1
|
Kim H, Bell T, Lee K, Jeong J, Bardwell JCA, Lee C. Identification of host genetic factors modulating β-lactam resistance in Escherichia coli harbouring plasmid-borne β-lactamase through transposon-sequencing. Emerg Microbes Infect 2025; 14:2493921. [PMID: 40231449 PMCID: PMC12024506 DOI: 10.1080/22221751.2025.2493921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Since β-lactam antibiotics are widely used, emergence of bacteria with resistance to them poses a significant threat to society. In particular, acquisition of genes encoding β-lactamase, an enzyme that degrades β-lactam antibiotics, has been a major contributing factor in the emergence of bacteria that are resistant to β-lactam antibiotics. However, relatively few genetic targets for killing these resistant bacteria have been identified to date. Here, we used a systematic approach called transposon-sequencing (Tn-Seq), to screen the Escherichia coli genome for host genetic factors that, when mutated, affect resistance to ampicillin, one of the β-lactam antibiotics, in a strain carrying a plasmid that encodes β-lactamase. This approach enabled not just the isolation of genes previously known to affect β-lactam resistance, but the additional loci skp, gshA, phoPQ and ypfN. Individual mutations in these genes modestly but consistently affected antibiotic resistance. We have identified that these genes are not only implicated in β-lactam resistance by itself but also play a crucial role in conditions associated with the expression of β-lactamase. GshA and phoPQ appear to contribute to β-lactam resistance by regulating membrane integrity. Notably, the overexpression of the uncharacterized membrane-associated protein, ypfN, has been shown to significantly enhance β-lactam resistance. We applied the genes identified from the screening into Salmonella Typhimurium and Pseudomonas aeruginosa strains, both critical human pathogens with antibiotic resistance, and observed their significant impact on β-lactam resistance. Therefore, these genes can potentially be utilized as therapeutic targets to control the survival of β-lactamase-producing bacteria.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, South Korea
- Research Institute of Basic Sciences, Ajou University, Suwon, South Korea
| | - Travis Bell
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jeongyun Jeong
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - James C. A. Bardwell
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| |
Collapse
|
2
|
Brepoels P, De Wit G, Lories B, Belpaire TER, Steenackers HP. Selective pressures for public antibiotic resistance. Crit Rev Microbiol 2025; 51:417-426. [PMID: 39158370 DOI: 10.1080/1040841x.2024.2367666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/25/2024] [Indexed: 08/20/2024]
Abstract
The rapid increase of antibiotic-resistant pathogens is severely limiting our current treatment possibilities. An important subset of the resistance mechanisms conferring antibiotic resistance have public effects, allowing otherwise susceptible bacteria to also survive antibiotic treatment. As susceptible bacteria can survive treatment without bearing the metabolic cost of producing the resistance mechanism, there is potential to increase their relative frequency in the population and, as such, select against resistant bacteria. Multiple studies showed that this altered selection for resistance is dependent on various environmental and treatment parameters. In this review, we provide a comprehensive overview of their most important findings and describe the main factors impacting the selection for resistance. In-depth understanding of the driving forces behind selection can aid in the design and implementation of alternative treatments which limit the risk of resistance development.
Collapse
Affiliation(s)
- Pauline Brepoels
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Gitta De Wit
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bram Lories
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Tom E R Belpaire
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
3
|
Savelieva JR, Kondratieva DA, Golikova MV. Intra- and Interspecies Conjugal Transfer of Plasmids in Gram-Negative Bacteria. Biomedicines 2025; 13:238. [PMID: 39857821 PMCID: PMC11760439 DOI: 10.3390/biomedicines13010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Plasmid-mediated resistance is a significant mechanism that contributes to the gradual decrease in the efficacy of antibiotics from various classes, including carbapenems. The aim of this study is to investigate the frequency of transfer of carbapenemase-encoding plasmids from K. pneumoniae to E. coli and P. aeruginosa. Methods: Matings were performed on agar with subsequent isolation of transconjugant, recipient, and donor colonies. The frequency of conjugation (CF) and minimum inhibitory concentrations (MICs) of meropenem were determined for the PCR-confirmed transconjugants. A pharmacodynamic study was conducted using a hollow-fiber infection model on E. coli transconjugant in order to evaluate its viability in the presence of therapeutic concentrations of meropenem. Results: CF for K. pneumoniae-K. pneumoniae was similar to that for K. pneumoniae-E. coli and was higher the higher was meropenem MIC of the K. pneumoniae donor. The meropenem MICs for K. pneumoniae and E. coli transconjugants were higher (0.25-4 μg/mL) compared to recipients (0.03-0.06 μg/mL). P. aeruginosa did not acquire plasmids from K. pneumoniae. In pharmacodynamic experiments, an E. coli transconjugant with MIC of 2 mg/L within the "susceptibility range", failed to respond to meropenem treatment. Conclusions: The frequency of conjugation between K. pneumoniae and E. coli falls within a similar range. A higher permissiveness of K. pneumoniae for plasmids from K. pneumoniae, i.e., within the same species, was observed. Conjugation did not occur between K. pneumoniae and P. aeruginosa. The transconjugants with meropenem MICs with borderline susceptibility may pose a potential threat to the efficacy of meropenem.
Collapse
Affiliation(s)
| | | | - Maria V. Golikova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, 119021 Moscow, Russia; (J.R.S.); (D.A.K.)
| |
Collapse
|
4
|
Bustamante M, Mei S, Daras IM, van Doorn G, Falcao Salles J, de Vos MG. An eco-evolutionary perspective on antimicrobial resistance in the context of One Health. iScience 2025; 28:111534. [PMID: 39801834 PMCID: PMC11719859 DOI: 10.1016/j.isci.2024.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The One Health approach musters growing concerns about antimicrobial resistance due to the increased use of antibiotics in healthcare and agriculture, with all of its consequences for human, livestock, and environmental health. In this perspective, we explore the current knowledge on how interactions at different levels of biological organization, from genetic to ecological interactions, affect the evolution of antimicrobial resistance. We discuss their role in different contexts, from natural systems with weak selection, to human-influenced environments that impose a strong pressure toward antimicrobial resistance evolution. We emphasize the need for an eco-evolutionary approach within the One Health framework and highlight the importance of horizontal gene transfer and microbiome interactions for increased understanding of the emergence and spread of antimicrobial resistance.
Collapse
Affiliation(s)
| | - Siyu Mei
- University of Groningen – GELIFES, Groningen, the Netherlands
| | - Ines M. Daras
- University of Groningen – GELIFES, Groningen, the Netherlands
| | - G.S. van Doorn
- University of Groningen – GELIFES, Groningen, the Netherlands
| | | | | |
Collapse
|
5
|
Jin X, Riedel-Kruse IH. Optogenetic patterning generates multi-strain biofilms with spatially distributed antibiotic resistance. Nat Commun 2024; 15:9443. [PMID: 39487123 PMCID: PMC11530673 DOI: 10.1038/s41467-024-53546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Spatial organization of microbes in biofilms enables crucial community function such as division of labor. However, quantitative understanding of such emergent community properties remains limited due to a scarcity of tools for patterning heterogeneous biofilms. Here we develop a synthetic optogenetic toolkit 'Multipattern Biofilm Lithography' for rational engineering and orthogonal patterning of multi-strain biofilms, inspired by successive adhesion and phenotypic differentiation in natural biofilms. We apply this toolkit to profile the growth dynamics of heterogeneous biofilm communities, and observe the emergence of spatially modulated commensal relationships due to shared antibiotic protection against the beta-lactam ampicillin. Supported by biophysical modeling, these results yield in-vivo measurements of key parameters, e.g., molecular beta-lactamase production per cell and length scale of antibiotic zone of protection. Our toolbox and associated findings provide quantitative insights into the spatial organization and distributed antibiotic protection within biofilms, with direct implications for future biofilm research and engineering.
Collapse
Affiliation(s)
- Xiaofan Jin
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Biomedical Engineering, University of Calgary, Calgary, Canada.
| | - Ingmar H Riedel-Kruse
- Department of Molecular and Cellular Biology (and by courtesy) Applied Mathematics, Biomedical Engineering, and Physics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
6
|
Tan JC, Hu Q, Scrutton NS. A growth-coupling strategy for improving the stability of terpenoid bioproduction in Escherichia coli. Microb Cell Fact 2024; 23:279. [PMID: 39415159 PMCID: PMC11481808 DOI: 10.1186/s12934-024-02548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Achieving cost-competitiveness remains challenging for industrial biomanufacturing. With whole-cell biocatalysis, inefficiency presents when individual cells vary in their production levels. The problem exacerbates when the basis for such production heterogeneity is heritable. Here, evolution selects for the low- and non-producers, as they have lowered/abolished the cost of bioproduction to fitness. With the scale of population expansion required for industrial bioproduction, the asymmetrical enrichment can be severe enough to compromise the performance, and hence commercial viability of the bioprocess. Clearly, addressing production heterogeneity is crucial, especially in improving the stability of bioproduction across the cell generations. In this respect, we designed a growth-coupling strategy for terpenoid bioproduction in Escherichia coli. By knocking out the native 1-deoxy-D-xylulose 5-phosphate reductoisomerase (dxr) gene and introducing the heterologous mevalonate pathway, we created a chassis that relies solely on the latter for synthesis of all terpenoids. We hypothesise that the need to sustain the biosynthesis of endogenous life-sustaining terpenoids will impose a minimum level of productivity, which concomitantly improves the bioproduction of our target terpenoid. RESULTS Following the confirmation of lethality of a dxr knockout, we challenged the strains with a continuous plasmid-based bioproduction of linalool. The Δdxr strain achieved an improved productivity profile in the first three days post-inoculation when compared to the parental strain. Productivity of the Δdxr strain remained observable near the end of 12 days, and after a disruption in nutrient and oxygen supply in a separate run. Unlike the parental strain, the Δdxr strain did not evolve the same deleterious mutations in the mevalonate pathway, nor a viable subgroup that had lost its resistance to the antibiotic selection pressure (a plausible plasmid loss event). We believe that this divergence in the evolution trajectories is indicative of a successful growth-coupling. CONCLUSION We have demonstrated a proof of concept of a growth-coupling strategy that improves the performance, and stability of terpenoid bioproduction across cell generations. The strategy is relatively broad in scope, and easy to implement in the background as a 'fail-safe' against a fall in productivity below the imposed minimum. We thus believe this work will find widespread utility in our collective effort towards industrial bioproduction.
Collapse
Affiliation(s)
- Jing Chong Tan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Qitiao Hu
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
7
|
Şimşek E, Kim K, Lu J, Silver A, Luo N, Lee CT, You L. A 'rich-get-richer' mechanism drives patchy dynamics and resistance evolution in antibiotic-treated bacteria. Mol Syst Biol 2024; 20:880-897. [PMID: 38877321 PMCID: PMC11297297 DOI: 10.1038/s44320-024-00046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024] Open
Abstract
Bacteria in nature often form surface-attached communities that initially comprise distinct subpopulations, or patches. For pathogens, these patches can form at infection sites, persist during antibiotic treatment, and develop into mature biofilms. Evidence suggests that patches can emerge due to heterogeneity in the growth environment and bacterial seeding, as well as cell-cell signaling. However, it is unclear how these factors contribute to patch formation and how patch formation might affect bacterial survival and evolution. Here, we demonstrate that a 'rich-get-richer' mechanism drives patch formation in bacteria exhibiting collective survival (CS) during antibiotic treatment. Modeling predicts that the seeding heterogeneity of these bacteria is amplified by local CS and global resource competition, leading to patch formation. Increasing the dose of a non-eradicating antibiotic treatment increases the degree of patchiness. Experimentally, we first demonstrated the mechanism using engineered Escherichia coli and then demonstrated its applicability to a pathogen, Pseudomonas aeruginosa. We further showed that the formation of P. aeruginosa patches promoted the evolution of antibiotic resistance. Our work provides new insights into population dynamics and resistance evolution during surface-attached bacterial growth.
Collapse
Affiliation(s)
- Emrah Şimşek
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
| | - Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
| | - Jia Lu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
| | - Anita Silver
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
| | - Nan Luo
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Charlotte T Lee
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27708, USA.
| |
Collapse
|
8
|
Bedore AM, Waters CM. Plasmid-free cheater cells commonly evolve during laboratory growth. Appl Environ Microbiol 2024; 90:e0231123. [PMID: 38446071 PMCID: PMC11022567 DOI: 10.1128/aem.02311-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
It has been nearly a century since the isolation and use of penicillin, heralding the discovery of a wide range of different antibiotics. In addition to clinical applications, such antibiotics have been essential laboratory tools, allowing for selection and maintenance of laboratory plasmids that encode cognate resistance genes. However, antibiotic resistance mechanisms can additionally function as public goods. For example, extracellular beta-lactamases produced by resistant cells that subsequently degrade penicillin and related antibiotics allow neighboring plasmid-free susceptible bacteria to survive antibiotic treatment. How such cooperative mechanisms impact selection of plasmids during experiments in laboratory conditions is poorly understood. Here, we show in multiple bacterial species that the use of plasmid-encoded beta-lactamases leads to significant curing of plasmids in surface-grown bacteria. Furthermore, such curing was also evident for aminoglycoside phosphotransferase and tetracycline antiporter resistance mechanisms. Alternatively, antibiotic selection in liquid growth led to more robust plasmid maintenance, although plasmid loss was still observed. The net outcome of such plasmid loss is the generation of a heterogenous population of plasmid-containing and plasmid-free cells, leading to experimental confounds that are not widely appreciated.IMPORTANCEPlasmids are routinely used in microbiology as readouts of cell biology or tools to manipulate cell function. Central to these studies is the assumption that all cells in an experiment contain the plasmid. Plasmid maintenance in a host cell typically depends on a plasmid-encoded antibiotic resistance marker, which provides a selective advantage when the plasmid-containing cell is grown in the presence of antibiotic. Here, we find that growth of plasmid-containing bacteria on a surface and to a lesser extent in liquid culture in the presence of three distinct antibiotic families leads to the evolution of a significant number of plasmid-free cells, which rely on the resistance mechanisms of the plasmid-containing cells. This process generates a heterogenous population of plasmid-free and plasmid-containing bacteria, an outcome which could confound further experimentation.
Collapse
Affiliation(s)
- Amber M. Bedore
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Jeong Y, Ahmad S, Irudayaraj J. Dynamic Effect of β-Lactam Antibiotic Inactivation Due to the Inter- and Intraspecies Interaction of Drug-Resistant Microbes. ACS Biomater Sci Eng 2024; 10:1461-1472. [PMID: 38315631 PMCID: PMC10936524 DOI: 10.1021/acsbiomaterials.3c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The presence of β-lactamase positive microorganisms imparts a pharmacological effect on a variety of organisms that can impact drug efficacy by influencing the function or composition of bacteria. Although studies to assess dynamic intra- and interspecies communication with bacterial communities exist, the efficacy of drug treatment and quantitative assessment of multiorganism response is not well understood due to the lack of technological advances that can be used to study coculture interactions in a dynamic format. In this study, we investigate how β-lactamase positive microorganisms can neutralize the effect of β-lactam antibiotics in a dynamic format at the inter- and intraspecies level using microbial bead technology. Three interactive models for the biological compartmentalization of organisms were demonstrated to evaluate the effect of β-lactam antibiotics on coculture systems. Our model at the intraspecies level attempts to mimic the biofilm matrix more closely as a community-level feature of microorganisms, which acknowledges the impact of nondrug-resistant species in shaping the dynamic response. In particular, the results of intraspecies studies are highly supportive of the biofilm mode of bacterial growth, which can provide structural support and protect the bacteria from an assault on host or environmental factors. Our findings also indicate that β-lactamase positive bacteria can neutralize the cytotoxic effect of β-lactam antibiotics at the interspecies level when cocultured with cancer cells. Results were validated using β-lactamase positive bacteria isolated from environmental niches, which can trigger phenotypical alteration of β-lactams when cocultured with other organisms. Our compartmentalization strategy acts as an independent ecosystem and provides a new avenue for multiscale studies to assess intra- and interspecies interactions.
Collapse
Affiliation(s)
- Yoon Jeong
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Saeed Ahmad
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Carle
R. Woese Institute for Genomic Biology, Beckman Institute, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Zhao X, Ruelens P, Farr AD, de Visser JAGM, Baraban L. Population dynamics of cross-protection against β-lactam antibiotics in droplet microreactors. Front Microbiol 2023; 14:1294790. [PMID: 38192289 PMCID: PMC10773670 DOI: 10.3389/fmicb.2023.1294790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction Bacterial strains that are resistant to antibiotics may protect not only themselves, but also sensitive bacteria nearby if resistance involves antibiotic degradation. Such cross-protection poses a challenge to effective antibiotic therapy by enhancing the long-term survival of bacterial infections, however, the current understanding is limited. Methods In this study, we utilize an automated nanoliter droplet analyzer to study the interactions between Escherichia coli strains expressing a β-lactamase (resistant) and those not expressing it (sensitive) when exposed to the β-lactam antibiotic cefotaxime (CTX), with the aim to define criteria contributing to cross-protection. Results We observed a cross-protection window of CTX concentrations for the sensitive strain, extending up to approximately 100 times its minimal inhibitory concentration (MIC). Through both microscopy and enzyme activity analyses, we demonstrate that bacterial filaments, triggered by antibiotic stress, contribute to cross-protection. Discussion The antibiotic concentration window for cross-protection depends on the difference in β-lactamase activity between co-cultured strains: larger differences shift the 'cross-protection window' toward higher CTX concentrations. Our findings highlight the dependence of opportunities for cross-protection on the relative resistance levels of the strains involved and suggest a possible specific role for filamentation.
Collapse
Affiliation(s)
- Xinne Zhao
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Dresden, Germany
| | - Philip Ruelens
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Netherlands
| | - Andrew D. Farr
- Laboratory of Genetics, Wageningen University and Research, Wageningen, Netherlands
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Dresden, Germany
| |
Collapse
|
11
|
Miranda SW, Greenberg EP. A balancing act: investigations on the impact of altered signal sensitivity in bacterial quorum sensing. J Bacteriol 2023; 205:e0024923. [PMID: 38009926 PMCID: PMC10729764 DOI: 10.1128/jb.00249-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Quorum sensing (QS) is a widespread form of cell-cell signaling that regulates group behaviors important for competition and cooperation within bacterial communities. The QS systems from different bacterial species have diverse properties, but the functional consequences of this diversity are largely unknown. Taking advantage of hyper- and hypo-sensitive QS receptor variants in the opportunistic pathogen Pseudomonas aeruginosa, we examine the costs and benefits of altered signal sensitivity. We find that the sensitivity of a model QS receptor, LasR, impacts the timing and level of quorum gene expression, and fitness during intra- and interspecies competition. These findings suggest competition with kin and with other bacterial species work together to tune signal sensitivity.
Collapse
Affiliation(s)
| | - E. Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Irby I, Brown SP. The social lives of viruses and other mobile genetic elements: a commentary on Leeks et al. 2023. J Evol Biol 2023; 36:1582-1586. [PMID: 37975503 PMCID: PMC10805371 DOI: 10.1111/jeb.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023]
Abstract
Illustration of life-histories of phages and plasmids through horizontal and vertical transmission (see Figure 1 for more information).
Collapse
Affiliation(s)
- Iris Irby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
13
|
Pathak A, Angst DC, León-Sampedro R, Hall AR. Antibiotic-degrading resistance changes bacterial community structure via species-specific responses. THE ISME JOURNAL 2023; 17:1495-1503. [PMID: 37380830 PMCID: PMC10432403 DOI: 10.1038/s41396-023-01465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Some bacterial resistance mechanisms degrade antibiotics, potentially protecting neighbouring susceptible cells from antibiotic exposure. We do not yet understand how such effects influence bacterial communities of more than two species, which are typical in nature. Here, we used experimental multispecies communities to test the effects of clinically important pOXA-48-plasmid-encoded resistance on community-level responses to antibiotics. We found that resistance in one community member reduced antibiotic inhibition of other species, but some benefitted more than others. Further experiments with supernatants and pure-culture growth assays showed the susceptible species profiting most from detoxification were those that grew best at degraded antibiotic concentrations (greater than zero, but lower than the starting concentration). This pattern was also observed on agar surfaces, and the same species also showed relatively high survival compared to most other species during the initial high-antibiotic phase. By contrast, we found no evidence of a role for higher-order interactions or horizontal plasmid transfer in community-level responses to detoxification in our experimental communities. Our findings suggest carriage of an antibiotic-degrading resistance mechanism by one species can drastically alter community-level responses to antibiotics, and the identities of the species that profit most from antibiotic detoxification are predicted by their intrinsic ability to survive and grow at changing antibiotic concentrations.
Collapse
Affiliation(s)
- Ayush Pathak
- Institute of Integrative Biology, Department of Environmental Systems Science (D-USYS), ETH Zurich, Zurich, Switzerland.
| | - Daniel C Angst
- Institute of Integrative Biology, Department of Environmental Systems Science (D-USYS), ETH Zurich, Zurich, Switzerland
| | - Ricardo León-Sampedro
- Institute of Integrative Biology, Department of Environmental Systems Science (D-USYS), ETH Zurich, Zurich, Switzerland
| | - Alex R Hall
- Institute of Integrative Biology, Department of Environmental Systems Science (D-USYS), ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Aguilar-Salinas B, Olmedo-Álvarez G. A three-species synthetic community model whose rapid response to antagonism allows the study of higher-order dynamics and emergent properties in minutes. Front Microbiol 2023; 14:1057883. [PMID: 37333661 PMCID: PMC10272403 DOI: 10.3389/fmicb.2023.1057883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Microbial communities can be considered complex adaptive systems. Understanding how these systems arise from different components and how the dynamics of microbial interactions allow for species coexistence are fundamental questions in ecology. To address these questions, we built a three-species synthetic community, called BARS (Bacillota A + S + R). Each species in this community exhibits one of three ecological roles: Antagonistic, Sensitive, or Resistant, assigned in the context of a sediment community. We show that the BARS community reproduces features of complex communities and exhibits higher-order interaction (HOI) dynamics. In paired interactions, the majority of the S species (Sutcliffiella horikoshii 20a) population dies within 5 min when paired with the A species (Bacillus pumilus 145). However, an emergent property appears upon adding the third interactor, as antagonism of species A over S is not observed in the presence of the R species (Bacillus cereus 111). For the paired interaction, within the first 5 min, the surviving population of the S species acquires tolerance to species A, and species A ceases antagonism. This qualitative change reflects endogenous dynamics leading to the expression for tolerance to an antagonistic substance. The stability reached in the triple interaction exhibits a nonlinear response, highly sensitive to the density of the R species. In summary, our HOI model allows the study of the assembly dynamics of a three-species community and evaluating the immediate outcome within a 30 min frame. The BARS has features of a complex system where the paired interactions do not predict the community dynamics. The model is amenable to mechanistic dissection and to modeling how the parts integrate to achieve collective properties.
Collapse
|
15
|
Wang Q, Wei S, Silva AF, Madsen JS. Cooperative antibiotic resistance facilitates horizontal gene transfer. THE ISME JOURNAL 2023; 17:846-854. [PMID: 36949153 PMCID: PMC10203111 DOI: 10.1038/s41396-023-01393-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
The rise of β-lactam resistance among pathogenic bacteria, due to the horizontal transfer of plasmid-encoded β-lactamases, is a current global health crisis. Importantly, β-lactam hydrolyzation by β-lactamases, not only protects the producing cells but also sensitive neighboring cells cooperatively. Yet, how such cooperative traits affect plasmid transmission and maintenance is currently poorly understood. Here we experimentally show that KPC-2 β-lactamase expression and extracellular activity were higher when encoded on plasmids compared with the chromosome, resulting in the elevated rescue of sensitive non-producers. This facilitated efficient plasmid transfer to the rescued non-producers and expanded the potential plasmid recipient pool and the probability of plasmid transfer to new genotypes. Social conversion of non-producers by conjugation was efficient yet not absolute. Non-cooperative plasmids, not encoding KPC-2, were moderately more competitive than cooperative plasmids when β-lactam antibiotics were absent. However, in the presence of a β-lactam antibiotic, strains with non-cooperative plasmids were efficiently outcompeted. Moreover, plasmid-free non-producers were more competitive than non-producers imposed with the metabolic burden of a plasmid. Our results suggest that cooperative antibiotic resistance especially promotes the fitness of replicons that transfer horizontally such as conjugative plasmids.
Collapse
Affiliation(s)
- Qinqin Wang
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Shaodong Wei
- National Food Institute, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ana Filipa Silva
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | | |
Collapse
|
16
|
Fang P, Elena AX, Kunath MA, Berendonk TU, Klümper U. Reduced selection for antibiotic resistance in community context is maintained despite pressure by additional antibiotics. ISME COMMUNICATIONS 2023; 3:52. [PMID: 37258727 PMCID: PMC10232432 DOI: 10.1038/s43705-023-00262-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Selection for antibiotic resistance at very low antibiotic concentrations has been demonstrated for individual antibiotics in single species experiments. Furthermore, selection in these focal strains is reduced when taking place in complex microbial community context. However, in the environment, bacteria are rarely exposed to single, but rather complex mixtures of selective agents. Here, we explored how the presence of a second selective agent affects selection dynamics between isogenic pairs of focal E. coli strains, differing exclusively in a single resistance determinant, in the absence and presence of a model wastewater community across a gradient of antibiotics. An additional antibiotic that exclusively affects the model wastewater community, but to which the focal strains are resistant to, was chosen as the second selective agent. This allowed exploring how inhibition alters the community's ability to reduce selection. In the presence of the community, the selection coefficient at specific antibiotic concentrations was consistently decreased compared to the absence of the community. While pressure through the second antibiotic significantly decreased the activity and diversity of the community, its ability to reduce selection was consistently maintained at levels comparable to those recorded in absence of the second antibiotic. This indicates that the observed effects of community context on selection dynamics are rather based on competitive or protective effects between the focal strains and a small proportion of bacteria within the community, than on general competition for nutrients. These findings have implications for our understanding of the evolution and selection for multi-drug resistant strains.
Collapse
Affiliation(s)
- Peiju Fang
- Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, Dresden, Germany
| | - Alan Xavier Elena
- Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, Dresden, Germany
| | - Maxi Antonia Kunath
- Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, Dresden, Germany
| | - Thomas U Berendonk
- Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, Dresden, Germany
| | - Uli Klümper
- Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, Dresden, Germany.
| |
Collapse
|
17
|
Bedore AM, Waters CM. Plasmid-free cheater cells commonly evolve during laboratory growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541508. [PMID: 37292590 PMCID: PMC10245762 DOI: 10.1101/2023.05.19.541508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It has been nearly a century since the isolation and use of penicillin, heralding the discovery of a wide range of different antibiotics. In addition to clinical applications, such antibiotics have been essential laboratory tools, allowing for selection and maintenance of laboratory plasmids that encode cognate resistance genes. However, antibiotic resistance mechanisms can additionally function as public goods. For example, secretion of beta-lactamase from resistant cells, and subsequent degradation of nearby penicillin and related antibiotics, allows neighboring plasmid-free susceptible bacteria to survive antibiotic treatment. How such cooperative mechanisms impact selection of plasmids during experiments in laboratory conditions is poorly understood. Here, we show that the use of plasmid-encoded beta-lactamases leads to significant curing of plasmids in surface grown bacteria. Furthermore, such curing was also evident for aminoglycoside phosphotransferase and tetracycline antiporter resistance mechanisms. Alternatively, antibiotic selection in liquid growth led to more robust plasmid maintenance, although plasmid loss still occurred. The net outcome of such plasmid loss is the generation of a heterogenous population of plasmid-containing and plasmid-free cells, leading to experimental confounds that are not widely appreciated.
Collapse
Affiliation(s)
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA, 48824
| |
Collapse
|
18
|
Xue X, Li X, Liu J, Zhu L, Zhou L, Jia J, Wang Z. Field-realistic dose of cefotaxime enhances potential mobility of β-lactam resistance genes in the gut microbiota of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106459. [PMID: 36857871 DOI: 10.1016/j.aquatox.2023.106459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/17/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
With large amounts of cephalosporin end up in natural ecosystems, water has been acknowledged as the large reservoir of β-lactam resistance over the past decades. However, there is still insufficient knowledge available on the function of the living organisms to the transmission of antibiotic resistance. For this reason, in this study, using adult zebrafish (Danio rerio) as animal model, exposing them to environmentally relevant dose of cefotaxime for 150 days, we asked whether cefotaxime contamination accelerated β-lactam resistance in gut microbiota as well as its potential transmission. Results showed that some of β-lactam resistance genes (βRGs) were intrinsic embedded in intestinal microbiome of zebrafish even without antibiotic stressor. Across cefotaxime treatment, the abundance of most βRGs in fish gut microbiome decreased apparently in the short term firstly, and then increased with the prolonged exposure, forming distinctly divergent βRG profiles with antibiotic-untreated zebrafish. Meanwhile, with the rising concentration of cefotaxime, the range of βRGs' host-taxa expanded and the co-occurrence relationships of mobile genetics elements (MGEs) with βRGs intensified, indicating the enhancement of βRGs' mobility in gut microbiome when the fish suffered from cefotaxime contamination. Furthermore, the path of partial least squares path modeling (PLS-PM) gave an integral assessment on the specific causality of cefotaxime treatment to βRG profiles, showing that cefotaxime-mediated βRGs variation was most ascribed to the alteration of MGEs under cefotaxime stress, followed by bacterial community, functioning both direct influence as βRG-hosts and indirect effects via affecting MGEs. Finally, pathogenic bacteria Aeromonas was identified as the critical host for multiple βRGs in fish guts, and its β-lactam resistance increased over the duration time of cefotaxime exposure, suggesting the potential spreading risks for the antibiotic-resistant pathogens from environmental ecosystems to clinic. Overall, our finding emphasized cefotaxime contamination in aquatic surroundings could enhance the β-lactam resistance and its transmission mobility in fish bodies.
Collapse
Affiliation(s)
- Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Linjun Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Pearl Mizrahi S, Goyal A, Gore J. Community interactions drive the evolution of antibiotic tolerance in bacteria. Proc Natl Acad Sci U S A 2023; 120:e2209043119. [PMID: 36634144 PMCID: PMC9934204 DOI: 10.1073/pnas.2209043119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/21/2022] [Indexed: 01/13/2023] Open
Abstract
The emergence of antibiotic tolerance (prolonged survival against exposure) in natural bacterial populations is a major concern. Since it has been studied primarily in isogenic populations, we do not yet understand how ecological interactions in a diverse community impact the evolution of tolerance. To address this, we studied the evolutionary dynamics of a synthetic bacterial community composed of two interacting strains. In this community, an antibiotic-resistant strain protected the other, susceptible strain by degrading the antibiotic ampicillin in the medium. Surprisingly, we found that in the presence of antibiotics, the susceptible strain evolved tolerance. Tolerance was typified by an increase in survival as well as an accompanying decrease in the growth rate, highlighting a trade-off between the two. A simple mathematical model explained that the observed decrease in the death rate, even when coupled with a decreased growth rate, is beneficial in a community with weak protective interactions. In the presence of strong interactions, the model predicted that the trade-off would instead be detrimental, and tolerance would not emerge, which we experimentally verified. By whole genome sequencing the evolved tolerant isolates, we identified two genetic hot spots which accumulated mutations in parallel lines, suggesting their association with tolerance. Our work highlights that ecological interactions can promote antibiotic tolerance in bacterial communities, which has remained understudied.
Collapse
Affiliation(s)
- Sivan Pearl Mizrahi
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Akshit Goyal
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
20
|
Stevenson EM, Gaze WH, Gow NAR, Hart A, Schmidt W, Usher J, Warris A, Wilkinson H, Murray AK. Antifungal Exposure and Resistance Development: Defining Minimal Selective Antifungal Concentrations and Testing Methodologies. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:918717. [PMID: 37746188 PMCID: PMC10512330 DOI: 10.3389/ffunb.2022.918717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 09/26/2023]
Abstract
This scoping review aims to summarise the current understanding of selection for antifungal resistance (AFR) and to compare and contrast this with selection for antibacterial resistance, which has received more research attention. AFR is an emerging global threat to human health, associated with high mortality rates, absence of effective surveillance systems and with few alternative treatment options available. Clinical AFR is well documented, with additional settings increasingly being recognised to play a role in the evolution and spread of AFR. The environment, for example, harbours diverse fungal communities that are regularly exposed to antifungal micropollutants, potentially increasing AFR selection risk. The direct application of effect concentrations of azole fungicides to agricultural crops and the incomplete removal of pharmaceutical antifungals in wastewater treatment systems are of particular concern. Currently, environmental risk assessment (ERA) guidelines do not require assessment of antifungal agents in terms of their ability to drive AFR development, and there are no established experimental tools to determine antifungal selective concentrations. Without data to interpret the selective risk of antifungals, our ability to effectively inform safe environmental thresholds is severely limited. In this review, potential methods to generate antifungal selective concentration data are proposed, informed by approaches used to determine antibacterial minimal selective concentrations. Such data can be considered in the development of regulatory guidelines that aim to reduce selection for AFR.
Collapse
Affiliation(s)
- Emily M. Stevenson
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| | - William H. Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alwyn Hart
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Wiebke Schmidt
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Helen Wilkinson
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Aimee K. Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| |
Collapse
|
21
|
Lissens M, Joos M, Lories B, Steenackers HP. Evolution-proof inhibitors of public good cooperation: a screening strategy inspired by social evolution theory. FEMS Microbiol Rev 2022; 46:6604382. [PMID: 35675280 PMCID: PMC9616471 DOI: 10.1093/femsre/fuac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/22/2022] [Indexed: 01/07/2023] Open
Abstract
Interference with public good cooperation provides a promising novel antimicrobial strategy since social evolution theory predicts that resistant mutants will be counter-selected if they share the public benefits of their resistance with sensitive cells in the population. Although this hypothesis is supported by a limited number of pioneering studies, an extensive body of more fundamental work on social evolution describes a multitude of mechanisms and conditions that can stabilize public behaviour, thus potentially allowing resistant mutants to thrive. In this paper we theorize on how these different mechanisms can influence the evolution of resistance against public good inhibitors. Based hereon, we propose an innovative 5-step screening strategy to identify novel evolution-proof public good inhibitors, which involves a systematic evaluation of the exploitability of public goods under the most relevant experimental conditions, as well as a careful assessment of the most optimal way to interfere with their action. Overall, this opinion paper is aimed to contribute to long-term solutions to fight bacterial infections.
Collapse
Affiliation(s)
- Maries Lissens
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Mathieu Joos
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Bram Lories
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Hans P Steenackers
- Corresponding author: Centre of Microbial and Plant Genetics (CMPG), Kasteelpark Arenberg 20 – Box 2460, B-3001 Leuven, Belgium. E-mail:
| |
Collapse
|
22
|
Saebelfeld M, Das SG, Hagenbeek A, Krug J, de Visser JAGM. Stochastic establishment of β-lactam-resistant Escherichia coli mutants reveals conditions for collective resistance. Proc Biol Sci 2022; 289:20212486. [PMID: 35506221 PMCID: PMC9065960 DOI: 10.1098/rspb.2021.2486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
For antibiotic resistance to arise, new resistant mutants must establish in a bacterial population before they can spread via natural selection. Comprehending the stochastic factors that influence mutant establishment is crucial for a quantitative understanding of antibiotic resistance emergence. Here, we quantify the single-cell establishment probability of four Escherichia coli strains expressing β-lactamase alleles with different activity against the antibiotic cefotaxime, as a function of antibiotic concentration in both unstructured (liquid) and structured (agar) environments. We show that concentrations well below the minimum inhibitory concentration (MIC) can substantially hamper establishment, particularly for highly resistant mutants. While the pattern of establishment suppression is comparable in both tested environments, we find greater variability in establishment probability on agar. Using a simple branching model, we investigate possible sources of this stochasticity, including environment-dependent lineage variability, but cannot reject other possible causes. Lastly, we use the single-cell establishment probability to predict each strain's MIC in the absence of social interactions. We observe substantially higher measured than predicted MIC values, particularly for highly resistant strains, which indicates cooperative effects among resistant cells at large cell numbers, such as in standard MIC assays.
Collapse
Affiliation(s)
- Manja Saebelfeld
- Institute for Biological Physics, University of Cologne, Cologne, Germany,Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Suman G. Das
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Arno Hagenbeek
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Joachim Krug
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | | |
Collapse
|
23
|
Abstract
RNA-guided CRISPR-Cas nucleases efficiently protect bacterial cells from phage infection and plasmid transformation. Yet, the efficiency of CRISPR-Cas defense is not absolute. Mutations in either CRISPR-Cas components of the host or mobile genetic elements regions targeted by CRISPR-Cas inactivate the defensive action. Here, we show that even at conditions of active CRISPR-Cas and unaltered targeted plasmids, a kinetic equilibrium between CRISPR-Cas nucleases action and plasmid replication processes allows for existence of a small subpopulation of plasmid-bearing cells on the background of cells that have been cured from the plasmid. In nature, the observed diversification of phenotypes may allow rapid changes in the population structure to meet the demands of the environment. CRISPR-Cas systems provide prokaryotes with an RNA-guided defense against foreign mobile genetic elements (MGEs) such as plasmids and viruses. A common mechanism by which MGEs avoid interference by CRISPR consists of acquisition of escape mutations in regions targeted by CRISPR. Here, using microbiological, live microscopy and microfluidics analyses we demonstrate that plasmids can persist for multiple generations in some Escherichia coli cell lineages at conditions of continuous targeting by the type I-E CRISPR-Cas system. We used mathematical modeling to show how plasmid persistence in a subpopulation of cells mounting CRISPR interference is achieved due to the stochastic nature of CRISPR interference and plasmid replication events. We hypothesize that the observed complex dynamics provides bacterial populations with long-term benefits due to continuous maintenance of mobile genetic elements in some cells, which leads to diversification of phenotypes in the entire community and allows rapid changes in the population structure to meet the demands of a changing environment.
Collapse
|
24
|
Laskey A, Devenish J, Kang M, Savic M, Chmara J, Dan H, Lin M, Robertson J, Bessonov K, Gurnik S, Liu K, Nash JHE, Topp E, Guan J. Mobility of β-lactam resistance under ampicillin treatment in gut microbiota suffering from pre-disturbance. Microb Genom 2021; 7:000713. [PMID: 34882531 PMCID: PMC8767350 DOI: 10.1099/mgen.0.000713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Ingestion of food- or waterborne antibiotic-resistant bacteria may lead to dissemination of antibiotic resistance genes (ARGs) in the gut microbiota. The gut microbiota often suffers from various disturbances. It is not clear whether and how disturbed microbiota may affect ARG mobility under antibiotic treatments. For proof of concept, in the presence or absence of streptomycin pre-treatment, mice were inoculated orally with a β-lactam-susceptible Salmonella enterica serovar Heidelberg clinical isolate (recipient) and a β-lactam resistant Escherichia coli O80:H26 isolate (donor) carrying a blaCMY-2 gene on an IncI2 plasmid. Immediately following inoculation, mice were treated with or without ampicillin in drinking water for 7 days. Faeces were sampled, donor, recipient and transconjugant were enumerated, blaCMY-2 abundance was determined by quantitative PCR, faecal microbial community composition was determined by 16S rRNA amplicon sequencing and cecal samples were observed histologically for evidence of inflammation. In faeces of mice that received streptomycin pre-treatment, the donor abundance remained high, and the abundance of S. Heidelberg transconjugant and the relative abundance of Enterobacteriaceae increased significantly during the ampicillin treatment. Co-blooming of the donor, transconjugant and commensal Enterobacteriaceae in the inflamed intestine promoted significantly (P<0.05) higher and possibly wider dissemination of the blaCMY-2 gene in the gut microbiota of mice that received the combination of streptomycin pre-treatment and ampicillin treatment (Str-Amp) compared to the other mice. Following cessation of the ampicillin treatment, faecal shedding of S. Heidelberg transconjugant persisted much longer from mice in the Str-Amp group compared to the other mice. In addition, only mice in the Str-Amp group shed a commensal E. coli O2:H6 transconjugant, which carries three copies of the blaCMY-2 gene, one on the IncI2 plasmid and two on the chromosome. The findings highlight the significance of pre-existing gut microbiota for ARG dissemination and persistence during and following antibiotic treatments of infectious diseases.
Collapse
Affiliation(s)
- Alexander Laskey
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - John Devenish
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Mingsong Kang
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Mirjana Savic
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - John Chmara
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Hanhong Dan
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Min Lin
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - James Robertson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Kyrylo Bessonov
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Simone Gurnik
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Kira Liu
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - John H. E. Nash
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Jiewen Guan
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| |
Collapse
|
25
|
On the Offensive: the Role of Outer Membrane Vesicles in the Successful Dissemination of New Delhi Metallo-β-lactamase (NDM-1). mBio 2021; 12:e0183621. [PMID: 34579567 PMCID: PMC8546644 DOI: 10.1128/mbio.01836-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The emergence and worldwide dissemination of carbapenemase-producing Gram-negative bacteria are a major public health threat. Metallo-β-lactamases (MBLs) represent the largest family of carbapenemases. Regrettably, these resistance determinants are spreading worldwide. Among them, the New Delhi metallo-β-lactamase (NDM-1) is experiencing the fastest and largest geographical spread. NDM-1 β-lactamase is anchored to the bacterial outer membrane, while most MBLs are soluble, periplasmic enzymes. This unique cellular localization favors the selective secretion of active NDM-1 into outer membrane vesicles (OMVs). Here, we advance the idea that NDM-containing vesicles serve as vehicles for the local dissemination of NDM-1. We show that OMVs with NDM-1 can protect a carbapenem-susceptible strain of Escherichia coli upon treatment with meropenem in a Galleria mellonella infection model. Survival curves of G. mellonella revealed that vesicle encapsulation enhances the action of NDM-1, prolonging and favoring bacterial protection against meropenem inside the larva hemolymph. We also demonstrate that E. coli cells expressing NDM-1 protect a susceptible Pseudomonas aeruginosa strain within the larvae in the presence of meropenem. By using E. coli variants engineered to secrete variable amounts of NDM-1, we demonstrate that the protective effect correlates with the amount of NDM-1 secreted into vesicles. We conclude that secretion of NDM-1 into OMVs contributes to the survival of otherwise susceptible nearby bacteria at infection sites. These results disclose that OMVs play a role in the establishment of bacterial communities, in addition to traditional horizontal gene transfer mechanisms.
Collapse
|
26
|
Sharma A, Wood KB. Spatial segregation and cooperation in radially expanding microbial colonies under antibiotic stress. THE ISME JOURNAL 2021; 15:3019-3033. [PMID: 33953363 PMCID: PMC8443724 DOI: 10.1038/s41396-021-00982-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/19/2021] [Accepted: 04/09/2021] [Indexed: 02/01/2023]
Abstract
Antibiotic resistance in microbial communities reflects a combination of processes operating at different scales. In this work, we investigate the spatiotemporal dynamics of bacterial colonies comprised of drug-resistant and drug-sensitive cells undergoing range expansion under antibiotic stress. Using the opportunistic pathogen Enterococcus faecalis with plasmid-encoded β-lactamase, we track colony expansion dynamics and visualize spatial patterns in fluorescently labeled populations exposed to antibiotics. We find that the radial expansion rate of mixed communities is approximately constant over a wide range of drug concentrations and initial population compositions. Imaging of the final populations shows that resistance to ampicillin is cooperative, with sensitive cells surviving in the presence of resistant cells at otherwise lethal concentrations. The populations exhibit a diverse range of spatial segregation patterns that depend on drug concentration and initial conditions. Mathematical models indicate that the observed dynamics are consistent with global cooperation, despite the fact that β-lactamase remains cell-associated. Experiments confirm that resistant colonies provide a protective effect to sensitive cells on length scales multiple times the size of a single colony, and populations seeded with (on average) no more than a single resistant cell can produce mixed communities in the presence of the drug. While biophysical models of drug degradation suggest that individual resistant cells offer only short-range protection to neighboring cells, we show that long-range protection may arise from synergistic effects of multiple resistant cells, providing surprisingly large protection zones even at small population fractions.
Collapse
Affiliation(s)
- Anupama Sharma
- Department of Biophysics, University of Michigan, Ann Arbor, USA
- Department of Mathematics, BITS Pilani K K Birla Goa Campus, Goa, India
| | - Kevin B Wood
- Department of Biophysics, University of Michigan, Ann Arbor, USA.
- Department of Physics, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
27
|
Rebelo JS, Domingues CPF, Monteiro F, Nogueira T, Dionisio F. Bacterial persistence is essential for susceptible cell survival in indirect resistance, mainly for lower cell densities. PLoS One 2021; 16:e0246500. [PMID: 34473689 PMCID: PMC8412311 DOI: 10.1371/journal.pone.0246500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-susceptible bacteria may survive bactericidal antibiotics if other co-inhabiting bacteria detoxify the medium through antibiotic degradation or modification, a phenomenon denominated as indirect resistance. However, it is unclear how susceptible cells survive while the medium is still toxic. One explanation relies on the speed of detoxification, and another, non-exclusive explanation, relies on persistence, a state of bacterial dormancy where cells with low metabolic activity and growth rates are phenotypically tolerant to antibiotics and other cytotoxic substances. Here we simulated the fate of susceptible cells in laboratory experiments in the context of indirect resistance to understand whether persistence is necessary to explain the survival of susceptible cells. Depending on the strain and experimental conditions, the decay of persister populations may follow an exponential or a power-law distribution. Therefore, we studied the impact of both distributions in the simulations. Moreover, we studied the impact of considering that persister cells have a mechanism to sense the presence of a toxic substance-a mechanism that would enable cells to leave the dormant state when the medium becomes nontoxic. The simulations show that surviving susceptible cells under indirect resistance may originate both from persister and non-persister populations if the density of detoxifying cells is high. However, persistence was necessary when the initial density of detoxifying cells was low, although persister cells remained in that dormancy state for just a few hours. Finally, the results of our simulations are consistent both with exponential and power-law decay of the persistence population. Whether indirect resistance involves persistence should impact antibiotic treatments.
Collapse
Affiliation(s)
- João S. Rebelo
- cE3c –Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Célia P. F. Domingues
- cE3c –Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - Francisca Monteiro
- cE3c –Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Teresa Nogueira
- cE3c –Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - Francisco Dionisio
- cE3c –Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
28
|
O'Brien S, Baumgartner M, Hall AR. Species interactions drive the spread of ampicillin resistance in human-associated gut microbiota. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:256-266. [PMID: 34447576 PMCID: PMC8385247 DOI: 10.1093/emph/eoab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Background and objectives Slowing the spread of antimicrobial resistance is urgent if we are to continue treating infectious diseases successfully. There is increasing evidence microbial interactions between and within species are significant drivers of resistance. On one hand, cross-protection by resistant genotypes can shelter susceptible microbes from the adverse effects of antibiotics, reducing the advantage of resistance. On the other hand, antibiotic-mediated killing of susceptible genotypes can alleviate competition and allow resistant strains to thrive (competitive release). Here, by observing interactions both within and between species in microbial communities sampled from humans, we investigate the potential role for cross-protection and competitive release in driving the spread of ampicillin resistance in the ubiquitous gut commensal and opportunistic pathogen Escherichia coli. Methodology Using anaerobic gut microcosms comprising E.coli embedded within gut microbiota sampled from humans, we tested for cross-protection and competitive release both within and between species in response to the clinically important beta-lactam antibiotic ampicillin. Results While cross-protection gave an advantage to antibiotic-susceptible E.coli in standard laboratory conditions (well-mixed LB medium), competitive release instead drove the spread of antibiotic-resistant E.coli in gut microcosms (ampicillin boosted growth of resistant bacteria in the presence of susceptible strains). Conclusions and implications Competition between resistant strains and other members of the gut microbiota can restrict the spread of ampicillin resistance. If antibiotic therapy alleviates competition with resident microbes by killing susceptible strains, as here, microbiota-based interventions that restore competition could be a key for slowing the spread of resistance. Lay Summary Slowing the spread of global antibiotic resistance is an urgent task. In this paper, we ask how interactions between microbial species drive the spread of resistance. We show that antibiotic killing of susceptible microbes can free up resources for resistant microbes and allow them to thrive. Therefore, we should consider microbes in light of their social interactions to understand the spread of resistance.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK.,Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Michael Baumgartner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Alex R Hall
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
29
|
Saebelfeld M, Das SG, Brink J, Hagenbeek A, Krug J, de Visser JAGM. Antibiotic Breakdown by Susceptible Bacteria Enhances the Establishment of β-Lactam Resistant Mutants. Front Microbiol 2021; 12:698970. [PMID: 34489889 PMCID: PMC8417073 DOI: 10.3389/fmicb.2021.698970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
For a better understanding of the evolution of antibiotic resistance, it is imperative to study the factors that determine the initial establishment of mutant resistance alleles. In addition to the antibiotic concentration, the establishment of resistance alleles may be affected by interactions with the surrounding susceptible cells from which they derive, for instance via the release of nutrients or removal of the antibiotic. Here, we investigate the effects of social interactions with surrounding susceptible cells on the establishment of Escherichia coli mutants with increasing β-lactamase activity (i.e., the capacity to hydrolyze β-lactam antibiotics) from single cells under the exposure of the antibiotic cefotaxime (CTX) on agar plates. We find that relatively susceptible cells, expressing a β-lactamase with very low antibiotic-hydrolyzing activity, increase the probability of mutant cells to survive and outgrow into colonies due to the active breakdown of the antibiotic. However, the rate of breakdown by the susceptible strain is much higher than expected based on its low enzymatic activity. A detailed theoretical model suggests that this observation may be explained by cell filamentation causing delayed lysis. While susceptible cells may hamper the spread of higher-resistant β-lactamase mutants at relatively high frequencies, our findings show that they promote their initial establishment.
Collapse
Affiliation(s)
- Manja Saebelfeld
- Institute for Biological Physics, University of Cologne, Cologne, Germany
- Laboratory of Genetics, Department of the Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Suman G. Das
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Jorn Brink
- Laboratory of Genetics, Department of the Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Arno Hagenbeek
- Laboratory of Genetics, Department of the Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Joachim Krug
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - J. Arjan G. M. de Visser
- Laboratory of Genetics, Department of the Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
30
|
Wendling CC, Refardt D, Hall AR. Fitness benefits to bacteria of carrying prophages and prophage-encoded antibiotic-resistance genes peak in different environments. Evolution 2021; 75:515-528. [PMID: 33347602 PMCID: PMC7986917 DOI: 10.1111/evo.14153] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/12/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Understanding the role of horizontal gene transfer (HGT) in adaptation is a key challenge in evolutionary biology. In microbes, an important mechanism of HGT is prophage acquisition (phage genomes integrated into bacterial chromosomes). Prophages can influence bacterial fitness via the transfer of beneficial genes (including antibiotic‐resistance genes, ARGs), protection from superinfecting phages, or switching to a lytic lifecycle that releases free phages infectious to competitors. We expect these effects to depend on environmental conditions because of, for example, environment‐dependent induction of the lytic lifecycle. However, it remains unclear how costs/benefits of prophages vary across environments. Here, studying prophages with/without ARGs in Escherichia coli, we disentangled the effects of prophages alone and adaptive genes they carry. In competition with prophage‐free strains, benefits from prophages and ARGs peaked in different environments. Prophages were most beneficial when induction of the lytic lifecycle was common, whereas ARGs were more beneficial upon antibiotic exposure and with reduced prophage induction. Acquisition of prophage‐encoded ARGs by competing strains was most common when prophage induction, and therefore free phages, were common. Thus, selection on prophages and adaptive genes they carry varies independently across environments, which is important for predicting the spread of mobile/integrating genetic elements and their role in evolution.
Collapse
Affiliation(s)
- Carolin C Wendling
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, Zürich, Switzerland
| | - Dominik Refardt
- Institute of Natural Resource Sciences, Zürich University of Applied Sciences, Campus Grüental, Wädenswil, Switzerland
| | - Alex R Hall
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, Zürich, Switzerland
| |
Collapse
|
31
|
Neves HI, Machado GT, Ramos TCDS, Yang HM, Yagil E, Spira B. Competition for nutritional resources masks the true frequency of bacterial mutants. BMC Biol 2020; 18:194. [PMID: 33317515 PMCID: PMC7737367 DOI: 10.1186/s12915-020-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background It is widely assumed that all mutant microorganisms present in a culture are able to grow and form colonies, provided that they express the features required for selection. Unlike wild-type Escherichia coli, PHO-constitutive mutants overexpress alkaline phosphatase and hence can hydrolyze glycerol-2-phosphate (G2P) to glycerol and form colonies on plates having G2P as the sole carbon source. These mutations mostly occur in the pst operon. However, the frequency of PHO-constitutive colonies on the G2P selective plate is exceptionally low. Results We show that the rate in which spontaneous PHO-constitutive mutations emerge is about 8.0 × 10−6/generation, a relatively high rate, but the growth of most existing mutants is inhibited by their neighboring wild-type cells. This inhibition is elicited only by non-mutant viable bacteria that can take up and metabolize glycerol formed by the mutants. Evidence indicates that the few mutants that do form colonies derive from microclusters of mutants on the selective plate. A mathematical model that describes the fate of the wild-type and mutant populations under these circumstances supports these results. Conclusion This scenario in which neither the wild-type nor the majority of the mutants are able to grow resembles an unavoidable “tragedy of the commons” case which results in the collapse of the majority of the population. Cooperation between rare adjacent mutants enables them to overcome the competition and eventually form mutant colonies. The inhibition of PHO-constitutive mutants provides an example of mutant frequency masked by orders of magnitude due to a competition between mutants and their ancestral wild-type cells. Similar “tragedy of the commons-like” cases may occur in other settings and should be taken into consideration while estimating true mutant frequencies and mutation rates. Supplementary Information The online version contains supplementary material available at (doi:10.1186/s12915-020-00913-1).
Collapse
Affiliation(s)
- Henrique Iglesias Neves
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gabriella Trombini Machado
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Hyun Mo Yang
- Departamento de Matemática Aplicada, Instituto de Matemática, Estatística e Computação Científica, Campinas, SP, Brazil
| | - Ezra Yagil
- Departament of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
32
|
Strong Environment-Genotype Interactions Determine the Fitness Costs of Antibiotic Resistance In Vitro and in an Insect Model of Infection. Antimicrob Agents Chemother 2020; 64:AAC.01033-20. [PMID: 32661001 DOI: 10.1128/aac.01033-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
The acquisition of antibiotic resistance commonly imposes fitness costs, a reduction in the fitness of bacteria in the absence of drugs. These costs have been quantified primarily using in vitro experiments and a small number of in vivo studies in mice, and it is commonly assumed that these diverse methods are consistent. Here, we used an insect model of infection to compare the fitness costs of antibiotic resistance in vivo to those in vitro Experiments explored diverse mechanisms of resistance in a Gram-positive pathogen, Bacillus thuringiensis, and a Gram-negative intestinal symbiont, Enterobacter cloacae Rifampin resistance in B. thuringiensis showed fitness costs that were typically elevated in vivo, although these were modulated by genotype-environment interactions. In contrast, resistance to cefotaxime via derepression of AmpC β-lactamase in E. cloacae resulted in no detectable costs in vivo or in vitro, while spontaneous resistance to nalidixic acid, and carriage of the IncP plasmid RP4, imposed costs that increased in vivo Overall, fitness costs in vitro were a poor predictor of fitness costs in vivo because of strong genotype-environment interactions throughout this study. Insect infections provide a cheap and accessible means of assessing the fitness consequences of resistance mutations, data that are important for understanding the evolution and spread of resistance. This study emphasizes that the fitness costs imposed by particular mutations or different modes of resistance are extremely variable and that only a subset of these mutations is likely to be prevalent outside the laboratory.
Collapse
|
33
|
Rocha-Granados MC, Zenick B, Englander HE, Mok WWK. The social network: Impact of host and microbial interactions on bacterial antibiotic tolerance and persistence. Cell Signal 2020; 75:109750. [PMID: 32846197 DOI: 10.1016/j.cellsig.2020.109750] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Antibiotics have vastly improved our quality of life since their discovery and introduction into modern medicine. Yet, widespread use and misuse have compromised the efficacy of these compounds and put our ability to cure infectious diseases in jeopardy. To defend themselves against antibiotics, bacteria have evolved an arsenal of survival strategies. In addition to acquiring mutations and genetic determinants that confer antibiotic resistance, bacteria can respond to environmental cues and adopt reversible phenotypic changes that transiently enhance their ability to survive adverse conditions, including those brought on by antibiotics. These antibiotic tolerant and persistent bacteria, which are prevalent in biofilms and can survive antimicrobial therapy without inheriting resistance, are thought to underlie treatment failure and infection relapse. At infection sites, bacteria encounter a range of signals originating from host immunity and the local microbiota that can induce transcriptomic and metabolic reprogramming. In this review, we will focus on the impact of host factors and microbial interactions on antibiotic tolerance and persistence. We will also outline current efforts in leveraging the knowledge of host-microbe and microbe-microbe interactions in designing therapies that potentiate antibiotic activity and reduce the burden caused by recurrent infections.
Collapse
Affiliation(s)
| | - Blesing Zenick
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA
| | - Hanna E Englander
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA; Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269-3156, United States of America
| | - Wendy W K Mok
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA.
| |
Collapse
|
34
|
Adamowicz EM, Muza M, Chacón JM, Harcombe WR. Cross-feeding modulates the rate and mechanism of antibiotic resistance evolution in a model microbial community of Escherichia coli and Salmonella enterica. PLoS Pathog 2020; 16:e1008700. [PMID: 32687537 PMCID: PMC7392344 DOI: 10.1371/journal.ppat.1008700] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/30/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022] Open
Abstract
With antibiotic resistance rates on the rise, it is critical to understand how microbial species interactions influence the evolution of resistance. In obligate mutualisms, the survival of any one species (regardless of its intrinsic resistance) is contingent on the resistance of its cross-feeding partners. This sets the community antibiotic sensitivity at that of the 'weakest link' species. In this study, we tested the hypothesis that weakest link dynamics in an obligate cross-feeding relationship would limit the extent and mechanisms of antibiotic resistance evolution. We experimentally evolved an obligate co-culture and monoculture controls along gradients of two different antibiotics. We measured the rate at which each treatment increased antibiotic resistance, and sequenced terminal populations to question whether mutations differed between mono- and co-cultures. In both rifampicin and ampicillin treatments, we observed that resistance evolved more slowly in obligate co-cultures of E. coli and S. enterica than in monocultures. While we observed similar mechanisms of resistance arising under rifampicin selection, under ampicillin selection different resistance mechanisms arose in co-cultures and monocultures. In particular, mutations in an essential cell division protein, ftsI, arose in S. enterica only in co-culture. A simple mathematical model demonstrated that reliance on a partner is sufficient to slow the rate of adaptation, and can change the distribution of adaptive mutations that are acquired. Our results demonstrate that cooperative metabolic interactions can be an important modulator of resistance evolution in microbial communities.
Collapse
Affiliation(s)
- Elizabeth M. Adamowicz
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michaela Muza
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jeremy M. Chacón
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - William R. Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
35
|
Perri R, Kolvenbach BA, Corvini PFX. Subsistence and complexity of antimicrobial resistance on a community-wide level. Environ Microbiol 2020; 22:2463-2468. [PMID: 32286010 PMCID: PMC7383678 DOI: 10.1111/1462-2920.15018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
Abstract
There are a multitude of resistance strategies that microbes can apply to avoid inhibition by antimicrobials. One of these strategies is the enzymatic modification of the antibiotic, in a process generally termed inactivation. Furthermore, some microorganisms may not be limited to the mere inactivation of the antimicrobial compounds. They can continue by further enzymatic degradation of the compounds' carbon backbone, taking nutritional and energetic advantage of the former antibiotic. This driving force to harness an additional food source in a complex environment adds another level of complexity to the reasonably well-understood process of antibiotic resistance proliferation on a single cell level: It brings bioprotection into play at the level of microbial community. Despite the possible implications of a resistant community in a host and a lurking antibiotic failure, knowledge of degradation pathways of antibiotics and their connections is scarce. Currently, it is limited to only a few families of antibiotics (e.g. β-lactams and sulfonamides). In this article, we discuss the fluctuating nature of the relationship between antibiotic resistance and the biodegradation of antibiotics. This distinction mainly depends on the genetic background of the microbe, as general resistance genes can be recruited to function in a biodegradation pathway.
Collapse
Affiliation(s)
- Riccardo Perri
- Institute for Ecopreneurship, School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| | - Boris A. Kolvenbach
- Institute for Ecopreneurship, School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| | - Philippe F. X. Corvini
- Institute for Ecopreneurship, School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| |
Collapse
|
36
|
Beta-Lactam Sensitive Bacteria Can Acquire ESBL-Resistance via Conjugation after Long-Term Exposure to Lethal Antibiotic Concentration. Antibiotics (Basel) 2020; 9:antibiotics9060296. [PMID: 32498393 PMCID: PMC7345503 DOI: 10.3390/antibiotics9060296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/05/2020] [Accepted: 05/27/2020] [Indexed: 01/09/2023] Open
Abstract
Beta-lactams are commonly used antibiotics that prevent cell-wall biosynthesis. Beta-lactam sensitive bacteria can acquire conjugative resistance elements and hence become resistant even after being exposed to lethal (above minimum inhibitory) antibiotic concentrations. Here we show that neither the length of antibiotic exposure (1 to 16 h) nor the beta-lactam type (penam or cephem) have a major impact on the rescue of sensitive bacteria. We demonstrate that an evolutionary rescue can occur between different clinically relevant bacterial species (Klebsiella pneumoniae and Escherichia coli) by plasmids that are commonly associated with extended-spectrum beta-lactamase (ESBL) positive hospital isolates. As such, it is possible that this resistance dynamic may play a role in failing antibiotic therapies in those cases where resistant bacteria may readily migrate into the proximity of sensitive pathogens. Furthermore, we engineered a Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-plasmid to encode a guiding CRISPR-RNA against the migrating ESBL-plasmid. By introducing this plasmid into the sensitive bacterium, the frequency of the evolutionarily rescued bacteria decreased by several orders of magnitude. As such, engineering pathogens during antibiotic treatment may provide ways to prevent ESBL-plasmid dispersal and hence resistance evolution.
Collapse
|
37
|
Antibiotic Degradation by Commensal Microbes Shields Pathogens. Infect Immun 2020; 88:IAI.00012-20. [PMID: 31964746 DOI: 10.1128/iai.00012-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
The complex bacterial populations that constitute the gut microbiota can harbor antibiotic resistance genes (ARGs), including those encoding β-lactamase enzymes (BLA), which degrade commonly prescribed antibiotics such as ampicillin. The prevalence of such genes in commensal bacteria has been increased in recent years by the wide use of antibiotics in human populations and in livestock. While transfer of ARGs between bacterial species has well-established dramatic public health implications, these genes can also function in trans within bacterial consortia, where antibiotic-resistant bacteria can provide antibiotic-sensitive neighbors with leaky protection from drugs, as shown both in vitro and in vivo, in models of lung and subcutaneous coinfection. However, whether the expression of ARGs by harmless commensal bacterial species can destroy antibiotics in the intestinal lumen and shield antibiotic-sensitive pathogens is unknown. To address this question, we colonized germfree or wild-type mice with a model intestinal commensal strain of Escherichia coli that produces either functional or defective BLA. Mice were subsequently infected with Listeria monocytogenes or Clostridioides difficile, followed by treatment with oral ampicillin. The production of functional BLA by commensal E. coli markedly reduced clearance of these pathogens and enhanced systemic dissemination during ampicillin treatment. Pathogen resistance was independent of ARG acquisition via horizontal gene transfer but instead relied on antibiotic degradation in the intestinal lumen by BLA. We conclude that commensal bacteria that have acquired ARGs can mediate shielding of pathogens from the bactericidal effects of antibiotics.
Collapse
|
38
|
Chevallereau A, Meaden S, Fradet O, Landsberger M, Maestri A, Biswas A, Gandon S, van Houte S, Westra ER. Exploitation of the Cooperative Behaviors of Anti-CRISPR Phages. Cell Host Microbe 2019; 27:189-198.e6. [PMID: 31901522 PMCID: PMC7013381 DOI: 10.1016/j.chom.2019.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/13/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
Bacteriophages encoding anti-CRISPR proteins (Acrs) must cooperate to overcome phage resistance mediated by the bacterial immune system CRISPR-Cas, where the first phage blocks CRISPR-Cas immunity in order to allow a second Acr phage to successfully replicate. However, in nature, bacteria are frequently not pre-immunized, and phage populations are often not clonal, exhibiting variations in Acr presence and strength. We explored how interactions between Acr phages and initially sensitive bacteria evolve, both in the presence and absence of competing phages lacking Acrs. We find that Acr phages benefit “Acr-negative” phages by limiting the evolution of CRISPR-based resistance and helping Acr-negative phages to replicate on resistant host sub-populations. These benefits depend on the strength of CRISPR-Cas inhibitors and result in strong Acrs providing smaller fitness advantages than weaker ones when Acr phages compete with Acr-negative phages. These results indicate that different Acr types shape the evolutionary dynamics and social interactions of phage populations in natural communities. Acr-positive phages limit evolution of CRISPR resistance during clonal and mixed infections Acr-positive phages provide benefits to Acr-negative phages present in the community Strong Acr help Acr-negative phages to amplify on immunosuppressed CRISPR-resistant cells Weaker Acr provides larger advantages during competition with Acr-negative phages
Collapse
Affiliation(s)
- Anne Chevallereau
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK.
| | - Sean Meaden
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Olivier Fradet
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Mariann Landsberger
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Alice Maestri
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Ambarish Biswas
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Sylvain Gandon
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Stineke van Houte
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Edze R Westra
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK.
| |
Collapse
|
39
|
Carvalho G, Forestier C, Mathias JD. Antibiotic resilience: a necessary concept to complement antibiotic resistance? Proc Biol Sci 2019; 286:20192408. [PMID: 31795866 DOI: 10.1098/rspb.2019.2408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Resilience is the capacity of systems to recover their initial state or functions after a disturbance. The concepts of resilience and resistance are complementary in ecology and both represent different aspects of the stability of ecosystems. However, antibiotic resilience is not used in clinical bacteriology whereas antibiotic resistance is a recognized major problem. To join the fields of ecology and clinical bacteriology, we first review the resilience concept from ecology, socio-ecological systems and microbiology where it is widely developed. We then review resilience-related concepts in microbiology, including bacterial tolerance and persistence, phenotypic heterogeneity and collective tolerance and resistance. We discuss how antibiotic resilience could be defined and argue that the use of this concept largely relies on its experimental measure and its clinical relevance. We review indicators in microbiology which could be used to reflect antibiotic resilience and used as valuable indicators to anticipate the capacity of bacteria to recover from antibiotic treatments.
Collapse
Affiliation(s)
- Gabriel Carvalho
- Université Clermont Auvergne, Irstea, UR LISC, Centre de Clermont-Ferrand, 9 Avenue Blaise Pascal CS 20085, F-63178, Aubière, France
| | | | - Jean-Denis Mathias
- Université Clermont Auvergne, Irstea, UR LISC, Centre de Clermont-Ferrand, 9 Avenue Blaise Pascal CS 20085, F-63178, Aubière, France
| |
Collapse
|
40
|
Biofilms facilitate cheating and social exploitation of β-lactam resistance in Escherichia coli. NPJ Biofilms Microbiomes 2019; 5:36. [PMID: 31814991 PMCID: PMC6884583 DOI: 10.1038/s41522-019-0109-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/30/2019] [Indexed: 11/27/2022] Open
Abstract
Gram-negative bacteria such as Escherichia coli commonly resist β-lactam antibiotics using plasmid-encoded β-lactamase enzymes. Bacterial strains that express β-lactamases have been found to detoxify liquid cultures and thus to protect genetically susceptible strains, constituting a clear laboratory example of social protection. These results are not necessarily general; on solid media, for instance, the rapid bactericidal action of β-lactams largely prevents social protection. Here, we tested the hypothesis that the greater tolerance of biofilm bacteria for β-lactams would facilitate social interactions. We used a recently isolated E. coli strain, capable of strong biofilm formation, to compare how cooperation and exploitation in colony biofilms and broth culture drives the dynamics of a non-conjugative plasmid encoding a clinically important β-lactamase. Susceptible cells in biofilms were tolerant of ampicillin—high doses and several days of exposure were required to kill them. In support of our hypothesis, we found robust social protection of susceptible E. coli in biofilms, despite fine-scale physical separation of resistant and susceptible cells and lower rates of production of extracellular β-lactamase. In contrast, social interactions in broth were restricted to a relatively narrow range of ampicillin doses. Our results show that β-lactam selection pressure on Gram-negative biofilms leads to cooperative resistance characterized by a low equilibrium frequency of resistance plasmids, sufficient to protect all cells.
Collapse
|
41
|
Negative frequency dependent selection on plasmid carriage and low fitness costs maintain extended spectrum β-lactamases in Escherichia coli. Sci Rep 2019; 9:17211. [PMID: 31748602 PMCID: PMC6868128 DOI: 10.1038/s41598-019-53575-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
Plasmids may maintain antibiotic resistance genes in bacterial populations through conjugation, in the absence of direct selection pressure. However, the costs and benefits of conjugation for plasmid and bacterial fitness are not well understood. Using invasion and competition experiments with plasmid mutants we explicitly tested how conjugation contributes to the maintenance of a plasmid bearing a single extended-spectrum ß-lactamase (ESBL) gene (blaCTX-M-14). Surprisingly, conjugation had little impact on overall frequencies, although it imposed a substantial fitness cost. Instead, stability resulted from the plasmid conferring fitness benefits when rare. Frequency dependent fitness did not require a functional blaCTX-M-14 gene, and was independent of culture media. Fitness benefits when rare are associated with the core plasmid backbone but are able to drive up frequencies of antibiotic resistance because fitness burden of the blaCTX-M-14 gene is very low. Negative frequency dependent fitness can contribute to maintaining a stable frequency of resistance genes in the absence of selection pressure from antimicrobials. In addition, persistent, low cost resistance has broad implications for antimicrobial stewardship.
Collapse
|
42
|
Modified Antibiotic Adjuvant Ratios Can Slow and Steer the Evolution of Resistance: Co-amoxiclav as a Case Study. mBio 2019; 10:mBio.01831-19. [PMID: 31530673 PMCID: PMC6751059 DOI: 10.1128/mbio.01831-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As antibiotic resistance spreads, developing sustainable methods to restore the efficacy of existing antibiotics is increasingly important. One widespread method is to combine antibiotics with synergistically acting adjuvants that inhibit resistance mechanisms, allowing drug killing. Here we use co-amoxiclav (a clinically important combination of the β-lactam antibiotic amoxicillin and the β-lactamase inhibitor clavulanate) to ask whether treatment efficacy and resistance evolution can be decoupled via component dosing modifications. A simple mathematical model predicts that different ratios of these two drug components can produce distinct evolutionary responses irrespective of the initial efficacy. We test this hypothesis by selecting Escherichia coli with a plasmid-encoded β-lactamase (CTX-M-14), against different concentrations of amoxicillin and clavulanate. Consistent with our theory, we found that while resistance evolved under all conditions, the component ratio influenced both the rate and mechanism of resistance evolution. Specifically, we found that the current clinical practice of high amoxicillin-to-clavulanate ratios resulted in the most rapid adaptation to antibiotics via gene dosing responses. Increased plasmid copy number allowed E. coli to increase β-lactamase dosing and effectively titrate out low quantities of clavulanate, restoring amoxicillin resistance. In contrast, high clavulanate ratios were more robust-plasmid copy number did not increase, although porin or efflux resistance mechanisms were found, as for all drug ratios. Our results indicate that by changing the ratio of adjuvant to antibiotic we can slow and steer the path of resistance evolution. We therefore suggest using increased adjuvant dosing regimens to slow the rate of resistance evolution.IMPORTANCE As antibiotic resistance spreads, a promising approach is to restore the effectiveness of existing drugs via coadministration with adjuvants that inhibit resistance. However, as for monotherapy, antibiotic-adjuvant therapies can select for a variety of resistance mechanisms, so it is imperative that adjuvants be used in a sustainable manner. We test whether the rate of resistance evolution can be decoupled from treatment efficacy using co-amoxiclav, a clinically important combination of the β-lactam amoxicillin and β-lactamase inhibitor clavulanate. Using experimental evolution and a simple theoretical model, we show that the current co-amoxiclav formulation with a high proportion of amoxicillin rapidly selects for resistance via increased β-lactamase production. On the other hand, formulations with more clavulanate and less amoxicillin have similar efficacies yet prevent the selective benefit of increased β-lactamase. We suggest that by blocking common paths to resistance, treatment combinations with the adjuvant in excess can slow the evolution of resistance.
Collapse
|
43
|
Abstract
Recombineering inserts PCR products into DNA using homologous recombination. A pair of short homology arms (50 base pairs) on the ends of a PCR cassette target the cassette to its intended location. These homology arms can be easily introduced as 5' primer overhangs during the PCR reaction. The flexibility to choose almost any pair of homology arms enables the precise modification of virtually any DNA for purposes of sequence deletion, replacement, insertion, or point mutation. Recombineering often offers significant advantages relative to previous homologous recombination methods that require the construction of cassettes with large homology arms, and relative to traditional cloning methods that become intractable for large plasmids or DNA sequences. However, the tremendous number of variables, options, and pitfalls that can be encountered when designing and performing a recombineering protocol for the first time introduce barriers that can make recombineering a challenging technique for new users to adopt. This article focuses on three recombineering protocols we have found to be particularly robust, providing a detailed guide for choosing the simplest recombineering method for a given application and for performing and troubleshooting experiments. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Louis J Papa
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts
| | - Matthew D Shoulders
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts
| |
Collapse
|
44
|
Ollé-Vila A, Solé R. Cellular heterogeneity results from indirect effects under metabolic tradeoffs. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190281. [PMID: 31598283 PMCID: PMC6774940 DOI: 10.1098/rsos.190281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
The emergence and maintenance of multicellularity requires the coexistence of diverse cellular populations displaying cooperative relationships. This enables long-term persistence of cellular consortia, particularly under environmental constraints that challenge cell survival. Toxic environments are known to trigger the formation of multicellular consortia capable of dealing with waste while promoting cell diversity as a way to overcome selection barriers. In this context, recent theoretical studies suggest that an environment containing both resources and toxic waste can promote the emergence of complex, spatially distributed proto-organisms exhibiting division of labour and higher-scale features beyond the cell-cell pairwise interactions. Some previous non-spatial models suggest that the presence of a growth inhibitor can trigger the coexistence of competitive species in an antibiotic-resistance context. In this paper, we further explore this idea using both mathematical and computational models taking the most fundamental features of the proto-organisms model interactions. It is shown that this resource-waste environmental context, in which both species are lethally affected by the toxic waste and metabolic tradeoffs are present, favours the maintenance of diverse populations. A spatial, stochastic extension confirms our basic results. The evolutionary and ecological implications of these results are outlined.
Collapse
Affiliation(s)
- Aina Ollé-Vila
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva (CSIC-UPF), Psg Maritim Barceloneta, 37, 08003 Barcelona, Spain
| | - Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva (CSIC-UPF), Psg Maritim Barceloneta, 37, 08003 Barcelona, Spain
- Santa Fe Institute, 399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
45
|
Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME JOURNAL 2019; 13:2927-2937. [PMID: 31384011 PMCID: PMC6864104 DOI: 10.1038/s41396-019-0483-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/24/2023]
Abstract
Antibiotic resistance has emerged as one of the most pressing, global threats to public health. In single-species experiments selection for antibiotic resistance occurs at very low antibiotic concentrations. However, it is unclear how far these findings can be extrapolated to natural environments, where species are embedded within complex communities. We competed isogenic strains of Escherichia coli, differing exclusively in a single chromosomal resistance determinant, in the presence and absence of a pig faecal microbial community across a gradient of antibiotic concentration for two relevant antibiotics: gentamicin and kanamycin. We show that the minimal selective concentration was increased by more than one order of magnitude for both antibiotics when embedded in the community. We identified two general mechanisms were responsible for the increase in minimal selective concentration: an increase in the cost of resistance and a protective effect of the community for the susceptible phenotype. These findings have implications for our understanding of the evolution and selection of antibiotic resistance, and can inform future risk assessment efforts on antibiotic concentrations.
Collapse
|
46
|
Giri S, Waschina S, Kaleta C, Kost C. Defining Division of Labor in Microbial Communities. J Mol Biol 2019; 431:4712-4731. [PMID: 31260694 DOI: 10.1016/j.jmb.2019.06.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/15/2022]
Abstract
In order to survive and reproduce, organisms must perform a multitude of tasks. However, trade-offs limit their ability to allocate energy and resources to all of these different processes. One strategy to solve this problem is to specialize in some traits and team up with other organisms that can help by providing additional, complementary functions. By reciprocally exchanging metabolites and/or services in this way, both parties benefit from the interaction. This phenomenon, which has been termed functional specialization or division of labor, is very common in nature and exists on all levels of biological organization. Also, microorganisms have evolved different types of synergistic interactions. However, very often, it remains unclear whether or not a given example represents a true case of division of labor. Here we aim at filling this gap by providing a list of criteria that clearly define division of labor in microbial communities. Furthermore, we propose a set of diagnostic experiments to verify whether a given interaction fulfills these conditions. In contrast to the common use of the term, our analysis reveals that both intraspecific and interspecific interactions meet the criteria defining division of labor. Moreover, our analysis identified non-cooperators of intraspecific public goods interactions as growth specialists that divide labor with conspecific producers, rather than being social parasites. By providing a conceptual toolkit, our work will help to unambiguously identify cases of division of labor and stimulate more detailed investigations of this important and widespread type of inter-microbial interaction.
Collapse
Affiliation(s)
- Samir Giri
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Silvio Waschina
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christian Kost
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
47
|
Raymond B. Five rules for resistance management in the antibiotic apocalypse, a road map for integrated microbial management. Evol Appl 2019; 12:1079-1091. [PMID: 31297143 PMCID: PMC6597870 DOI: 10.1111/eva.12808] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
Resistance to new antimicrobials can become widespread within 2-3 years. Resistance problems are particularly acute for bacteria that can experience selection as both harmless commensals and pathogenic hospital-acquired infections. New drugs, although welcome, cannot tackle the antimicrobial resistance crisis alone: new drugs must be partnered with more sustainable patterns of use. However, the broader experience of resistance management in other disciplines, and the assumptions on which resistance rests, is not widely appreciated in clinical and microbiological disciplines. Improved awareness of the field of resistance management could improve clinical outcomes and help shape novel solutions. Here, the aim is to develop a pragmatic approach to developing a sustainable integrated means of using antimicrobials, based on an interdisciplinary synthesis of best practice, recent theory and recent clinical data. This synthesis emphasizes the importance of pre-emptive action and the value of reducing the supply of genetic novelty to bacteria under selection. The weight of resistance management experience also cautions against strategies that over-rely on the fitness costs of resistance or low doses. The potential (and pitfalls) of shorter courses, antibiotic combinations and antibiotic mixing or cycling are discussed in depth. Importantly, some of variability in the success of clinical trials of mixing approaches can be explained by the number and diversity of drugs in a trial, as well as whether trials encompass single wards or the wider transmission network that is a hospital. Consideration of the importance of data, and of the initially low frequency of resistance, leads to a number of additional recommendations. Overall, reduction in selection pressure, interference with the transmission of problematic genotypes and multidrug approaches (combinations, mixing or cycling) are all likely to be required for sustainability and the protection of forthcoming drugs.
Collapse
|
48
|
Rojo-Molinero E, Macià MD, Oliver A. Social Behavior of Antibiotic Resistant Mutants Within Pseudomonas aeruginosa Biofilm Communities. Front Microbiol 2019; 10:570. [PMID: 30967851 PMCID: PMC6438888 DOI: 10.3389/fmicb.2019.00570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/05/2019] [Indexed: 11/13/2022] Open
Abstract
The complex spatial structure and the heterogeneity within biofilms lead to the emergence of specific social behaviors. However, the impact of resistant mutants within bacterial communities is still mostly unknown. Thus, we determined whether antibiotic resistant mutants display selfish or altruistic behaviors in mixed Pseudomonas aeruginosa biofilms exposed to antibiotics. ECFP-tagged P. aeruginosa strain PAO1 and its EYFP-tagged derivatives hyperproducing the β-lactamase AmpC or the efflux pump MexAB-OprM were used to develop single or mixed biofilms. Mature biofilms were challenged with different concentrations of β-lactams to monitor biofilm structural dynamics, using confocal laser scanning microscopy (CLSM), and population dynamics, through enumeration of viable cells. While exposure of single wild-type PAO1 biofilms to β-lactams lead to a major reduction in bacterial load, it had little effect on biofilms formed by the resistant mutants. However, the most reveling finding was that bacterial load of wild-type PAO1 was significantly increased when growing in mixed biofilms compared to single biofilms. In agreement with CFU enumeration data, CLSM images revealed the amplification of the resistant mutants and their protection of susceptible populations. These findings show that mutants expressing diverse resistance mechanisms, including β-lactamases, but also, as evidenced for the first time, efflux pumps, protect the whole biofilm community, preserving susceptible populations from the effect of antibiotics. Thus, these results are a step forward to understanding antibiotic resistance dynamics in biofilms, as well as the population biology of bacterial pathogens in chronic infections, where the coexistence of susceptible and resistant variants is a hallmark.
Collapse
Affiliation(s)
- Estrella Rojo-Molinero
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - María D Macià
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
49
|
Estrela S, Libby E, Van Cleve J, Débarre F, Deforet M, Harcombe WR, Peña J, Brown SP, Hochberg ME. Environmentally Mediated Social Dilemmas. Trends Ecol Evol 2019; 34:6-18. [DOI: 10.1016/j.tree.2018.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
|
50
|
Hoeksema M, Jonker MJ, Bel K, Brul S, Ter Kuile BH. Genome rearrangements in Escherichia coli during de novo acquisition of resistance to a single antibiotic or two antibiotics successively. BMC Genomics 2018; 19:973. [PMID: 30591014 PMCID: PMC6307192 DOI: 10.1186/s12864-018-5353-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022] Open
Abstract
Background The ability of bacteria to acquire resistance to antibiotics relies to a large extent on their capacity for genome modification. Prokaryotic genomes are highly plastic and can utilize horizontal gene transfer, point mutations, and gene deletions or amplifications to realize genome expansion and rearrangements. The contribution of point mutations to de novo acquisition of antibiotic resistance is well-established. In this study, the internal genome rearrangement of Escherichia coli during to de novo acquisition of antibiotic resistance was investigated using whole-genome sequencing. Results Cells were made resistant to one of the four antibiotics and subsequently to one of the three remaining. This way the initial genetic rearrangements could be documented together with the effects of an altered genetic background on subsequent development of resistance. A DNA fragment including ampC was amplified by a factor sometimes exceeding 100 as a result of exposure to amoxicillin. Excision of prophage e14 was observed in many samples with a double exposure history, but not in cells exposed to a single antibiotic, indicating that the activation of the SOS stress response alone, normally the trigger for excision, was not sufficient to cause excision of prophage e14. Partial deletion of clpS and clpA occurred in strains exposed to enrofloxacin and tetracycline. Other deletions were observed in some strains, but not in replicates with the exact same exposure history. Various insertion sequence transpositions correlated with exposure to specific antibiotics. Conclusions Many of the genome rearrangements have not been reported before to occur during resistance development. The observed correlation between genome rearrangements and specific antibiotic pressure, as well as their presence in independent replicates indicates that these events do not occur randomly. Taken together, the observed genome rearrangements illustrate the plasticity of the E. coli genome when exposed to antibiotic stress. Electronic supplementary material The online version of this article (10.1186/s12864-018-5353-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marloes Hoeksema
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Keshia Bel
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Benno H Ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands. .,Netherlands Food and Consumer Product Safety Authority, Office for Risk Assessment, Utrecht, The Netherlands.
| |
Collapse
|