1
|
Niknam M, Sadeghi L, Zarrini G. Isolation and characterization of antimicrobial peptides from Lactobacillus: Exploring mechanisms of action. Microb Pathog 2025; 204:107537. [PMID: 40187579 DOI: 10.1016/j.micpath.2025.107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The rise of antibiotic-resistant bacteria necessitates the development of novel antimicrobial agents. In this study, antimicrobial peptides (AMPs) were isolated from Lactobacillus sp., yielding Bioactive Peptide I (BAP I) and Bioactive Peptide III (BAP III). Purified via gel filtration chromatography (GFC), these peptides were characterized by MALDI-TOF MS and SDS-PAGE, which confirmed their molecular masses as 4168.14 Da and 8076.45 Da, respectively, and verified their high purity. Both peptides demonstrated potent antibacterial activity against Pseudomonas aeruginosa, Streptococcus sanguinis, Bacillus cereus, and Staphylococcus aureus, with BAP I exhibiting superior efficacy. This enhanced activity is likely due to its amphipathic structure and hydrophobic C-terminal region, which promote effective bacterial membrane disruption as evidenced by FE-SEM imaging. In addition to compromising membrane integrity, both BAP I and BAP III inhibited bacterial DNA polymerase activity, as shown by reduced PCR product formation. Complementary Circular Dichroism (CD) spectroscopy analysis indicated that peptide binding induced conformational changes in Taq polymerase, reducing its α-helical and β-sheet content while increasing the proportion of random coil structures-thus enhancing the enzyme's flexibility. Molecular docking and dynamics studies further revealed stable interactions between the peptides and the enzyme, suggesting a dual mechanism of action that targets both the bacterial membrane and DNA replication processes. Collectively, these findings highlight the significant potential of BAP I and BAP III as novel antimicrobial agents against multidrug-resistant infections. Future research should focus on evaluating their safety and clinical efficacy, as well as exploring their synergistic potential with existing antibiotics to advance these peptides as therapeutic alternatives.
Collapse
Affiliation(s)
- Mahsa Niknam
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Leila Sadeghi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Gholamreza Zarrini
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Kop LFM, Koch H, Dalcin Martins P, Suarez C, Karačić S, Persson F, Wilén BM, Hagelia P, Jetten MSM, Lücker S. High diversity of nitrifying bacteria and archaea in biofilms from a subsea tunnel. FEMS Microbiol Ecol 2025; 101:fiaf032. [PMID: 40156577 PMCID: PMC11995701 DOI: 10.1093/femsec/fiaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025] Open
Abstract
Microbial biofilm formation can contribute to the accelerated deterioration of steel-reinforced concrete structures and significantly impact their service life, making it critical to understand the diversity of the biofilm community and prevailing processes in these habitats. Here, we analyzed 16S rRNA gene amplicon and metagenomics sequencing data to study the abundance and diversity of nitrifiers within biofilms on the concrete surface of the Oslofjord subsea road tunnel in Norway. We showed that the abundance of nitrifiers varied greatly in time and space, with a mean abundance of 24.7 ± 15% but a wide range between 1.2% and 61.4%. We hypothesize that niche differentiation allows the coexistence of several nitrifier groups and that their high diversity increases the resilience to fluctuating environmental conditions. Strong correlations were observed between the nitrifying families Nitrosomonadaceae and Nitrospinaceae, and the iron-oxidizing family Mariprofundaceae. Metagenome-assembled genome analyses suggested that early Mariprofundaceae colonizers may provide a protected environment for nitrifiers in exchange for nitrogen compounds and vitamin B12, but further studies are needed to elucidate the spatial organization of the biofilms and the cooperative and competitive interactions in this environment. Together, this research provides novel insights into the diverse communities of nitrifiers living within biofilms on concrete surfaces and establishes a foundation for future experimental studies of concrete biofilms.
Collapse
Affiliation(s)
- Linnea F M Kop
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Hanna Koch
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Paula Dalcin Martins
- Ecosystems and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1090 GE Amsterdam, The Netherlands
| | - Carolina Suarez
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, John Ericssons väg 1, 221 00 Lund, Sweden
| | - Sabina Karačić
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, 412 96 Gothenburg, Sweden
- Institute of Medical Microbiology, Immunology and Parasitology, Universitätsklinikum Bonn, Venusberg – Campus 1, 53127 Bonn, Germany
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, 412 96 Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, 412 96 Gothenburg, Sweden
| | - Per Hagelia
- Construction Division, The Norwegian Public Roads Administration, Innspurten 11C, 0663 Oslo Norway
- Müller-Sars Biological Station, Ørje, PO Box 64, NO-1871 Ørje, Norway
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Alanzi AR. Exploring Microbial Dark Matter for the Discovery of Novel Natural Products: Characteristics, Abundance Challenges and Methods. J Microbiol Biotechnol 2024; 35:e2407064. [PMID: 39639495 PMCID: PMC11813339 DOI: 10.4014/jmb.2407.07064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
The objective of this review is to investigate microbial dark matter (MDM) with a focus on its potential for discovering novel natural products (NPs). This first part will examine the characteristics and abundance of these previously unexplored microbial communities, as well as the challenges faced in identifying and harnessing their unique biochemical properties and novel methods in this field. MDMs are thought to hold great potential for the discovery of novel NPs, which could have significant applications in medicine, agriculture, and industry. In recent years, there has been a growing interest in exploring MDM to unlock its potential. In fact, developments in genome-sequencing technologies and sophisticated phylogenetic procedures and metagenomic techniques have contributed to drastically make important changes in our sights on the diversity of microbial life, including the very outline of the tree of life. This has led to the development of novel technologies and methodologies for studying these elusive microorganisms, such as single-cell genomics, metagenomics, and culturomics. These approaches enable researchers to isolate and analyze individual microbial cells, as well as entire communities, providing insights into their genetic and metabolic potential. By delving into the MDM, scientists hope to uncover new compounds and biotechnological advancements that could have far-reaching impacts on various fields.
Collapse
Affiliation(s)
- Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Barco RA, Merino N, Lam B, Budnik B, Kaplan M, Wu F, Amend JP, Nealson KH, Emerson D. Comparative proteomics of a versatile, marine, iron-oxidizing chemolithoautotroph. Environ Microbiol 2024; 26:e16632. [PMID: 38861374 DOI: 10.1111/1462-2920.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/20/2024] [Indexed: 06/13/2024]
Abstract
This study conducted a comparative proteomic analysis to identify potential genetic markers for the biological function of chemolithoautotrophic iron oxidation in the marine bacterium Ghiorsea bivora. To date, this is the only characterized species in the class Zetaproteobacteria that is not an obligate iron-oxidizer, providing a unique opportunity to investigate differential protein expression to identify key genes involved in iron-oxidation at circumneutral pH. Over 1000 proteins were identified under both iron- and hydrogen-oxidizing conditions, with differentially expressed proteins found in both treatments. Notably, a gene cluster upregulated during iron oxidation was identified. This cluster contains genes encoding for cytochromes that share sequence similarity with the known iron-oxidase, Cyc2. Interestingly, these cytochromes, conserved in both Bacteria and Archaea, do not exhibit the typical β-barrel structure of Cyc2. This cluster potentially encodes a biological nanowire-like transmembrane complex containing multiple redox proteins spanning the inner membrane, periplasm, outer membrane, and extracellular space. The upregulation of key genes associated with this complex during iron-oxidizing conditions was confirmed by quantitative reverse transcription-PCR. These findings were further supported by electromicrobiological methods, which demonstrated negative current production by G. bivora in a three-electrode system poised at a cathodic potential. This research provides significant insights into the biological function of chemolithoautotrophic iron oxidation.
Collapse
Affiliation(s)
- Roman A Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - N Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Lawrence Livermore National Lab, Biosciences and Biotechnology Division, Livermore, California, USA
| | - B Lam
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - B Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, Massachusetts, USA
| | - M Kaplan
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - F Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, China
| | - J P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - K H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - D Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| |
Collapse
|
5
|
Astorch-Cardona A, Odin GP, Chavagnac V, Dolla A, Gaussier H, Rommevaux C. Linking Zetaproteobacterial diversity and substratum type in iron-rich microbial mats from the Lucky Strike hydrothermal field (EMSO-Azores observatory). Appl Environ Microbiol 2024; 90:e0204123. [PMID: 38193671 PMCID: PMC10880625 DOI: 10.1128/aem.02041-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Zetaproteobacteria have been reported in different marine and terrestrial environments all over the globe. They play an essential role in marine iron-rich microbial mats, as one of their autotrophic primary producers, oxidizing Fe(II) and producing Fe-oxyhydroxides with different morphologies. Here, we study and compare the Zetaproteobacterial communities of iron-rich microbial mats from six different sites of the Lucky Strike Hydrothermal Field through the use of the Zetaproteobacterial operational taxonomic unit (ZetaOTU) classification. We report for the first time the Zetaproteobacterial core microbiome of these iron-rich microbial mats, which is composed of four ZetaOTUs that are cosmopolitan and essential for the development of the mats. The study of the presence and abundance of different ZetaOTUs among sites reveals two clusters, which are related to the lithology and permeability of the substratum on which they develop. The Zetaproteobacterial communities of cluster 1 are characteristic of poorly permeable substrata, with little evidence of diffuse venting, while those of cluster 2 develop on hydrothermal slabs or deposits that allow the percolation and outflow of diffuse hydrothermal fluids. In addition, two NewZetaOTUs 1 and 2 were identified, which could be characteristic of anthropic iron and unsedimented basalt, respectively. We also report significant correlations between the abundance of certain ZetaOTUs and that of iron oxide morphologies, indicating that their formation could be taxonomically and/or environmentally driven. We identified a new morphology of Fe(III)-oxyhydroxides that we named "corals." Overall, our work contributes to the knowledge of the biogeography of this bacterial class by providing additional data from the Atlantic Ocean, a lesser-studied ocean in terms of Zetaproteobacterial diversity.IMPORTANCEUp until now, Zetaproteobacterial diversity studies have revealed possible links between Zetaproteobacteria taxa, habitats, and niches. Here, we report for the first time the Zetaproteobacterial core microbiome of iron-rich mats from the Lucky Strike Hydrothermal Field (LSHF), as well as two new Zetaproteobacterial operational taxonomic units (NewZetaOTUs) that could be substratum specific. We highlight that the substratum on which iron-rich microbial mats develop, especially because of its permeability to diffuse hydrothermal venting, has an influence on their Zetaproteobacterial communities. Moreover, our work adds to the knowledge of the biogeography of this bacterial class by providing additional data from the hydrothermal vent sites along the Mid-Atlantic Ridge. In addition to the already described iron oxide morphologies, we identify in our iron-rich mats a new morphology that we named corals. Finally, we argue for significant correlations between the relative abundance of certain ZetaOTUs and that of iron oxide morphologies, contributing to the understanding of the drivers of iron oxide production in iron-oxidizing bacteria.
Collapse
Affiliation(s)
- Aina Astorch-Cardona
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Giliane P. Odin
- Laboratoire Géomatériaux et Environnement, Université Gustave Eiffel, Marne-la-Vallée, France
| | - Valérie Chavagnac
- Géosciences Environnement Toulouse, CNRS UMR 5563 (CNRS/UPS/IRD/CNES), Université de Toulouse, Observatoire Midi-Pyrénées, Toulouse, France
| | - Alain Dolla
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Hélène Gaussier
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Céline Rommevaux
- Aix-Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
6
|
Fullerton H, Smith L, Enriquez A, Butterfield D, Wheat CG, Moyer CL. Seafloor incubation experiments at deep-sea hydrothermal vents reveal distinct biogeographic signatures of autotrophic communities. FEMS Microbiol Ecol 2024; 100:fiae001. [PMID: 38200713 PMCID: PMC10808952 DOI: 10.1093/femsec/fiae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/20/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
The discharge of hydrothermal vents on the seafloor provides energy sources for dynamic and productive ecosystems, which are supported by chemosynthetic microbial populations. These populations use the energy gained by oxidizing the reduced chemicals contained within the vent fluids to fix carbon and support multiple trophic levels. Hydrothermal discharge is ephemeral and chemical composition of such fluids varies over space and time, which can result in geographically distinct microbial communities. To investigate the foundational members of the community, microbial growth chambers were placed within the hydrothermal discharge at Axial Seamount (Juan de Fuca Ridge), Magic Mountain Seamount (Explorer Ridge), and Kama'ehuakanaloa Seamount (Hawai'i hotspot). Campylobacteria were identified within the nascent communities, but different amplicon sequence variants were present at Axial and Kama'ehuakanaloa Seamounts, indicating that geography in addition to the composition of the vent effluent influences microbial community development. Across these vent locations, dissolved iron concentration was the strongest driver of community structure. These results provide insights into nascent microbial community structure and shed light on the development of diverse lithotrophic communities at hydrothermal vents.
Collapse
Affiliation(s)
- Heather Fullerton
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, United States
| | - Lindsey Smith
- Department of Biology, Western Washington University, 516 High St, Bellingham, WA 98225, United States
| | - Alejandra Enriquez
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, United States
| | - David Butterfield
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington and NOAA/PMEL, John M. Wallace Hall, 3737 Brooklyn Ave NE, Seattle, WA 98105, United States
| | - C Geoffrey Wheat
- Institute of Marine Studies, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 2150 Koyukuk Drive, 245 O’Neill Building, PO Box 757220, Fairbanks, Alaska 99775-7220, United States
| | - Craig L Moyer
- Department of Biology, Western Washington University, 516 High St, Bellingham, WA 98225, United States
| |
Collapse
|
7
|
Hribovšek P, Olesin Denny E, Dahle H, Mall A, Øfstegaard Viflot T, Boonnawa C, Reeves EP, Steen IH, Stokke R. Putative novel hydrogen- and iron-oxidizing sheath-producing Zetaproteobacteria thrive at the Fåvne deep-sea hydrothermal vent field. mSystems 2023; 8:e0054323. [PMID: 37921472 PMCID: PMC10734525 DOI: 10.1128/msystems.00543-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Knowledge on microbial iron oxidation is important for understanding the cycling of iron, carbon, nitrogen, nutrients, and metals. The current study yields important insights into the niche sharing, diversification, and Fe(III) oxyhydroxide morphology of Ghiorsea, an iron- and hydrogen-oxidizing Zetaproteobacteria representative belonging to Zetaproteobacteria operational taxonomic unit 9. The study proposes that Ghiorsea exhibits a more extensive morphology of Fe(III) oxyhydroxide than previously observed. Overall, the results increase our knowledge on potential drivers of Zetaproteobacteria diversity in iron microbial mats and can eventually be used to develop strategies for the cultivation of sheath-forming Zetaproteobacteria.
Collapse
Affiliation(s)
- Petra Hribovšek
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Emily Olesin Denny
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Håkon Dahle
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Achim Mall
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Thomas Øfstegaard Viflot
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Chanakan Boonnawa
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Eoghan P. Reeves
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Ida Helene Steen
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Runar Stokke
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Zhou N, Keffer JL, Polson SW, Chan CS. Unraveling Fe(II)-Oxidizing Mechanisms in a Facultative Fe(II) Oxidizer, Sideroxydans lithotrophicus Strain ES-1, via Culturing, Transcriptomics, and Reverse Transcription-Quantitative PCR. Appl Environ Microbiol 2022; 88:e0159521. [PMID: 34788064 PMCID: PMC8788666 DOI: 10.1128/aem.01595-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
Sideroxydans lithotrophicus ES-1 grows autotrophically either by Fe(II) oxidation or by thiosulfate oxidation, in contrast to most other isolates of neutrophilic Fe(II)-oxidizing bacteria (FeOB). This provides a unique opportunity to explore the physiology of a facultative FeOB and constrain the genes specific to Fe(II) oxidation. We compared the growth of S. lithotrophicus ES-1 on Fe(II), thiosulfate, and both substrates together. While initial growth rates were similar, thiosulfate-grown cultures had higher yield with or without Fe(II) present, which may give ES-1 an advantage over obligate FeOB. To investigate the Fe(II) and S oxidation pathways, we conducted transcriptomics experiments, validated with reverse transcription-quantitative PCR (RT-qPCR). We explored the long-term gene expression response at different growth phases (over days to a week) and expression changes during a short-term switch from thiosulfate to Fe(II) (90 min). The dsr and sox sulfur oxidation genes were upregulated in thiosulfate cultures. The Fe(II) oxidase gene cyc2 was among the top expressed genes during both Fe(II) and thiosulfate oxidation, and addition of Fe(II) to thiosulfate-grown cells caused an increase in cyc2 expression. These results support the role of Cyc2 as the Fe(II) oxidase and suggest that ES-1 maintains readiness to oxidize Fe(II), even in the absence of Fe(II). We used gene expression profiles to further constrain the ES-1 Fe(II) oxidation pathway. Notably, among the most highly upregulated genes during Fe(II) oxidation were genes for alternative complex III, reverse electron transport, and carbon fixation. This implies a direct connection between Fe(II) oxidation and carbon fixation, suggesting that CO2 is an important electron sink for Fe(II) oxidation. IMPORTANCE Neutrophilic FeOB are increasingly observed in various environments, but knowledge of their ecophysiology and Fe(II) oxidation mechanisms is still relatively limited. Sideroxydans isolates are widely observed in aquifers, wetlands, and sediments, and genome analysis suggests metabolic flexibility contributes to their success. The type strain ES-1 is unusual among neutrophilic FeOB isolates, as it can grow on either Fe(II) or a non-Fe(II) substrate, thiosulfate. Almost all our knowledge of neutrophilic Fe(II) oxidation pathways comes from genome analyses, with some work on metatranscriptomes. This study used culture-based experiments to test the genes specific to Fe(II) oxidation in a facultative FeOB and refine our model of the Fe(II) oxidation pathway. We gained insight into how facultative FeOB like ES-1 connect Fe, S, and C biogeochemical cycling in the environment and suggest a multigene indicator would improve understanding of Fe(II) oxidation activity in environments with facultative FeOB.
Collapse
Affiliation(s)
- Nanqing Zhou
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| | - Jessica L. Keffer
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Shawn W. Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Clara S. Chan
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
9
|
D’Angelo T, Goordial J, Poulton NJ, Seyler L, Huber JA, Stepanauskas R, Orcutt BN. Oceanic Crustal Fluid Single Cell Genomics Complements Metagenomic and Metatranscriptomic Surveys With Orders of Magnitude Less Sample Volume. Front Microbiol 2022; 12:738231. [PMID: 35140689 PMCID: PMC8819061 DOI: 10.3389/fmicb.2021.738231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
Fluids circulating through oceanic crust play important roles in global biogeochemical cycling mediated by their microbial inhabitants, but studying these sites is challenged by sampling logistics and low biomass. Borehole observatories installed at the North Pond study site on the western flank of the Mid-Atlantic Ridge have enabled investigation of the microbial biosphere in cold, oxygenated basaltic oceanic crust. Here we test a methodology that applies redox-sensitive fluorescent molecules for flow cytometric sorting of cells for single cell genomic sequencing from small volumes of low biomass (approximately 103 cells ml-1) crustal fluid. We compare the resulting genomic data to a recently published paired metagenomic and metatranscriptomic analysis from the same site. Even with low coverage genome sequencing, sorting cells from less than one milliliter of crustal fluid results in similar interpretation of dominant taxa and functional profiles as compared to 'omics analysis that typically filter orders of magnitude more fluid volume. The diverse community dominated by Gammaproteobacteria, Bacteroidetes, Desulfobacterota, Alphaproteobacteria, and Zetaproteobacteria, had evidence of autotrophy and heterotrophy, a variety of nitrogen and sulfur cycling metabolisms, and motility. Together, results indicate fluorescence activated cell sorting methodology is a powerful addition to the toolbox for the study of low biomass systems or at sites where only small sample volumes are available for analysis.
Collapse
Affiliation(s)
- Timothy D’Angelo
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Jacqueline Goordial
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Nicole J. Poulton
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Lauren Seyler
- School of Natural Science and Mathematics, Stockton University, Galloway, NJ, United States
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Julie A. Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | | | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
10
|
Koeksoy E, Bezuidt OM, Bayer T, Chan CS, Emerson D. Zetaproteobacteria Pan-Genome Reveals Candidate Gene Cluster for Twisted Stalk Biosynthesis and Export. Front Microbiol 2021; 12:679409. [PMID: 34220764 PMCID: PMC8250860 DOI: 10.3389/fmicb.2021.679409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Twisted stalks are morphologically unique bacterial extracellular organo-metallic structures containing Fe(III) oxyhydroxides that are produced by microaerophilic Fe(II)-oxidizers belonging to the Betaproteobacteria and Zetaproteobacteria. Understanding the underlying genetic and physiological mechanisms of stalk formation is of great interest based on their potential as novel biogenic nanomaterials and their relevance as putative biomarkers for microbial Fe(II) oxidation on ancient Earth. Despite the recognition of these special biominerals for over 150 years, the genetic foundation for the stalk phenotype has remained unresolved. Here we present a candidate gene cluster for the biosynthesis and secretion of the stalk organic matrix that we identified with a trait-based analyses of a pan-genome comprising 16 Zetaproteobacteria isolate genomes. The “stalk formation in Zetaproteobacteria” (sfz) cluster comprises six genes (sfz1-sfz6), of which sfz1 and sfz2 were predicted with functions in exopolysaccharide synthesis, regulation, and export, sfz4 and sfz6 with functions in cell wall synthesis manipulation and carbohydrate hydrolysis, and sfz3 and sfz5 with unknown functions. The stalk-forming Betaproteobacteria Ferriphaselus R-1 and OYT-1, as well as dread-forming Zetaproteobacteria Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8 contain distant sfz gene homologs, whereas stalk-less Zetaproteobacteria and Betaproteobacteria lack the entire gene cluster. Our pan-genome analysis further revealed a significant enrichment of clusters of orthologous groups (COGs) across all Zetaproteobacteria isolate genomes that are associated with the regulation of a switch between sessile and motile growth controlled by the intracellular signaling molecule c-di-GMP. Potential interactions between stalk-former unique transcription factor genes, sfz genes, and c-di-GMP point toward a c-di-GMP regulated surface attachment function of stalks during sessile growth.
Collapse
Affiliation(s)
- Elif Koeksoy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States.,Leibniz Institute DSMZ (German Collection of Microorganisms and Cell Cultures), Braunschweig, Germany
| | - Oliver M Bezuidt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Timm Bayer
- Geomicrobiology Group, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Clara S Chan
- Department of Earth Sciences, University of Delaware, Newark, DE, United States.,School of Marine Sciences and Policy, University of Delaware, Newark, DE, United States
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
11
|
Cambon-Bonavita MA, Aubé J, Cueff-Gauchard V, Reveillaud J. Niche partitioning in the Rimicaris exoculata holobiont: the case of the first symbiotic Zetaproteobacteria. MICROBIOME 2021; 9:87. [PMID: 33845886 PMCID: PMC8042907 DOI: 10.1186/s40168-021-01045-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Free-living and symbiotic chemosynthetic microbial communities support primary production and higher trophic levels in deep-sea hydrothermal vents. The shrimp Rimicaris exoculata, which dominates animal communities along the Mid-Atlantic Ridge, houses a complex bacterial community in its enlarged cephalothorax. The dominant bacteria present are from the taxonomic groups Campylobacteria, Desulfobulbia (formerly Deltaproteobacteria), Alphaproteobacteria, Gammaproteobacteria, and some recently discovered iron oxyhydroxide-coated Zetaproteobacteria. This epibiotic consortium uses iron, sulfide, methane, and hydrogen as energy sources. Here, we generated shotgun metagenomes from Rimicaris exoculata cephalothoracic epibiotic communities to reconstruct and investigate symbiotic genomes. We collected specimens from three geochemically contrasted vent fields, TAG, Rainbow, and Snake Pit, to unravel the specificity, variability, and adaptation of Rimicaris-microbe associations. RESULTS Our data enabled us to reconstruct 49 metagenome-assembled genomes (MAGs) from the TAG and Rainbow vent fields, including 16 with more than 90% completion and less than 5% contamination based on single copy core genes. These MAGs belonged to the dominant Campylobacteria, Desulfobulbia, Thiotrichaceae, and some novel candidate phyla radiation (CPR) lineages. In addition, most importantly, two MAGs in our collection were affiliated to Zetaproteobacteria and had no close relatives (average nucleotide identity ANI < 77% with the closest relative Ghiorsea bivora isolated from TAG, and 88% with each other), suggesting potential novel species. Genes for Calvin-Benson Bassham (CBB) carbon fixation, iron, and sulfur oxidation, as well as nitrate reduction, occurred in both MAGs. However, genes for hydrogen oxidation and multicopper oxidases occurred in one MAG only, suggesting shared and specific potential functions for these two novel Zetaproteobacteria symbiotic lineages. Overall, we observed highly similar symbionts co-existing in a single shrimp at both the basaltic TAG and ultramafic Rainbow vent sites. Nevertheless, further examination of the seeming functional redundancy among these epibionts revealed important differences. CONCLUSION These data highlight microniche partitioning in the Rimicaris holobiont and support recent studies showing that functional diversity enables multiple symbiont strains to coexist in animals colonizing hydrothermal vents. Video Abstract.
Collapse
Affiliation(s)
- Marie-Anne Cambon-Bonavita
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Johanne Aubé
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Valérie Cueff-Gauchard
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Julie Reveillaud
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
- MIVEGEC, Univ. Montpellier, INRAe, CNRS, IRD, Montpellier, France
| |
Collapse
|
12
|
Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents. ISME JOURNAL 2020; 15:1271-1286. [PMID: 33328652 PMCID: PMC8114936 DOI: 10.1038/s41396-020-00849-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022]
Abstract
In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism, Candidatus Ferristratum sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum. Candidatus Ferristratum sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes narGH and the iron oxidation gene cyc2 in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer. Candidatus Ferristratum sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids.
Collapse
|
13
|
Zhang X, Ji Z, Shao Y, Guo C, Zhou H, Liu L, Qu Y. Seasonal variations of soil bacterial communities in Suaeda wetland of Shuangtaizi River estuary, Northeast China. J Environ Sci (China) 2020; 97:45-53. [PMID: 32933739 DOI: 10.1016/j.jes.2020.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Estuarine wetland is the transitional interface linking terrestrial with marine ecosystems, and wetland microbes are crucial to the biogeochemical cycles of nutrients. The soil samples were collected in four seasons (spring, S1; summer, S2; autumn, S3; and winter, S4) from Suaeda wetland of Shuangtaizi River estuary, Northeast China, and the variations of bacterial community were evaluated by high-throughput sequencing. Soil properties presented a significant seasonal change, including pH, carbon (C) and total nitrogen (TN), and the microbial diversity, richness and structure also differed with seasons. Canonical correspondence analysis (CCA) and Mantel tests implied that soil pH, C and TN were the key factors structuring the microbial community. Gillisia (belonging to Bacteroidetes) and Woeseia (affiliating with Gammaproteobacteria) were the two primary components in the rhizosphere soils, displaying opposite variations with seasons. Based on PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) prediction, the xenobiotics biodegradation related genes exhibited a seasonal decline, while the majority of biomarker genes involved in nitrogen cycle showed an ascending trend. These findings could advance the understanding of rhizosphere microbiota of Suaeda in estuarine wetland.
Collapse
Affiliation(s)
- Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| | - Zhe Ji
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Yating Shao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Chaochen Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Price KA, Garrison CE, Richards N, Field EK. A Shallow Water Ferrous-Hulled Shipwreck Reveals a Distinct Microbial Community. Front Microbiol 2020; 11:1897. [PMID: 32973699 PMCID: PMC7466744 DOI: 10.3389/fmicb.2020.01897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Shipwrecks act as artificial reefs and provide a solid surface in aquatic systems for many different forms of life to attach to, especially microbial communities, making them a hotspot of biogeochemical cycling. Depending on the microbial community and surrounding environment, they may either contribute to the wreck’s preservation or deterioration. Even within a single wreck, preservation and deterioration processes may vary, suggesting that the microbial community may also vary. This study aimed to identify the differences through widespread sampling of the microbial communities associated with the Pappy Lane shipwreck (NC shipwreck site #PAS0001), a shallow water ferrous-hulled shipwreck in Pamlico Sound, North Carolina to determine if there are differences across the wreck as well as from its surrounding environment. Loose shipwreck debris, drilled shipcores, surrounding sediment, and seawater samples were collected from the Pappy Lane shipwreck to characterize the microbial communities on and around the shipwreck. Results indicated that the shipwreck samples were more similar to each other than the surrounding sediment and aquatic environments suggesting they have made a specialized niche associated with the shipwreck. There were differences between the microbial community across the shipwreck, including between visibly corroded and non-corroded shipwreck debris pieces. Relative abundance estimates for neutrophilic iron-oxidizing bacteria (FeOB), an organism that may contribute to deterioration through biocorrosion, revealed they are present across the shipwreck and at highest abundance on the samples containing visible corrosion products. Zetaproteobacteria, a known class of marine iron-oxidizers, were also found in higher abundance on shipwreck samples with visible corrosion. A novel Zetaproteobacteria strain, Mariprofundus ferrooxydans O1, was isolated from one of the shipwreck pieces and its genome analyzed to elucidate the functional potential of the organism. In addition to iron oxidation pathways, the isolate has the genomic potential to perform carbon fixation in both high and low oxygen environments, as well as perform nitrogen fixation, contributing to the overall biogeochemical cycling of nutrients and metals in the shipwreck ecosystem. By understanding the microbial communities associated with shallow water ferrous-hulled shipwrecks, better management strategies and preservation plans can be put into place to preserve these artificial reefs and non-renewable cultural resources.
Collapse
Affiliation(s)
- Kyra A Price
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Cody E Garrison
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Nathan Richards
- Program in Maritime Studies, Department of History, East Carolina University, Greenville, NC, United States
| | - Erin K Field
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
15
|
Genomic Insights into Two Novel Fe(II)-Oxidizing Zetaproteobacteria Isolates Reveal Lifestyle Adaption to Coastal Marine Sediments. Appl Environ Microbiol 2020; 86:AEM.01160-20. [PMID: 32561582 DOI: 10.1128/aem.01160-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/13/2020] [Indexed: 11/20/2022] Open
Abstract
The discovery of the novel Zetaproteobacteria class greatly expanded our understanding of neutrophilic, microaerophilic microbial Fe(II) oxidation in marine environments. Despite molecular techniques demonstrating their global distribution, relatively few isolates exist, especially from low-Fe(II) environments. Furthermore, the Fe(II) oxidation pathways used by Zetaproteobacteria remain poorly understood. Here, we present the genomes (>99% genome completeness) of two Zetaproteobacteria, which are the only cultivated isolates originating from typical low-Fe [porewater Fe(II), 70 to 100 μM] coastal marine sediments. The two strains share <90% average nucleotide identity (ANI) with each other and <80% ANI with any other Zetaproteobacteria genome. The closest relatives were Mariprofundus aestuarium strain CP-5 and Mariprofundus ferrinatatus strain CP-8 (96 to 98% 16S rRNA gene sequence similarity). Fe(II) oxidation of strains KV and NF is most likely mediated by the putative Fe(II) oxidase Cyc2. Interestingly, the genome of strain KV also encodes a putative multicopper oxidase, PcoAB, which could play a role in Fe(II) oxidation, a pathway found only in two other Zetaproteobacteria genomes (Ghiorsea bivora TAG-1 and SCGC AB-602-C20). The strains show potential adaptations to fluctuating O2 concentrations, indicated by the presence of both cbb 3- and aa 3-type cytochrome c oxidases, which are adapted to low and high O2 concentrations, respectively. This is further supported by the presence of several oxidative-stress-related genes. In summary, our results reveal the potential Fe(II) oxidation pathways employed by these two novel chemolithoautotrophic Fe(II)-oxidizing species and the lifestyle adaptations which enable the Zetaproteobacteria to survive in coastal environments with low Fe(II) and regular redox fluctuations.IMPORTANCE Until recently, the importance and relevance of Zetaproteobacteria were mainly thought to be restricted to high-Fe(II) environments, such as deep-sea hydrothermal vents. The two novel Mariprofundus isolates presented here originate from typical low-Fe(II) coastal marine sediments. As well as being low in Fe(II), these environments are often subjected to fluctuating O2 concentrations and regular mixing by wave action and bioturbation. The discovery of two novel isolates highlights the importance of these organisms in such environments, as Fe(II) oxidation has been shown to impact nutrients and trace metals. Genome analysis of these two strains further supported their lifestyle adaptation and therefore their potential preference for coastal marine sediments, as genes necessary for surviving dynamic O2 concentrations and oxidative stress were identified. Furthermore, our analyses also expand our understanding of the poorly understood Fe(II) oxidation pathways used by neutrophilic, microaerophilic Fe(II) oxidizers.
Collapse
|
16
|
McAllister SM, Polson SW, Butterfield DA, Glazer BT, Sylvan JB, Chan CS. Validating the Cyc2 Neutrophilic Iron Oxidation Pathway Using Meta-omics of Zetaproteobacteria Iron Mats at Marine Hydrothermal Vents. mSystems 2020; 5:e00553-19. [PMID: 32071158 PMCID: PMC7029218 DOI: 10.1128/msystems.00553-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/22/2020] [Indexed: 01/04/2023] Open
Abstract
Zetaproteobacteria create extensive iron (Fe) oxide mats at marine hydrothermal vents, making them an ideal model for microbial Fe oxidation at circumneutral pH. Comparison of neutrophilic Fe oxidizer isolate genomes has revealed a hypothetical Fe oxidation pathway, featuring a homolog of the Fe oxidase Cyc2 from Acidithiobacillus ferrooxidans However, Cyc2 function is not well verified in neutrophilic Fe oxidizers, particularly in Fe-oxidizing environments. Toward this, we analyzed genomes and metatranscriptomes of Zetaproteobacteria, using 53 new high-quality metagenome-assembled genomes reconstructed from Fe mats at Mid-Atlantic Ridge, Mariana Backarc, and Loihi Seamount (Hawaii) hydrothermal vents. Phylogenetic analysis demonstrated conservation of Cyc2 sequences among most neutrophilic Fe oxidizers, suggesting a common function. We confirmed the widespread distribution of cyc2 and other model Fe oxidation pathway genes across all represented Zetaproteobacteria lineages. High expression of these genes was observed in diverse Zetaproteobacteria under multiple environmental conditions and in incubations. The putative Fe oxidase gene cyc2 was highly expressed in situ, often as the top expressed gene. The cyc2 gene showed increased expression in Fe(II)-amended incubations, with corresponding increases in carbon fixation and central metabolism gene expression. These results substantiate the Cyc2-based Fe oxidation pathway in neutrophiles and demonstrate its significance in marine Fe-mineralizing environments.IMPORTANCE Iron oxides are important components of our soil, water supplies, and ecosystems, as they sequester nutrients, carbon, and metals. Microorganisms can form iron oxides, but it is unclear whether this is a significant mechanism in the environment. Unlike other major microbial energy metabolisms, there is no marker gene for iron oxidation, hindering our ability to track these microbes. Here, we investigate a promising possible iron oxidation gene, cyc2, in iron-rich hydrothermal vents, where iron-oxidizing microbes dominate. We pieced together diverse Zetaproteobacteria genomes, compared these genomes, and analyzed expression of cyc2 and other hypothetical iron oxidation genes. We show that cyc2 is widespread among iron oxidizers and is highly expressed and potentially regulated, making it a good marker for the capacity for iron oxidation and potentially a marker for activity. These findings will help us understand and potentially quantify the impacts of neutrophilic iron oxidizers in a wide variety of marine and terrestrial environments.
Collapse
Affiliation(s)
- Sean M McAllister
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - David A Butterfield
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, Washington, USA
- Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Brian T Glazer
- Department of Oceanography, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, Texas, USA
| | - Clara S Chan
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
17
|
Evidence for auxiliary anaerobic metabolism in obligately aerobic Zetaproteobacteria. ISME JOURNAL 2020; 14:1057-1062. [PMID: 31969684 DOI: 10.1038/s41396-020-0586-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 11/08/2022]
Abstract
Zetaproteobacteria are obligate chemolithoautotrophs that oxidize Fe(II) as an electron and energy source, and play significant roles in nutrient cycling and primary production in the marine biosphere. Zetaproteobacteria thrive under microoxic conditions near oxic-anoxic interfaces, where they catalyze Fe(II) oxidation faster than the abiotic reaction with oxygen. Neutrophilic Fe(II) oxidizing bacteria produce copious amounts of insoluble iron oxyhydroxides as a by-product of their metabolism. Oxygen consumption by aerobic respiration and formation of iron oxyhydroxides at oxic-anoxic interfaces can result in periods of oxygen limitation for bacterial cells. Under laboratory conditions, all Zetaproteobacteria isolates have been shown to strictly require oxygen as an electron acceptor for growth, and anaerobic metabolism has not been observed. However, genomic analyses indicate a range of potential anaerobic pathways present in Zetaproteobacteria. Heterologous expression of proteins from Mariprofundus ferrooxydans PV-1, including pyruvate formate lyase and acetate kinase, further support a capacity for anaerobic metabolism. Here we define auxiliary anaerobic metabolism as a mechanism to provide maintenance energy to cells and suggest that it provides a survival advantage to Zetaproteobacteria in environments with fluctuating oxygen availability.
Collapse
|
18
|
Hussain S, Min Z, Xiuxiu Z, Khan MH, Lifeng L, Hui C. Significance of Fe(II) and environmental factors on carbon-fixing bacterial community in two paddy soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109456. [PMID: 31398779 DOI: 10.1016/j.ecoenv.2019.109456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 05/20/2023]
Abstract
The seasonal flooding and drainage process affect the paddy soils, the existence of the iron state either Fe(III) or Fe(II) is the main redox system of paddy soil. Its morphological transformation affects the redox nature of paddy soils, which also affects the distribution of bacterial community diversity. This study based on molecular biological methods (qPCR, Illumina MiSeq sequencing technique) to investigate the effect of Fe(II) and environmental factors on cbbM genes containing carbon fixing microbes. Both Eh5 and pH were reduced with Fe(II) concentrations. The Fe(II) addition significantly affects the cbbM gene copy number in both texture soils. In loamy soil, cbbM gene copy number increased with high addition of Fe(II), while both low and high concentrations significantly reduced the cbbM gene copy number in sandy soil. Chemotrophic bacterial abundance significantly increased by 79.7% and 54.8% with high and low Fe(II) addition in loamy soil while in sandy soil its abundance decreased by 53% and 54% with the low and high Fe(II) accumulation. The phototrophic microbial community increased by 37.8% with low Fe(II) concentration and decreased by 16.2% with a high concentration in loamy soil, while in sandy soil increased by 21% and 14.3% in sandy soil with low and high Fe(II) addition. Chemoheterotrophic carbon fixing bacterial abundance decreased with the Fe(II) accumulation in both soil textures in loamy soil its abundance decreased by 5.8% and 24.8%, while in sand soil 15.7% and 12.8% with low and high Fe(II) concentrations. The Fe(II) concentration and soil textures maybe two of the major factors to shape the bacterial community structure in paddy soils. These results provide a scientific basis for management of paddy soil fertility and it can be beneficial to take measures to ease the greenhouse gases effect.
Collapse
Affiliation(s)
- Sarfraz Hussain
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhang Min
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhu Xiuxiu
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Muzammil Hassan Khan
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Lifeng
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cao Hui
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
19
|
Environmental Evidence for and Genomic Insight into the Preference of Iron-Oxidizing Bacteria for More-Corrosion-Resistant Stainless Steel at Higher Salinities. Appl Environ Microbiol 2019; 85:AEM.00483-19. [PMID: 31076431 DOI: 10.1128/aem.00483-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/07/2019] [Indexed: 11/20/2022] Open
Abstract
Iron-oxidizing bacteria (FeOB) are some of the initial colonizing organisms during microbially influenced corrosion of steel infrastructure. To better understand the abiotic conditions under which FeOB colonize steel, an environmental study was conducted to determine the effects of salinity, temperature, dissolved oxygen levels, and steel type on FeOB colonization. Stainless steel (304 and 316 [i.e., 304SS and 316SS]) was used to determine the potential susceptibility of these specialized corrosion-resistant steels. Steel coupon deployments along salinity gradients in two river systems revealed attachment by FeOB at all sites, with greater abundance of FeOB at higher salinities and on 316SS, compared to 304SS. This may be due to the presence of molybdenum in 316SS, potentially providing a selective advantage for FeOB colonization. A novel Zetaproteobacteria species, Mariprofundus erugo, was isolated from these stainless steel samples. Genes for molybdenum utilization and uptake and reactive oxygen species protection were found within its genome, supporting the evidence from our FeOB abundance data; they may represent adaptations of FeOB for colonization of surfaces of anthropogenic iron sources such as stainless steel. These results reveal environmental conditions under which FeOB colonize steel surfaces most abundantly, and they provide the framework needed to develop biocorrosion prevention strategies for stainless steel infrastructure in coastal estuarine areas.IMPORTANCE Colonization of FeOB on corrosion-resistant stainless steel types (304SS and 316SS) has been quantified from environmental deployments along salinity gradients in estuarine environments. Greater FeOB abundance at higher salinities and on the more-corrosion-resistant 316SS suggests that there may be a higher risk of biocorrosion at higher salinities and there may be a selective advantage from certain stainless steel alloy metals, such as molybdenum, for FeOB colonization. A novel species of FeOB described here was isolated from our stainless steel coupon deployments, and its genome sequence supports our environmental data, as genes involved in the potential selectiveness toward surface colonization of stainless steel might lead to higher rates of biocorrosion of manmade aquatic infrastructure. These combined results provide environmental constraints for FeOB colonization on anthropogenic iron sources and build on previous frameworks for biocorrosion prevention strategies.
Collapse
|
20
|
Methou P, Hernández-Ávila I, Aube J, Cueff-Gauchard V, Gayet N, Amand L, Shillito B, Pradillon F, Cambon-Bonavita MA. Is It First the Egg or the Shrimp? - Diversity and Variation in Microbial Communities Colonizing Broods of the Vent Shrimp Rimicaris exoculata During Embryonic Development. Front Microbiol 2019; 10:808. [PMID: 31057515 PMCID: PMC6478704 DOI: 10.3389/fmicb.2019.00808] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/29/2019] [Indexed: 12/26/2022] Open
Abstract
Rimicaris exoculata is one of the most well-known and emblematic species of endemic vent fauna. Like many other species from these ecosystems, Rimicaris shrimps host important communities of chemosynthetic bacteria living in symbiosis with their host inside the cephalothorax and gut. For many of these symbiotic partners, the mode of transmission remains to be elucidated and the starting point of the symbiotic relationship is not yet defined, but could begin with the egg. In this study, we explored the proliferation of microbial communities on R. exoculata broods through embryonic development using a combination of NGS sequencing and microscopy approaches. Variations in abundance and diversity of egg microbial communities were analyzed in broods at different developmental stages and collected from mothers at two distinct vent fields on the Mid-Atlantic Ridge (TAG and Snake Pit). We also assessed the specificity of the egg microbiome by comparing communities developing on egg surfaces with those developing on the cuticle of pleopods, which are thought to be exposed to similar environmental conditions because the brood is held under the female's abdomen. In terms of abundance, bacterial colonization clearly increases with both egg developmental stage and the position of the egg within the brood: those closest to the exterior having a higher bacterial coverage. Bacterial biomass increase also accompanies an increase of mineral precipitations and thus clearly relates to the degree of exposure to vent fluids. In terms of diversity, most bacterial lineages were found in all samples and were also those found in the cephalothorax of adults. However, significant variation occurs in the relative abundance of these lineages, most of this variation being explained by body surface (egg vs. pleopod), vent field, and developmental stage. The occurrence of symbiont-related lineages of Epsilonbacteraeota, Gammaproteobacteria, Zetaproteobacteria, and Mollicutes provide a basis for discussion on both the acquisition of symbionts and the potential roles of these bacterial communities during egg development.
Collapse
Affiliation(s)
- Pierre Methou
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Ifremer, Laboratoire Environnement Profond (REM/EEP/LEP), Plouzané, France
| | - Ivan Hernández-Ávila
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Ifremer, Laboratoire Environnement Profond (REM/EEP/LEP), Plouzané, France
| | - Johanne Aube
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Valérie Cueff-Gauchard
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Nicolas Gayet
- Ifremer, Laboratoire Environnement Profond (REM/EEP/LEP), Plouzané, France
| | - Louis Amand
- Unité Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d’Histoire Naturelle, Eq. Adaptations aux Milieux Extrêmes (BOREA), CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Bruce Shillito
- Unité Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d’Histoire Naturelle, Eq. Adaptations aux Milieux Extrêmes (BOREA), CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Florence Pradillon
- Ifremer, Laboratoire Environnement Profond (REM/EEP/LEP), Plouzané, France
| | | |
Collapse
|
21
|
McAllister SM, Moore RM, Gartman A, Luther GW, Emerson D, Chan CS. The Fe(II)-oxidizing Zetaproteobacteria: historical, ecological and genomic perspectives. FEMS Microbiol Ecol 2019; 95:fiz015. [PMID: 30715272 PMCID: PMC6443915 DOI: 10.1093/femsec/fiz015] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/29/2019] [Indexed: 01/22/2023] Open
Abstract
The Zetaproteobacteria are a class of bacteria typically associated with marine Fe(II)-oxidizing environments. First discovered in the hydrothermal vents at Loihi Seamount, Hawaii, they have become model organisms for marine microbial Fe(II) oxidation. In addition to deep sea and shallow hydrothermal vents, Zetaproteobacteria are found in coastal sediments, other marine subsurface environments, steel corrosion biofilms and saline terrestrial springs. Isolates from a range of environments all grow by autotrophic Fe(II) oxidation. Their success lies partly in their microaerophily, which enables them to compete with abiotic Fe(II) oxidation at Fe(II)-rich oxic/anoxic transition zones. To determine the known diversity of the Zetaproteobacteria, we have used 16S rRNA gene sequences to define 59 operational taxonomic units (OTUs), at 97% similarity. While some Zetaproteobacteria taxa appear to be cosmopolitan, others are enriched by specific habitats. OTU networks show that certain Zetaproteobacteria co-exist, sharing compatible niches. These niches may correspond with adaptations to O2, H2 and nitrate availability, based on genomic analyses of metabolic potential. Also, a putative Fe(II) oxidation gene has been found in diverse Zetaproteobacteria taxa, suggesting that the Zetaproteobacteria evolved as Fe(II) oxidation specialists. In all, studies suggest that Zetaproteobacteria are widespread, and therefore may have a broad influence on marine and saline terrestrial Fe cycling.
Collapse
Affiliation(s)
- Sean M McAllister
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, 204 Cannon Lab, Lewes, Delaware, USA 19958
| | - Ryan M Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, 15 Innovation Way, 205 Delaware Biotechnology Institute, Newark, Delaware, USA 19711
| | - Amy Gartman
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, 204 Cannon Lab, Lewes, Delaware, USA 19958
| | - George W Luther
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, 204 Cannon Lab, Lewes, Delaware, USA 19958
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, Maine, USA 04544
| | - Clara S Chan
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, 204 Cannon Lab, Lewes, Delaware, USA 19958
- Department of Geological Sciences, University of Delaware, 101 Penny Hall, Newark, Delaware, USA 19716
| |
Collapse
|
22
|
Vander Roost J, Daae FL, Steen IH, Thorseth IH, Dahle H. Distribution Patterns of Iron-Oxidizing Zeta- and Beta-Proteobacteria From Different Environmental Settings at the Jan Mayen Vent Fields. Front Microbiol 2018; 9:3008. [PMID: 30574135 PMCID: PMC6292416 DOI: 10.3389/fmicb.2018.03008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022] Open
Abstract
Iron oxidizers are widespread in marine environments and play an important role in marine iron cycling. However, little is known about the overall distribution of iron oxidizers within hydrothermal systems, including settings with little hydrothermal activity. Moreover, the extent to which different phylogenetic groups of iron oxidizers exhibit niche specialization toward different environmental settings, remains largely unknown. Obtaining such knowledge is critical to unraveling the impact of the activity of iron oxidizers and how they are adapted. Here, we used 16S rRNA sequencing to characterize the distribution of iron oxidizers in different environmental settings within the Jan Mayen hydrothermal vent fields (JMVFs). Putative iron oxidizers affiliated to Zetaproteobacteria and Betaproteobacteria were detected within iron mounds, bottom seawater, basalt surfaces, and surface layers of sediments. The detected iron oxidizers were compared to sequence types previously observed in patchily distributed iron mats associated with diffuse venting at the JMVFs. Most OTUs of iron oxidizers reoccurred under different environmental settings, suggesting a limited degree of niche specialization. Consequently, most of the detected iron oxidizers seem to be generalists with a large habitat range. Our study highlights the importance of gathering information about the overall distribution of iron oxidizers in hydrothermal systems to fully understand the role of this metabolic group regarding cycling of iron. Furthermore, our results provide further evidence of the presence of iron-oxidizing members of Betaproteobacteria in marine environments.
Collapse
Affiliation(s)
- Jan Vander Roost
- Centre for Geobiology, University of Bergen, Bergen, Norway.,Department of Biology, University of Bergen, Bergen, Norway
| | - Frida Lise Daae
- Centre for Geobiology, University of Bergen, Bergen, Norway.,Department of Biology, University of Bergen, Bergen, Norway
| | - Ida Helene Steen
- Centre for Geobiology, University of Bergen, Bergen, Norway.,Department of Biology, University of Bergen, Bergen, Norway
| | - Ingunn Hindeness Thorseth
- Centre for Geobiology, University of Bergen, Bergen, Norway.,Department of Earth Science, University of Bergen, Bergen, Norway
| | - Håkon Dahle
- Centre for Geobiology, University of Bergen, Bergen, Norway.,Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Insights into the Fundamental Physiology of the Uncultured Fe-Oxidizing Bacterium Leptothrix ochracea. Appl Environ Microbiol 2018; 84:AEM.02239-17. [PMID: 29453262 DOI: 10.1128/aem.02239-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/10/2018] [Indexed: 01/23/2023] Open
Abstract
Leptothrix ochracea is known for producing large volumes of iron oxyhydroxide sheaths that alter wetland biogeochemistry. For over a century, these delicate structures have fascinated microbiologists and geoscientists. Because L. ochracea still resists long-term in vitro culture, the debate regarding its metabolic classification dates back to 1885. We developed a novel culturing technique for L. ochracea using in situ natural waters and coupled this with single-cell genomics and nanoscale secondary-ion mass spectrophotometry (nanoSIMS) to probe L. ochracea's physiology. In microslide cultures L. ochracea doubled every 5.7 h and had an absolute growth requirement for ferrous iron, the genomic capacity for iron oxidation, and a branched electron transport chain with cytochromes putatively involved in lithotrophic iron oxidation. Additionally, its genome encoded several electron transport chain proteins, including a molybdopterin alternative complex III (ACIII), a cytochrome bd oxidase reductase, and several terminal oxidase genes. L. ochracea contained two key autotrophic proteins in the Calvin-Benson-Bassham cycle, a form II ribulose bisphosphate carboxylase, and a phosphoribulose kinase. L. ochracea also assimilated bicarbonate, although calculations suggest that bicarbonate assimilation is a small fraction of its total carbon assimilation. Finally, L. ochracea's fundamental physiology is a hybrid of those of the chemolithotrophic Gallionella-type iron-oxidizing bacteria and the sheathed, heterotrophic filamentous metal-oxidizing bacteria of the Leptothrix-Sphaerotilus genera. This allows L. ochracea to inhabit a unique niche within the neutrophilic iron seeps.IMPORTANCE Leptothrix ochracea was one of three groups of organisms that Sergei Winogradsky used in the 1880s to develop his hypothesis on chemolithotrophy. L. ochracea continues to resist cultivation and appears to have an absolute requirement for organic-rich waters, suggesting that its true physiology remains unknown. Further, L. ochracea is an ecological engineer; a few L. ochracea cells can generate prodigious volumes of iron oxyhydroxides, changing the ecosystem's geochemistry and ecology. Therefore, to determine L. ochracea's basic physiology, we employed new single-cell techniques to demonstrate that L. ochracea oxidizes iron to generate energy and, despite having predicted genes for autotrophic growth, assimilates a fraction of the total CO2 that autotrophs do. Although not a true chemolithoautotroph, L. ochracea's physiological strategy allows it to be flexible and to extensively colonize iron-rich wetlands.
Collapse
|
24
|
Lin W, Zhang W, Zhao X, Roberts AP, Paterson GA, Bazylinski DA, Pan Y. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME JOURNAL 2018; 12:1508-1519. [PMID: 29581530 PMCID: PMC5955933 DOI: 10.1038/s41396-018-0098-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/09/2022]
Abstract
The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth's magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and "Candidatus Lambdaproteobacteria" classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China. .,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China. .,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Wensi Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| | - Greig A Paterson
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZE, UK
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China. .,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China. .,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China. .,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Beam JP, Scott JJ, McAllister SM, Chan CS, McManus J, Meysman FJR, Emerson D. Biological rejuvenation of iron oxides in bioturbated marine sediments. ISME JOURNAL 2018; 12:1389-1394. [PMID: 29343830 DOI: 10.1038/s41396-017-0032-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 02/04/2023]
Abstract
The biogeochemical cycle of iron is intricately linked to numerous element cycles. Although biological processes that catalyze the reductive side of the iron cycle are established, little is known about microbial oxidative processes on iron cycling in sedimentary environments-resulting in the formation of iron oxides. Here we show that a potential source of sedimentary iron oxides originates from the metabolic activity of iron-oxidizing bacteria from the class Zetaproteobacteria, presumably enhanced by burrowing animals in coastal sediments. Zetaproteobacteria were estimated to be a global total of 1026 cells in coastal, bioturbated sediments, and predicted to annually produce 8 × 1015 g of Fe in sedimentary iron oxides-55 times larger than the annual flux of iron oxides deposited by rivers. These data suggest that iron-oxidizing Zetaproteobacteria are keystone organisms in marine sedimentary environments-despite their low numerical abundance-yet exert a disproportionate impact via the rejuvenation of iron oxides.
Collapse
Affiliation(s)
- Jacob P Beam
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA.
| | - Jarrod J Scott
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA.,Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, Republic of Panama
| | - Sean M McAllister
- Department of Geological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Clara S Chan
- Department of Geological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - James McManus
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Filip J R Meysman
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.,Department of Biotechnology, Technical University of Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| |
Collapse
|
26
|
Chen Z, Chen L, Zhang W. Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level. Front Microbiol 2017; 8:1831. [PMID: 28979258 PMCID: PMC5611438 DOI: 10.3389/fmicb.2017.01831] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022] Open
Abstract
Microbiologists traditionally study population rather than individual cells, as it is generally assumed that the status of individual cells will be similar to that observed in the population. However, the recent studies have shown that the individual behavior of each single cell could be quite different from that of the whole population, suggesting the importance of extending traditional microbiology studies to single-cell level. With recent technological advances, such as flow cytometry, next-generation sequencing (NGS), and microspectroscopy, single-cell microbiology has greatly enhanced the understanding of individuality and heterogeneity of microbes in many biological systems. Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how individual cells perceive, respond, and adapt to the environment, how heterogeneity arises under external stress and finally determines the fate of the whole population, and how microbes survive under natural conditions. As single-cell analysis involves no axenic cultivation of target microorganism, it has also been demonstrated as a valuable tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art tools and methods for genomic and transcriptomic analysis of microbes at single-cell level were critically summarized, including single-cell isolation methods and experimental strategies of single-cell analysis with NGS. In addition, perspectives on the future trends of technology development in the field of single-cell analysis was also presented.
Collapse
Affiliation(s)
- Zixi Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China.,Center for Biosafety Research and Strategy, Tianjin UniversityTianjin, China
| |
Collapse
|
27
|
Vander Roost J, Thorseth IH, Dahle H. Microbial analysis of Zetaproteobacteria and co-colonizers of iron mats in the Troll Wall Vent Field, Arctic Mid-Ocean Ridge. PLoS One 2017; 12:e0185008. [PMID: 28931087 PMCID: PMC5607188 DOI: 10.1371/journal.pone.0185008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022] Open
Abstract
Over the last decade it has become increasingly clear that Zetaproteobacteria are widespread in hydrothermal systems and that they contribute to the biogeochemical cycling of iron in these environments. However, how chemical factors control the distribution of Zetaproteobacteria and their co-occurring taxa remains elusive. Here we analysed iron mats from the Troll Wall Vent Field (TWVF) located at the Arctic Mid-Ocean Ridge (AMOR) in the Norwegian-Greenland Sea. The samples were taken at increasing distances from high-temperature venting chimneys towards areas with ultraslow low-temperature venting, encompassing a large variety in geochemical settings. Electron microscopy revealed the presence of biogenic iron stalks in all samples. Using 16S rRNA gene sequence profiling we found that relative abundances of Zetaproteobacteria in the iron mats varied from 0.2 to 37.9%. Biogeographic analyses of Zetaproteobacteria, using the ZetaHunter software, revealed the presence of ZetaOtus 1, 2 and 9, supporting the view that they are cosmopolitan. Relative abundances of co-occurring taxa, including Thaumarchaeota, Euryarchaeota and Proteobacteria, also varied substantially. From our results, combined with results from previous microbiological and geochemical analyses of the TWVF, we infer that the distribution of Zetaproteobacteria is connected to fluid-flow patterns and, ultimately, variations in chemical energy landscapes. Moreover, we provide evidence for iron-oxidizing members of Gallionellaceae being widespread in TWVF iron mats, albeit at low relative abundances.
Collapse
Affiliation(s)
- Jan Vander Roost
- Centre for Geobiology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ingunn Hindenes Thorseth
- Centre for Geobiology, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Håkon Dahle
- Centre for Geobiology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
28
|
Hager KW, Fullerton H, Butterfield DA, Moyer CL. Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc. Front Microbiol 2017; 8:1578. [PMID: 28970817 PMCID: PMC5609546 DOI: 10.3389/fmicb.2017.01578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/03/2017] [Indexed: 01/08/2023] Open
Abstract
The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU) rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, respectively. The Zetaproteobacterial-based communities had the highest richness and diversity, which supports the hypothesis that Zetaproteobacteria function as ecosystem engineers creating a physical habitat within a chemical environment promoting enhanced microbial diversity. Gammaproteobacteria were also high in abundance within the iron-dominated mats and some likely contribute to primary production. In addition, we also compare sampling scale, showing that bulk sampling of microbial mats yields higher diversity than micro-scale sampling. We present a comprehensive analysis and offer new insights into the community structure and diversity of lithotrophically-driven microbial mats from a hydrothermal region associated with high microbial biodiversity. Our study indicates an important functional role of for the Zetaproteobacteria altering the mat habitat and enhancing community interactions and complexity.
Collapse
Affiliation(s)
- Kevin W Hager
- Department of Biology, Western Washington UniversityBellingham, WA, United States
| | - Heather Fullerton
- Department of Biology, Western Washington UniversityBellingham, WA, United States
| | - David A Butterfield
- National Oceanic and Atmospheric Administration Pacific Marine Environmental Lab, Joint Institute for the Study of the Atmosphere and Ocean, University of WashingtonSeattle, WA, United States
| | - Craig L Moyer
- Department of Biology, Western Washington UniversityBellingham, WA, United States
| |
Collapse
|
29
|
He S, Barco RA, Emerson D, Roden EE. Comparative Genomic Analysis of Neutrophilic Iron(II) Oxidizer Genomes for Candidate Genes in Extracellular Electron Transfer. Front Microbiol 2017; 8:1584. [PMID: 28871245 PMCID: PMC5566968 DOI: 10.3389/fmicb.2017.01584] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/04/2017] [Indexed: 11/13/2022] Open
Abstract
Extracellular electron transfer (EET) is recognized as a key biochemical process in circumneutral pH Fe(II)-oxidizing bacteria (FeOB). In this study, we searched for candidate EET genes in 73 neutrophilic FeOB genomes, among which 43 genomes are complete or close-to-complete and the rest have estimated genome completeness ranging from 5 to 91%. These neutrophilic FeOB span members of the microaerophilic, anaerobic phototrophic, and anaerobic nitrate-reducing FeOB groups. We found that many microaerophilic and several anaerobic FeOB possess homologs of Cyc2, an outer membrane cytochrome c originally identified in Acidithiobacillus ferrooxidans. The "porin-cytochrome c complex" (PCC) gene clusters homologous to MtoAB/PioAB are present in eight FeOB, accounting for 19% of complete and close-to-complete genomes examined, whereas PCC genes homologous to OmbB-OmaB-OmcB in Geobacter sulfurreducens are absent. Further, we discovered gene clusters that may potentially encode two novel PCC types. First, a cluster (tentatively named "PCC3") encodes a porin, an extracellular and a periplasmic cytochrome c with remarkably large numbers of heme-binding motifs. Second, a cluster (tentatively named "PCC4") encodes a porin and three periplasmic multiheme cytochromes c. A conserved inner membrane protein (IMP) encoded in PCC3 and PCC4 gene clusters might be responsible for translocating electrons across the inner membrane. Other bacteria possessing PCC3 and PCC4 are mostly Proteobacteria isolated from environments with a potential niche for Fe(II) oxidation. In addition to cytochrome c, multicopper oxidase (MCO) genes potentially involved in Fe(II) oxidation were also identified. Notably, candidate EET genes were not found in some FeOB, especially the anaerobic ones, probably suggesting EET genes or Fe(II) oxidation mechanisms are different from the searched models. Overall, based on current EET models, the search extends our understanding of bacterial EET and provides candidate genes for future research.
Collapse
Affiliation(s)
- Shaomei He
- Department of Geoscience, University of Wisconsin-MadisonMadison, WI, United States.,NASA Astrobiology Institute, University of WisconsinMadison, WI, United States.,Department of Bacteriology, University of Wisconsin-MadisonMadison, WI, United States
| | - Roman A Barco
- Bigelow Laboratory for Ocean SciencesEast Boothbay Harbor, ME, United States.,Department of Earth Sciences, University of Southern CaliforniaLos Angeles, CA, United States
| | - David Emerson
- Bigelow Laboratory for Ocean SciencesEast Boothbay Harbor, ME, United States
| | - Eric E Roden
- Department of Geoscience, University of Wisconsin-MadisonMadison, WI, United States.,NASA Astrobiology Institute, University of WisconsinMadison, WI, United States
| |
Collapse
|
30
|
Physiological and ecological implications of an iron- or hydrogen-oxidizing member of the Zetaproteobacteria, Ghiorsea bivora, gen. nov., sp. nov. ISME JOURNAL 2017; 11:2624-2636. [PMID: 28820506 PMCID: PMC5649172 DOI: 10.1038/ismej.2017.132] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/26/2017] [Accepted: 07/07/2017] [Indexed: 01/08/2023]
Abstract
Chemosynthetic Fe-oxidizing communities are common at diffuse-flow hydrothermal vents throughout the world's oceans. The foundational members of these communities are the Zetaproteobacteria, a class of Proteobacteria that is primarily associated with ecosystems fueled by ferrous iron, Fe(II). We report here the discovery of two new isolates of Zetaproteobacteria isolated from the Mid-Atlantic Ridge (TAG-1), and the Mariana back-arc (SV-108), that are unique in that they can utilize either Fe(II) or molecular hydrogen (H2) as sole electron donor and oxygen as terminal electron acceptor for growth. Both strains precipitated Fe-oxyhydroxides as amorphous particulates. The cell doubling time on H2 vs Fe(II) for TAG-1 was 14.1 vs 21.8 h, and for SV-108 it was 16.3 vs 20 h, and it appeared both strains could use either H2 or Fe(II) simultaneously. The strains were close relatives, based on genomic analysis, and both possessed genes for the uptake NiFe-hydrogenase required for growth on H2. These two strains belong to Zetaproteobacteria operational taxonomic unit 9 (ZetaOTU9). A meta-analysis of public databases found ZetaOTU9 was only associated with Fe(II)-rich habitats, and not in other environments where known H2-oxidizers exist. These results expand the metabolic repertoire of the Zetaproteobacteria, yet confirm that Fe(II) metabolism is the primary driver of their physiology and ecology.
Collapse
|
31
|
Chiu BK, Kato S, McAllister SM, Field EK, Chan CS. Novel Pelagic Iron-Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic-Anoxic Transition Zone. Front Microbiol 2017; 8:1280. [PMID: 28769885 PMCID: PMC5513912 DOI: 10.3389/fmicb.2017.01280] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/26/2017] [Indexed: 01/11/2023] Open
Abstract
Chemolithotrophic iron-oxidizing bacteria (FeOB) could theoretically inhabit any environment where Fe(II) and O2 (or nitrate) coexist. Until recently, marine Fe-oxidizing Zetaproteobacteria had primarily been observed in benthic and subsurface settings, but not redox-stratified water columns. This may be due to the challenges that a pelagic lifestyle would pose for Zetaproteobacteria, given low Fe(II) concentrations in modern marine waters and the possibility that Fe oxyhydroxide biominerals could cause cells to sink. However, we recently cultivated Zetaproteobacteria from the Chesapeake Bay oxic–anoxic transition zone, suggesting that they can survive and contribute to biogeochemical cycling in a stratified estuary. Here we describe the isolation, characterization, and genomes of two new species, Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8, which are the first Zetaproteobacteria isolates from a pelagic environment. We looked for adaptations enabling strains CP-5 and CP-8 to overcome the challenges of living in a low Fe redoxcline with frequent O2 fluctuations due to tidal mixing. We found that the CP strains produce distinctive dreadlock-like Fe oxyhydroxide structures that are easily shed, which would help cells maintain suspension in the water column. These oxides are by-products of Fe(II) oxidation, likely catalyzed by the putative Fe(II) oxidase encoded by the cyc2 gene, present in both CP-5 and CP-8 genomes; the consistent presence of cyc2 in all microaerophilic FeOB and other FeOB genomes supports its putative role in Fe(II) oxidation. The CP strains also have two gene clusters associated with biofilm formation (Wsp system and the Widespread Colonization Island) that are absent or rare in other Zetaproteobacteria. We propose that biofilm formation enables the CP strains to attach to FeS particles and form flocs, an advantageous strategy for scavenging Fe(II) and developing low [O2] microenvironments within more oxygenated waters. However, the CP strains appear to be adapted to somewhat higher concentrations of O2, as indicated by the presence of genes encoding aa3-type cytochrome c oxidases, but not the cbb3-type found in all other Zetaproteobacteria isolate genomes. Overall, our results reveal adaptations for life in a physically dynamic, low Fe(II) water column, suggesting that niche-specific strategies can enable Zetaproteobacteria to live in any environment with Fe(II).
Collapse
Affiliation(s)
- Beverly K Chiu
- Department of Geological Sciences, University of Delaware, NewarkDE, United States
| | - Shingo Kato
- Project Team for Development of New-Generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and TechnologyKanagawa, Japan
| | - Sean M McAllister
- School of Marine Science and Policy, University of Delaware, NewarkDE, United States
| | - Erin K Field
- Department of Biology, East Carolina University, GreenvilleNC, United States
| | - Clara S Chan
- Department of Geological Sciences, University of Delaware, NewarkDE, United States.,School of Marine Science and Policy, University of Delaware, NewarkDE, United States
| |
Collapse
|
32
|
Hidden diversity revealed by genome-resolved metagenomics of iron-oxidizing microbial mats from Lō'ihi Seamount, Hawai'i. ISME JOURNAL 2017; 11:1900-1914. [PMID: 28362721 PMCID: PMC5520029 DOI: 10.1038/ismej.2017.40] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/21/2017] [Accepted: 01/27/2017] [Indexed: 01/16/2023]
Abstract
The Zetaproteobacteria are ubiquitous in marine environments, yet this class of Proteobacteria is only represented by a few closely-related cultured isolates. In high-iron environments, such as diffuse hydrothermal vents, the Zetaproteobacteria are important members of the community driving its structure. Biogeography of Zetaproteobacteria has shown two ubiquitous operational taxonomic units (OTUs), yet much is unknown about their genomic diversity. Genome-resolved metagenomics allows for the specific binning of microbial genomes based on genomic signatures present in composite metagenome assemblies. This resulted in the recovery of 93 genome bins, of which 34 were classified as Zetaproteobacteria. Form II ribulose 1,5-bisphosphate carboxylase genes were recovered from nearly all the Zetaproteobacteria genome bins. In addition, the Zetaproteobacteria genome bins contain genes for uptake and utilization of bioavailable nitrogen, detoxification of arsenic, and a terminal electron acceptor adapted for low oxygen concentration. Our results also support the hypothesis of a Cyc2-like protein as the site for iron oxidation, now detected across a majority of the Zetaproteobacteria genome bins. Whole genome comparisons showed a high genomic diversity across the Zetaproteobacteria OTUs and genome bins that were previously unidentified by SSU rRNA gene analysis. A single lineage of cosmopolitan Zetaproteobacteria (zOTU 2) was found to be monophyletic, based on cluster analysis of average nucleotide identity and average amino acid identity comparisons. From these data, we can begin to pinpoint genomic adaptations of the more ecologically ubiquitous Zetaproteobacteria, and further understand their environmental constraints and metabolic potential.
Collapse
|
33
|
Microaerophilic Fe(II)-Oxidizing Zetaproteobacteria Isolated from Low-Fe Marine Coastal Sediments: Physiology and Composition of Their Twisted Stalks. Appl Environ Microbiol 2017; 83:AEM.03118-16. [PMID: 28159791 DOI: 10.1128/aem.03118-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/28/2017] [Indexed: 11/20/2022] Open
Abstract
Microaerophilic Fe(II) oxidizers are commonly found in habitats containing elevated Fe(II) and low O2 concentrations and often produce characteristic Fe mineral structures, so-called twisted stalks or tubular sheaths. Isolates originating from freshwater habitats are all members of the Betaproteobacteria, while isolates from marine habitats belong almost exclusively to the Zetaproteobacteria So far, only a few isolates of marine microaerophilic Fe(II) oxidizers have been described, all of which are obligate microaerophilic Fe(II) oxidizers and have been thought to be restricted to Fe-rich systems. Here, we present two new isolates of marine microaerophilic Fe(II)-oxidizing Zetaproteobacteria that originate from typical coastal marine sediments containing only low Fe concentrations (2 to 11 mg of total Fe/g of sediment [dry weight]; 70 to 100 μM dissolved Fe2+ in the porewater). The two novel Zetaproteobacteria share characteristic physiological properties of the Zetaproteobacteria group, even though they come from low-Fe environments: the isolates are obligate microaerophilic Fe(II) oxidizers and, like most isolated Zetaproteobacteria, they produce twisted stalks. We found a low organic carbon content in the stalks (∼0.3 wt%), with mostly polysaccharides and saturated aliphatic chains (most likely lipids). The Fe minerals in the stalks were identified as lepidocrocite and possibly ferrihydrite. Immobilization experiments with Ni2+ showed that the stalks can function as a sink for trace metals. Our findings show that obligate microaerophilic Fe(II) oxidizers belonging to the Zetaproteobacteria group are not restricted to Fe-rich environments but can also be found in low-Fe marine environments, which increases their overall importance for the global biogeochemical Fe cycle.IMPORTANCE So far, only a few isolates of benthic marine microaerophilic Fe(II) oxidizers belonging to the Zetaproteobacteria exist, and most isolates were obtained from habitats containing elevated Fe concentrations. Consequently, it was thought that these microorganisms are important mainly in habitats with high Fe concentrations. The two novel isolates of Zetaproteobacteria that are presented in the present study were isolated from typical coastal marine sediments that do not contain elevated Fe concentrations. This increases the knowledge about possible habitats in which Zetaproteobacteria can exist. Furthermore, we show that the physiology and the typical organo-mineral structures (twisted stalks) that are produced by the isolates do not notably differ from the physiology and the cell-mineral structures of isolates from environments with high Fe concentrations. We also showed that the organo-mineral structures can function as a sink for trace metals.
Collapse
|
34
|
Scott JJ, Glazer BT, Emerson D. Bringing microbial diversity into focus: high-resolution analysis of iron mats from the Lō'ihi Seamount. Environ Microbiol 2016; 19:301-316. [PMID: 27871143 DOI: 10.1111/1462-2920.13607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/27/2016] [Accepted: 11/16/2016] [Indexed: 01/22/2023]
Abstract
Thirty kilometers south of the island of Hawai'i lies the Lō'ihi Seamount, an active submarine volcano that hosts a network of low-temperature hydrothermal vents enriched in ferrous iron that supports extensive microbial mats. These mats, which can be a half a meter deep, are composed of ferric iron bound to organic polymers - the metabolic byproduct of iron-oxidizing Zetaproteobacteria. Though the role of Zetaproteobacteria in mat formation is well established, we have a limited understanding of how differences in diversity are related to mat morphology. We used Minimum Entropy Decomposition and ZetaOtu classification to demonstrate cryptic diversity between closely related Zetaproteobacteria while showing habitat and geographic specificity. Veiled mats, common structures at Lō'ihi, exhibit distinct community composition and contain diversity not detected in other mat types, including specific Zetaproteobacteria and an unclassified Gammaproteobacteria. Our analyses also indicate that diversity can change dramatically across small spatial transects from points of active venting, yet we found comparatively few differences between major sampling sites. This study provides a better picture of the microbiome responsible for iron mat production at Lō'ihi and has broad implications for our understanding of these globally distributed communities.
Collapse
Affiliation(s)
- Jarrod J Scott
- Ocean Microbiome & Blue Biotechnology Center, Bigelow Laboratory for Ocean Sciences, PO Box 380, East Boothbay, ME, 04544, USA
| | - Brian T Glazer
- Department of Oceanography, University of Hawai'i at Mānoa, 1000 Pope Rd. Honolulu, HI, 96822, USA
| | - David Emerson
- Ocean Microbiome & Blue Biotechnology Center, Bigelow Laboratory for Ocean Sciences, PO Box 380, East Boothbay, ME, 04544, USA
| |
Collapse
|
35
|
Peeking under the Iron Curtain: Development of a Microcosm for Imaging the Colonization of Steel Surfaces by Mariprofundus sp. Strain DIS-1, an Oxygen-Tolerant Fe-Oxidizing Bacterium. Appl Environ Microbiol 2016; 82:6799-6807. [PMID: 27637877 DOI: 10.1128/aem.01990-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/28/2016] [Indexed: 11/20/2022] Open
Abstract
Microbially influenced corrosion (MIC) is a major cause of damage to steel infrastructure in the marine environment. Despite their ability to grow directly on Fe(II) released from steel, comparatively little is known about the role played by neutrophilic iron-oxidizing bacteria (FeOB). Recent work has shown that FeOB grow readily on mild steel (1018 MS) incubated in situ or as a substrate for pure cultures in vitro; however, details of how they colonize steel surfaces are unknown yet are important for understanding their effects. In this study, we combine a novel continuously upwelling microcosm with confocal laser scanning microscopy (CLSM) to determine the degree of colonization of 1018 MS by the marine FeOB strain DIS-1. 1018 MS coupons were incubated with sterile seawater (pH 8) inoculated with strain DIS-1. Incubations were performed both under oxic conditions and in an anoxic-to-oxic gradient. Following incubations of 1 to 10 days, the slides were removed from the microcosms and stained to visualize both cells and stalk structures. Stained coupons were visualized by CLSM after being mounted in a custom frame to preserve the three-dimensional structure of the biofilm. The incubation of 1018 MS coupons with strain DIS-1 under oxic conditions resulted in initial attachment of cells within 2 days and nearly total coverage of the coupon with an ochre film within 5 days. CLSM imaging revealed a nonadherent biofilm composed primarily of the Fe-oxide stalks characteristic of strain DIS-1. When incubated with elevated concentrations of Fe(II), DIS-1 colonization of 1018 MS was inhibited. IMPORTANCE These experiments describe the growth of a marine FeOB in a continuous culture system and represent direct visualizations of steel colonization by FeOB. We anticipate that these experiments will lay the groundwork for studying the mechanisms by which FeOB colonize steel and help to elucidate the role played by marine FeOB in MIC. These observations of the interaction between an FeOB, strain DIS-1, and steel suggest that this experimental system will provide a useful model for studying the interactions between microbes and solid substrates.
Collapse
|
36
|
Field EK, Kato S, Findlay AJ, MacDonald DJ, Chiu BK, Luther GW, Chan CS. Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions. GEOBIOLOGY 2016; 14:499-508. [PMID: 27384464 DOI: 10.1111/gbi.12189] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
Observations of modern microbes have led to several hypotheses on how microbes precipitated the extensive iron formations in the geologic record, but we have yet to resolve the exact microbial contributions. An initial hypothesis was that cyanobacteria produced oxygen which oxidized iron abiotically; however, in modern environments such as microbial mats, where Fe(II) and O2 coexist, we commonly find microaerophilic chemolithotrophic iron-oxidizing bacteria producing Fe(III) oxyhydroxides. This suggests that such iron oxidizers could have inhabited niches in ancient coastal oceans where Fe(II) and O2 coexisted, and therefore contributed to banded iron formations (BIFs) and other ferruginous deposits. However, there is currently little evidence for planktonic marine iron oxidizers in modern analogs. Here, we demonstrate successful cultivation of planktonic microaerophilic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay during seasonal stratification. Iron oxidizers were associated with low oxygen concentrations and active iron redox cycling in the oxic-anoxic transition zone (<3 μm O2 , <0.2 μm H2 S). While cyanobacteria were also detected in this transition zone, oxygen concentrations were too low to support significant rates of abiotic iron oxidation. Cyanobacteria may be providing oxygen for microaerophilic iron oxidation through a symbiotic relationship; at high Fe(II) levels, cyanobacteria would gain protection against Fe(II) toxicity. A Zetaproteobacteria isolate from this site oxidized iron at rates sufficient to account for deposition of geologic iron formations. In sum, our results suggest that once oxygenic photosynthesis evolved, microaerophilic chemolithotrophic iron oxidizers were likely important drivers of iron mineralization in ancient oceans.
Collapse
Affiliation(s)
- E K Field
- Department of Geological Sciences, University of Delaware, Newark, DE, USA
| | - S Kato
- Department of Geological Sciences, University of Delaware, Newark, DE, USA
| | - A J Findlay
- School of Marine Science and Policy, University of Delaware, Newark, Lewes, DE, USA
| | - D J MacDonald
- School of Marine Science and Policy, University of Delaware, Newark, Lewes, DE, USA
| | - B K Chiu
- Department of Geological Sciences, University of Delaware, Newark, DE, USA
| | - G W Luther
- School of Marine Science and Policy, University of Delaware, Newark, Lewes, DE, USA
| | - C S Chan
- Department of Geological Sciences, University of Delaware, Newark, DE, USA
- School of Marine Science and Policy, University of Delaware, Newark, Lewes, DE, USA
| |
Collapse
|
37
|
Fullerton H, Moyer CL. Comparative Single-Cell Genomics of Chloroflexi from the Okinawa Trough Deep-Subsurface Biosphere. Appl Environ Microbiol 2016; 82:3000-3008. [PMID: 26969693 PMCID: PMC4959059 DOI: 10.1128/aem.00624-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 11/25/2022] Open
Abstract
UNLABELLED Chloroflexi small-subunit (SSU) rRNA gene sequences are frequently recovered from subseafloor environments, but the metabolic potential of the phylum is poorly understood. The phylum Chloroflexi is represented by isolates with diverse metabolic strategies, including anoxic phototrophy, fermentation, and reductive dehalogenation; therefore, function cannot be attributed to these organisms based solely on phylogeny. Single-cell genomics can provide metabolic insights into uncultured organisms, like the deep-subsurface Chloroflexi Nine SSU rRNA gene sequences were identified from single-cell sorts of whole-round core material collected from the Okinawa Trough at Iheya North hydrothermal field as part of Integrated Ocean Drilling Program (IODP) expedition 331 (Deep Hot Biosphere). Previous studies of subsurface Chloroflexi single amplified genomes (SAGs) suggested heterotrophic or lithotrophic metabolisms and provided no evidence for growth by reductive dehalogenation. Our nine Chloroflexi SAGs (seven of which are from the order Anaerolineales) indicate that, in addition to genes for the Wood-Ljungdahl pathway, exogenous carbon sources can be actively transported into cells. At least one subunit for pyruvate ferredoxin oxidoreductase was found in four of the Chloroflexi SAGs. This protein can provide a link between the Wood-Ljungdahl pathway and other carbon anabolic pathways. Finally, one of the seven Anaerolineales SAGs contains a distinct reductive dehalogenase homologous (rdhA) gene. IMPORTANCE Through the use of single amplified genomes (SAGs), we have extended the metabolic potential of an understudied group of subsurface microbes, the Chloroflexi These microbes are frequently detected in the subsurface biosphere, though their metabolic capabilities have remained elusive. In contrast to previously examined Chloroflexi SAGs, our genomes (several are from the order Anaerolineales) were recovered from a hydrothermally driven system and therefore provide a unique window into the metabolic potential of this type of habitat. In addition, a reductive dehalogenase gene (rdhA) has been directly linked to marine subsurface Chloroflexi, suggesting that reductive dehalogenation is not limited to the class Dehalococcoidia This discovery expands the nutrient-cycling and metabolic potential present within the deep subsurface and provides functional gene information relating to this enigmatic group.
Collapse
Affiliation(s)
- Heather Fullerton
- Department of Biology, Western Washington University, Bellingham, Washington, USA
| | - Craig L Moyer
- Department of Biology, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
38
|
Hoshino T, Kuratomi T, Morono Y, Hori T, Oiwane H, Kiyokawa S, Inagaki F. Ecophysiology of Zetaproteobacteria Associated with Shallow Hydrothermal Iron-Oxyhydroxide Deposits in Nagahama Bay of Satsuma Iwo-Jima, Japan. Front Microbiol 2016; 6:1554. [PMID: 26793184 PMCID: PMC4707226 DOI: 10.3389/fmicb.2015.01554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
Previous studies of microbial communities in deep-sea hydrothermal ferric deposits have demonstrated that members of Zetaproteobacteria play significant ecological roles in biogeochemical iron-cycling. However, the ecophysiological characteristics and interaction between other microbial members in the habitat still remain largely unknown. In this study, we investigated microbial communities in a core sample obtained from shallow hydrothermal iron-oxyhydroxide deposits at Nagahama Bay of Satsuma Iwo-Jima, Japan. Scanning electron microscopic observation showed numerous helical stalk structures, suggesting the occurrence of iron-oxidizing bacteria. Analysis of 16S rRNA gene sequences indicated the co-occurrence of iron-oxidizing Zetaproteobacteria and iron-reducing bacteria such as the genera Deferrisoma and Desulfobulbus with strong correlations on the sequence abundance. CARD-FISH indicated that the numbers of Zetaproteobacteria were not always consistent to the frequency of stalk structures. In the stalk-abundant layers with relatively small numbers of Zetaproteobacteria cells, accumulation of polyphosphate was observed inside Zetaproteobacteria cells, whereas no polyphosphate grains were observed in the topmost layers with fewer stalks and abundant Zetaproteobacteria cells. These results suggest that Zetaproteobacteria store intracellular polyphosphates during active iron oxidation that contributes to the mineralogical growth and biogeochemical iron cycling.
Collapse
Affiliation(s)
- Tatsuhiko Hoshino
- Japan Agency for Marine-Earth Science Technology, Kochi Institute for Core Sample ResearchNankoku, Japan; Japan Agency for Marine-Earth Science Technology, Research and Development Center for Submarine ResourcesNankoku, Japan
| | - Takashi Kuratomi
- Department Earth and Planetary Sciences, Kyushu University Fukuoka, Japan
| | - Yuki Morono
- Japan Agency for Marine-Earth Science Technology, Kochi Institute for Core Sample ResearchNankoku, Japan; Japan Agency for Marine-Earth Science Technology, Research and Development Center for Submarine ResourcesNankoku, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology Tsukuba, Japan
| | | | - Shoichi Kiyokawa
- Department Earth and Planetary Sciences, Kyushu University Fukuoka, Japan
| | - Fumio Inagaki
- Japan Agency for Marine-Earth Science Technology, Kochi Institute for Core Sample ResearchNankoku, Japan; Japan Agency for Marine-Earth Science Technology, Research and Development Center for Submarine ResourcesNankoku, Japan
| |
Collapse
|
39
|
Tennessen K, Andersen E, Clingenpeel S, Rinke C, Lundberg DS, Han J, Dangl JL, Ivanova N, Woyke T, Kyrpides N, Pati A. ProDeGe: a computational protocol for fully automated decontamination of genomes. THE ISME JOURNAL 2016; 10:269-72. [PMID: 26057843 PMCID: PMC4681846 DOI: 10.1038/ismej.2015.100] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 11/09/2022]
Abstract
Single amplified genomes and genomes assembled from metagenomes have enabled the exploration of uncultured microorganisms at an unprecedented scale. However, both these types of products are plagued by contamination. Since these genomes are now being generated in a high-throughput manner and sequences from them are propagating into public databases to drive novel scientific discoveries, rigorous quality controls and decontamination protocols are urgently needed. Here, we present ProDeGe (Protocol for fully automated Decontamination of Genomes), the first computational protocol for fully automated decontamination of draft genomes. ProDeGe classifies sequences into two classes--clean and contaminant--using a combination of homology and feature-based methodologies. On average, 84% of sequence from the non-target organism is removed from the data set (specificity) and 84% of the sequence from the target organism is retained (sensitivity). The procedure operates successfully at a rate of ~0.30 CPU core hours per megabase of sequence and can be applied to any type of genome sequence.
Collapse
Affiliation(s)
- Kristin Tennessen
- Prokaryotic Super Program, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Evan Andersen
- Prokaryotic Super Program, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Scott Clingenpeel
- Prokaryotic Super Program, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Christian Rinke
- Prokaryotic Super Program, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Derek S Lundberg
- Department of Biology and Curriculum in Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - James Han
- Prokaryotic Super Program, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Jeff L Dangl
- Department of Biology and Howard Hughes Medical Institute, Curriculum in Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Natalia Ivanova
- Prokaryotic Super Program, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Tanja Woyke
- Prokaryotic Super Program, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Nikos Kyrpides
- Prokaryotic Super Program, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Amrita Pati
- Prokaryotic Super Program, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| |
Collapse
|
40
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 539] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
41
|
Laufer K, Nordhoff M, Røy H, Schmidt C, Behrens S, Jørgensen BB, Kappler A. Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment. Appl Environ Microbiol 2015; 82:1433-1447. [PMID: 26682861 PMCID: PMC4771319 DOI: 10.1128/aem.03527-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023] Open
Abstract
Iron is abundant in sediments, where it can be biogeochemically cycled between its divalent and trivalent redox states. The neutrophilic microbiological Fe cycle involves Fe(III)-reducing and three different physiological groups of Fe(II)-oxidizing microorganisms, i.e., microaerophilic, anoxygenic phototrophic, and nitrate-reducing Fe(II) oxidizers. However, it is unknown whether all three groups coexist in one habitat and how they are spatially distributed in relation to gradients of O2, light, nitrate, and Fe(II). We examined two coastal marine sediments in Aarhus Bay, Denmark, by cultivation and most probable number (MPN) studies for Fe(II) oxidizers and Fe(III) reducers and by quantitative-PCR (qPCR) assays for microaerophilic Fe(II) oxidizers. Our results demonstrate the coexistence of all three metabolic types of Fe(II) oxidizers and Fe(III) reducers. In qPCR, microaerophilic Fe(II) oxidizers (Zetaproteobacteria) were present with up to 3.2 × 10(6) cells g dry sediment(-1). In MPNs, nitrate-reducing Fe(II) oxidizers, anoxygenic phototrophic Fe(II) oxidizers, and Fe(III) reducers reached cell numbers of up to 3.5 × 10(4), 3.1 × 10(2), and 4.4 × 10(4) g dry sediment(-1), respectively. O2 and light penetrated only a few millimeters, but the depth distribution of the different iron metabolizers did not correlate with the profile of O2, Fe(II), or light. Instead, abundances were homogeneous within the upper 3 cm of the sediment, probably due to wave-induced sediment reworking and bioturbation. In microaerophilic Fe(II)-oxidizing enrichment cultures, strains belonging to the Zetaproteobacteria were identified. Photoferrotrophic enrichments contained strains related to Chlorobium and Rhodobacter; the nitrate-reducing Fe(II) enrichments contained strains related to Hoeflea and Denitromonas. This study shows the coexistence of all three types of Fe(II) oxidizers in two near-shore marine environments and the potential for competition and interrelationships between them.
Collapse
Affiliation(s)
- Katja Laufer
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - Mark Nordhoff
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - Hans Røy
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Caroline Schmidt
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - Sebastian Behrens
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bo Barker Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
42
|
Kato S, Ohkuma M, Powell DH, Krepski ST, Oshima K, Hattori M, Shapiro N, Woyke T, Chan CS. Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria. Front Microbiol 2015; 6:1265. [PMID: 26617599 PMCID: PMC4643136 DOI: 10.3389/fmicb.2015.01265] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/30/2015] [Indexed: 11/13/2022] Open
Abstract
Neutrophilic microaerophilic iron-oxidizing bacteria (FeOB) are thought to play a significant role in cycling of carbon, iron and associated elements in both freshwater and marine iron-rich environments. However, the roles of the neutrophilic microaerophilic FeOB are still poorly understood due largely to the difficulty of cultivation and lack of functional gene markers. Here, we analyze the genomes of two freshwater neutrophilic microaerophilic stalk-forming FeOB, Ferriphaselus amnicola OYT1 and Ferriphaselus strain R-1. Phylogenetic analyses confirm that these are distinct species within Betaproteobacteria; we describe strain R-1 and propose the name F. globulitus. We compare the genomes to those of two freshwater Betaproteobacterial and three marine Zetaproteobacterial FeOB isolates in order to look for mechanisms common to all FeOB, or just stalk-forming FeOB. The OYT1 and R-1 genomes both contain homologs to cyc2, which encodes a protein that has been shown to oxidize Fe in the acidophilic FeOB, Acidithiobacillus ferrooxidans. This c-type cytochrome common to all seven microaerophilic FeOB isolates, strengthening the case for its common utility in the Fe oxidation pathway. In contrast, the OYT1 and R-1 genomes lack mto genes found in other freshwater FeOB. OYT1 and R-1 both have genes that suggest they can oxidize sulfur species. Both have the genes necessary to fix carbon by the Calvin–Benson–Basshom pathway, while only OYT1 has the genes necessary to fix nitrogen. The stalk-forming FeOB share xag genes that may help form the polysaccharide structure of stalks. Both OYT1 and R-1 make a novel biomineralization structure, short rod-shaped Fe oxyhydroxides much smaller than their stalks; these oxides are constantly shed, and may be a vector for C, P, and metal transport to downstream environments. Our results show that while different FeOB are adapted to particular niches, freshwater and marine FeOB likely share common mechanisms for Fe oxidation electron transport and biomineralization pathways.
Collapse
Affiliation(s)
- Shingo Kato
- Department of Geological Sciences, University of Delaware, Newark DE, USA ; Japan Collection of Microorganisms, RIKEN BioResource Center Tsukuba, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center Tsukuba, Japan
| | - Deborah H Powell
- Delaware Biotechnology Institute, University of Delaware, Newark DE, USA
| | - Sean T Krepski
- Department of Geological Sciences, University of Delaware, Newark DE, USA
| | - Kenshiro Oshima
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, University of Tokyo Kashiwa, Japan
| | - Masahira Hattori
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, University of Tokyo Kashiwa, Japan
| | - Nicole Shapiro
- Department of Energy Joint Genome Institute, Walnut Creek CA, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek CA, USA
| | - Clara S Chan
- Department of Geological Sciences, University of Delaware, Newark DE, USA
| |
Collapse
|
43
|
Munson-McGee JH, Field EK, Bateson M, Rooney C, Stepanauskas R, Young MJ. Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs. Appl Environ Microbiol 2015; 81:7860-8. [PMID: 26341207 PMCID: PMC4616950 DOI: 10.1128/aem.01539-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022] Open
Abstract
Nanoarchaeota are obligate symbionts with reduced genomes first described from marine thermal vent environments. Here, both community metagenomics and single-cell analysis revealed the presence of Nanoarchaeota in high-temperature (∼90°C), acidic (pH ≈ 2.5 to 3.0) hot springs in Yellowstone National Park (YNP) (United States). Single-cell genome analysis of two cells resulted in two nearly identical genomes, with an estimated full length of 650 kbp. Genome comparison showed that these two cells are more closely related to the recently proposed Nanobsidianus stetteri from a more neutral YNP hot spring than to the marine Nanoarchaeum equitans. Single-cell and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis of environmental hot spring samples identified the host of the YNP Nanoarchaeota as a Sulfolobales species known to inhabit the hot springs. Furthermore, we demonstrate that Nanoarchaeota are widespread in acidic to near neutral hot springs in YNP. An integrated viral sequence was also found within one Nanoarchaeota single-cell genome and further analysis of the purified viral fraction from environmental samples indicates that this is likely a virus replicating within the YNP Nanoarchaeota.
Collapse
Affiliation(s)
- Jacob H Munson-McGee
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Erin K Field
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - Mary Bateson
- Thermal Biology Institute, Montana State University, Bozeman, Montana, USA
| | - Colleen Rooney
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | | | - Mark J Young
- Thermal Biology Institute, Montana State University, Bozeman, Montana, USA Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
44
|
New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph. Appl Environ Microbiol 2015; 81:5927-37. [PMID: 26092463 DOI: 10.1128/aem.01374-15] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023] Open
Abstract
Microaerophilic, neutrophilic, iron-oxidizing bacteria (FeOB) grow via the oxidation of reduced Fe(II) at or near neutral pH, in the presence of oxygen, making them relevant in numerous environments with elevated Fe(II) concentrations. However, the biochemical mechanisms for Fe(II) oxidation by these neutrophilic FeOB are unknown, and genetic markers for this process are unavailable. In the ocean, microaerophilic microorganisms in the genus Mariprofundus of the class Zetaproteobacteria are the only organisms known to chemolithoautotrophically oxidize Fe and concurrently biomineralize it in the form of twisted stalks of iron oxyhydroxides. The aim of this study was to identify highly expressed proteins associated with the electron transport chain of microaerophilic, neutrophilic FeOB. To this end, Mariprofundus ferrooxydans PV-1 was cultivated, and its proteins were extracted, assayed for redox activity, and analyzed via liquid chromatography-tandem mass spectrometry for identification of peptides. The results indicate that a cytochrome c4, cbb3-type cytochrome oxidase subunits, and an outer membrane cytochrome c were among the most highly expressed proteins and suggest an involvement in the process of aerobic, neutrophilic bacterial Fe oxidation. Proteins associated with alternative complex III, phosphate transport, carbon fixation, and biofilm formation were abundant, consistent with the lifestyle of Mariprofundus.
Collapse
|
45
|
Labonté JM, Field EK, Lau M, Chivian D, Van Heerden E, Wommack KE, Kieft TL, Onstott TC, Stepanauskas R. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Front Microbiol 2015; 6:349. [PMID: 25954269 PMCID: PMC4406082 DOI: 10.3389/fmicb.2015.00349] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/08/2015] [Indexed: 12/12/2022] Open
Abstract
A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT) and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a 3 km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32% of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs) and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment.
Collapse
Affiliation(s)
| | - Erin K Field
- Bigelow Laboratory for Ocean Sciences East Boothbay, ME, USA
| | - Maggie Lau
- Department of Geosciences, Princeton University Princeton, NJ, USA
| | - Dylan Chivian
- Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Esta Van Heerden
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - K Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware Newark, DE, USA
| | - Thomas L Kieft
- Department of Biology, New Mexico Institute of Mining and Technology Socorro, NM, USA
| | - Tullis C Onstott
- Department of Geosciences, Princeton University Princeton, NJ, USA
| | | |
Collapse
|
46
|
Emerson JB, Thomas BC, Alvarez W, Banfield JF. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla. Environ Microbiol 2015; 18:1686-703. [DOI: 10.1111/1462-2920.12817] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/31/2015] [Accepted: 02/12/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Joanne B. Emerson
- Department of Earth and Planetary Science; University of California, Berkeley; Berkeley CA 94720-4767 USA
| | - Brian C. Thomas
- Department of Earth and Planetary Science; University of California, Berkeley; Berkeley CA 94720-4767 USA
| | - Walter Alvarez
- Department of Earth and Planetary Science; University of California, Berkeley; Berkeley CA 94720-4767 USA
| | - Jillian F. Banfield
- Department of Earth and Planetary Science; University of California, Berkeley; Berkeley CA 94720-4767 USA
- Department of Environmental Science, Policy, and Management; University of California, Berkeley; Berkeley CA 94720-4767 USA
| |
Collapse
|
47
|
Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems. PLoS One 2015; 10:e0119284. [PMID: 25760332 PMCID: PMC4356598 DOI: 10.1371/journal.pone.0119284] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/26/2015] [Indexed: 12/02/2022] Open
Abstract
Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit) using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II) concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests that this organism is likely locally restricted to iron-rich marine environments but may exhibit wide-scale geographic distribution, further underscoring the importance of Zetaproteobacteria in global iron cycling.
Collapse
|