1
|
Zhang Y, Ruan Y, Xu Q, Ling N, Shen Q. Manure application primarily drives changes in antibiotic resistome composition rather than abundance in agricultural soil profile. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125421. [PMID: 40253993 DOI: 10.1016/j.jenvman.2025.125421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/04/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in soil has elicited significant concerns about food safety and agricultural sustainability. However, the impact of long-term fertilization on the soil resistome across soil profiles and their associations with both abundant and rare microbial taxa remain unknown. This study employed high-throughput quantitative polymerase chain reaction (HT-qPCR) and 16S rRNA gene sequencing to explore resistome across soil depths under different fertilization regimes (a 12-year field experiment). Compared with the control and chemical-only fertilization, manure amendment increased the ARG richness in the topsoil by 14.1-20 % but had no significant effect on the subsoil. Manure amendment resulted eight unique ARGs into topsoil: sul1, sul2, aadA, aadA2, aadA21, APHA3, ErmY and qacF_H. Compared with the control soil, the manure amendment did not increase the absolute and normalized abundance of ARGs in both top- and subsoil. In addition, abundant microbial taxa exhibited a stronger association with ARGs than rare taxa. Overall, manure amendment had strong and direct impacts on soil ARG composition and indirectly influenced ARG abundance to a limited extent through its effects on soil properties and abundant taxa. These findings strengthen our understanding of the ecological impacts of long-term fertilization and inform sustainable agricultural practices.
Collapse
Affiliation(s)
- Yuntao Zhang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Ruan
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qicheng Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ning Ling
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Xu T, Dai Y, Ge A, Chen X, Gong Y, Lam TH, Lee K, Han X, Ji Y, Shen W, Liu J, Sun L, Xu J, Ma B. Ultrafast Evolution of Bacterial Antimicrobial Resistance by Picoliter-Scale Centrifugal Microfluidics. Anal Chem 2024; 96:18842-18851. [PMID: 39531253 DOI: 10.1021/acs.analchem.4c04482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Experimental evolution is a powerful approach for scrutinizing and dissecting the development of antimicrobial resistance; nevertheless, it typically demands an extended duration to detect evolutionary changes. Here, a centrifugal microfluidics system is designed to accelerate the process. Through a simple step of on-chip centrifugation, a highly condensed bacterial matrix of ∼1012 cells/mL at the enrichment tip of the chip channel is derived, enabling bacteria encapsulated to survive in antimicrobial concentrations several times higher than the minimum inhibitory concentration (MIC) and rapidly develop resistance in the first 10 h. After 48 h of on-chip evolution, the E. coli strain demonstrated a 64 to 128-fold reduction in sensitivity to disinfectants (triclosan) as well as antibiotics (ciprofloxacin and amikacin), a rate substantially swifter compared to conventional continuous inoculation-based experimental evolution. The speed and simplicity of this microfluidic system suggest its broad application for uncovering resistance mechanisms and identifying targets of biocides and antibiotics.
Collapse
Affiliation(s)
- Teng Xu
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Yajie Dai
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Anle Ge
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Xueqian Chen
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Yanhai Gong
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Tze Hau Lam
- Procter & Gamble Singapore Innovation Center, Singapore 138668, Singapore
| | - Kelvin Lee
- Procter & Gamble Singapore Innovation Center, Singapore 138668, Singapore
| | - Xiao Han
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Yuetong Ji
- Qingdao Single-Cell Biotech. Ltd., Qingdao, Shandong 266100, China
| | - Wei Shen
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Jiquan Liu
- Procter & Gamble Singapore Innovation Center, Singapore 138668, Singapore
| | - Luyang Sun
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
- Laboratory of Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266101, China
| | - Jian Xu
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
- Laboratory of Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266101, China
| | - Bo Ma
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
- Laboratory of Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266101, China
| |
Collapse
|
3
|
Souque C, González Ojeda I, Baym M. From Petri Dishes to Patients to Populations: Scales and Evolutionary Mechanisms Driving Antibiotic Resistance. Annu Rev Microbiol 2024; 78:361-382. [PMID: 39141706 DOI: 10.1146/annurev-micro-041522-102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Tackling the challenge created by antibiotic resistance requires understanding the mechanisms behind its evolution. Like any evolutionary process, the evolution of antimicrobial resistance (AMR) is driven by the underlying variation in a bacterial population and the selective pressures acting upon it. Importantly, both selection and variation will depend on the scale at which resistance evolution is considered (from evolution within a single patient to the host population level). While laboratory experiments have generated fundamental insights into the mechanisms underlying antibiotic resistance evolution, the technological advances in whole genome sequencing now allow us to probe antibiotic resistance evolution beyond the lab and directly record it in individual patients and host populations. Here we review the evolutionary forces driving antibiotic resistance at each of these scales, highlight gaps in our current understanding of AMR evolution, and discuss future steps toward evolution-guided interventions.
Collapse
Affiliation(s)
- Célia Souque
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Indra González Ojeda
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Michael Baym
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| |
Collapse
|
4
|
Hou X, Yang J, Xie J, Zhu S, Zhang Z. Diversity and Antibiotic Resistance of Triticale Seed-Borne Bacteria on the Tibetan Plateau. Microorganisms 2024; 12:650. [PMID: 38674594 PMCID: PMC11052201 DOI: 10.3390/microorganisms12040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The Tibetan Plateau is located in southwestern China. It has many important ecological functions, such as biodiversity protection, and is an important grassland agroecosystem in China. With the development of modern agriculture and animal husbandry, antibiotics are widely used to treat humans and livestock, and antibiotics cannot be fully metabolised by both. Antibiotics eventually find their way into the environment, affecting other parts of grassland agroecosystems. Triticale (Triticosecale wittmack) is an artificial hybrid forage that can be used for both grain and forage. This study revealed the diversity of seedborne bacteria in triticale on the Tibetan Plateau and the resistance of the bacteria to nine antibiotics. It identified 37 representative strains and successfully obtained the spliced sequences of 36 strains of the bacteria, which were clustered into 5 phyla and 16 genera. Among them, 18 strains showed resistance to at least one of the 9 antibiotics, and the colony-forming unit (CFU) abundance of antibiotic-resistant bacteria (ARB) accounted for 45.38% of the total samples. Finally, the bacterial motility and biofilm formation ability were measured, and their correlation with bacterial resistance was analysed. The results showed that the bacterial resistance did not have an absolute positive correlation with the motility or biofilm formation ability.
Collapse
Affiliation(s)
| | | | | | | | - Zhenfen Zhang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (X.H.); (J.Y.); (J.X.); (S.Z.)
| |
Collapse
|
5
|
Zoheir AE, Stolle C, Rabe KS. Microfluidics for adaptation of microorganisms to stress: design and application. Appl Microbiol Biotechnol 2024; 108:162. [PMID: 38252163 PMCID: PMC10803453 DOI: 10.1007/s00253-024-13011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Microfluidic systems have fundamentally transformed the realm of adaptive laboratory evolution (ALE) for microorganisms by offering unparalleled control over environmental conditions, thereby optimizing mutant generation and desired trait selection. This review summarizes the substantial influence of microfluidic technologies and their design paradigms on microbial adaptation, with a primary focus on leveraging spatial stressor concentration gradients to enhance microbial growth in challenging environments. Specifically, microfluidic platforms tailored for scaled-down ALE processes not only enable highly autonomous and precise setups but also incorporate novel functionalities. These capabilities encompass fostering the growth of biofilms alongside planktonic cells, refining selection gradient profiles, and simulating adaptation dynamics akin to natural habitats. The integration of these aspects enables shaping phenotypes under pressure, presenting an unprecedented avenue for developing robust, stress-resistant strains, a feat not easily attainable using conventional ALE setups. The versatility of these microfluidic systems is not limited to fundamental research but also offers promising applications in various areas of stress resistance. As microfluidic technologies continue to evolve and merge with cutting-edge methodologies, they possess the potential not only to redefine the landscape of microbial adaptation studies but also to expedite advancements in various biotechnological areas. KEY POINTS: • Microfluidics enable precise microbial adaptation in controlled gradients. • Microfluidic ALE offers insights into stress resistance and distinguishes between resistance and persistence. • Integration of adaptation-influencing factors in microfluidic setups facilitates efficient generation of stress-resistant strains.
Collapse
Affiliation(s)
- Ahmed E Zoheir
- Department of Genetics and Cytology, Biotechnology Research Institute, National Research Centre (NRC), 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Camilla Stolle
- Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
6
|
Piskovsky V, Oliveira NM. Bacterial motility can govern the dynamics of antibiotic resistance evolution. Nat Commun 2023; 14:5584. [PMID: 37696800 PMCID: PMC10495427 DOI: 10.1038/s41467-023-41196-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
Spatial heterogeneity in antibiotic concentrations is thought to accelerate the evolution of antibiotic resistance, but current theory and experiments have overlooked the effect of cell motility on bacterial adaptation. Here, we study bacterial evolution in antibiotic landscapes with a quantitative model where bacteria evolve under the stochastic processes of proliferation, death, mutation and migration. Numerical and analytical results show that cell motility can both accelerate and decelerate bacterial adaptation by affecting the degree of genotypic mixing and ecological competition. Moreover, we find that for sufficiently high rates, cell motility can limit bacterial survival, and we derive conditions for all these regimes. Similar patterns are observed in more complex scenarios, namely where bacteria can bias their motion in chemical gradients (chemotaxis) or switch between motility phenotypes either stochastically or in a density-dependent manner. Overall, our work reveals limits to bacterial adaptation in antibiotic landscapes that are set by cell motility.
Collapse
Affiliation(s)
- Vit Piskovsky
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| | - Nuno M Oliveira
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK.
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|
7
|
Ma X, Xi W, Yang D, Zhao L, Yu W, He Y, Ni W, Gao Z. Collateral sensitivity between tetracyclines and aminoglycosides constrains resistance evolution in carbapenem-resistant Klebsiella pneumoniae. Drug Resist Updat 2023; 68:100961. [PMID: 37004351 DOI: 10.1016/j.drup.2023.100961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
AIMS The acquisition of resistance to one antibiotic may confer an increased sensitivity to another antibiotic in bacteria, which is an evolutionary trade-off between different resistance mechanisms, defined as collateral sensitivity (CS). Exploiting the role of CS in treatment design could be an effective method to suppress or even reverse resistance evolution. METHODS Using experimental evolution, we systematically studied the CS between aminoglycosides and tetracyclines in carbapenem-resistant Klebsiella pneumoniae (CRKP) and explored the underlying mechanisms through genomic and transcriptome analyses. The application of CS-based therapies for resistance suppression, including combination therapy and alternating antibiotic therapy, was further evaluated in vitro and in vivo. RESULTS Reciprocal CS existed between tetracyclines and aminoglycosides in CRKP. The increased sensitivity of aminoglycoside-resistant strains to tetracyclines was associated with the alteration of bacterial membrane potential, whereas the unbalanced oxidation-reduction process of tetracycline-resistant strains may lead to an increased bacterial sensitivity to aminoglycosides. CS-based combination therapy could efficiently constrain the evolution of CRKP resistance in vitro and in vivo. In addition, alternating antibiotic therapy can re-sensitize CRKP to previously resistant drugs, thereby maintaining the trade-off. CONCLUSIONS These results provide new insights into constraining the evolution of CRKP resistance through CS-based therapies.
Collapse
Affiliation(s)
- Xinqian Ma
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Wen Xi
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Deqing Yang
- Department of Pharmacy, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Wentao Ni
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China.
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
8
|
Garzoli S, Maggio F, Vinciguerra V, Rossi C, Donadu MG, Serio A. Chemical Characterization and Antimicrobial Properties of the Hydroalcoholic Solution of Echinacea purpurea (L.) Moench. and Propolis from Northern Italy. Molecules 2023; 28:molecules28031380. [PMID: 36771045 PMCID: PMC9921591 DOI: 10.3390/molecules28031380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
In this study, for the first time, the chemical composition of Echinacea purpurea (L.) Moench. and propolis (EAP) hydroalcoholic solution from the Trentino Alto Adige region of northern Italy was investigated by using SPME-GC-MS to describe the volatile content and GC-MS after silylation to detect the non-volatile compounds in the extractable organic matter. The antimicrobial activity of EAP hydroalcoholic solution was evaluated by Minimum Inhibitory Concentration (MIC) determination on 13 type strains, food and clinical isolates. Time Kill Kinetics (TKK) assays and the determination on swimming and swarming motility for 48 h gave more details on the mode of action of EAP solution. The results highlighted the presence of some terpenes and a large number of compounds belonging to different chemical classes. Among these, sugars and organic acids excelled. The EAP hydroalcoholic solution exhibited a strong antimicrobial activity in terms of MIC, with a clear decrease in the cellular load after 48 h. However, the bacterial motility may not be affected by the EAP treatment, displaying a dynamic swarming and swimming motility capacity over time. Given the complexity of chemical profile and the strong antimicrobial effectiveness, the EAP hydroalcoholic solution can be considered a source of bioactive molecules, deserving further investigation for the versatility of application.
Collapse
Affiliation(s)
- Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Rome, Italy
- Correspondence: (S.G.); (A.S.)
| | - Francesca Maggio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Vittorio Vinciguerra
- Department for Innovation in Biological Systems, Food and Forestry, University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Rossi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Matthew Gavino Donadu
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Correspondence: (S.G.); (A.S.)
| |
Collapse
|
9
|
Abstract
Bacteria commonly live in surface-associated communities where steep gradients of antibiotics and other chemical compounds can occur. While many bacterial species move on surfaces, we know surprisingly little about how such antibiotic gradients affect cell motility. Here, we study the behaviour of the opportunistic pathogen Pseudomonas aeruginosa in stable spatial gradients of several antibiotics by tracking thousands of cells in microfluidic devices as they form biofilms. Unexpectedly, these experiments reveal that bacteria use pili-based ('twitching') motility to navigate towards antibiotics. Our analyses suggest that this behaviour is driven by a general response to the effects of antibiotics on cells. Migrating bacteria reach antibiotic concentrations hundreds of times higher than their minimum inhibitory concentration within hours and remain highly motile. However, isolating cells - using fluid-walled microfluidic devices - reveals that these bacteria are terminal and unable to reproduce. Despite moving towards their death, migrating cells are capable of entering a suicidal program to release bacteriocins that kill other bacteria. This behaviour suggests that the cells are responding to antibiotics as if they come from a competing colony growing nearby, inducing them to invade and attack. As a result, clinical antibiotics have the potential to lure bacteria to their death.
Collapse
|
10
|
Brepoels P, Appermans K, Pérez-Romero CA, Lories B, Marchal K, Steenackers HP. Antibiotic Cycling Affects Resistance Evolution Independently of Collateral Sensitivity. Mol Biol Evol 2022; 39:6884036. [PMID: 36480297 PMCID: PMC9778841 DOI: 10.1093/molbev/msac257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic cycling has been proposed as a promising approach to slow down resistance evolution against currently employed antibiotics. It remains unclear, however, to which extent the decreased resistance evolution is the result of collateral sensitivity, an evolutionary trade-off where resistance to one antibiotic enhances the sensitivity to the second, or due to additional effects of the evolved genetic background, in which mutations accumulated during treatment with a first antibiotic alter the emergence and spread of resistance against a second antibiotic via other mechanisms. Also, the influence of antibiotic exposure patterns on the outcome of drug cycling is unknown. Here, we systematically assessed the effects of the evolved genetic background by focusing on the first switch between two antibiotics against Salmonella Typhimurium, with cefotaxime fixed as the first and a broad variety of other drugs as the second antibiotic. By normalizing the antibiotic concentrations to eliminate the effects of collateral sensitivity, we demonstrated a clear contribution of the evolved genetic background beyond collateral sensitivity, which either enhanced or reduced the adaptive potential depending on the specific drug combination. We further demonstrated that the gradient strength with which cefotaxime was applied affected both cefotaxime resistance evolution and adaptation to second antibiotics, an effect that was associated with higher levels of clonal interference and reduced cost of resistance in populations evolved under weaker cefotaxime gradients. Overall, our work highlights that drug cycling can affect resistance evolution independently of collateral sensitivity, in a manner that is contingent on the antibiotic exposure pattern.
Collapse
Affiliation(s)
| | | | - Camilo Andres Pérez-Romero
- Department of Information Technology and the Department of Plant Biotechnology, Biochemistry and Bioinformatics, Ghent University, Ghent, Belgium
| | - Bram Lories
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Kathleen Marchal
- Department of Information Technology and the Department of Plant Biotechnology, Biochemistry and Bioinformatics, Ghent University, Ghent, Belgium
| | | |
Collapse
|
11
|
Wetherington MT, Nagy K, Dér L, Ábrahám Á, Noorlag J, Galajda P, Keymer JE. Ecological succession and the competition-colonization trade-off in microbial communities. BMC Biol 2022; 20:262. [PMID: 36447225 PMCID: PMC9710175 DOI: 10.1186/s12915-022-01462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND During range expansion in spatially distributed habitats, organisms differ from one another in terms of their patterns of localization versus propagation. To exploit locations or explore the landscape? This is the competition-colonization trade-off, a dichotomy at the core of ecological succession. In bacterial communities, this trade-off is a fundamental mechanism towards understanding spatio-temporal fluxes in microbiome composition. RESULTS Using microfluidics devices as structured bacterial habitats, we show that, in a synthetic two-species community of motile strains, Escherichia coli is a fugitive species, whereas Pseudomonas aeruginosa is a slower colonizer but superior competitor. We provide evidence highlighting the role of succession and the relevance of this trade-off in the community assembly of bacteria in spatially distributed patchy landscapes. Furthermore, aggregation-dependent priority effects enhance coexistence which is not possible in well-mixed environments. CONCLUSIONS Our findings underscore the interplay between micron-scale landscape structure and dispersal in shaping biodiversity patterns in microbial ecosystems. Understanding this interplay is key to unleash the technological revolution of microbiome applications.
Collapse
Affiliation(s)
- Miles T. Wetherington
- grid.7870.80000 0001 2157 0406Department of Ecology, School of Biological Sciences, P. Catholic University of Chile, Santiago, Chile ,grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary ,grid.5386.8000000041936877XSchool of Applied and Engineering Physics, Cornell University, Ithaca, USA
| | - Krisztina Nagy
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - László Dér
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - Ágnes Ábrahám
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Janneke Noorlag
- grid.7870.80000 0001 2157 0406Department of Ecology, School of Biological Sciences, P. Catholic University of Chile, Santiago, Chile ,grid.501187.a0000000463647645Department of Natural Sciences and Technology, University of Aysén, Coyhaique, Chile
| | - Peter Galajda
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - Juan E. Keymer
- grid.7870.80000 0001 2157 0406Department of Ecology, School of Biological Sciences, P. Catholic University of Chile, Santiago, Chile ,grid.7870.80000 0001 2157 0406Institute of Physics, School of Physics, P. Catholic University of Chile, Santiago, Chile ,grid.501187.a0000000463647645Department of Natural Sciences and Technology, University of Aysén, Coyhaique, Chile
| |
Collapse
|
12
|
Bhattacharyya S, Bhattacharyya M, Pfannenstiel DM, Nandi AK, Hwang Y, Ho K, Harshey RM. Efflux-linked accelerated evolution of antibiotic resistance at a population edge. Mol Cell 2022; 82:4368-4385.e6. [PMID: 36400010 PMCID: PMC9699456 DOI: 10.1016/j.molcel.2022.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/22/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Efflux is a common mechanism of resistance to antibiotics. We show that efflux itself promotes accumulation of antibiotic-resistance mutations (ARMs). This phenomenon was initially discovered in a bacterial swarm where the linked phenotypes of high efflux and high mutation frequencies spatially segregated to the edge, driven there by motility. We have uncovered and validated a global regulatory network connecting high efflux to downregulation of specific DNA-repair pathways even in non-swarming states. The efflux-DNA repair link was corroborated in a clinical "resistome" database: genomes with mutations that increase efflux exhibit a significant increase in ARMs. Accordingly, efflux inhibitors decreased evolvability to antibiotic resistance. Swarms also revealed how bacterial populations serve as a reservoir of ARMs even in the absence of antibiotic selection pressure. High efflux at the edge births mutants that, despite compromised fitness, survive there because of reduced competition. This finding is relevant to biofilms where efflux activity is high.
Collapse
Affiliation(s)
- Souvik Bhattacharyya
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX 78712, USA.
| | | | - Dylan M Pfannenstiel
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX 78712, USA
| | - Anjan K Nandi
- Department of Physical Sciences, Indian Institute of Science Education & Research, Kolkata, India
| | - YuneSahng Hwang
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX 78712, USA
| | - Khang Ho
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX 78712, USA
| | - Rasika M Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
13
|
Mawarda PC, Mallon CA, Le Roux X, van Elsas JD, Salles JF. Interactions between Bacterial Inoculants and Native Soil Bacterial Community: the Case of Spore-forming Bacillus spp. FEMS Microbiol Ecol 2022; 98:6776013. [PMID: 36302145 PMCID: PMC9681130 DOI: 10.1093/femsec/fiac127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/21/2022] [Accepted: 10/25/2022] [Indexed: 01/21/2023] Open
Abstract
Microbial diversity can restrict the invasion and impact of alien microbes into soils via resource competition. However, this theory has not been tested on various microbial invaders with different ecological traits, particularly spore-forming bacteria. Here we investigated the survival capacity of two introduced spore-forming bacteria, Bacillus mycoides (BM) and B. pumillus (BP) and their impact on the soil microbiome niches with low and high diversity. We hypothesized that higher soil bacterial diversity would better restrict Bacillus survival via resource competition, and the invasion would alter the resident bacterial communities' niches only if inoculants do not escape competition with the soil community (e.g. through sporulation). Our findings showed that BP could not survive as viable propagules and transiently impacted the bacterial communities' niche structure. This may be linked to its poor resource usage and low growth rate. Having better resource use capacities, BM better survived in soil, though its survival was weakly related to the remaining resources left for them by the soil community. BM strongly affected the community niche structure, ultimately in less diverse communities. These findings show that the inverse diversity-invasibility relationship can be valid for some spore-forming bacteria, but only when they have sufficient resource use capacity.
Collapse
Affiliation(s)
| | - Cyrus A Mallon
- Microbial Community Ecology Cluster, expertise group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Xavier Le Roux
- INRAE, CNRS, Université Lyon 1, Université de Lyon, VetAgroSup, Laboratoire d'Ecologie Microbienne LEM, UMR 1418 INRAE, UMR 5557 CNRS, 69622 Villeurbanne Cedex, France
| | - Jan Dirk van Elsas
- Microbial Community Ecology Cluster, expertise group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Joana Falcão Salles
- Microbial Community Ecology Cluster, expertise group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
14
|
Angermayr SA, Pang TY, Chevereau G, Mitosch K, Lercher MJ, Bollenbach T. Growth-mediated negative feedback shapes quantitative antibiotic response. Mol Syst Biol 2022; 18:e10490. [PMID: 36124745 PMCID: PMC9486506 DOI: 10.15252/msb.202110490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Dose-response relationships are a general concept for quantitatively describing biological systems across multiple scales, from the molecular to the whole-cell level. A clinically relevant example is the bacterial growth response to antibiotics, which is routinely characterized by dose-response curves. The shape of the dose-response curve varies drastically between antibiotics and plays a key role in treatment, drug interactions, and resistance evolution. However, the mechanisms shaping the dose-response curve remain largely unclear. Here, we show in Escherichia coli that the distinctively shallow dose-response curve of the antibiotic trimethoprim is caused by a negative growth-mediated feedback loop: Trimethoprim slows growth, which in turn weakens the effect of this antibiotic. At the molecular level, this feedback is caused by the upregulation of the drug target dihydrofolate reductase (FolA/DHFR). We show that this upregulation is not a specific response to trimethoprim but follows a universal trend line that depends primarily on the growth rate, irrespective of its cause. Rewiring the feedback loop alters the dose-response curve in a predictable manner, which we corroborate using a mathematical model of cellular resource allocation and growth. Our results indicate that growth-mediated feedback loops may shape drug responses more generally and could be exploited to design evolutionary traps that enable selection against drug resistance.
Collapse
Affiliation(s)
- S Andreas Angermayr
- Institute for Biological PhysicsUniversity of CologneCologneGermany
- Institute of Science and Technology AustriaKlosterneuburgAustria
- Present address:
CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Tin Yau Pang
- Institute for Computer ScienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Department of BiologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Karin Mitosch
- Institute of Science and Technology AustriaKlosterneuburgAustria
- Genome Biology UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Martin J Lercher
- Institute for Computer ScienceHeinrich Heine University DüsseldorfDüsseldorfGermany
- Department of BiologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tobias Bollenbach
- Institute for Biological PhysicsUniversity of CologneCologneGermany
- Center for Data and Simulation ScienceUniversity of CologneCologneGermany
| |
Collapse
|
15
|
Competitive interaction of thymol with cviR inhibits quorum sensing and associated biofilm formation in Chromobacterium violaceum. Int Microbiol 2022; 25:629-638. [PMID: 35554762 DOI: 10.1007/s10123-022-00247-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Biofilm formation associated with quorum sensing (QS) is a community behaviour displayed by many gram-negative pathogenic bacteria that provide survival advantages in hostile conditions. The inhibitors of QS interrupt bacterial communication and coordinated cell signalling for community aggregation in the biofilm. Thymol, a natural monoterpenoid, was tested against QS in Chromobacterium violaceum. As the first step, the interaction of thymol with cviR protein was investigated using in silico approach followed by validation using detailed in vitro experiments. The QS and biofilm studies were performed using the wild type of strain C. violaceum ATCC 12,472 and a mini-Tn5 mutant CV026. The MIC of thymol was established by the broth micro-dilution method, and IC50 value for violacein inhibition was quantified spectrophotometrically by extracting the violacein from the treated cells. Inhibitory effect of thymol on the biofilm was quantified by the crystal violet staining method, and scanning electron microscopy (SEM) was employed for biofilm visualization. The expression of biofilm associated genes (hmsH, hmsR, pilB, and pilT) was evaluated by qRT-PCR analysis. The in silico molecular interactions of thymol with cviR exhibited a G-score of - 5.847 kcal/mol, binding with TYR-80 and SER-155 by Pi-Pi stacking and H-bond, respectively. The MIC of thymol was 160 µg/mL, and the IC50 for violacein inhibition was estimated to be 28 µg/mL. The thymol treatment significantly reduced the biofilm viability and biomass by > 80% along with disruption of the well-organized biofilm architecture. QS inhibitory activity of thymol resulted in the reduction of exopolysaccharide production, swarming motility, and downregulation of biofilm-associated hmsH, hmsR, pilB, and pilT genes. This data establishes the QS inhibitory role of thymol in the biofilm formation in C. violaceum.
Collapse
|
16
|
Hubert B. SkewDB, a comprehensive database of GC and 10 other skews for over 30,000 chromosomes and plasmids. Sci Data 2022; 9:92. [PMID: 35318332 PMCID: PMC8941118 DOI: 10.1038/s41597-022-01179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
GC skew denotes the relative excess of G nucleotides over C nucleotides on the leading versus the lagging replication strand of eubacteria. While the effect is small, typically around 2.5%, it is robust and pervasive. GC skew and the analogous TA skew are a localized deviation from Chargaff’s second parity rule, which states that G and C, and T and A occur with (mostly) equal frequency even within a strand. Different bacterial phyla show different kinds of skew, and differing relations between TA and GC skew. This article introduces an open access database (https://skewdb.org) of GC and 10 other skews for over 30,000 chromosomes and plasmids. Further details like codon bias, strand bias, strand lengths and taxonomic data are also included. The SkewDB can be used to generate or verify hypotheses. Since the origins of both the second parity rule and GC skew itself are not yet satisfactorily explained, such a database may enhance our understanding of prokaryotic DNA. Measurement(s) | Imbalances in the use of DNA nucleotides | Technology Type(s) | Next Generation Sequencing | Factor Type(s) | Position within DNA sequence • Organism type | Sample Characteristic - Organism | bacterium • archaea | Sample Characteristic - Environment | Varying | Sample Characteristic - Location | World |
Collapse
Affiliation(s)
- Bert Hubert
- AHU Holding Research, Nootdorp, Netherlands.
| |
Collapse
|
17
|
Nagy K, Dukic B, Hodula O, Ábrahám Á, Csákvári E, Dér L, Wetherington MT, Noorlag J, Keymer JE, Galajda P. Emergence of Resistant Escherichia coli Mutants in Microfluidic On-Chip Antibiotic Gradients. Front Microbiol 2022; 13:820738. [PMID: 35391738 PMCID: PMC8981919 DOI: 10.3389/fmicb.2022.820738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Spatiotemporal structures and heterogeneities are common in natural habitats, yet their role in the evolution of antibiotic resistance is still to be uncovered. We applied a microfluidic gradient generator device to study the emergence of resistant bacteria in spatial ciprofloxacin gradients. We observed biofilm formation in regions with sub-inhibitory concentrations of antibiotics, which quickly expanded into the high antibiotic regions. In the absence of an explicit structure of the habitat, this multicellular formation led to a spatial structure of the population with local competition and limited migration. Therefore, such structures can function as amplifiers of selection and aid the spread of beneficial mutations. We found that the physical environment itself induces stress-related mutations that later prove beneficial when cells are exposed to antibiotics. This shift in function suggests that exaptation occurs in such experimental scenarios. The above two processes pave the way for the subsequent emergence of highly resistant specific mutations.
Collapse
Affiliation(s)
- Krisztina Nagy
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- *Correspondence: Krisztina Nagy,
| | - Barbara Dukic
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Orsolya Hodula
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Ágnes Ábrahám
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Eszter Csákvári
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - László Dér
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | | | - Janneke Noorlag
- Department of Natural Sciences and Technology, University of Aysén, Coyhaique, Chile
| | - Juan E. Keymer
- Department of Natural Sciences and Technology, University of Aysén, Coyhaique, Chile
| | - Péter Galajda
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Péter Galajda,
| |
Collapse
|
18
|
Patra P, Klumpp S. Role of bacterial persistence in spatial population expansion. Phys Rev E 2021; 104:034401. [PMID: 34654134 DOI: 10.1103/physreve.104.034401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/19/2021] [Indexed: 11/07/2022]
Abstract
Bacterial persistence, tolerance to antibiotics via stochastic phenotype switching, provides a survival strategy and a fitness advantage in temporally fluctuating environments. Here we study its possible benefit in spatially varying environments using a Fisher wave approach. We study the spatial expansion of a population with stochastic switching between two phenotypes in spatially homogeneous conditions and in the presence of an antibiotic barrier. Our analytical results show that the expansion speed in growth-supporting conditions depends on the fraction of persister cells at the leading edge of the population wave. The leading edge contains a small fraction of persister cells, keeping the effect on the expansion speed minimal. The fraction of persisters increases gradually in the interior of the wave. This persister pool benefits the population when it is stalled by an antibiotic environment. In that case, the presence of persister enables the population to spread deeper into the antibiotic region and to cross an antibiotic region more rapidly. Further we observe that optimal switching rates maximize the expansion speed of the population in spatially varying environments with alternating regions of growth permitting conditions and antibiotics. Overall, our results show that stochastic switching can promote population expansion in the presence of antibiotic barriers or other stressful environments.
Collapse
Affiliation(s)
- Pintu Patra
- Institute for Theoretical Physics, Heidelberg University, Heidelberg 69120, Germany
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen 37077, Germany
| |
Collapse
|
19
|
The role of chemotaxis and efflux pumps on nitrate reduction in the toxic regions of a ciprofloxacin concentration gradient. THE ISME JOURNAL 2021; 15:2920-2932. [PMID: 33927341 PMCID: PMC8443623 DOI: 10.1038/s41396-021-00975-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
Spatial concentration gradients of antibiotics are prevalent in the natural environment. Yet, the microbial response in these heterogeneous systems remains poorly understood. We used a microfluidic reactor to create an artificial microscopic ecosystem that generates diffusive gradients of solutes across interconnected microenvironments. With this reactor, we showed that chemotaxis toward a soluble electron acceptor (nitrate) allowed Shewanella oneidensis MR-1 to inhabit and sustain metabolic activity in highly toxic regions of the antibiotic ciprofloxacin (>80× minimum inhibitory concentration, MIC). Acquired antibiotic resistance was not observed for cells extracted from the reactor, so we explored the role of transient adaptive resistance by probing multidrug resistance (MDR) efflux pumps, ancient elements that are important for bacterial physiology and virulence. Accordingly, we constructed an efflux pump deficient mutant (∆mexF) and used resistance-nodulation-division (RND) efflux pump inhibitors (EPIs). While batch results showed the importance of RND efflux pumps for microbial survival, microfluidic studies indicated that these pumps were not necessary for survival in antibiotic gradients. Our work contributes to an emerging body of knowledge deciphering the effects of antibiotic spatial heterogeneity on microorganisms and highlights differences of microbial response in these systems versus well-mixed batch conditions.
Collapse
|
20
|
Dawan J, Ahn J. Assessment of cooperative antibiotic resistance of Salmonella Typhimurium within heterogeneous population. Microb Pathog 2021; 157:104973. [PMID: 34029657 DOI: 10.1016/j.micpath.2021.104973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
This study was designed to investigate the cooperative resistance in the mixed culture of antibiotic-sensitive and antibiotic-resistant Salmonella Typhimurium. Strains of S. Typhimurium ATCC 19585 (STS) and clinically isolated antibiotic-resistant S. Typhimurium CCARM 8009 (STR) grown in single and mixture with 1 × MIC ceftriaxone (CEF) were used to determine the viability, β-lactamase activity, and gene expression. The MIC50 values of STR to CEF was increased by more than 5-fold with increasing inoculum densities from 102 to 107 CFU/mL. STS was resistant to 1 × MIC CEF in the mixed culture of STS and STR, showing the more than 108 CFU/mL after 20 h of incubation at 37 °C. The highest β-lactamase activity was 18 μmol/min/mL in the mixed culture, corresponding to the highest relative expression of β-lactamase-related genes (blaTEM). These results shed new light on the cooperative resistance of antibiotic-sensitive bacteria within a heterogeneous population including β-lactamase-producing bacteria.
Collapse
Affiliation(s)
- Jirapat Dawan
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Juhee Ahn
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
21
|
Xiao Y, Nie L, Chen H, He M, Liang Q, Nie H, Chen W, Huang Q. The two-component system TarR-TarS is regulated by c-di-GMP/FleQ and FliA and modulates antibiotic susceptibility in Pseudomonas putida. Environ Microbiol 2021; 23:5239-5257. [PMID: 33938113 DOI: 10.1111/1462-2920.15555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
Two-component systems (TCSs) are predominant means by which bacteria sense and respond to environment signals. Genome of Pseudomonas putida contains dozens of putative TCS-encoding genes, but phenotypical-genotypical correlation and transcriptional regulation of these genes are largely unknown. Herein, we characterized function and transcriptional regulation of a conserved P. putida TCS, named TarR-TarS. TarS (PP_0769) encodes a potential histidine kinase, and tarR (PP_0768) encodes a potential response regulator. Protein-protein interaction assay and phosphorylation assay confirmed that TarR-TarS was a functional TCS. Growth assay under antibiotics revealed that TarR-TarS positively regulated bacterial resistance to multiple antibiotics. Pull-down assay revealed that TarR directly interacted with PP_0800 (a hypothetical protein) and GroEL (the chaperonin). GroEL played a positive role in antibiotic resistance, while PP_0800 seemed to have no effect on antibiotic resistance. The regulator FleQ indirectly activated tarR-tarS transcription. However, the second messenger c-di-GMP antagonized FleQ activation to inhibit tarR-tarS transcription. The sigma factor FliA directly activated tarR-tarS transcription via a consensus motif. These findings reveal function and transcriptional regulation of TarR-TarS, and enrich knowledge regarding the relationship between c-di-GMP and antibiotic susceptibility in P. putida.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haozhe Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meina He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingyuan Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
22
|
Zoheir AE, Späth GP, Niemeyer CM, Rabe KS. Microfluidic Evolution-On-A-Chip Reveals New Mutations that Cause Antibiotic Resistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007166. [PMID: 33458946 DOI: 10.1002/smll.202007166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm states. The exposure of such populations to spatially organized stress gradients can promote their adaptation into complex phenotypes, which are otherwise difficult to achieve with conventional experimental setups. Here a microfluidic chip that employs precise chemical gradients in consecutive microcompartments to perform microbial adaptive laboratory evolution (ALE), a key tool to study evolution in fundamental and applied contexts is described. In the chip developed here, microbial cells can be exposed to a defined profile of stressors such as antibiotics. By modulating this profile, stress adaptation in the chip through resistance or persistence can be specifically controlled. Importantly, chip-based ALE leads to the discovery of previously unknown mutations in Escherichia coli that confer resistance to nalidixic acid. The microfluidic device presented here can enhance the occurrence of mutations employing defined micro-environmental conditions to generate data to better understand the parameters that influence the mechanisms of antibiotic resistance.
Collapse
Affiliation(s)
- Ahmed E Zoheir
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
- Department of Genetics and Cytology, National Research Centre (NRC), 33 El Buhouth St., Cairo, 12622, Egypt
| | - Georg P Späth
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
23
|
Wu F, Tan C. Dead bacterial absorption of antimicrobial peptides underlies collective tolerance. J R Soc Interface 2020; 16:20180701. [PMID: 30958185 DOI: 10.1098/rsif.2018.0701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The collective tolerance towards antimicrobial peptides (APs) is thought to occur primarily through mechanisms associated with live bacterial cells. In contrast to the focus on live cells, we discover that the LL37 antimicrobial peptide kills a subpopulation of Escherichia coli, forming dead cells that absorb the remaining LL37 from the environment. Combining mathematical modelling with population and single-cell experiments, we show that bacteria absorb LL37 at a timing that coincides with the permeabilization of their cytoplasmic membranes. Furthermore, we show that one bacterial strain can absorb LL37 and protect another strain from killing by LL37. Finally, we demonstrate that the absorption of LL37 by dead bacteria can be reduced using a peptide adjuvant. In contrast to the known collective tolerance mechanisms, we show that the absorption of APs by dead bacteria is a dynamic process that leads to emergent population behaviour.
Collapse
Affiliation(s)
- Fan Wu
- Department of Biomedical Engineering, University of California Davis , Davis, CA 95616 , USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis , Davis, CA 95616 , USA
| |
Collapse
|
24
|
Vollmer A, Al-Ahmad A, Argyropoulou A, Thurnheer T, Hellwig E, Attin T, Vach K, Wittmer A, Ferguson K, Skaltsounis AL, Karygianni L. Antimicrobial Photoinactivation Using Visible Light Plus Water-Filtered Infrared-A (VIS + wIRA) and Hypericum Perforatum Modifies In Situ Oral Biofilms. Sci Rep 2019; 9:20325. [PMID: 31889168 PMCID: PMC6937260 DOI: 10.1038/s41598-019-56925-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
Due to increasing antibiotic resistance, the application of antimicrobial photodynamic therapy (aPDT) is gaining increasing popularity in dentistry. The aim of this study was to investigate the antimicrobial effects of aPDT using visible light (VIS) and water-filtered infrared-A (wIRA) in combination with a Hypericum perforatum extract on in situ oral biofilms. The chemical composition of H. perforatum extract was analyzed using ultra-high-performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS). To obtain initial and mature oral biofilms in situ, intraoral devices with fixed bovine enamel slabs (BES) were carried by six healthy volunteers for two hours and three days, respectively. The ex situ exposure of biofilms to VIS + wIRA (200 mWcm-2) and H. perforatum (32 mg ml-1, non-rinsed or rinsed prior to aPDT after 2-min preincubation) lasted for five minutes. Biofilm treatment with 0.2% chlorhexidine gluconate solution (CHX) served as a positive control, while untreated biofilms served as a negative control. The colony-forming units (CFU) of the aPDT-treated biofilms were quantified, and the surviving microorganisms were identified using MALDI-TOF biochemical tests as well as 16 S rDNA-sequencing. We could show that the H. perforatum extract had significant photoactivation potential at a concentration of 32 mg ml-1. When aPDT was carried out in the presence of H. perforatum, all biofilms (100%) were completely eradicated (p = 0.0001). When H. perforatum was rinsed off prior to aPDT, more than 92% of the initial viable bacterial count and 13% of the mature oral biofilm were killed. Overall, the microbial composition in initial and mature biofilms was substantially altered after aPDT, inducing a shift in the synthesis of the microbial community. In conclusion, H. perforatum-mediated aPDT using VIS + wIRA interferes with oral biofilms, resulting in their elimination or the substantial alteration of microbial diversity and richness. The present results support the evaluation of H. perforatum-mediated aPDT for the adjunctive treatment of biofilm-associated oral diseases.
Collapse
Affiliation(s)
- Andreas Vollmer
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Aikaterini Argyropoulou
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Thurnheer
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Thomas Attin
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Kirstin Vach
- Institute for Medical Biometry and Statistics, Center for Medical Biometry and Medical Informatics, Albert-Ludwigs-University, Freiburg, Germany
| | - Annette Wittmer
- Institute of Medical Microbiology and Hygiene, Albert-Ludwigs-University, Freiburg, Germany
| | - Kerry Ferguson
- Botanical Innovation, Unit 2, 390 Clergate Road, Orange, NSW, 2800, Australia
| | - Alexios Leandros Skaltsounis
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Lamprini Karygianni
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
The effect of spatiotemporal antibiotic inhomogeneities on the evolution of resistance. J Theor Biol 2019; 486:110077. [PMID: 31715181 DOI: 10.1016/j.jtbi.2019.110077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/31/2019] [Accepted: 11/09/2019] [Indexed: 12/30/2022]
Abstract
Combating the evolution of widespread antibiotic resistance is one of the most pressing challenges facing modern medicine. Recent research has demonstrated that the evolution of pathogens with high levels of resistance can be accelerated by spatial and temporal inhomogeneities in antibiotic concentration, which frequently arise in patients and the environment. Strategies to predict and counteract the effects of such inhomogeneities will be critical in the fight against resistance. In this paper we develop a mechanistic framework for modelling the adaptive evolution of resistance in the presence of spatiotemporal antibiotic concentrations, which treats the adaptive process as an interaction between two mutually orthogonal forces; the first returns cells to their wild-type state in the absence of antibiotic selection, and the second selects for increased coping ability in the presence of an antibiotic. We apply our model to investigate laboratory adaptation experiments, and then extend it to consider the case in which multiple strategies for resistance undergo competitive evolution.
Collapse
|
26
|
Dheda K, Lenders L, Magombedze G, Srivastava S, Raj P, Arning E, Ashcraft P, Bottiglieri T, Wainwright H, Pennel T, Linegar A, Moodley L, Pooran A, Pasipanodya JG, Sirgel FA, van Helden PD, Wakeland E, Warren RM, Gumbo T. Drug-Penetration Gradients Associated with Acquired Drug Resistance in Patients with Tuberculosis. Am J Respir Crit Care Med 2019; 198:1208-1219. [PMID: 29877726 DOI: 10.1164/rccm.201711-2333oc] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Acquired resistance is an important driver of multidrug-resistant tuberculosis (TB), even with good treatment adherence. However, exactly what initiates the resistance and how it arises remain poorly understood. OBJECTIVES To identify the relationship between drug concentrations and drug susceptibility readouts (minimum inhibitory concentrations [MICs]) in the TB cavity. METHODS We recruited patients with medically incurable TB who were undergoing therapeutic lung resection while on treatment with a cocktail of second-line anti-TB drugs. On the day of surgery, antibiotic concentrations were measured in the blood and at seven prespecified biopsy sites within each cavity. Mycobacterium tuberculosis was grown from each biopsy site, MICs of each drug identified, and whole-genome sequencing performed. Spearman correlation coefficients between drug concentration and MIC were calculated. MEASUREMENTS AND MAIN RESULTS Fourteen patients treated for a median of 13 months (range, 5-31 mo) were recruited. MICs and drug resistance-associated single-nucleotide variants differed between the different geospatial locations within each cavity, and with pretreatment and serial sputum isolates, consistent with ongoing acquisition of resistance. However, pretreatment sputum MIC had an accuracy of only 49.48% in predicting cavitary MICs. There were large concentration-distance gradients for each antibiotic. The location-specific concentrations inversely correlated with MICs (P < 0.05) and therefore acquired resistance. Moreover, pharmacokinetic/pharmacodynamic exposures known to amplify drug-resistant subpopulations were encountered in all positions. CONCLUSIONS These data inform interventional strategies relevant to drug delivery, dosing, and diagnostics to prevent the development of acquired resistance. The role of high intracavitary penetration as a biomarker of antibiotic efficacy, when assessing new regimens, requires clarification.
Collapse
Affiliation(s)
- Keertan Dheda
- 1 Center for Lung Infection and Immunity, Division of Pulmonology and University of Cape Town Lung Institute, Department of Medicine.,2 Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Laura Lenders
- 1 Center for Lung Infection and Immunity, Division of Pulmonology and University of Cape Town Lung Institute, Department of Medicine
| | - Gesham Magombedze
- 3 Center for Infectious Diseases Research and Experimental Therapeutics and
| | | | - Prithvi Raj
- 4 Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Erland Arning
- 5 Institute of Metabolic Disease, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Paula Ashcraft
- 5 Institute of Metabolic Disease, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Teodoro Bottiglieri
- 5 Institute of Metabolic Disease, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | | | - Timothy Pennel
- 7 Chris Barnard Division of Cardiothoracic Surgery, Department of Surgery, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| | - Anthony Linegar
- 7 Chris Barnard Division of Cardiothoracic Surgery, Department of Surgery, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| | - Loven Moodley
- 7 Chris Barnard Division of Cardiothoracic Surgery, Department of Surgery, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| | - Anil Pooran
- 1 Center for Lung Infection and Immunity, Division of Pulmonology and University of Cape Town Lung Institute, Department of Medicine
| | | | - Frederick A Sirgel
- 8 Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research/Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | - Paul D van Helden
- 8 Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research/Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | - Edward Wakeland
- 4 Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robin M Warren
- 8 Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research/Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | - Tawanda Gumbo
- 1 Center for Lung Infection and Immunity, Division of Pulmonology and University of Cape Town Lung Institute, Department of Medicine.,3 Center for Infectious Diseases Research and Experimental Therapeutics and
| |
Collapse
|
27
|
Alcalde RE, Michelson K, Zhou L, Schmitz EV, Deng J, Sanford RA, Fouke BW, Werth CJ. Motility of Shewanella oneidensis MR-1 Allows for Nitrate Reduction in the Toxic Region of a Ciprofloxacin Concentration Gradient in a Microfluidic Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2778-2787. [PMID: 30673286 DOI: 10.1021/acs.est.8b04838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Subsurface environments often contain mixtures of contaminants in which the microbial degradation of one pollutant may be inhibited by the toxicity of another. Agricultural settings exemplify these complex environments, where antimicrobial leachates may inhibit nitrate bioreduction, and are the motivation to address this fundamental ecological response. In this study, a microfluidic reactor was fabricated to create diffusion-controlled concentration gradients of nitrate and ciprofloxacin under anoxic conditions in order to evaluate the ability of Shewanella oneidenisis MR-1 to reduce the former in the presence of the latter. Results show a surprising ecological response, where swimming motility allow S. oneidensis MR-1 to accumulate and maintain metabolic activity for nitrate reduction in regions with toxic ciprofloxacin concentrations (i.e., 50× minimum inhibitory concentration, MIC), despite the lack of observed antibiotic resistance. Controls with limited nutrient flux and a nonmotile mutant (Δ flag) show that cells cannot colonize antibiotic rich microenvironments, and this results in minimal metabolic activity for nitrate reduction. These results demonstrate that under anoxic, nitrate-reducing conditions, motility can control microbial habitability and metabolic activity in spatially heterogeneous toxic environments.
Collapse
Affiliation(s)
- Reinaldo E Alcalde
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 301 E. Dean Keeton Street , Austin , Texas 78712 , United States
| | - Kyle Michelson
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 301 E. Dean Keeton Street , Austin , Texas 78712 , United States
| | - Lang Zhou
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 301 E. Dean Keeton Street , Austin , Texas 78712 , United States
| | - Emily V Schmitz
- McKetta Department of Chemical Engineering , University of Texas at Austin , 200 E Dean Keeton St , Austin , Texas 78712 , United States
| | - Jinzi Deng
- Carl R. Woese Institute of Genomic Biology , University of Illinois Urbana-Champaign , 1206 W Gregory Dr , Urbana , Illinois 61801 United States
| | - Robert A Sanford
- Department of Geology , University of Illinois at Urbana-Champaign , 1301 West Green Street , Urbana , Illinois 61801 , United States
| | - Bruce W Fouke
- Carl R. Woese Institute of Genomic Biology , University of Illinois Urbana-Champaign , 1206 W Gregory Dr , Urbana , Illinois 61801 United States
- Department of Geology , University of Illinois at Urbana-Champaign , 1301 West Green Street , Urbana , Illinois 61801 , United States
- Department of Microbiology , University of Illinois at Urbana-Champaign , 601 South Goodwin Avenue , Urbana , Illinois 61801 , United States
| | - Charles J Werth
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 301 E. Dean Keeton Street , Austin , Texas 78712 , United States
| |
Collapse
|
28
|
Li SP, Tan J, Yang X, Ma C, Jiang L. Niche and fitness differences determine invasion success and impact in laboratory bacterial communities. THE ISME JOURNAL 2019; 13:402-412. [PMID: 30254322 PMCID: PMC6331569 DOI: 10.1038/s41396-018-0283-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 11/09/2022]
Abstract
There is increasing awareness of invasion in microbial communities worldwide, but the mechanisms behind microbial invasions remain poorly understood. Specifically, we know little about how the evolutionary and ecological differences between invaders and natives regulate invasion success and impact. Darwin's naturalization hypothesis suggests that the phylogenetic distance between invaders and natives could be a useful predictor of invasion, and modern coexistence theory proposes that invader-native niche and fitness differences combine to determine invasion outcome. However, the relative importance of phylogenetic distance, niche difference and fitness difference for microbial invasions has rarely been examined. By using laboratory bacterial microcosms as model systems, we experimentally assessed the roles of these differences for the success of bacterial invaders and their impact on native bacterial community structure. We found that the phylogenetic distance between invaders and natives failed to explain invasion success and impact for two of three invaders at the phylogenetic scale considered. Further, we found that invasion success was better explained by invader-native niche differences than relative fitness differences for all three invaders, whereas invasion impact was better explained by invader-native relative fitness differences than niche differences. These findings highlight the utility of considering modern coexistence theory to gain a more mechanistic understanding of microbial invasions.
Collapse
Affiliation(s)
- Shao-Peng Li
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jiaqi Tan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Xian Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chao Ma
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 230036, Hefei, Anhui, China.
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
29
|
Nagy K, Ábrahám Á, Keymer JE, Galajda P. Application of Microfluidics in Experimental Ecology: The Importance of Being Spatial. Front Microbiol 2018; 9:496. [PMID: 29616009 PMCID: PMC5870036 DOI: 10.3389/fmicb.2018.00496] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/02/2018] [Indexed: 12/21/2022] Open
Abstract
Microfluidics is an emerging technology that is used more and more in biology experiments. Its capabilities of creating precisely controlled conditions in cellular dimensions make it ideal to explore cell-cell and cell-environment interactions. Thus, a wide spectrum of problems in microbial ecology can be studied using engineered microbial habitats. Moreover, artificial microfluidic ecosystems can serve as model systems to test ecology theories and principles that apply on a higher level in the hierarchy of biological organization. In this mini review we aim to demonstrate the versatility of microfluidics and the diversity of its applications that help the advance of microbiology, and in more general, experimental ecology.
Collapse
Affiliation(s)
- Krisztina Nagy
- Biological Research Centre, Institute of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ágnes Ábrahám
- Biological Research Centre, Institute of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Science, University of Szeged, Szeged, Hungary
| | - Juan E. Keymer
- School of Biological Sciences and School of Physics, Pontifical Catholic University of Chile, Santiago, Chile
| | - Péter Galajda
- Biological Research Centre, Institute of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
30
|
Antibiotic Stimulation of a Bacillus subtilis Migratory Response. mSphere 2018; 3:mSphere00586-17. [PMID: 29507890 PMCID: PMC5821984 DOI: 10.1128/msphere.00586-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/31/2018] [Indexed: 11/20/2022] Open
Abstract
Competitive interactions between bacteria reveal physiological adaptations that benefit fitness. Bacillus subtilis is a Gram-positive species with several adaptive mechanisms for competition and environmental stress. Biofilm formation, sporulation, and motility are the outcomes of widespread changes in a population of B. subtilis. These changes emerge from complex, regulated pathways for adapting to external stresses, including competition from other species. To identify competition-specific functions, we cultured B. subtilis with multiple species of Streptomyces and observed altered patterns of growth for each organism. In particular, when plated on agar medium near Streptomyces venezuelae, B. subtilis initiates a robust and reproducible mobile response. To investigate the mechanistic basis for the interaction, we determined the type of motility used by B. subtilis and isolated inducing metabolites produced by S. venezuelae. Bacillus subtilis has three defined forms of motility: swimming, swarming, and sliding. Streptomyces venezuelae induced sliding motility specifically in our experiments. The inducing agents produced by S. venezuelae were identified as chloramphenicol and a brominated derivative at subinhibitory concentrations. Upon further characterization of the mobile response, our results demonstrated that subinhibitory concentrations of chloramphenicol, erythromycin, tetracycline, and spectinomycin all activate a sliding motility response by B. subtilis. Our data are consistent with sliding motility initiating under conditions of protein translation stress. This report underscores the importance of hormesis as an early warning system for potential bacterial competitors and antibiotic exposure. IMPORTANCE Antibiotic resistance is a major challenge for the effective treatment of infectious diseases. Identifying adaptive mechanisms that bacteria use to survive low levels of antibiotic stress is important for understanding pathways to antibiotic resistance. Furthermore, little is known about the effects of individual bacterial interactions on multispecies communities. This work demonstrates that subinhibitory amounts of some antibiotics produced by streptomycetes induce active motility in B. subtilis, which may alter species interaction dynamics among species-diverse bacterial communities in natural environments. The use of antibiotics at subinhibitory concentrations results in many changes in bacteria, including changes in biofilm formation, small-colony variants, formation of persisters, and motility. Identifying the mechanistic bases of these adaptations is crucial for understanding how bacterial communities are impacted by antibiotics.
Collapse
|
31
|
Multidrug-Resistant Salmonella enterica Serovar Typhimurium Isolates Are Resistant to Antibiotics That Influence Their Swimming and Swarming Motility. mSphere 2017; 2:mSphere00306-17. [PMID: 29104932 PMCID: PMC5663980 DOI: 10.1128/msphere.00306-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
Salmonella is one of the most common causes of bacterial foodborne infections in the United States, and the Centers for Disease Control consider multidrug-resistant (MDR) Salmonella a “Serious Threat Level pathogen.” Because MDR Salmonella can lead to more severe disease in patients than that caused by antibiotic-sensitive strains, it is important to identify the role that antibiotics may play in enhancing Salmonella virulence. The current study examined several MDR Salmonella isolates and determined the effect that various antibiotics had on Salmonella motility, an important virulence-associated factor. While most antibiotics had a neutral or negative effect on motility, we found that kanamycin actually enhanced MDR Salmonella swarming in some isolates. Subsequent experiments showed this phenotype as being dependent on a combination of several different genetic factors. Understanding the influence that antibiotics have on MDR Salmonella motility is critical to the proper selection and prudent use of antibiotics for efficacious treatment while minimizing potential collateral consequences. Motile bacteria employ one or more methods for movement, including darting, gliding, sliding, swarming, swimming, and twitching. Multidrug-resistant (MDR) Salmonella carries acquired genes that provide resistance to specific antibiotics, and the goal of our study was to determine how antibiotics influence swimming and swarming in such resistant Salmonella isolates. Differences in motility were examined for six MDR Salmonella enterica serovar Typhimurium isolates grown on swimming and swarming media containing subinhibitory concentrations of chloramphenicol, kanamycin, streptomycin, or tetracycline. Chloramphenicol and tetracycline reduced both swimming and swarming, though the effect was more pronounced for swimming than for swarming at the same antibiotic and concentration. Swimming was limited by kanamycin and streptomycin, but these antibiotics had much less influence on decreasing swarming. Interestingly, kanamycin significantly increased swarming in one of the isolates. Removal of the aphA1 kanamycin resistance gene and complementation with either the aphA1 or aphA2 kanamycin resistance gene revealed that aphA1, along with an unidentified Salmonella genetic factor, was required for the kanamycin-enhanced swarming phenotype. Screening of 25 additional kanamycin-resistant isolates identified two that also had significantly increased swarming motility in the presence of kanamycin. This study demonstrated that many variables influence how antibiotics impact swimming and swarming motility in MDR S. Typhimurium, including antibiotic type, antibiotic concentration, antibiotic resistance gene, and isolate-specific factors. Identifying these isolate-specific factors and how they interact will be important to better understand how antibiotics influence MDR Salmonella motility. IMPORTANCESalmonella is one of the most common causes of bacterial foodborne infections in the United States, and the Centers for Disease Control consider multidrug-resistant (MDR) Salmonella a “Serious Threat Level pathogen.” Because MDR Salmonella can lead to more severe disease in patients than that caused by antibiotic-sensitive strains, it is important to identify the role that antibiotics may play in enhancing Salmonella virulence. The current study examined several MDR Salmonella isolates and determined the effect that various antibiotics had on Salmonella motility, an important virulence-associated factor. While most antibiotics had a neutral or negative effect on motility, we found that kanamycin actually enhanced MDR Salmonella swarming in some isolates. Subsequent experiments showed this phenotype as being dependent on a combination of several different genetic factors. Understanding the influence that antibiotics have on MDR Salmonella motility is critical to the proper selection and prudent use of antibiotics for efficacious treatment while minimizing potential collateral consequences.
Collapse
|
32
|
Prevention of Surgical Site Infections and Biofilms: Pharmacokinetics of Subcutaneous Cefazolin and Metronidazole in a Tumescent Lidocaine Solution. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1351. [PMID: 28607871 PMCID: PMC5459654 DOI: 10.1097/gox.0000000000001351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 04/07/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Tumescent anesthesia antibiotic delivery (TAAD) consists of subcutaneous infiltration of antibiotic(s) dissolved tumescent lidocaine anesthesia. Tumescent lidocaine anesthesia contains lidocaine (≤ 1 g/L), epinephrine (≤ 1 mg/L), sodium bicarbonate (10 mEq/L) in 0.9% saline. Our aim was to measure cefazolin and metronidazole concentrations over time in subcutaneous tumescent interstitial fluid (TISF) after TAAD, in serum after TAAD and after intravenous antibiotic delivery (IVAD). We hypothesize that the pharmacokinetic/pharmacodynamic profiles of TAAD + IVAD are superior to IVAD alone for the prevention of surgical site infections and biofilms. METHODS Concentrations of cefazolin and metronidazole in TISF and serum following TAAD and in serum following IVAD were compared in 5 female volunteers. Subjects received cefazolin or cefazolin plus metronidazole by IVAD alone and by TAAD alone. One subject also received concomitant IVAD and TAAD of these 2 antibiotics. Sequential samples of serum or subcutaneous TISF were assayed for antibiotic concentration. RESULTS Cefazolin (1 g) by TAAD resulted in an area under the curve of the concentration-time profile and a maximum concentration (Cmax) in subcutaneous tissue that were 16.5 and 5.6 times greater than in serum following 1 g by IVAD. Metronidazole (500 mg) by TAAD resulted in an area under the curve and Cmax that were 8.1 and 24.7 times greater in TISF, than in serum after 500 mg by intravenous delivery. IVAD + TAAD resulted in superior antibiotic concentrations to IVAD alone. CONCLUSIONS TAAD + IVAD produced superior antibiotic bioavailability in both subcutaneous interstitial fluid and serum compared with IVAD alone. There was no evidence that TAAD of cefazolin and metronidazole poses a significant risk of harm to patients.
Collapse
|
33
|
Worrich A, König S, Banitz T, Centler F, Frank K, Thullner M, Harms H, Miltner A, Wick LY, Kästner M. Bacterial Dispersal Promotes Biodegradation in Heterogeneous Systems Exposed to Osmotic Stress. Front Microbiol 2016; 7:1214. [PMID: 27536297 PMCID: PMC4971104 DOI: 10.3389/fmicb.2016.01214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/21/2016] [Indexed: 11/13/2022] Open
Abstract
Contaminant biodegradation in soils is hampered by the heterogeneous distribution of degrading communities colonizing isolated microenvironments as a result of the soil architecture. Over the last years, soil salinization was recognized as an additional problem especially in arid and semiarid ecosystems as it drastically reduces the activity and motility of bacteria. Here, we studied the importance of different spatial processes for benzoate biodegradation at an environmentally relevant range of osmotic potentials (ΔΨo) using model ecosystems exhibiting a heterogeneous distribution of the soil-borne bacterium Pseudomonas putida KT2440. Three systematically manipulated scenarios allowed us to cover the effects of (i) substrate diffusion, (ii) substrate diffusion and autonomous bacterial dispersal, and (iii) substrate diffusion and autonomous as well as mediated bacterial dispersal along glass fiber networks mimicking fungal hyphae. To quantify the relative importance of the different spatial processes, we compared these heterogeneous scenarios to a reference value obtained for each ΔΨo by means of a quasi-optimal scenario in which degraders were ab initio homogeneously distributed. Substrate diffusion as the sole spatial process was insufficient to counteract the disadvantage due to spatial degrader heterogeneity at ΔΨo ranging from 0 to -1 MPa. In this scenario, only 13.8-21.3% of the quasi-optimal biodegradation performance could be achieved. In the same range of ΔΨo values, substrate diffusion in combination with bacterial dispersal allowed between 68.6 and 36.2% of the performance showing a clear downwards trend with decreasing ΔΨo. At -1.5 MPa, however, this scenario performed worse than the diffusion scenario, possibly as a result of energetic disadvantages associated with flagellum synthesis and emerging requirements to exceed a critical population density to resist osmotic stress. Network-mediated bacterial dispersal kept biodegradation almost consistently high with an average of 70.7 ± 7.8%, regardless of the strength of the osmotic stress. We propose that especially fungal network-mediated bacterial dispersal is a key process to achieve high functionality of heterogeneous microbial ecosystems also at reduced osmotic potentials. Thus, mechanical stress by, for example, soil homogenization should be kept low in order to preserve fungal network integrity.
Collapse
Affiliation(s)
- Anja Worrich
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental MicrobiologyLeipzig, Germany; UFZ - Helmholtz Centre for Environmental Research, Department of Environmental BiotechnologyLeipzig, Germany
| | - Sara König
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental MicrobiologyLeipzig, Germany; UFZ - Helmholtz Centre for Environmental Research, Department of Ecological ModellingLeipzig, Germany
| | - Thomas Banitz
- UFZ - Helmholtz Centre for Environmental Research, Department of Ecological Modelling Leipzig, Germany
| | - Florian Centler
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology Leipzig, Germany
| | - Karin Frank
- UFZ - Helmholtz Centre for Environmental Research, Department of Ecological ModellingLeipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany; Institute for Environmental Systems Research, University of OsnabrückOsnabrück, Germany
| | - Martin Thullner
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology Leipzig, Germany
| | - Hauke Harms
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental MicrobiologyLeipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany
| | - Anja Miltner
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology Leipzig, Germany
| | - Lukas Y Wick
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology Leipzig, Germany
| | - Matthias Kästner
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology Leipzig, Germany
| |
Collapse
|
34
|
Ben-Jacob E, Finkelshtein A, Ariel G, Ingham C. Multispecies Swarms of Social Microorganisms as Moving Ecosystems. Trends Microbiol 2016; 24:257-269. [DOI: 10.1016/j.tim.2015.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
|
35
|
Hol FJH, Rotem O, Jurkevitch E, Dekker C, Koster DA. Bacterial predator-prey dynamics in microscale patchy landscapes. Proc Biol Sci 2016; 283:20152154. [PMID: 26865299 PMCID: PMC4760159 DOI: 10.1098/rspb.2015.2154] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/18/2016] [Indexed: 01/22/2023] Open
Abstract
Soil is a microenvironment with a fragmented (patchy) spatial structure in which many bacterial species interact. Here, we explore the interaction between the predatory bacterium Bdellovibrio bacteriovorus and its prey Escherichia coli in microfabricated landscapes. We ask how fragmentation influences the prey dynamics at the microscale and compare two landscape geometries: a patchy landscape and a continuous landscape. By following the dynamics of prey populations with high spatial and temporal resolution for many generations, we found that the variation in predation rates was twice as large in the patchy landscape and the dynamics was correlated over shorter length scales. We also found that while the prey population in the continuous landscape was almost entirely driven to extinction, a significant part of the prey population in the fragmented landscape persisted over time. We observed significant surface-associated growth, especially in the fragmented landscape and we surmise that this sub-population is more resistant to predation. Our results thus show that microscale fragmentation can significantly influence bacterial interactions.
Collapse
Affiliation(s)
- Felix J H Hol
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Or Rotem
- Department of Agroecology and Plant Health, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Edouard Jurkevitch
- Department of Agroecology and Plant Health, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Daniel A Koster
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|
36
|
Wu F, Dekker C. Nanofabricated structures and microfluidic devices for bacteria: from techniques to biology. Chem Soc Rev 2015; 45:268-80. [PMID: 26383019 DOI: 10.1039/c5cs00514k] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanofabricated structures and microfluidic technologies are increasingly being used to study bacteria because of their precise spatial and temporal control. They have facilitated studying many long-standing questions regarding growth, chemotaxis and cell-fate switching, and opened up new areas such as probing the effect of boundary geometries on the subcellular structure and social behavior of bacteria. We review the use of nano/microfabricated structures that spatially separate bacteria for quantitative analyses and that provide topological constraints on their growth and chemical communications. These approaches are becoming modular and broadly applicable, and show a strong potential for dissecting the complex life of bacteria at various scales and engineering synthetic microbial societies.
Collapse
Affiliation(s)
- Fabai Wu
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands.
| | | |
Collapse
|