1
|
Pawlowska TE. Symbioses between fungi and bacteria: from mechanisms to impacts on biodiversity. Curr Opin Microbiol 2024; 80:102496. [PMID: 38875733 PMCID: PMC11323152 DOI: 10.1016/j.mib.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
Symbiotic interactions between fungi and bacteria range from positive to negative. They are ubiquitous in free-living as well as host-associated microbial communities worldwide. Yet, the impact of fungal-bacterial symbioses on the organization and dynamics of microbial communities is uncertain. There are two reasons for this uncertainty: (1) knowledge gaps in the understanding of the genetic mechanisms underpinning fungal-bacterial symbioses and (2) prevailing interpretations of ecological theory that favor antagonistic interactions as drivers stabilizing biological communities despite the existence of models emphasizing contributions of positive interactions. This review synthesizes information on fungal-bacterial symbioses common in the free-living microbial communities of the soil as well as in host-associated polymicrobial biofilms. The interdomain partnerships are considered in the context of the relevant community ecology models, which are discussed critically.
Collapse
Affiliation(s)
- Teresa E Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Xu Q, Ali S, Afzal M, Nizami AS, Han S, Dar MA, Zhu D. Advancements in bacterial chemotaxis: Utilizing the navigational intelligence of bacteria and its practical applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172967. [PMID: 38705297 DOI: 10.1016/j.scitotenv.2024.172967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.
Collapse
Affiliation(s)
- Qi Xu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shehbaz Ali
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Afzal
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Song Han
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Mudasir A Dar
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
3
|
Zhang L, Guo L, Cui Z, Ju F. Exploiting predatory bacteria as biocontrol agents across ecosystems. Trends Microbiol 2024; 32:398-409. [PMID: 37951768 DOI: 10.1016/j.tim.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Predatory bacteria have been increasingly known for their ubiquity in environments and great functional potentials in controlling unwanted microorganisms. Fundamental understanding of the predation mechanisms, population dynamics, and interaction patterns underlying bacterial predation is required for wise exploitation of predatory bacteria for enhancing ecoenvironmental, animal, and human health. Here, we review the recent achievements on applying predatory bacteria in different systems as biocontrol agents and living antibiotics as well as new findings in their phylogenetic diversity and predation mechanisms. We finally propose critical issues that deserve priority research and highlight the necessity to combine classic culture-based and advanced culture-independent approaches to push research frontiers of bacterial predation across ecosystems for promising biocontrol and therapy strategies towards a sustainable ecoenvironment and health.
Collapse
Affiliation(s)
- Lu Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Lingyun Guo
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang Province, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Feng Ju
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Sun K, Jiang HJ, Pan YT, Lu F, Zhu Q, Ma CY, Zhang AY, Zhou JY, Zhang W, Dai CC. Hyphosphere microorganisms facilitate hyphal spreading and root colonization of plant symbiotic fungus in ammonium-enriched soil. THE ISME JOURNAL 2023; 17:1626-1638. [PMID: 37443341 PMCID: PMC10504341 DOI: 10.1038/s41396-023-01476-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Anthropogenic nitrogen inputs lead to a high ammonium (NH4+)/nitrate (NO3-) ratio in the soil, which restricts hyphal spreading of soil fungi. Access of symbiotic fungi to roots is a prerequisite for plant-fungal interactions. Hyphosphere bacteria protect fungi from environmental stress, yet the impact of hyphosphere bacteria on adaptation of host fungi to NH4+-enriched conditions remains unclear. By developing soil microcosm assays, we report that a plant-symbiotic fungus, Phomopsis liquidambaris, harbors specific hyphosphere bacteria that facilitate hyphal spreading and assist in the root colonization in NH4+-enriched soil. Genetic manipulation, 16S rRNA gene analysis and coinoculation assays revealed that the genus Enterobacter was enriched in the hyphosphere of NH4+-sensitive wild-type compared to NH4+-preferring nitrite reductase-deficient strain. The representative Enterobacter sp. SZ2-promoted hyphal spreading is only evident in nonsterilized soil. We further identified an increased abundance and diversity of ammonia-oxidizing archaea (AOA) and a synchronously decreased NH4+:NO3- ratio following SZ2 inoculation. Microbial supplementation and inhibitor assays showed that AOA-mediated reduction in NH4+:NO3- ratio is responsible for SZ2-enhanced fungal adaptation to NH4+-enriched conditions. The Ph. liquidambaris-Enterobacter-AOA triple interaction promoted rice growth in NH4+-enriched soil. Our study reveals the essential role of hyphosphere microorganism-based hyphal spreading in plant-fungal symbiosis establishment within nitrogen-affected agroecosystems.
Collapse
Affiliation(s)
- Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Hui-Jun Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Yi-Tong Pan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Fan Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Qiang Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Chen-Yu Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Ai-Yue Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Jia-Yu Zhou
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, China.
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Wucher BR, Winans JB, Elsayed M, Kadouri DE, Nadell CD. Breakdown of clonal cooperative architecture in multispecies biofilms and the spatial ecology of predation. Proc Natl Acad Sci U S A 2023; 120:e2212650120. [PMID: 36730197 PMCID: PMC9963355 DOI: 10.1073/pnas.2212650120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/06/2022] [Indexed: 02/03/2023] Open
Abstract
Biofilm formation, including adherence to surfaces and secretion of extracellular matrix, is common in the microbial world, but we often do not know how interaction at the cellular spatial scale translates to higher-order biofilm community ecology. Here we explore an especially understudied element of biofilm ecology, namely predation by the bacterium Bdellovibrio bacteriovorus. This predator can kill and consume many different Gram-negative bacteria, including Vibrio cholerae and Escherichia coli. V. cholerae can protect itself from predation within densely packed biofilm structures that it creates, whereas E. coli biofilms are highly susceptible to B. bacteriovorus. We explore how predator-prey dynamics change when V. cholerae and E. coli are growing in biofilms together. We find that in dual-species prey biofilms, E. coli survival under B. bacteriovorus predation increases, whereas V. cholerae survival decreases. E. coli benefits from predator protection when it becomes embedded within expanding groups of highly packed V. cholerae. But we also find that the ordered, highly packed, and clonal biofilm structure of V. cholerae can be disrupted if V. cholerae cells are directly adjacent to E. coli cells at the start of biofilm growth. When this occurs, the two species become intermixed, and the resulting disordered cell groups do not block predator entry. Because biofilm cell group structure depends on initial cell distributions at the start of prey biofilm growth, the surface colonization dynamics have a dramatic impact on the eventual multispecies biofilm architecture, which in turn determines to what extent both species survive exposure to B. bacteriovorus.
Collapse
Affiliation(s)
| | - James B. Winans
- Department of Biological Sciences, Dartmouth, Hanover, NH03755
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ07101
| | - Daniel E. Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ07101
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth, Hanover, NH03755
| |
Collapse
|
6
|
Ruan C, Ramoneda J, Gogia G, Wang G, Johnson DR. Fungal hyphae regulate bacterial diversity and plasmid-mediated functional novelty during range expansion. Curr Biol 2022; 32:5285-5294.e4. [PMID: 36455559 DOI: 10.1016/j.cub.2022.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022]
Abstract
The amount of bacterial diversity present on many surfaces is enormous; however, how these levels of diversity persist in the face of the purifying processes that occur as bacterial communities expand across space (referred to here as range expansion) remains enigmatic. We shed light on this apparent paradox by providing mechanistic evidence for a strong role of fungal hyphae-mediated dispersal on regulating bacterial diversity during range expansion. Using pairs of fluorescently labeled bacterial strains and a hyphae-forming fungal strain that expand together across a nutrient-amended surface, we show that a hyphal network increases the spatial intermixing and extent of range expansion of the bacterial strains. This is true regardless of the type of interaction (competition or resource cross-feeding) imposed between the bacterial strains. We further show that the underlying cause is that flagellar motility drives bacterial dispersal along the hyphal network, which counteracts the purifying effects of ecological drift at the expansion frontier. We finally demonstrate that hyphae-mediated spatial intermixing increases the conjugation-mediated spread of plasmid-encoded antibiotic resistance. In conclusion, fungal hyphae are important regulators of bacterial diversity and promote plasmid-mediated functional novelty during range expansion in an interaction-independent manner.
Collapse
Affiliation(s)
- Chujin Ruan
- College of Land Science and Technology, China Agricultural University, 100193 Beijing, China; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Josep Ramoneda
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| | - Guram Gogia
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, Swiss Federal Institute of Technology, 8092 Zürich, Switzerland
| | - Gang Wang
- College of Land Science and Technology, China Agricultural University, 100193 Beijing, China; National Black Soil & Agriculture Research, China Agricultural University, 100193 Beijing, China.
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
7
|
Xiong BJ, Kleinsteuber S, Sträuber H, Dusny C, Harms H, Wick LY. Impact of Fungal Hyphae on Growth and Dispersal of Obligate Anaerobic Bacteria in Aerated Habitats. mBio 2022; 13:e0076922. [PMID: 35638736 PMCID: PMC9239063 DOI: 10.1128/mbio.00769-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/05/2022] [Indexed: 01/21/2023] Open
Abstract
Anoxic microsites arising in fungal biofilms may foster the presence of obligate anaerobes. Here, we analyzed whether and to which degree hyphae of Coprinopsis cinerea thriving in oxic habitats enable the germination, growth, and dispersal of the obligate anaerobic soil bacterium Clostridium acetobutylicum. Time-resolved optical oxygen mapping, microscopy, and metabolite analysis revealed the formation and persistence of anoxic circum hyphal niches, allowing for spore germination, growth, and fermentative activity of the obligate anaerobe in an otherwise inhabitable environment. Hypoxic liquid films containing 80% ± 10% of atmospheric oxygen saturation around single air-exposed hyphae thereby allowed for efficient clostridial dispersal amid spatially separated (>0.5 cm) anoxic sites. Hyphae hence may serve as good networks for the activity and spatial organization of obligate anaerobic bacteria in oxygenated heterogeneous environments such as soil. IMPORTANCE Although a few studies have reported on the presence of anoxic microniches in fungal biofilms, knowledge of the effects of fungal oxygen consumption on bacterial-fungal interactions is limited. Here, we demonstrate the existence and persistence of oxygen-free zones in air-exposed mycelia enabling spore germination, growth, fermentative activity, and dispersal of the obligate anaerobe. Our study points out a previously overlooked role of aerobic fungi in creating and bridging anoxic microniches in ambient oxic habitats. Air-exposed hyphae hence may act as a scaffold for activity and dispersal of strictly anaerobic microbes. Given the short-term tolerance of strict anaerobes to oxygen and reduced oxygen content in the mycosphere, hyphae can promote spatial organization of both obligate anaerobic and aerobic bacteria. Such finding may be important for a better understanding of previously observed co-occurrences of aerobes and anaerobes in well-aerated habitats such as upland soils.
Collapse
Affiliation(s)
- Bi-Jing Xiong
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Christian Dusny
- Department of Solar Materials, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Lukas Y. Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| |
Collapse
|
8
|
You X, Kallies R, Kühn I, Schmidt M, Harms H, Chatzinotas A, Wick LY. Phage co-transport with hyphal-riding bacteria fuels bacterial invasion in a water-unsaturated microbial model system. THE ISME JOURNAL 2022; 16:1275-1283. [PMID: 34903848 PMCID: PMC9039081 DOI: 10.1038/s41396-021-01155-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022]
Abstract
Nonmotile microorganisms often enter new habitats by co-transport with motile microorganisms. Here, we report that also lytic phages can co-transport with hyphal-riding bacteria and facilitate bacterial colonization of a new habitat. This is comparable to the concept of biological invasions in macroecology. In analogy to invasion frameworks in plant and animal ecology, we tailored spatially organized, water-unsaturated model microcosms using hyphae of Pythium ultimum as invasion paths and flagellated soil-bacterium Pseudomonas putida KT2440 as carrier for co-transport of Escherichia virus T4. P. putida KT2440 efficiently dispersed along P. ultimum to new habitats and dispatched T4 phages across air gaps transporting ≈0.6 phages bacteria−1. No T4 displacement along hyphae was observed in the absence of carrier bacteria. If E. coli occupied the new habitat, T4 co-transport fueled the fitness of invading P. putida KT2440, while the absence of phage co-transport led to poor colonization followed by extinction. Our data emphasize the importance of hyphal transport of bacteria and associated phages in regulating fitness and composition of microbial populations in water-unsaturated systems. As such co-transport seems analogous to macroecological invasion processes, hyphosphere systems with motile bacteria and co-transported phages could be useful models for testing hypotheses in invasion ecology.
Collapse
Affiliation(s)
- Xin You
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany
| | - René Kallies
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany
| | - Ingolf Kühn
- Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120, Halle, Germany.,Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Matthias Schmidt
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, Permoserstr. 15, 04318, Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Institute of Biology, Leipzig University, Talstr. 33, Leipzig, 04103, Germany
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany.
| |
Collapse
|
9
|
Custer GF, Bresciani L, Dini-Andreote F. Ecological and Evolutionary Implications of Microbial Dispersal. Front Microbiol 2022; 13:855859. [PMID: 35464980 PMCID: PMC9019484 DOI: 10.3389/fmicb.2022.855859] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Dispersal is simply defined as the movement of species across space and time. Despite this terse definition, dispersal is an essential process with direct ecological and evolutionary implications that modulate community assembly and turnover. Seminal ecological studies have shown that environmental context (e.g., local edaphic properties, resident community), dispersal timing and frequency, and species traits, collectively account for patterns of species distribution resulting in either their persistence or unsuccessful establishment within local communities. Despite the key importance of this process, relatively little is known about how dispersal operates in microbiomes across divergent systems and community types. Here, we discuss parallels of macro- and micro-organismal ecology with a focus on idiosyncrasies that may lead to novel mechanisms by which dispersal affects the structure and function of microbiomes. Within the context of ecological implications, we revise the importance of short- and long-distance microbial dispersal through active and passive mechanisms, species traits, and community coalescence, and how these align with recent advances in metacommunity theory. Conversely, we enumerate how microbial dispersal can affect diversification rates of species by promoting gene influxes within local communities and/or shifting genes and allele frequencies via migration or de novo changes (e.g., horizontal gene transfer). Finally, we synthesize how observed microbial assemblages are the dynamic outcome of both successful and unsuccessful dispersal events of taxa and discuss these concepts in line with the literature, thus enabling a richer appreciation of this process in microbiome research.
Collapse
Affiliation(s)
| | | | - Francisco Dini-Andreote
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
10
|
See CR, Keller AB, Hobbie SE, Kennedy PG, Weber PK, Pett-Ridge J. Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization. GLOBAL CHANGE BIOLOGY 2022; 28:2527-2540. [PMID: 34989058 DOI: 10.1111/gcb.16073] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Associations between soil minerals and microbially derived organic matter (often referred to as mineral-associated organic matter or MAOM) form a large pool of slowly cycling carbon (C). The rhizosphere, soil immediately adjacent to roots, is thought to control the spatial extent of MAOM formation because it is the dominant entry point of new C inputs to soil. However, emphasis on the rhizosphere implicitly assumes that microbial redistribution of C into bulk (non-rhizosphere) soils is minimal. We question this assumption, arguing that because of extensive fungal exploration and rapid hyphal turnover, fungal redistribution of soil C from the rhizosphere to bulk soil minerals is common, and encourages MAOM formation. First, we summarize published estimates of fungal hyphal length density and turnover rates and demonstrate that fungal C inputs are high throughout the rhizosphere-bulk soil continuum. Second, because colonization of hyphal surfaces is a common dispersal mechanism for soil bacteria, we argue that hyphal exploration allows for the non-random colonization of mineral surfaces by hyphae-associated taxa. Third, these bacterial communities and their fungal hosts determine the chemical form of organic matter deposited on colonized mineral surfaces. Collectively, our analysis demonstrates that omission of the hyphosphere from conceptual models of soil C flow overlooks key mechanisms for MAOM formation in bulk soils. Moving forward, there is a clear need for spatially explicit, quantitative research characterizing the environmental drivers of hyphal exploration and hyphosphere community composition across systems, as these are important controls over the rate and organic chemistry of C deposited on minerals.
Collapse
Affiliation(s)
- Craig R See
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Adrienne B Keller
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Peter G Kennedy
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Peter K Weber
- Physical and Life Science Directorate, Lawrence Livermore National Lab, Livermore, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Science Directorate, Lawrence Livermore National Lab, Livermore, California, USA
| |
Collapse
|
11
|
You X, Klose N, Kallies R, Harms H, Chatzinotas A, Wick LY. Mycelia-Assisted Isolation of Non-Host Bacteria Able to Co-Transport Phages. Viruses 2022; 14:195. [PMID: 35215789 PMCID: PMC8877629 DOI: 10.3390/v14020195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022] Open
Abstract
Recent studies have demonstrated that phages can be co-transported with motile non-host bacteria, thereby enabling their invasion of biofilms and control of biofilm composition. Here, we developed a novel approach to isolate non-host bacteria able to co-transport phages from soil. It is based on the capability of phage-carrying non-host bacteria to move along mycelia out of soil and form colonies in plaques of their co-transported phages. The approach was tested using two model phages of differing surface hydrophobicity, i.e., hydrophobic Escherichia virus T4 (T4) and hydrophilic Pseudoalteromonas phage HS2 (HS2). The phages were mixed into soil and allowed to be transported by soil bacteria along the mycelia of Pythium ultimum. Five phage-carrying bacterial species were isolated (Viridibacillus sp., Enterobacter sp., Serratia sp., Bacillus sp., Janthinobacterium sp.). These bacteria exhibited phage adsorption efficiencies of ≈90-95% for hydrophobic T4 and 30-95% for hydrophilic HS2. The phage adsorption efficiency of Viridibacillus sp. was ≈95% for both phages and twofold higher than T4-or HS2-adsorption to their respective hosts, qualifying Viridibacillus sp. as a potential super carrier for phages. Our approach offers an effective and target-specific way to identify and isolate phage-carrying bacteria in natural and man-made environments.
Collapse
Affiliation(s)
- Xin You
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - Niclas Klose
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - René Kallies
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - Hauke Harms
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Talstr.33, 04103 Leipzig, Germany
| | - Lukas Y. Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| |
Collapse
|
12
|
Methods for Studying Bacterial–Fungal Interactions in the Microenvironments of Soil. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to their small size, microorganisms directly experience only a tiny portion of the environmental heterogeneity manifested in the soil. The microscale variations in soil properties constrain the distribution of fungi and bacteria, and the extent to which they can interact with each other, thereby directly influencing their behavior and ecological roles. Thus, to obtain a realistic understanding of bacterial–fungal interactions, the spatiotemporal complexity of their microenvironments must be accounted for. The objective of this review is to further raise awareness of this important aspect and to discuss an overview of possible methodologies, some of easier applicability than others, that can be implemented in the experimental design in this field of research. The experimental design can be rationalized in three different scales, namely reconstructing the physicochemical complexity of the soil matrix, identifying and locating fungi and bacteria to depict their physical interactions, and, lastly, analyzing their molecular environment to describe their activity. In the long term, only relevant experimental data at the cell-to-cell level can provide the base for any solid theory or model that may serve for accurate functional prediction at the ecosystem level. The way to this level of application is still long, but we should all start small.
Collapse
|
13
|
Krespach MKC, García-Altares M, Flak M, Hanno Schoeler, Scherlach K, Netzker T, Schmalzl A, Mattern DJ, Schroeckh V, Komor A, Mittag M, Hertweck C, Brakhage AA. Lichen-like association of Chlamydomonas reinhardtii and Aspergillus nidulans protects algal cells from bacteria. THE ISME JOURNAL 2020; 14:2794-2805. [PMID: 32753730 PMCID: PMC7784976 DOI: 10.1038/s41396-020-0731-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 11/09/2022]
Abstract
Organismal interactions within microbial consortia and their responses to harmful intruders remain largely understudied. An important step toward the goal of understanding functional ecological interactions and their evolutionary selection is the study of increasingly complex microbial interaction systems. Here, we discovered a tripartite biosystem consisting of the fungus Aspergillus nidulans, the unicellular green alga Chlamydomonas reinhardtii, and the algicidal bacterium Streptomyces iranensis. Genetic analyses and MALDI-IMS demonstrate that the bacterium secretes the algicidal compound azalomycin F upon contact with C. reinhardtii. In co-culture, A. nidulans attracts the motile alga C. reinhardtii, which becomes embedded and surrounded by fungal mycelium and is shielded from the algicide. The filamentous fungus Sordaria macrospora was susceptible to azalomycin F and failed to protect C. reinhardtii despite chemotactically attracting the alga. Because S. macrospora was susceptible to azalomycin F, this data imply that for protection the fungus needs to be resistant. Formation of the lichen-like association between C. reinhardtii and A. nidulans increased algal growth. The protection depends on the increased amounts of membrane lipids provided by resistant fungi, thereby generating a protective shelter against the bacterial toxin. Our findings reveal a strategy whereby algae survive lethal environmental algicides through cooperation with fungi.
Collapse
Affiliation(s)
- Mario K C Krespach
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - María García-Altares
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain
| | - Michal Flak
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hanno Schoeler
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
- Biologie des Bactéries Intracellulaires, Institut Pasteur, 28 rue du Dr. Roux, 75015, Paris, France
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Tina Netzker
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Anica Schmalzl
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Derek J Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Volker Schroeckh
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Anna Komor
- Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Hertweck
- Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.
- Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
14
|
Pérez J, Contreras-Moreno FJ, Marcos-Torres FJ, Moraleda-Muñoz A, Muñoz-Dorado J. The antibiotic crisis: How bacterial predators can help. Comput Struct Biotechnol J 2020; 18:2547-2555. [PMID: 33033577 PMCID: PMC7522538 DOI: 10.1016/j.csbj.2020.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Discovery of antimicrobials in the past century represented one of the most important advances in public health. Unfortunately, the massive use of these compounds in medicine and other human activities has promoted the selection of pathogens that are resistant to one or several antibiotics. The current antibiotic crisis is creating an urgent need for research into new biological weapons with the ability to kill these superbugs. Although a proper solution requires this problem to be addressed in a variety of ways, the use of bacterial predators is emerging as an excellent strategy, especially when used as whole cell therapeutic agents, as a source of new antimicrobial agents by awakening silent metabolic pathways in axenic cultures, or as biocontrol agents. Moreover, studies on their prey are uncovering mechanisms of resistance that can be shared by pathogens, representing new targets for novel antimicrobial agents. In this review we discuss potential of the studies on predator-prey interaction to provide alternative solutions to the problem of antibiotic resistance.
Collapse
Key Words
- AR, antibiotic resistance
- ARB, antibiotic-resistant bacteria
- ARG, antibiotic-resistant gene
- Antibiotic crisis
- BALOs
- BALOs, Bdellovibrio and like organisms
- BGC, biosynthetic gene cluster
- Bacterial predators
- HGT, horizontal gene transfer
- MDRB, multi-drug resistant bacteria
- Myxobacteria
- NRPS, nonribosomal peptide synthetase
- OMV, outer membrane vesicle
- OSMAC, one strain many compounds
- PKS, polyketide synthase
- SM, secondary metabolite
- WHO, World Health Organization
Collapse
Affiliation(s)
- Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | | | | | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
15
|
de Novais CB, Sbrana C, da Conceição Jesus E, Rouws LFM, Giovannetti M, Avio L, Siqueira JO, Saggin Júnior OJ, da Silva EMR, de Faria SM. Mycorrhizal networks facilitate the colonization of legume roots by a symbiotic nitrogen-fixing bacterium. MYCORRHIZA 2020; 30:389-396. [PMID: 32215759 DOI: 10.1007/s00572-020-00948-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/16/2020] [Indexed: 05/22/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) absorb and translocate nutrients from soil to their host plants by means of a wide network of extraradical mycelium (ERM). Here, we assessed whether nitrogen-fixing rhizobia can be transferred to the host legume Glycine max by ERM produced by Glomus formosanum isolate CNPAB020 colonizing the grass Urochloa decumbens. An H-bridge experimental system was developed to evaluate the migration of ERM and of the GFP-tagged Bradyrhizobium diazoefficiens USDA 110 strain across an air gap compartment. Mycorrhizal colonization, nodule formation in legumes, and occurrence of the GFP-tagged strain in root nodules were assessed by optical and confocal laser scanning microscopy. In the presence of non-mycorrhizal U. decumbens, legume roots were neither AMF-colonized nor nodulated. In contrast, G. formosanum ERM crossing the discontinuous compartment connected mycorrhizal U. decumbens and G. max roots, which showed 30-42% mycorrhizal colonization and 7-11 nodules per plant. Fluorescent B. diazoefficiens cells were detected in 94% of G. max root nodules. Our findings reveal that, besides its main activity in nutrient transfer, ERM produced by AMF may facilitate bacterial translocation and the simultaneous associations of plants with beneficial fungi and bacteria, representing an important structure, functional to the establishment of symbiotic relationships.
Collapse
Affiliation(s)
- Candido Barreto de Novais
- Instituto de Floresta, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23890-000, Brazil
| | - Cristiana Sbrana
- CNR-Institute of Agricultural Biology and Biotechnology UOS Pisa, Pisa, Italy.
| | | | | | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - José Oswaldo Siqueira
- DCS-Laboratório de Microbiologia do Solo, Universidade Federal de Lavras, Caixa Postal 3037, Lavras, MG, 37200-000, Brazil
| | | | | | | |
Collapse
|
16
|
Mycelial network-mediated rhizobial dispersal enhances legume nodulation. ISME JOURNAL 2020; 14:1015-1029. [PMID: 31974462 DOI: 10.1038/s41396-020-0587-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
The access of rhizobia to legume host is a prerequisite for nodulation. Rhizobia are poorly motile in soil, while filamentous fungi are known to grow extensively across soil pores. Since root exudates-driven bacterial chemotaxis cannot explain rhizobial long-distance dispersal, mycelia could constitute ideal dispersal networks to help rhizobial enrichment in the legume rhizosphere from bulk soil. Thus, we hypothesized that mycelia networks act as vectors that enable contact between rhizobia and legume and influence subsequent nodulation. By developing a soil microcosm system, we found that a facultatively biotrophic fungus, Phomopsis liquidambaris, helps rhizobial migration from bulk soil to the peanut (Arachis hypogaea) rhizosphere and, hence, triggers peanut-rhizobium nodulation but not seen in the absence of mycelia. Assays of dispersal modes suggested that cell proliferation and motility mediated rhizobial dispersal along mycelia, and fungal exudates might contribute to this process. Furthermore, transcriptomic analysis indicated that genes associated with the cell division, chemosensory system, flagellum biosynthesis, and motility were regulated by Ph. liquidambaris, thus accounting for the detected rhizobial dispersal along hyphae. Our results indicate that rhizobia use mycelia as dispersal networks that migrate to legume rhizosphere and trigger nodulation. This work highlights the importance of mycelial network-based bacterial dispersal in legume-rhizobium symbiosis.
Collapse
|
17
|
Miquel Guennoc C, Rose C, Labbé J, Deveau A. Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: a widespread ability under controls? FEMS Microbiol Ecol 2019; 94:4998851. [PMID: 29788056 DOI: 10.1093/femsec/fiy093] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Ectomycorrhizal (ECM) fungi establish symbiosis with roots of most trees of boreal and temperate ecosystems and are major drivers of nutrient fluxes between trees and the soil. ECM fungi constantly interact with bacteria all along their life cycle and the extended networks of hyphae provide a habitat for complex bacterial communities. Despite the important effects these bacteria can have on the growth and activities of ECM fungi, little is known about the mechanisms by which these microorganisms interact. Here we investigated the ability of bacteria to form biofilm on the hyphae of the ECM fungus Laccaria bicolor. We showed that the ability to form biofilms on the hyphae of the ECM fungus is widely shared among soil bacteria. Conversely, some fungi, belonging to the Ascomycete class, did not allow for the formation of bacterial biofilms on their surfaces. The formation of biofilms was also modulated by the presence of tree roots and ectomycorrhizae, suggesting that biofilm formation does not occur randomly in soil but that it is regulated by several biotic factors. In addition, our study demonstrated that the formation of bacterial biofilm on fungal hyphae relies on the production of networks of filaments made of extracellular DNA.
Collapse
Affiliation(s)
- Cora Miquel Guennoc
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Christophe Rose
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| |
Collapse
|
18
|
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 2018; 42:335-352. [PMID: 29471481 DOI: 10.1093/femsre/fuy008] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.
Collapse
Affiliation(s)
- Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jessie Uehling
- Biology Department, Duke University, Box 90338, Durham, NC 27705, USA.,Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Mathieu Paoletti
- Institut de Biologie et Génétique Cellulaire, UMR 5095 CNRS et Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Matthias Becker
- IGZ, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.,Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Sophie Mieszkin
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Larry J Millet
- Joint Institute for Biological Science, University of Tennessee, and the Biosciences Division of Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry, G. Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Jan Dirk van Elsas
- Microbial Ecology group, GELIFES, University of Groningen, 9747 Groningen, The Netherlands
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
19
|
Shen D, Langenheder S, Jürgens K. Dispersal Modifies the Diversity and Composition of Active Bacterial Communities in Response to a Salinity Disturbance. Front Microbiol 2018; 9:2188. [PMID: 30294307 PMCID: PMC6159742 DOI: 10.3389/fmicb.2018.02188] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 08/27/2018] [Indexed: 11/21/2022] Open
Abstract
Dispersal can influence the response of bacterial communities to environmental changes and disturbances. However, the extent to which dispersal contributes to the community response in dependence of the character and strength of the disturbance remains unclear. Here, we conducted a transplant experiment using dialysis bags in which bacterioplankton originating from brackish and marine regions of the Saint Lawrence Estuary were reciprocally incubated in the two environments for 5 days. Dispersal treatments were set-up by subjecting half of the microcosms in each environment to an exchange of cells between the marine and brackish assemblages at a daily exchange rate of 6% (v/v), and the other half of microcosms were kept as the non-dispersal treatments. Bacterial 16S rRNA sequencing was then used to examine the diversity and composition of the active communities. Alpha diversity of the marine communities that were exposed to the brackish environment was elevated greatly by dispersal, but declined in the absence of dispersal. This indicates that dispersal compensated the loss of diversity in the marine communities after a disturbance by introducing bacterial taxa that were able to thrive and coexist with the remaining community members under brackish conditions. On the contrary, alpha diversity of the brackish communities was not affected by dispersal in either environment. Furthermore, dispersal led to an increase in similarity between marine and brackish communities in both of the environments, with a greater similarity when the communities were incubated in the brackish environment. These results suggest that the higher initial diversity in the brackish than in the marine starting community made the resident community less susceptible to dispersing bacteria. Altogether, this study shows that dispersal modifies the diversity and composition of the active communities in response to a salinity disturbance, and enables the local adjustment of specific bacteria under brackish environmental conditions.
Collapse
Affiliation(s)
- Dandan Shen
- Section of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Silke Langenheder
- Department of Ecology and Genetic/Limnology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Klaus Jürgens
- Section of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| |
Collapse
|
20
|
Worrich A, Wick LY, Banitz T. Ecology of Contaminant Biotransformation in the Mycosphere: Role of Transport Processes. ADVANCES IN APPLIED MICROBIOLOGY 2018; 104:93-133. [PMID: 30143253 DOI: 10.1016/bs.aambs.2018.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fungi and bacteria often share common microhabitats. Their co-occurrence and coevolution give rise to manifold ecological interactions in the mycosphere, here defined as the microhabitats surrounding and affected by hyphae and mycelia. The extensive structure of mycelia provides ideal "logistic networks" for transport of bacteria and matter in structurally and chemically heterogeneous soil ecosystems. We describe the characteristics of the mycosphere as a unique and highly dynamic bacterial habitat and a hot spot for contaminant biotransformation. In particular, we emphasize the role of the mycosphere for (i) bacterial dispersal and colonization of subsurface interfaces and new habitats, (ii) matter transport processes and contaminant bioaccessibility, and (iii) the functional stability of microbial ecosystems when exposed to environmental fluctuations such as stress or disturbances. Adopting concepts from ecological theory, the chapter disentangles bacterial-fungal impacts on contaminant biotransformation in a systemic approach that interlinks empirical data from microbial ecosystems with simulation data from computational models. This approach provides generic information on key factors, processes, and ecological principles that drive microbial contaminant biotransformation in soil. We highlight that the transport processes create favorable habitat conditions for efficient bacterial contaminant degradation in the mycosphere. In-depth observation, understanding, and prediction of the role of mycosphere transport processes will support the use of bacterial-fungal interactions in nature-based solutions for contaminant biotransformation in natural and man-made ecosystems, respectively.
Collapse
Affiliation(s)
- Anja Worrich
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | - Thomas Banitz
- Department of Ecological Modelling, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
21
|
Otto S, Harms H, Wick LY. Effects of predation and dispersal on bacterial abundance and contaminant biodegradation. FEMS Microbiol Ecol 2016; 93:fiw241. [DOI: 10.1093/femsec/fiw241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 12/01/2016] [Indexed: 11/12/2022] Open
|