly of microbes onto their skin, creating high dissimilarity between individuals with likely consequences in disease preventative function.
Collapse
Affiliation(s)
- Elle M Barnes
- Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, 10504, USA.,Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Steve Kutos
- Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, 10504, USA.,Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Nina Naghshineh
- Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, 10504, USA.,Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Marissa Mesko
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Qing You
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - J D Lewis
- Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, 10504, USA.,Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| |
Collapse
|