1
|
Zhivkoplias E, da Silva JM, Blasiak R. How transdisciplinarity can help biotech-driven biodiversity research. Trends Biotechnol 2025:S0167-7799(25)00135-0. [PMID: 40393855 DOI: 10.1016/j.tibtech.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 05/22/2025]
Abstract
The Kunming-Montreal Global Biodiversity Framework marks a significant step toward conserving genetic diversity on a global scale. Sequencing advancements have broadened biodiversity studies by enabling the mapping of species distributions, increasing understanding of ecological interactions, and monitoring genetic diversity. However, these tools are hindered by inequalities and biases, particularly in biodiversity-rich developing countries. To navigate these challenges, we propose strategies using the existing biotechnological toolbox to make biodiversity data more accessible and useful for research and development. This includes increasing funding for database curation, improving metadata standards, addressing inequalities in technological capacity, and supporting holistic capacity-building programmes. Implementing these strategies can unlock new opportunities for biodiversity research aligned with sustainable development principles and can contribute to improved conservation outcomes.
Collapse
Affiliation(s)
- Erik Zhivkoplias
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
| | - Jessica M da Silva
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7 Claremont, 7735, Cape Town, South Africa; Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, Auckland Park 2006, South Africa
| | - Robert Blasiak
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Guo S, Xu Y, Wang Y, Guo R, Tang Y, Chen M, Lv M, Wu J. Screening Surface-Defective Graphene Quantum Dots: Promoting Plant Growth and Combating Phytovirus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407289. [PMID: 39479741 DOI: 10.1002/smll.202407289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/21/2024] [Indexed: 04/26/2025]
Abstract
Reduced graphene quantum dots (r-GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C-GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21-day foliar exposure is employed to explore GQDs' impacts on N. benthamiana. Surface-defective GOQD and C-GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH2O treatment, GOQD/C-GQD at 400 mg L-1 increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up-regulate the expression of growth-related genes NtLRX1, CycB, and NtPIP1 by more than two-fold. Second, different from the transient inhibition shown by r-GQD and the TMV enhancement shown by GOQD, C-GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21-day. Specially, C-GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11-fold and 0.29-fold, and down-regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface-functionalizations, highlighting C-GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus.
Collapse
Affiliation(s)
- Shengxin Guo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Huaxi District, Guiyang, 550025, P. R. China
| | - Ying Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Huaxi District, Guiyang, 550025, P. R. China
| | - Ya Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Huaxi District, Guiyang, 550025, P. R. China
| | - Renjiang Guo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Huaxi District, Guiyang, 550025, P. R. China
| | - Yao Tang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Huaxi District, Guiyang, 550025, P. R. China
| | - Moxian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Huaxi District, Guiyang, 550025, P. R. China
| | - Menglan Lv
- Sch Chem & Chem Engn, Guizhou University, Guiyang, 550025, P. R. China
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Huaxi District, Guiyang, 550025, P. R. China
| |
Collapse
|
3
|
Zhu Y, Raza A, Bai Q, Zou C, Niu J, Guo Z, Wu Q. In-depth analysis of 17,115 rice transcriptomes reveals extensive viral diversity in rice plants. Nat Commun 2025; 16:1559. [PMID: 39939599 PMCID: PMC11822035 DOI: 10.1038/s41467-025-56769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
Rice viruses seriously threaten rice cultivation and cause significant economic losses, but they have not yet been systematically identified, with only 20 rice-infecting viruses reported. Here, we perform a large-scale analysis of 17,115 RNA-seq libraries spanning 24 Oryza species across 51 countries. Using de novo assembly and homology-based methods, we identify 810 complete or near-complete viruses, including 276 known viruses and 534 novel viruses. Given the high divergence and atypical genome organizations of novel viruses, more than a half of them are tentatively assigned to 1 new order, 61 new families, and at least 104 new genera. Utilizing homology-independent approaches, we additionally identify 49 divergent RNA-dependent RNA polymerases (RdRPs), which are confirmed by protein structural alignment. Furthermore, we analyze the metadata of related Sequence Read Archive (SRA) libraries and estimated viral abundance in each library, leading to the screening of 427 viruses closely associated with rice plants. Overall, our study vastly expands the viral diversity in rice plants, providing insights for the prevention and control of viral disease.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, 230027, China
| | - Ali Raza
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, 230027, China
| | - Qing Bai
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, 230027, China
| | - Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jiangshuai Niu
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxin Guo
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingfa Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
4
|
Lombardi EM, Marx HE. Herbaria as critical resources for studying plant-virus biodiversity and epidemiology. AMERICAN JOURNAL OF BOTANY 2025; 112:e16463. [PMID: 39887350 DOI: 10.1002/ajb2.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 02/01/2025]
Affiliation(s)
- Elizabeth M Lombardi
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
- Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | - Hannah E Marx
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
- Section of Plant Biology and the L.H. Bailey Hortorium, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Ramos-Sobrinho R. Phylogenetic Analysis of Geminiviruses. Methods Mol Biol 2025; 2912:81-123. [PMID: 40064776 DOI: 10.1007/978-1-0716-4454-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Members of the family Geminiviridae have single-stranded (ss), circular DNA genomes that are encapsidated into non-enveloped quasi-icosahedral twinned (geminate) particles, causing yield losses in several economically important crops worldwide. Sequence-based approaches used for molecular characterization of Geminiviridae genomes, associated with powerful bioinformatic tools, provided a better picture about the true extent of the Geminiviridae species diversity. This chapter describes procedures to reconstruct Geminiviridae phylogenetic relationships based on coat protein (CP) and replication-associated protein (Rep) amino acid sequences and full-length nucleotide genomes using both maximum likelihood (ML) and Bayesian inference (BI) approaches. Although topological incongruences can be observed among the ML phylogenetic trees for CP, Rep, and genome sequences, suggesting inter-genera recombination, Geminiviridae exemplar viruses predominantly cluster according to the genera recognized by the International Committee on Taxonomy of Viruses.
Collapse
Affiliation(s)
- Roberto Ramos-Sobrinho
- Laboratory of Entomology and Phytopathology, Molecular Plant Virology, State University of the North Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Ben Chéhida S, Devi Bunwaree H, Hoareau M, Moubset O, Julian C, Blondin L, Filloux D, Lavergne C, Roumagnac P, Varsani A, Martin DP, Lett JM, Lefeuvre P. Increase of niche filling with increase of host richness for plant-infecting mastreviruses. Virus Evol 2024; 10:veae107. [PMID: 39717705 PMCID: PMC11665825 DOI: 10.1093/ve/veae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
Now that it has been realized that viruses are ubiquitous, questions have been raised on factors influencing their diversity and distribution. For phytoviruses, understanding the interplay between plant diversity and virus species richness and prevalence remains cardinal. As both the amplification and the dilution of viral species richness due to increasing host diversity have been theorized and observed, a deeper understanding of how plants and viruses interact in natural environments is needed to explore how host availability conditions viral diversity and distributions. From a unique dataset, this study explores interactions of Mastrevirus species (family Geminiviridae) with Poales order hosts across 10 sites from three contrasting ecosystems on La Réunion. Among 273 plant pools, representing 61 Poales species, 15 Mastrevirus species were characterized from 22 hosts. The analysis revealed a strong association of mastreviruses with hosts from agroecosystems, the rare presence of viruses in coastal grasslands, and the absence of mastreviruses in subalpine areas, areas dominated by native plants. This suggests that detected mastreviruses were introduced through anthropogenic activities, emphasizing the role of humans in shaping the global pathobiome. By reconstructing the realized host-virus infection network, besides revealing a pattern of increasing viral richness with increasing host richness, we observed increasing viral niche occupancies with increasing host species richness, implying that virus realized richness at any given site is conditioned on the global capacity of the plant populations to host diverse mastreviruses. Whether this tendency is driven by synergy between viruses or by an interplay between vector population and plant richness remains to be established.
Collapse
Affiliation(s)
| | | | | | - Oumaima Moubset
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Charlotte Julian
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Laurence Blondin
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Denis Filloux
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Christophe Lavergne
- Conservatoire Botanique National de Mascarin, St Leu, La Réunion F-97436, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287-5001, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | | | | |
Collapse
|
7
|
Li Q, Yang L, Zhu T, Yv X, Zhang B, Li H, Hao J, Zhang L, Ji P, Dong J. Detection and discovery of plant viruses in Disporopsis through high-throughput sequencing. Front Microbiol 2024; 15:1434554. [PMID: 39606107 PMCID: PMC11599246 DOI: 10.3389/fmicb.2024.1434554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Background Disporopsis, a member of the Liliaceae family and a perennial herb, is predominantly cultivated in southwestern and southeastern China. Its rhizome, referred to as Zhugenqi, serves as a traditional Chinese medicinal herb for the treatment of bone injuries. However, viral diseases have emerged as a significant challenge in the cultivation of Disporopsis. Objective The aim of this study was to identify and characterize viruses present in diseased samples of Disporopsis spp. using high-throughput sequencing (HTS) and reverse transcription-polymerase chain reaction (RT-PCR) to enhance the understanding of the virome associated with Disporopsis and to inform diagnostic and control strategies for viral diseases in this plant. Methods Diseased samples of Disporopsis spp. were subjected to HTS and RT-PCR for virus identification. A total of five viruses were detected, including three novel viruses and two known viruses. The novel viruses were provisionally named Disporopsis chlorotic stripe virus (DCSV), Disporopsis pernyi-associated partitivirus (DaPTV), and Disporopsis pernyi-associated lispi-like virus (DaLV). Sequence identity and phylogenetic analyses were performed to confirm the novelty and taxonomic placement of these viruses. Results DCSV exhibited polyprotein sequence identities ranging from 47.6% to 83.6% with other potyviruses, with the highest identity (83.6%) shared with Polygonatum kingianum virus 5 (PKgV5). DaLV shared an amino acid sequence identity of 34.59% with maize suscal virus (MSV), and DaPTV shared an identity of 76.18-85.10% with Paris alphapartitivirus (ParAPV). Phylogenetic analyses supported the potential classification of the three novel viruses as new members of their respective genera. Two isolates of polygonatum mosaic-associated virus 1 (PMaV1) were identified in Disporopsis for the first time, showing divergences of 96.33% and 98.86% from existing isolates. RT-PCR analysis of 67 Disporopsis field samples collected from four cities in China revealed that more than half of the samples tested positive for at least one of the five viruses. PMaV1 and DaLV were the most prevalent, detected in 22 and 34 out of the 67 samples, respectively. Other viruses were detected at low rates and/or had limited distribution. Conclusion This study provides insights into the virome infecting Disporopsis and offers valuable information for the diagnosis and control of viral diseases in this plant. The identification of five viruses, including three potential new members of their respective genera, contributes to the understanding of the viral threats to Disporopsis cultivation.
Collapse
Affiliation(s)
- Qiannan Li
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Southern Medicinal Resource, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Lianfu Yang
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Southern Medicinal Resource, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Ting Zhu
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Southern Medicinal Resource, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiyv Yv
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Southern Medicinal Resource, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Boxin Zhang
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Southern Medicinal Resource, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Hongzhe Li
- Yunnan Key Laboratory of Southern Medicinal Resource, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Junjie Hao
- Yunnan Key Laboratory of Southern Medicinal Resource, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Zhang
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Southern Medicinal Resource, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Pengzhang Ji
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Southern Medicinal Resource, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiahong Dong
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Southern Medicinal Resource, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
8
|
McLeish M, Peláez A, Pagán I, Gavilán RG, Fraile A, García-Arenal F. Plant virus community structuring is shaped by habitat heterogeneity and traits for host plant resource utilisation. THE NEW PHYTOLOGIST 2024; 244:1585-1596. [PMID: 39327796 DOI: 10.1111/nph.20054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/12/2024] [Indexed: 09/28/2024]
Abstract
Host plants provide resources critical to viruses and the spatial structuring of plant communities affects the niches available for colonisation and disease emergence. However, large gaps remain in the understanding of mechanisms that govern plant-virus disease ecology across heterogeneous plant assemblages. We combine high-throughput sequencing, network, and metacommunity approaches to test whether habitat heterogeneity in plant community composition corresponded with virus resource utilisation traits of transmission mode and host range. A majority of viruses exhibited habitat specificity, with communities connected by key generalist viruses and potential host reservoirs. There was an association between habitat heterogeneity and virus community structuring, and between virus community structuring and resource utilisation traits of host range and transmission. The relationship between virus species distributions and virus trait responses to habitat heterogeneity was scale-dependent, being stronger at finer (site) than larger (habitat) spatial scales. Results indicate that habitat heterogeneity has a part in plant virus community assembly, and virus community structuring corresponds to virus trait responses that vary with the scale of observation. Distinctions in virus communities caused by plant resource compartmentalisation can be used to track trait responses of viruses to hosts important in forecasting disease emergence.
Collapse
Affiliation(s)
- Michael McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Adrián Peláez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Rosario G Gavilán
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense, Unidad de Botánica, Madrid, 28040, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
9
|
Aseel DG, Ibrahim OM, Abdelkhalek A. Biosynthesized silver nanoparticles mediated by Ammi visnaga extract enhanced systemic resistance and triggered multiple defense-related genes, including SbWRKY transcription factors, against tobacco mosaic virus infection. BMC PLANT BIOLOGY 2024; 24:756. [PMID: 39107683 PMCID: PMC11305019 DOI: 10.1186/s12870-024-05449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Tobacco mosaic virus (TMV) is a highly infectious plant virus that affects a wide variety of plants and reduces crop yields around the world. Here, we assessed the effectiveness of using Ammi visnaga aqueous seed extract to synthesize silver nanoparticles (Ag-NPs) and their potential to combat TMV. Different techniques were used to characterize Ag-NPs, such as scanning and transmission electron microscopy (SEM, TEM), energy-dispersive X-ray spectroscopy (EDS), fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). RESULTS TEM demonstrated that the synthesized Ag-NPs had a spherical form with an average size of 23-30 nm and a zeta potential value of -15.9 mV, while FTIR revealed various functional groups involved in Ag-NP stability and capping. Interestingly, the Pre-treatment of tobacco plants (protective treatment) with Ag-NPs at 100-500 µg/mL significantly suppressed viral symptoms, while the Post-treatment (curative treatment) delayed their appearance. Furthermore, protective and curative treatments significantly increased chlorophyll a and b, total flavonoids, total soluble carbohydrates, and antioxidant enzymes activity (PPO, POX and CAT). Simultaneously, the application of Ag-NPs resulted in a decrease in levels of oxidative stress markers (H2O2 and MDA). The RT-qPCR results and volcano plot analysis showed that the Ag-NPs treatments trigger and regulate the transcription of ten defense-related genes (SbWRKY-1, SbWRKY-2, JERF-3, GST-1, POD, PR-1, PR-2, PR-12, PAL-1, and HQT-1). The heatmap revealed that GST-1, the primary gene involved in anthocyanidin production, was consistently the most expressed gene across all treatments throughout the study. Analysis of the gene co-expression network revealed that SbWRKY-19 was the most central gene among the studied genes, followed by PR-12 and PR-2. CONCLUSIONS Overall, the reported antiviral properties (protective and/or curative) of biosynthesized Ag-NPs against TMV lead us to recommend using Ag-NPs as a simple, stable, and eco-friendly agent in developing pest management programs against plant viral infections.
Collapse
Affiliation(s)
- Dalia G Aseel
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt.
| | - Omar M Ibrahim
- Plant Production Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt.
| |
Collapse
|
10
|
Martínez-Fajardo C, Navarro-Simarro P, Morote L, Rubio-Moraga Á, Mondéjar-López M, Niza E, Argandoña J, Ahrazem O, Gómez-Gómez L, López-Jiménez AJ. Exploring the viral landscape of saffron through metatranscriptomic analysis. Virus Res 2024; 345:199389. [PMID: 38714217 PMCID: PMC11101869 DOI: 10.1016/j.virusres.2024.199389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Saffron (Crocus sativus L.), a historically significant crop valued for its nutraceutical properties, has been poorly explored from a phytosanitary perspective. This study conducted a thorough examination of viruses affecting saffron samples from Spanish cultivars, using high-throughput sequencing alongside a systematic survey of transcriptomic datasets from Crocus sativus at the Sequence Read Archive. Our analysis unveiled a broad diversity and abundance, identifying 17 viruses across the 52 analyzed libraries, some of which were highly prevalent. This includes known saffron-infecting viruses and previously unreported ones. In addition, we discovered 7 novel viruses from the Alphaflexiviridae, Betaflexiviridae, Potyviridae, Solemoviridae, and Geminiviridae families, with some present in libraries from various locations. These findings indicate that the saffron-associated virome is more complex than previously reported, emphasizing the potential of phytosanitary analysis to enhance saffron productivity.
Collapse
Affiliation(s)
- Cristian Martínez-Fajardo
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Pablo Navarro-Simarro
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Lucía Morote
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Ángela Rubio-Moraga
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Albacete, Spain
| | - María Mondéjar-López
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Enrique Niza
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Facultad de Farmacia. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Javier Argandoña
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Facultad de Farmacia. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Alberto José López-Jiménez
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
11
|
Moubset O, Filloux D, Fontes H, Julian C, Fernandez E, Galzi S, Blondin L, Chehida SB, Lett JM, Mesléard F, Kraberger S, Custer JM, Salywon A, Makings E, Marais A, Chiroleu F, Lefeuvre P, Martin DP, Candresse T, Varsani A, Ravigné V, Roumagnac P. Virome release of an invasive exotic plant species in southern France. Virus Evol 2024; 10:veae025. [PMID: 38566975 PMCID: PMC10986800 DOI: 10.1093/ve/veae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
The increase in human-mediated introduction of plant species to new regions has resulted in a rise of invasive exotic plant species (IEPS) that has had significant effects on biodiversity and ecosystem processes. One commonly accepted mechanism of invasions is that proposed by the enemy release hypothesis (ERH), which states that IEPS free from their native herbivores and natural enemies in new environments can outcompete indigenous species and become invasive. We here propose the virome release hypothesis (VRH) as a virus-centered variant of the conventional ERH that is only focused on enemies. The VRH predicts that vertically transmitted plant-associated viruses (PAV, encompassing phytoviruses and mycoviruses) should be co-introduced during the dissemination of the IEPS, while horizontally transmitted PAV of IEPS should be left behind or should not be locally transmitted in the introduced area due to a maladaptation of local vectors. To document the VRH, virome richness and composition as well as PAV prevalence, co-infection, host range, and transmission modes were compared between indigenous plant species and an invasive grass, cane bluestem (Bothriochloa barbinodis), in both its introduced range (southern France) and one area of its native range (Sonoran Desert, Arizona, USA). Contrary to the VRH, we show that invasive populations of B. barbinodis in France were not associated with a lower PAV prevalence or richness than native populations of B. barbinodis from the USA. However, comparison of virome compositions and network analyses further revealed more diverse and complex plant-virus interactions in the French ecosystem, with a significant richness of mycoviruses. Setting mycoviruses apart, only one putatively vertically transmitted phytovirus (belonging to the Amalgaviridae family) and one putatively horizontally transmitted phytovirus (belonging to the Geminiviridae family) were identified from B. barbinodis plants in the introduced area. Collectively, these characteristics of the B. barbinodis-associated PAV community in southern France suggest that a virome release phase may have immediately followed the introduction of B. barbinodis to France in the 1960s or 1970s, and that, since then, the invasive populations of this IEPS have already transitioned out of this virome release phase, and have started interacting with several local mycoviruses and a few local plant viruses.
Collapse
Affiliation(s)
- Oumaima Moubset
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Denis Filloux
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Hugo Fontes
- Tour du Valat, Institut de recherche pour la conservation des zones humides méditerranéennes, Le Sambuc, Arles 13200, France
- Institut Méditerranéen de Biodiversité et Ecologie, UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, IUT d’Avignon, Avignon 84911, France
| | - Charlotte Julian
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Emmanuel Fernandez
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Serge Galzi
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Laurence Blondin
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | | | | | - François Mesléard
- Tour du Valat, Institut de recherche pour la conservation des zones humides méditerranéennes, Le Sambuc, Arles 13200, France
- Institut Méditerranéen de Biodiversité et Ecologie, UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, IUT d’Avignon, Avignon 84911, France
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Andrew Salywon
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Elizabeth Makings
- Vascular Plant Herbarium, School of Life Sciences, Arizona State University, 734 West Alameda Drive, Tempe Tempe, AZ 85282, USA
| | - Armelle Marais
- UMR BFP, University Bordeaux, INRAE, Villenave d’Ornon 33140, France
| | | | | | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Rd, Cape Town 7925, South Africa
| | - Thierry Candresse
- UMR BFP, University Bordeaux, INRAE, Villenave d’Ornon 33140, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7700, South Africa
| | - Virginie Ravigné
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Philippe Roumagnac
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| |
Collapse
|
12
|
de Andrés-Torán R, Guidoum L, Zamfir AD, Mora MÁ, Moreno-Vázquez S, García-Arenal F. Tobacco Mild Green Mosaic Virus (TMGMV) Isolates from Different Plant Families Show No Evidence of Differential Adaptation to Their Host of Origin. Viruses 2023; 15:2384. [PMID: 38140625 PMCID: PMC10748040 DOI: 10.3390/v15122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The relevance of tobamoviruses to crop production is increasing due to new emergences, which cannot be understood without knowledge of the tobamovirus host range and host specificity. Recent analyses of tobamovirus occurrence in different plant communities have shown unsuspectedly large host ranges. This was the case of the tobacco mild green mosaic virus (TMGMV), which previously was most associated with solanaceous hosts. We addressed two hypotheses concerning TMGMV host range evolution: (i) ecological fitting, rather than genome evolution, determines TMGMV host range, and (ii) isolates are adapted to the host of origin. We obtained TMGMV isolates from non-solanaceous hosts and we tested the capacity of genetically closely related TMGMV isolates from three host families to infect and multiply in 10 hosts of six families. All isolates systemically infected all hosts, with clear disease symptoms apparent only in solanaceous hosts. TMGMV multiplication depended on the assayed host but not on the isolate's host of origin, with all isolates accumulating to the highest levels in Nicotiana tabacum. Thus, results support that TMGMV isolates are adapted to hosts in the genus Nicotiana, consistent with a well-known old virus-host association. In addition, phenotypic plasticity allows Nicotiana-adapted TMGMV genotypes to infect a large range of hosts, as encountered according to plant community composition and transmission dynamics.
Collapse
Affiliation(s)
- Rafael de Andrés-Torán
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
| | - Laura Guidoum
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
| | - Adrian D. Zamfir
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
| | - Miguel Ángel Mora
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
| | - Santiago Moreno-Vázquez
- Departamento de Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro 2-4, 28040 Madrid, Spain;
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP UPM_INIA/CSIC), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.d.A.-T.); (L.G.); (A.D.Z.); (M.Á.M.)
- Departamento de Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro 2-4, 28040 Madrid, Spain;
| |
Collapse
|
13
|
Schönegger D, Moubset O, Margaria P, Menzel W, Winter S, Roumagnac P, Marais A, Candresse T. Benchmarking of virome metagenomic analysis approaches using a large, 60+ members, viral synthetic community. J Virol 2023; 97:e0130023. [PMID: 37888981 PMCID: PMC10688312 DOI: 10.1128/jvi.01300-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE We report here efforts to benchmark performance of two widespread approaches for virome analysis, which target either virion-associated nucleic acids (VANA) or highly purified double-stranded RNAs (dsRNAs). This was achieved using synthetic communities of varying complexity levels, up to a highly complex community of 72 viral agents (115 viral molecules) comprising isolates from 21 families and 61 genera of plant viruses. The results obtained confirm that the dsRNA-based approach provides a more complete representation of the RNA virome, in particular, for high complexity ones. However, for viromes of low to medium complexity, VANA appears a reasonable alternative and would be the preferred choice if analysis of DNA viruses is of importance. Several parameters impacting performance were identified as well as a direct relationship between the completeness of virome description and sample sequencing depth. The strategy, results, and tools used here should prove useful in a range of virome analysis efforts.
Collapse
Affiliation(s)
| | - Oumaima Moubset
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Paolo Margaria
- Plant Virus Department, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Wulf Menzel
- Plant Virus Department, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Stephan Winter
- Plant Virus Department, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Armelle Marais
- Univ. Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
| | | |
Collapse
|
14
|
Zamfir AD, Babalola BM, Fraile A, McLeish MJ, García-Arenal F. Tobamoviruses Show Broad Host Ranges and Little Genetic Diversity Among Four Habitat Types of a Heterogeneous Ecosystem. PHYTOPATHOLOGY 2023; 113:1697-1707. [PMID: 36916761 DOI: 10.1094/phyto-11-22-0439-v] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Host ranges of plant viruses are poorly known, as studies have focused on pathogenic viruses in crops and adjacent wild plants. High-throughput sequencing (HTS) avoids the bias toward plant-virus interactions that result in disease. Here we study the host ranges of tobamoviruses, important pathogens of crops, using HTS analyses of an extensive sample of plant communities in four habitats of a heterogeneous ecosystem. Sequences of 17 virus operational taxonomic units (OTUs) matched references in the Tobamovirus genus, eight had narrow host ranges, and five had wide host ranges. Regardless of host range, the OTU hosts belonged to taxonomically distant families, suggesting no phylogenetic constraints in host use associated with virus adaptation, and that tobamoviruses may be host generalists. The OTUs identified as tobacco mild green mosaic virus (TMGMV), tobacco mosaic virus (TMV), pepper mild mottle virus, and Youcai mosaic virus had the largest realized host ranges that occurred across habitats and exhibited host use unrelated to the degree of human intervention. This result is at odds with assumptions that contact-transmitted viruses would be more abundant in crops than in wild plant communities and could be explained by effective seed-, contact-, or pollinator-mediated transmission or by survival in the soil. TMGMV and TMV had low genetic diversity that was not structured according to habitat or host plant taxonomy, which indicated that phenotypic plasticity allows virus genotypes to infect new hosts with no need for adaptive evolution. Our results underscore the relevance of ecological factors in host range evolution, in addition to the more often studied genetic factors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Adrián D Zamfir
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Bisola M Babalola
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
15
|
Babalola B, Fraile A, García-Arenal F, McLeish M. Ecological Strategies for Resource Use by Three Bromoviruses in Anthropic and Wild Plant Communities. Viruses 2023; 15:1779. [PMID: 37632121 PMCID: PMC10458945 DOI: 10.3390/v15081779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Ecological strategies for resource utilisation are important features of pathogens, yet have been overshadowed by stronger interest in genetic mechanisms underlying disease emergence. The purpose of this study is to ask whether host range and transmission traits translate into ecological strategies for host-species utilisation in a heterogeneous ecosystem, and whether host utilisation corresponds to genetic differentiation among three bromoviruses. We combine high-throughput sequencing and population genomics with analyses of species co-occurrence to unravel the ecological strategies of the viruses across four habitat types. The results show that the bromoviruses that were more closely related genetically did not share similar ecological strategies, but that the more distantly related pair did. Shared strategies included a broad host range and more frequent co-occurrences, which both were habitat-dependent. Each habitat thus presents as a barrier to gene flow, and each virus has an ecological strategy to navigate limitations to colonising non-natal habitats. Variation in ecological strategies could therefore hold the key to unlocking events that lead to emergence.
Collapse
Affiliation(s)
- Bisola Babalola
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Michael McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CSIC/INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
16
|
Schönegger D, Marais A, Babalola BM, Faure C, Lefebvre M, Svanella-Dumas L, Brázdová S, Candresse T. Carrot populations in France and Spain host a complex virome rich in previously uncharacterized viruses. PLoS One 2023; 18:e0290108. [PMID: 37585477 PMCID: PMC10431682 DOI: 10.1371/journal.pone.0290108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
High-throughput sequencing (HTS) has proven a powerful tool to uncover the virome of cultivated and wild plants and offers the opportunity to study virus movements across the agroecological interface. The carrot model consisting of cultivated (Daucus carota ssp. sativus) and wild carrot (Daucus carota ssp. carota) populations, is particularly interesting with respect to comparisons of virus communities due to the low genetic barrier to virus flow since both population types belong to the same plant species. Using a highly purified double-stranded RNA-based HTS approach, we analyzed on a large scale the virome of 45 carrot populations including cultivated, wild and off-type carrots (carrots growing within the field and likely representing hybrids between cultivated and wild carrots) in France and six additional carrot populations from central Spain. Globally, we identified a very rich virome comprising 45 viruses of which 25 are novel or tentatively novel. Most of the identified novel viruses showed preferential associations with wild carrots, either occurring exclusively in wild populations or infecting only a small proportion of cultivated populations, indicating the role of wild carrots as reservoir of viral diversity. The carrot virome proved particularly rich in viruses involved in complex mutual interdependencies for aphid transmission such as poleroviruses, umbraviruses and associated satellites, which can be the basis for further investigations of synergistic or antagonistic virus-vector-host relationships.
Collapse
Affiliation(s)
- Deborah Schönegger
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Armelle Marais
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Bisola Mercy Babalola
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Madrid, Spain
| | - Chantal Faure
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Marie Lefebvre
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Laurence Svanella-Dumas
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Sára Brázdová
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| | - Thierry Candresse
- INRAE &, UMR 1332 Biology du Fruit et Pathologie, Univ. Bordeaux, Villenave d’Ornon Cedex, France
| |
Collapse
|
17
|
Claverie S, Hoareau M, Chéhida SB, Filloux D, Varsani A, Roumagnac P, Martin DP, Lett JM, Lefeuvre P. Metagenomics reveals the structure of Mastrevirus-host interaction network within an agro-ecosystem. Virus Evol 2023; 9:vead043. [PMID: 37475836 PMCID: PMC10354507 DOI: 10.1093/ve/vead043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
As highly pervasive parasites that sometimes cause disease, viruses are likely major components of all natural ecosystems. An important step towards both understanding the precise ecological roles of viruses and determining how natural communities of viral species are assembled and evolve is obtaining full descriptions of viral diversity and distributions at ecosystem scales. Here, we focused on obtaining such 'community-scale' data for viruses in a single genus. We chose the genus Mastrevirus (family Geminiviridae), members of which have predominantly been found infecting uncultivated grasses (family Poaceae) throughout the tropical and sub-tropical regions of the world. We sampled over 3 years, 2,884 individual Poaceae plants belonging to thirty different species within a 2-ha plot which included cultivated and uncultivated areas on the island of Reunion. Mastreviruses were found in ∼8 per cent of the samples, of which 96 per cent did not have any discernible disease symptoms. The multitude of host-virus associations that we uncovered reveals both the plant species that most commonly host mastreviruses and the mastrevirus species (such as maize streak virus and maize streak Reunion virus) that have especially large host ranges. Our findings are consistent with the hypothesis that perennial plant species capable of hosting years-long mixed mastrevirus infections likely play a disproportionately important role in the generation of inter-species and inter-strain mastrevirus recombinants.
Collapse
Affiliation(s)
- Sohini Claverie
- CIRAD, UMR PVBMT, F-97410 St Pierre, La Réunion, France
- Université de La Réunion, UMR PVBMT, F-97410 St Pierre, La Réunion, France
| | | | | | - Denis Filloux
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier 34090, France
| | | | - Philippe Roumagnac
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier 34090, France
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | | | - Pierre Lefeuvre
- CIRAD, UMR PVBMT, F-97410 St Pierre, La Réunion, France
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| |
Collapse
|
18
|
Kolchenko M, Kapytina A, Kerimbek N, Pozharskiy A, Nizamdinova G, Khusnitdinova M, Taskuzhina A, Gritsenko D. Genetic Characterization of Raspberry Bushy Dwarf Virus Isolated from Red Raspberry in Kazakhstan. Viruses 2023; 15:v15040975. [PMID: 37112955 PMCID: PMC10143182 DOI: 10.3390/v15040975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Raspberry bushy dwarf virus (RBDV) is an economically significant pathogen of raspberry and grapevine, and it has also been found in cherry. Most of the currently available RBDV sequences are from European raspberry isolates. This study aimed to sequence genomic RNA2 of both cultivated and wild raspberry in Kazakhstan and compare them to investigate their genetic diversity and phylogenetic relationships, as well as to predict their protein structure. Phylogenetic and population diversity analyses were performed on all available RBDV RNA2, MP and CP sequences. Nine of the isolates investigated in this study formed a new, well-supported clade, while the wild isolates clustered with the European isolates. Predicted protein structure analysis revealed two regions that differed between α- and β-structures among the isolates. For the first time, the genetic composition of Kazakhstani raspberry viruses has been characterized.
Collapse
Affiliation(s)
- Mariya Kolchenko
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Anastasiya Kapytina
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Nazym Kerimbek
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Alexandr Pozharskiy
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Gulnaz Nizamdinova
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Marina Khusnitdinova
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Aisha Taskuzhina
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Dilyara Gritsenko
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| |
Collapse
|
19
|
Giesbers AKJ, Roenhorst A, Schenk MF, Westenberg M, Botermans M. African eggplant-associated virus: Characterization of a novel tobamovirus identified from Solanum macrocarpon and assessment of its potential impact on tomato and pepper crops. PLoS One 2023; 18:e0277840. [PMID: 37053240 PMCID: PMC10101479 DOI: 10.1371/journal.pone.0277840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
A novel tobamovirus was identified in a fruit of Solanum macrocarpon imported into the Netherlands in 2018. This virus was further characterized in terms of host range, pathotype and genomic properties, because many tobamoviruses have the potential to cause severe damage in important crops. In the original fruit, two different genotypes of the novel virus were present. The virus was able to infect multiple plant species from the Solanaceae family after mechanical inoculation, as well as a member of the Apiaceae family. These species included economically important crops such as tomato and pepper, as well as eggplant and petunia. Both tomato and pepper germplasm were shown to harbor resistance against the novel virus. Since most commercial tomato and pepper varieties grown in European greenhouses harbor these relevant resistances, the risk of infection and subsequent impact on these crops is likely to be low in Europe. Assessment of the potential threat to eggplant, petunia, and other susceptible species needs further work. In conclusion, this study provides a first assessment of the potential phytosanitary risks of a newly discovered tobamovirus, which was tentatively named African eggplant-associated virus.
Collapse
Affiliation(s)
- Anne K. J. Giesbers
- Netherlands Institute for Vectors, Invasive plants and Plant health, Wageningen, The Netherlands
- National Plant Protection Organization (NPPO-NL), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, The Netherlands
| | - Annelien Roenhorst
- Netherlands Institute for Vectors, Invasive plants and Plant health, Wageningen, The Netherlands
- National Plant Protection Organization (NPPO-NL), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, The Netherlands
| | - Martijn F. Schenk
- National Plant Protection Organization (NPPO-NL), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, The Netherlands
| | - Marcel Westenberg
- Netherlands Institute for Vectors, Invasive plants and Plant health, Wageningen, The Netherlands
- National Plant Protection Organization (NPPO-NL), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, The Netherlands
| | - Marleen Botermans
- Netherlands Institute for Vectors, Invasive plants and Plant health, Wageningen, The Netherlands
- National Plant Protection Organization (NPPO-NL), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, The Netherlands
| |
Collapse
|
20
|
Norberg A, Susi H, Sallinen S, Baran P, Clark NJ, Laine AL. Direct and indirect viral associations predict coexistence in wild plant virus communities. Curr Biol 2023; 33:1665-1676.e4. [PMID: 37019108 DOI: 10.1016/j.cub.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
Viruses are a vastly underestimated component of biodiversity that occur as diverse communities across hierarchical scales from the landscape level to individual hosts. The integration of community ecology with disease biology is a powerful, novel approach that can yield unprecedented insights into the abiotic and biotic drivers of pathogen community assembly. Here, we sampled wild plant populations to characterize and analyze the diversity and co-occurrence structure of within-host virus communities and their predictors. Our results show that these virus communities are characterized by diverse, non-random coinfections. Using a novel graphical network modeling framework, we demonstrate how environmental heterogeneity influences the network of virus taxa and how the virus co-occurrence patterns can be attributed to non-random, direct statistical virus-virus associations. Moreover, we show that environmental heterogeneity changed virus association networks, especially through their indirect effects. Our results highlight a previously underestimated mechanism of how environmental variability can influence disease risks by changing associations between viruses that are conditional on their environment.
Collapse
Affiliation(s)
- Anna Norberg
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland; Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7034 Trondheim, Norway.
| | - Hanna Susi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65 00014, Helsinki, Finland
| | - Suvi Sallinen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65 00014, Helsinki, Finland
| | - Pezhman Baran
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65 00014, Helsinki, Finland
| | - Nicholas J Clark
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, QL 4343, Australia
| | - Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65 00014, Helsinki, Finland
| |
Collapse
|
21
|
Rivarez MPS, Pecman A, Bačnik K, Maksimović O, Vučurović A, Seljak G, Mehle N, Gutiérrez-Aguirre I, Ravnikar M, Kutnjak D. In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem. MICROBIOME 2023; 11:60. [PMID: 36973750 PMCID: PMC10042675 DOI: 10.1186/s40168-023-01500-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/20/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In agroecosystems, viruses are well known to influence crop health and some cause phytosanitary and economic problems, but their diversity in non-crop plants and role outside the disease perspective is less known. Extensive virome explorations that include both crop and diverse weed plants are therefore needed to better understand roles of viruses in agroecosystems. Such unbiased exploration is available through viromics, which could generate biological and ecological insights from immense high-throughput sequencing (HTS) data. RESULTS Here, we implemented HTS-based viromics to explore viral diversity in tomatoes and weeds in farming areas at a nation-wide scale. We detected 125 viruses, including 79 novel species, wherein 65 were found exclusively in weeds. This spanned 21 higher-level plant virus taxa dominated by Potyviridae, Rhabdoviridae, and Tombusviridae, and four non-plant virus families. We detected viruses of non-plant hosts and viroid-like sequences and demonstrated infectivity of a novel tobamovirus in plants of Solanaceae family. Diversities of predominant tomato viruses were variable, in some cases, comparable to that of global isolates of the same species. We phylogenetically classified novel viruses and showed links between a subgroup of phylogenetically related rhabdoviruses to their taxonomically related host plants. Ten classified viruses detected in tomatoes were also detected in weeds, which might indicate possible role of weeds as their reservoirs and that these viruses could be exchanged between the two compartments. CONCLUSIONS We showed that even in relatively well studied agroecosystems, such as tomato farms, a large part of very diverse plant viromes can still be unknown and is mostly present in understudied non-crop plants. The overlapping presence of viruses in tomatoes and weeds implicate possible presence of virus reservoir and possible exchange between the weed and crop compartments, which may influence weed management decisions. The observed variability and widespread presence of predominant tomato viruses and the infectivity of a novel tobamovirus in solanaceous plants, provided foundation for further investigation of virus disease dynamics and their effect on tomato health. The extensive insights we generated from such in-depth agroecosystem virome exploration will be valuable in anticipating possible emergences of plant virus diseases and would serve as baseline for further post-discovery characterization studies. Video Abstract.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
- Present Address: College of Agriculture and Agri-Industries, Caraga State University, Ampayon, Butuan City, 8600 Philippines
| | - Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
| | - Katarina Bačnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Olivera Maksimović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Gabrijel Seljak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Dvorec Lanthieri Glavni trg 8, Vipava, 5271 Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| |
Collapse
|
22
|
Fetters AM, Ashman TL. The pollen virome: A review of pollen-associated viruses and consequences for plants and their interactions with pollinators. AMERICAN JOURNAL OF BOTANY 2023:e16144. [PMID: 36924316 DOI: 10.1002/ajb2.16144] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/18/2023]
Abstract
The movement of pollen grains from anthers to stigmas, often by insect pollinator vectors, is essential for plant reproduction. However, pollen is also a unique vehicle for viral spread. Pollen-associated plant viruses reside on the outside or inside of pollen grains, infect susceptible individuals through vertical or horizontal infection pathways, and can decrease plant fitness. These viruses are transferred with pollen between plants by pollinator vectors as they forage for floral resources; thus, pollen-associated viral spread is mediated by floral and pollen grain phenotypes and pollinator traits, much like pollination. Most of what is currently known about pollen-associated viruses was discovered through infection and transmission experiments in controlled settings, usually involving one virus and one plant species of agricultural or horticultural interest. In this review, we first provide an updated, comprehensive list of the recognized pollen-associated viruses. Then, we summarize virus, plant, pollinator vector, and landscape traits that can affect pollen-associated virus transmission, infection, and distribution. Next, we highlight the consequences of plant-pollinator-virus interactions that emerge in complex communities of co-flowering plants and pollinator vectors, such as pollen-associated virus spread between plant species and viral jumps from plant to pollinator hosts. We conclude by emphasizing the need for collaborative research that bridges pollen biology, virology, and pollination biology.
Collapse
Affiliation(s)
- Andrea M Fetters
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
23
|
Maclot F, Debue V, Malmstrom CM, Filloux D, Roumagnac P, Eck M, Tamisier L, Blouin AG, Candresse T, Massart S. Long-Term Anthropogenic Management and Associated Loss of Plant Diversity Deeply Impact Virome Richness and Composition of Poaceae Communities. Microbiol Spectr 2023; 11:e0485022. [PMID: 36916941 PMCID: PMC10100685 DOI: 10.1128/spectrum.04850-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
Modern agriculture has influenced plant virus emergence through ecosystem simplification, introduction of new host species, and reduction in crop genetic diversity. Therefore, it is crucial to better understand virus distributions across cultivated and uncultivated communities in agro-ecological interfaces, as well as virus exchange among them. Here, we advance fundamental understanding in this area by characterizing the virome of three co-occurring replicated Poaceae community types that represent a gradient of grass species richness and management intensity, from highly managed crop monocultures to little-managed, species-rich grasslands. We performed a large-scale study on 950 wild and cultivated Poaceae over 2 years, combining untargeted virome analysis down to the virus species level with targeted detection of three plant viruses. Deep sequencing revealed (i) a diversified and largely unknown Poaceae virome (at least 51 virus species or taxa), with an abundance of so-called persistent viruses; (ii) an increase of virome richness with grass species richness within the community; (iii) stability of virome richness over time but a large viral intraspecific variability; and (iv) contrasting patterns of virus prevalence, coinfections, and spatial distribution among plant communities and species. Our findings highlight the complex structure of plant virus communities in nature and suggest the influence of anthropogenic management on viral distribution and prevalence. IMPORTANCE Because viruses have been mostly studied in cultivated plants, little is known about virus diversity and ecology in less-managed vegetation or about the influence of human management and agriculture on virome composition. Poaceae (grass family)-dominated communities provide invaluable opportunities to examine these ecological issues, as they are distributed worldwide across agro-ecological gradients, are essential for food security and conservation, and can be infected by numerous viruses. Here, we used multiple levels of analysis that considered plant communities, individual plants, virus species, and haplotypes to broaden understanding of the Poaceae virome and to evaluate host-parasite richness relationships within agro-ecological landscapes in our study area. We emphasized the influence of grass diversity and land use on the composition of viral communities and their life history strategies, and we demonstrated the complexity of plant-virus interactions in less-managed grass communities, such as the higher virus prevalence and overrepresentation of mixed virus infection compared to theoretical predictions.
Collapse
Affiliation(s)
- François Maclot
- Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Virginie Debue
- Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Carolyn M. Malmstrom
- Department of Plant Biology and Program in Ecology, Evolution, & Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Denis Filloux
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, CIRAD, INRAE, Institut Agro, IRD, University of Montpellier, Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, Montpellier, France
- PHIM Plant Health Institute, CIRAD, INRAE, Institut Agro, IRD, University of Montpellier, Montpellier, France
| | - Mathilde Eck
- Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Lucie Tamisier
- Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Arnaud G. Blouin
- Virology-Phytoplasmology Laboratory, Agroscope, Nyon, Switzerland
| | - Thierry Candresse
- University of Bordeaux, INRAE, UMR BFP, CS20032, Villenave d’Ornon, France
| | - Sébastien Massart
- Plant Pathology Laboratory, Terra-Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
24
|
Alcalá Briseño RI, Batuman O, Brawner J, Cuellar WJ, Delaquis E, Etherton BA, French-Monar RD, Kreuze JF, Navarrete I, Ogero K, Plex Sulá AI, Yilmaz S, Garrett KA. Translating virome analyses to support biosecurity, on-farm management, and crop breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1056603. [PMID: 36998684 PMCID: PMC10043385 DOI: 10.3389/fpls.2023.1056603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Virome analysis via high-throughput sequencing (HTS) allows rapid and massive virus identification and diagnoses, expanding our focus from individual samples to the ecological distribution of viruses in agroecological landscapes. Decreases in sequencing costs combined with technological advances, such as automation and robotics, allow for efficient processing and analysis of numerous samples in plant disease clinics, tissue culture laboratories, and breeding programs. There are many opportunities for translating virome analysis to support plant health. For example, virome analysis can be employed in the development of biosecurity strategies and policies, including the implementation of virome risk assessments to support regulation and reduce the movement of infected plant material. A challenge is to identify which new viruses discovered through HTS require regulation and which can be allowed to move in germplasm and trade. On-farm management strategies can incorporate information from high-throughput surveillance, monitoring for new and known viruses across scales, to rapidly identify important agricultural viruses and understand their abundance and spread. Virome indexing programs can be used to generate clean germplasm and seed, crucial for the maintenance of seed system production and health, particularly in vegetatively propagated crops such as roots, tubers, and bananas. Virome analysis in breeding programs can provide insight into virus expression levels by generating relative abundance data, aiding in breeding cultivars resistant, or at least tolerant, to viruses. The integration of network analysis and machine learning techniques can facilitate designing and implementing management strategies, using novel forms of information to provide a scalable, replicable, and practical approach to developing management strategies for viromes. In the long run, these management strategies will be designed by generating sequence databases and building on the foundation of pre-existing knowledge about virus taxonomy, distribution, and host range. In conclusion, virome analysis will support the early adoption and implementation of integrated control strategies, impacting global markets, reducing the risk of introducing novel viruses, and limiting virus spread. The effective translation of virome analysis depends on capacity building to make benefits available globally.
Collapse
Affiliation(s)
- Ricardo I. Alcalá Briseño
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Plant Pathology Department, Oregon State University, Corvallis, OR, United States
| | - Ozgur Batuman
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Southwest Florida Research and Education Center (SWFREC), Immokalee, FL, United States
| | - Jeremy Brawner
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Wilmer J. Cuellar
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Erik Delaquis
- International Center for Tropical Agriculture (CIAT), Vientiane, Laos
| | - Berea A. Etherton
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | | | - Jan F. Kreuze
- Crop and System Sciences Division, International Potato Center (CIP), Lima, Peru
| | - Israel Navarrete
- Crop and System Sciences Division, International Potato Center (CIP), Quito, Ecuador
| | - Kwame Ogero
- Crop and System Sciences Division, International Potato Center (CIP), Mwanza, Tanzania
| | - Aaron I. Plex Sulá
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Salih Yilmaz
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Southwest Florida Research and Education Center (SWFREC), Immokalee, FL, United States
| | - Karen A. Garrett
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
25
|
Shakir S, Zaidi SSEA, Hashemi FSG, Nyirakanani C, Vanderschuren H. Harnessing plant viruses in the metagenomics era: from the development of infectious clones to applications. TRENDS IN PLANT SCIENCE 2023; 28:297-311. [PMID: 36379846 DOI: 10.1016/j.tplants.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Recent metagenomic studies which focused on virus characterization in the entire plant environment have revealed a remarkable viral diversity in plants. The exponential discovery of viruses also requires the concomitant implementation of high-throughput methods to perform their functional characterization. Despite several limitations, the development of viral infectious clones remains a method of choice to understand virus biology, their role in the phytobiome, and plant resilience. Here, we review the latest approaches for efficient characterization of plant viruses and technical advances built on high-throughput sequencing and synthetic biology to streamline assembly of viral infectious clones. We then discuss the applications of plant viral vectors in fundamental and applied plant research as well as their technical and regulatory limitations, and we propose strategies for their safer field applications.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Syed Shan-E-Ali Zaidi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Farahnaz Sadat Golestan Hashemi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Chantal Nyirakanani
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Department of Crop Science, School of Agriculture, University of Rwanda, Musanze, Rwanda
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, Leuven, Belgium.
| |
Collapse
|
26
|
Betancourt WQ. Waterborne Plant Viruses of Importance in Agriculture. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
27
|
Iriart V, Baucom RS, Ashman TL. Interspecific variation in resistance and tolerance to herbicide drift reveals potential consequences for plant community co-flowering interactions and structure at the agro-eco interface. ANNALS OF BOTANY 2022; 130:1015-1028. [PMID: 36415945 PMCID: PMC9851304 DOI: 10.1093/aob/mcac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS When plant communities are exposed to herbicide 'drift', wherein particles containing the active ingredient travel off-target, interspecific variation in resistance or tolerance may scale up to affect community dynamics. In turn, these alterations could threaten the diversity and stability of agro-ecosystems. We investigated the effects of herbicide drift on the growth and reproduction of 25 wild plant species to make predictions about the consequences of drift exposure on plant-plant interactions and the broader ecological community. METHODS We exposed potted plants from species that commonly occur in agricultural areas to a drift-level dose of the widely used herbicide dicamba or a control solution in the glasshouse. We evaluated species-level variation in resistance and tolerance for vegetative and floral traits. We assessed community-level impacts of drift by comparing the species evenness and flowering networks of glasshouse synthetic communities comprised of drift-exposed and control plants. KEY RESULTS Species varied significantly in resistance and tolerance to dicamba drift: some were negatively impacted while others showed overcompensatory responses. Species also differed in the way they deployed flowers over time following drift exposure. While drift had negligible effects on community evenness based on vegetative biomass, it caused salient differences in the structure of co-flowering networks within communities. Drift reduced the degree and intensity of flowering overlap among species, altered the composition of groups of species that were more likely to co-flower with each other than with others and shifted species roles (e.g. from dominant to inferior floral producers, and vice versa). CONCLUSIONS These results demonstrate that even low levels of herbicide exposure can significantly alter plant growth and reproduction, particularly flowering phenology. If field-grown plants respond similarly, then these changes would probably impact plant-plant competitive dynamics and potentially plant-pollinator interactions occurring within plant communities at the agro-ecological interface.
Collapse
Affiliation(s)
- Veronica Iriart
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
28
|
Hilaire J, Tindale S, Jones G, Pingarron-Cardenas G, Bačnik K, Ojo M, Frewer LJ. Risk perception associated with an emerging agri-food risk in Europe: plant viruses in agriculture. AGRICULTURE & FOOD SECURITY 2022; 11:21. [PMID: 35310134 PMCID: PMC8917942 DOI: 10.1186/s40066-022-00366-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Research into public risk perceptions associated with emerging risks in agriculture and supply chains has focused on technological risks, zoonotic diseases, and food integrity, but infrequently on naturally occurring diseases in plants. Plant virus infections account for global economic losses estimated at $30 billion annually and are responsible for nearly 50% of plant diseases worldwide, threatening global food security. This research aimed to understand public perceptions of emerging risks and benefits associated with plant viruses in agriculture in Belgium, Slovenia, Spain, and the UK.
Methods
Online qualitative semi-structured interviews with 80 European consumers were conducted, including 20 participants in each of Belgium, Slovenia, the UK, and Spain. Microsoft Streams was used to transcribe the interview data, and NVivo was utilized to code the transcripts and analyze the data.
Results
The results indicate that, while study participants were relatively unfamiliar with the plant viruses and their potential impacts, plant viruses evoked perceived risks in a similar way to other emerging risks in the agri-food sector. These included risks to environment and human health, and the economic functioning of the relevant supply chain. Some participants perceived both risks and benefits to be associated with plant viruses. Benefits were perceived to be associated with improved plant resistance to viruses.
Conclusions
The results provide the basis for risk regulation, policy, and communication developments. Risk communication needs to take account of both risk and benefit perceptions, as well as the observation that plant viruses are perceived as an emerging, rather than an established, understood, and controlled risk. Some participants indicated the need for risk–benefit communication strategies to be developed, including information about the impacts of the risks, and associated mitigation strategies. Participants perceived that responsibility for control of plant viruses should be conferred on actors within the supply chain, in particular primary producers, although policy support (for example, financial incentivization) should be provided to improve their motivation to instigate risk mitigation activities.
Collapse
|
29
|
Viral cross-class transmission results in disease of a phytopathogenic fungus. THE ISME JOURNAL 2022; 16:2763-2774. [PMID: 36045287 PMCID: PMC9428384 DOI: 10.1038/s41396-022-01310-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/15/2022]
Abstract
Interspecies transmission of viruses is a well-known phenomenon in animals and plants whether via contacts or vectors. In fungi, interspecies transmission between distantly related fungi is often suspected but rarely experimentally documented and may have practical implications. A newly described double-strand RNA (dsRNA) virus found asymptomatic in the phytopathogenic fungus Leptosphaeria biglobosa of cruciferous crops was successfully transmitted to an evolutionarily distant, broad-host range pathogen Botrytis cinerea. Leptosphaeria biglobosa botybirnavirus 1 (LbBV1) was characterized in L. biglobosa strain GZJS-19. Its infection in L. biglobosa was asymptomatic, as no significant differences in radial mycelial growth and pathogenicity were observed between LbBV1-infected and LbBV1-free strains. However, cross-species transmission of LbBV1 from L. biglobosa to infection in B. cinerea resulted in the hypovirulence of the recipient B. cinerea strain t-459-V. The cross-species transmission was succeeded only by inoculation of mixed spores of L. biglobosa and B. cinerea on PDA or on stems of oilseed rape with the efficiency of 4.6% and 18.8%, respectively. To investigate viral cross-species transmission between L. biglobosa and B. cinerea in nature, RNA sequencing was carried out on L. biglobosa and B. cinerea isolates obtained from Brassica samples co-infected by these two pathogens and showed that at least two mycoviruses were detected in both fungal groups. These results indicate that cross-species transmission of mycoviruses may occur frequently in nature and result in the phenotypical changes of newly invaded phytopathogenic fungi. This study also provides new insights for using asymptomatic mycoviruses as biocontrol agent.
Collapse
|
30
|
Yang S, Mao Q, Wang Y, He J, Yang J, Chen X, Xiao Y, He Y, Zhao M, Lu J, Yang Z, Dai Z, Liu Q, Yao Y, Lu X, Li H, Zhou R, Zeng J, Li W, Zhou C, Wang X, Shen Q, Xu H, Deng X, Delwart E, Shan T, Zhang W. Expanding known viral diversity in plants: virome of 161 species alongside an ancient canal. ENVIRONMENTAL MICROBIOME 2022; 17:58. [PMID: 36437477 PMCID: PMC9703751 DOI: 10.1186/s40793-022-00453-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Since viral metagenomic approach was applied to discover plant viruses for the first time in 2006, many plant viruses had been identified from cultivated and non-cultivated plants. These previous researches exposed that the viral communities (virome) of plants have still largely uncharacterized. Here, we investigated the virome in 161 species belonging to 38 plant orders found in a riverside ecosystem. RESULTS We identified 245 distinct plant-associated virus genomes (88 DNA and 157 RNA viruses) belonging to 27 known viral families, orders, or unclassified virus groups. Some viral genomes were sufficiently divergent to comprise new species, genera, families, or even orders. Some groups of viruses were detected that currently are only known to infect organisms other than plants. It indicates a wider host range for members of these clades than previously recognized theoretically. We cannot rule out that some viruses could be from plant contaminating organisms, although some methods were taken to get rid of them as much as possible. The same viral species could be found in different plants and co-infections were common. CONCLUSIONS Our data describe a complex viral community within a single plant ecosystem and expand our understanding of plant-associated viral diversity and their possible host ranges.
Collapse
Affiliation(s)
- Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- International Genome Center, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qingqing Mao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yan Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jingxian He
- Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Jie Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xu Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuqing Xiao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yumin He
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Min Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Juan Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zijun Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyuan Dai
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qi Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuxin Yao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiang Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hong Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Rui Zhou
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jian Zeng
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Li
- Department of Laboratory Medicine, Jiangsu Taizhou People's Hospital, Taizhou, 225300, Jiangsu, China
| | - Chenglin Zhou
- Department of Laboratory Medicine, Jiangsu Taizhou People's Hospital, Taizhou, 225300, Jiangsu, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Xu
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, 94118, USA
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94118, USA
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- International Genome Center, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
31
|
Chao S, Wang H, Zhang S, Chen G, Mao C, Hu Y, Yu F, Wang S, Lv L, Chen L, Feng G. Novel RNA Viruses Discovered in Weeds in Rice Fields. Viruses 2022; 14:2489. [PMID: 36366587 PMCID: PMC9717734 DOI: 10.3390/v14112489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Weeds often grow alongside crop plants. In addition to competing with crops for nutrients, water and space, weeds host insect vectors or act as reservoirs for viral diversity. However, little is known about viruses infecting rice weeds. In this work, we used metatranscriptomic deep sequencing to identify RNA viruses from 29 weed samples representing 23 weed species. A total of 224 RNA viruses were identified: 39 newly identified viruses are sufficiently divergent to comprise new families and genera. The newly identified RNA viruses clustered within 18 viral families. Of the identified viruses, 196 are positive-sense single-stranded RNA viruses, 24 are negative-sense single-stranded RNA viruses and 4 are double-stranded RNA viruses. We found that some novel RNA viruses clustered within the families or genera of several plant virus species and have the potential to infect plants. Collectively, these results expand our understanding of viral diversity in rice weeds. Our work will contribute to developing effective strategies with which to manage the spread and epidemiology of plant viruses.
Collapse
Affiliation(s)
- Shufen Chao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Haoran Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Shu Zhang
- Institute of Plant Protection & Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430000, China
| | - Guoqing Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Chonghui Mao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Yang Hu
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China
| | - Fengquan Yu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110000, China
| | - Shuo Wang
- Sanya Agricultural Technology Extension and Service Centre, Sanya 572000, China
| | - Liang Lv
- Institute of Plant Protection & Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430000, China
| | - Long Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Guozhong Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| |
Collapse
|
32
|
Moubset O, François S, Maclot F, Palanga E, Julian C, Claude L, Fernandez E, Rott P, Daugrois JH, Antoine-Lorquin A, Bernardo P, Blouin AG, Temple C, Kraberger S, Fontenele RS, Harkins GW, Ma Y, Marais A, Candresse T, Chéhida SB, Lefeuvre P, Lett JM, Varsani A, Massart S, Ogliastro M, Martin DP, Filloux D, Roumagnac P. Virion-Associated Nucleic Acid-Based Metagenomics: A Decade of Advances in Molecular Characterization of Plant Viruses. PHYTOPATHOLOGY 2022; 112:2253-2272. [PMID: 35722889 DOI: 10.1094/phyto-03-22-0096-rvw] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the last decade, viral metagenomic studies have resulted in the discovery of thousands of previously unknown viruses. These studies are likely to play a pivotal role in obtaining an accurate and robust understanding of how viruses affect the stability and productivity of ecosystems. Among the metagenomics-based approaches that have been developed since the beginning of the 21st century, shotgun metagenomics applied specifically to virion-associated nucleic acids (VANA) has been used to disentangle the diversity of the viral world. We summarize herein the results of 24 VANA-based studies, focusing on plant and insect samples conducted over the last decade (2010 to 2020). Collectively, viruses from 85 different families were reliably detected in these studies, including capsidless RNA viruses that replicate in fungi, oomycetes, and plants. Finally, strengths and weaknesses of the VANA approach are summarized and perspectives of applications in detection, epidemiological surveillance, environmental monitoring, and ecology of plant viruses are provided. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Oumaima Moubset
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | | - François Maclot
- Plant Pathology Laboratory, Terra, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | - Essowè Palanga
- Institut Togolais de Recherche Agronomique (ITRA-CRASS), B.P. 129, Kara, Togo
| | - Charlotte Julian
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Lisa Claude
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Emmanuel Fernandez
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Philippe Rott
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Jean-Heinrich Daugrois
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | | | | - Arnaud G Blouin
- Plant Pathology Laboratory, Terra, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
- Plant Protection Department, Agroscope, 1260, Nyon, Switzerland
| | - Coline Temple
- Plant Pathology Laboratory, Terra, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, U.S.A
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, U.S.A
| | - Gordon W Harkins
- South African Medical Research Council Capacity Development Unit, South African National Bioinformatics, Institute, University of the Western Cape, South Africa
| | - Yuxin Ma
- Univ. Bordeaux, INRAE, UMR BFP, 33140 Villenave d'Ornon, France
| | - Armelle Marais
- Univ. Bordeaux, INRAE, UMR BFP, 33140 Villenave d'Ornon, France
| | | | | | | | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, U.S.A
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Sébastien Massart
- Plant Pathology Laboratory, Terra, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | | | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Denis Filloux
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34090 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
33
|
McLeish MJ, Zamfir AD, Babalola BM, Peláez A, Fraile A, García-Arenal F. Metagenomics show high spatiotemporal virus diversity and ecological compartmentalisation: Virus infections of melon, Cucumis melo, crops, and adjacent wild communities. Virus Evol 2022; 8:veac095. [PMID: 36405340 PMCID: PMC9667876 DOI: 10.1093/ve/veac095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/24/2022] [Accepted: 09/30/2022] [Indexed: 07/22/2023] Open
Abstract
The emergence of viral diseases results from novel transmission dynamics between wild and crop plant communities. The bias of studies towards pathogenic viruses of crops has distracted from knowledge of non-antagonistic symbioses in wild plants. Here, we implemented a high-throughput approach to compare the viromes of melon (Cucumis melo) and wild plants of crop (Crop) and adjacent boundaries (Edge). Each of the 41-plant species examined was infected by at least one virus. The interactions of 104 virus operational taxonomic units (OTUs) with these hosts occurred largely within ecological compartments of either Crop or Edge, with Edge having traits of a reservoir community. Local scale patterns of infection were characterised by the positive correlation between plant and virus richness at each site, the tendency for increased specialist host use through seasons, and specialist host use by OTUs observed only in Crop, characterised local-scale patterns of infection. In this study of systematically sampled viromes of a crop and adjacent wild communities, most hosts showed no disease symptoms, suggesting non-antagonistic symbioses are common. The coexistence of viruses within species-rich ecological compartments of agro-systems might promote the evolution of a diversity of virus strategies for survival and transmission. These communities, including those suspected as reservoirs, are subject to sporadic changes in assemblages, and so too are the conditions that favour the emergence of disease.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Adrián D Zamfir
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Bisola M Babalola
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Adrián Peláez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
34
|
Manufactured Nano-Objects Confer Viral Protection against Cucurbit Chlorotic Yellows Virus (CCYV) Infecting Nicotiana benthamiana. Microorganisms 2022; 10:microorganisms10091837. [PMID: 36144438 PMCID: PMC9506289 DOI: 10.3390/microorganisms10091837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/06/2023] Open
Abstract
Nanotechnology has emerged as a new tool to combat phytopathogens in agricultural crops. Cucurbit chlorotic yellows virus (CCYV) mainly infects Solanaceae crops and causes significant crop losses. Nanomaterials (NMs) may have efficacy against plant viruses, but the mechanisms underlying complex nanomaterials-plant-virus interactions remain elusive. We challenged Nicotiana benthamiana plants with GFP-tagged CCYV and observed morphological, physiological, and molecular changes in response to 21-d foliar exposure to nanoscale Fe and Zn and C60 fullerenes at 100 mg/L concentration for 21 days. We observed that in response to C60 (100 mg/L) treatment, plants displayed a normal phenotype while the viral infection was not seen until 5 days post-inoculation. On the contrary, Fe and Zn were unable to suppress viral progression. The mRNA transcriptional analysis for GFP and viral coat protein revealed that the transcripts of both genes were 5-fold reduced in response to C60 treatment. Evaluation of the chloroplast ultrastructure showed that NMs treatment maintained the normal chloroplast structure in the plants as compared to untreated plants. C60 upregulated the defense-related phytohormones (abscisic acid and salicylic acid) by 42–43%. Our results demonstrate the protective function of carbon-based NMs, with suppression of CCYV symptoms via inhibition of viral replication and systemic movement.
Collapse
|
35
|
Determinants of Virus Variation, Evolution, and Host Adaptation. Pathogens 2022; 11:pathogens11091039. [PMID: 36145471 PMCID: PMC9501407 DOI: 10.3390/pathogens11091039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Virus evolution is the change in the genetic structure of a viral population over time and results in the emergence of new viral variants, strains, and species with novel biological properties, including adaptation to new hosts. There are host, vector, environmental, and viral factors that contribute to virus evolution. To achieve or fine tune compatibility and successfully establish infection, viruses adapt to a particular host species or to a group of species. However, some viruses are better able to adapt to diverse hosts, vectors, and environments. Viruses generate genetic diversity through mutation, reassortment, and recombination. Plant viruses are exposed to genetic drift and selection pressures by host and vector factors, and random variants or those with a competitive advantage are fixed in the population and mediate the emergence of new viral strains or species with novel biological properties. This process creates a footprint in the virus genome evident as the preferential accumulation of substitutions, insertions, or deletions in areas of the genome that function as determinants of host adaptation. Here, with respect to plant viruses, we review the current understanding of the sources of variation, the effect of selection, and its role in virus evolution and host adaptation.
Collapse
|
36
|
Derbalah A, Abdelsalam I, Behiry SI, Abdelkhalek A, Abdelfatah M, Ismail S, Elsharkawy MM. Copper oxide nanostructures as a potential method for control of zucchini yellow mosaic virus in squash. PEST MANAGEMENT SCIENCE 2022; 78:3587-3595. [PMID: 35598074 DOI: 10.1002/ps.7001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Zucchini yellow mosaic virus (ZYMV) infects cucurbits and has been identified as a major limiting factor in their production. The purpose of this study was to create copper oxide nanostructures (CONS) to control ZYMV in squash plants. Protection of squash against ZYMV was assessed in terms of virus severity, ZYMV concentration, transcription of pathogenesis-related genes and growth enhancement of treated squash. RESULTS The findings revealed that squash plants treated with CONS had a significant reduction in disease severity when compared with untreated plants. In squash plants treated with CONS, defense genes associated with the salicylic acid signaling pathway were strongly expressed compared with untreated plants. The structural characteristics of CONS, such as their small size and appropriate shape, added to their excellent anti-ZYMV efficacy. CONS-treated squash plants show significantly improved growth traits compared with untreated plants. CONCLUSION Based on the results of this study, CONS may be a new strategy for the control of ZYMV in squash. This represents an unconventional solution to control this virus, particularly as no chemical pesticides can control viral diseases. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aly Derbalah
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Ibrahim Abdelsalam
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications SRTA-City, Alexandria, Egypt
| | | | - Sherin Ismail
- Chemistry Department, Tanta University, Tanta, Egypt
| | - Mohsen Mohamed Elsharkawy
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh, Egypt
| |
Collapse
|
37
|
Adeleke IA, Kavalappara SR, McGregor C, Srinivasan R, Bag S. Persistent, and Asymptomatic Viral Infections and Whitefly-Transmitted Viruses Impacting Cantaloupe and Watermelon in Georgia, USA. Viruses 2022; 14:1310. [PMID: 35746780 PMCID: PMC9227350 DOI: 10.3390/v14061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cucurbits in Southeastern USA have experienced a drastic decline in production over the years due to the effect of economically important viruses, mainly those transmitted by the sweet potato whitefly (Bemisia tabaci Gennadius). In cucurbits, these viruses can be found as a single or mixed infection, thereby causing significant yield loss. During the spring of 2021, surveys were conducted to evaluate the incidence and distribution of viruses infecting cantaloupe (n = 80) and watermelon (n = 245) in Georgia. Symptomatic foliar tissues were collected from six counties and sRNA libraries were constructed from seven symptomatic samples. High throughput sequencing (HTS) analysis revealed the presence of three different new RNA viruses in Georgia: cucumis melo endornavirus (CmEV), cucumis melo amalgavirus (CmAV1), and cucumis melo cryptic virus (CmCV). Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed the presence of CmEV and CmAV1 in 25% and 43% of the total samples tested, respectively. CmCV was not detected using RT-PCR. Watermelon crinkle leaf-associated virus 1 (WCLaV-1), recently reported in GA, was detected in 28% of the samples tested. Furthermore, RT-PCR and PCR analysis of 43 symptomatic leaf tissues collected from the fall-grown watermelon in 2019 revealed the presence of cucurbit chlorotic yellows virus (CCYV), cucurbit yellow stunting disorder virus (CYSDV), and cucurbit leaf crumple virus (CuLCrV) at 73%, 2%, and 81%, respectively. This finding broadens our knowledge of the prevalence of viruses in melons in the fall and spring, as well as the geographical expansion of the WCLaV-1 in GA, USA.
Collapse
Affiliation(s)
| | | | - Cecilia McGregor
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA;
| | | | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA;
| |
Collapse
|
38
|
Susi H, Sallinen S, Laine A. Coinfection with a virus constrains within-host infection load but increases transmission potential of a highly virulent fungal plant pathogen. Ecol Evol 2022; 12:e8673. [PMID: 35342557 PMCID: PMC8928890 DOI: 10.1002/ece3.8673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
The trade-off between within-host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life-history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross-kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied. The host plant Plantago lanceolata is naturally infected by both Phomopsis subordinaria, a seed killing fungus, as well as Plantago lanceolata latent virus (PlLV) in the Åland Islands, SW Finland. We performed an inoculation assay to test whether coinfection with PlLV affects performance of two P. subordinaria strains, and the correlation between within-host infection rate and transmission potential. The strains differed in the measured life-history traits and their correlations. Moreover, we found that under virus coinfection, within-host infection rate of P. subordinaria was smaller but transmission potential was higher compared to strains under single infection. The negative correlation between within-host infection rate and transmission potential detected under single infection became positive under coinfection with PlLV. To understand whether within-host and between-host dynamics are correlated in wild populations, we surveyed 260 natural populations of P. lanceolata for P. subordinaria infection occurrence. When infections were found, we estimated between-hosts dynamics by determining pathogen population size as the proportion of infected individuals, and within-host dynamics by counting the proportion of infected flower stalks in 10 infected plants. In wild populations, the proportion of infected flower stalks was positively associated with pathogen population size. Jointly, our results suggest that the trade-off between within-host infection load and transmission may be strain specific, and that the pathogen life-history that underpin epidemics may change depending on the diversity of infection, generating variation in disease dynamics.
Collapse
Affiliation(s)
- Hanna Susi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Suvi Sallinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
39
|
Fetters AM, Cantalupo PG, Wei N, Robles MTS, Stanley AM, Stephens JD, Pipas JM, Ashman TL. The pollen virome of wild plants and its association with variation in floral traits and land use. Nat Commun 2022; 13:523. [PMID: 35082293 PMCID: PMC8791949 DOI: 10.1038/s41467-022-28143-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/03/2022] [Indexed: 12/18/2022] Open
Abstract
Pollen is a unique vehicle for viral spread. Pollen-associated viruses hitchhike on or within pollen grains and are transported to other plants by pollinators. They are deposited on flowers and have a direct pathway into the plant and next generation via seeds. To discover the diversity of pollen-associated viruses and identify contributing landscape and floral features, we perform a species-level metagenomic survey of pollen from wild, visually asymptomatic plants, located in one of four regions in the United States of America varying in land use. We identify many known and novel pollen-associated viruses, half belonging to the Bromoviridae, Partitiviridae, and Secoviridae viral families, but many families are represented. Across the regions, species harbor more viruses when surrounded by less natural and more human-modified environments than the reverse, but we note that other region-level differences may also covary with this. When examining the novel connection between virus richness and floral traits, we find that species with multiple, bilaterally symmetric flowers and smaller, spikier pollen harbored more viruses than those with opposite traits. The association of viral diversity with floral traits highlights the need to incorporate plant-pollinator interactions as a driver of pollen-associated virus transport into the study of plant-viral interactions.
Collapse
Affiliation(s)
- Andrea M Fetters
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA.
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH, 43210, USA.
| | - Paul G Cantalupo
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
- Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Boulevard, Pittsburgh, PA, 15206, USA
| | - Na Wei
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
- The Holden Arboretum, 9500 Sperry Road, Kirtland, OH, 44094, USA
| | - Maria Teresa Sáenz Robles
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Aiden M Stanley
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Jessica D Stephens
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
- Department of Biology, Westfield State University, 577 Western Avenue, Westfield, MA, 01086, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
40
|
Farooq T, Hussain MD, Shakeel MT, Tariqjaveed M, Aslam MN, Naqvi SAH, Amjad R, Tang Y, She X, He Z. Deploying Viruses against Phytobacteria: Potential Use of Phage Cocktails as a Multifaceted Approach to Combat Resistant Bacterial Plant Pathogens. Viruses 2022; 14:171. [PMID: 35215763 PMCID: PMC8879233 DOI: 10.3390/v14020171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
Plants in nature are under the persistent intimidation of severe microbial diseases, threatening a sustainable food production system. Plant-bacterial pathogens are a major concern in the contemporary era, resulting in reduced plant growth and productivity. Plant antibiotics and chemical-based bactericides have been extensively used to evade plant bacterial diseases. To counteract this pressure, bacteria have evolved an array of resistance mechanisms, including innate and adaptive immune systems. The emergence of resistant bacteria and detrimental consequences of antimicrobial compounds on the environment and human health, accentuates the development of an alternative disease evacuation strategy. The phage cocktail therapy is a multidimensional approach effectively employed for the biocontrol of diverse resistant bacterial infections without affecting the fauna and flora. Phages engage a diverse set of counter defense strategies to undermine wide-ranging anti-phage defense mechanisms of bacterial pathogens. Microbial ecology, evolution, and dynamics of the interactions between phage and plant-bacterial pathogens lead to the engineering of robust phage cocktail therapeutics for the mitigation of devastating phytobacterial diseases. In this review, we highlight the concrete and fundamental determinants in the development and application of phage cocktails and their underlying mechanism, combating resistant plant-bacterial pathogens. Additionally, we provide recent advances in the use of phage cocktail therapy against phytobacteria for the biocontrol of devastating plant diseases.
Collapse
Affiliation(s)
- Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Muhammad Dilshad Hussain
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing 100193, China;
| | - Muhammad Taimoor Shakeel
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.T.S.); (M.N.A.)
| | - Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Muhammad Naveed Aslam
- Department of Plant Pathology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (M.T.S.); (M.N.A.)
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agriculture Science and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Rizwa Amjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Xiaoman She
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.F.); (Y.T.)
| |
Collapse
|
41
|
Hasiów-Jaroszewska B, Boezen D, Zwart MP. Metagenomic Studies of Viruses in Weeds and Wild Plants: A Powerful Approach to Characterise Variable Virus Communities. Viruses 2021; 13:1939. [PMID: 34696369 PMCID: PMC8539035 DOI: 10.3390/v13101939] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
High throughput sequencing (HTS) has revolutionised virus detection and discovery, allowing for the untargeted characterisation of whole viromes. Viral metagenomics studies have demonstrated the ubiquity of virus infection - often in the absence of disease symptoms - and tend to discover many novel viruses, highlighting the small fraction of virus biodiversity described to date. The majority of the studies using high-throughput sequencing to characterise plant viromes have focused on economically important crops, and only a small number of studies have considered weeds and wild plants. Characterising the viromes of wild plants is highly relevant, as these plants can affect disease dynamics in crops, often by acting as viral reservoirs. Moreover, the viruses in unmanaged systems may also have important effects on wild plant populations and communities. Here, we review metagenomic studies on weeds and wild plants to show the benefits and limitations of this approach and identify knowledge gaps. We consider key genomics developments that are likely to benefit the field in the near future. Although only a small number of HTS studies have been performed on weeds and wild plants, these studies have already discovered many novel viruses, demonstrated unexpected trends in virus distributions, and highlighted the potential of metagenomics as an approach.
Collapse
Affiliation(s)
- Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Węgorka 20, 60-318 Poznań, Poland
| | - Dieke Boezen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (D.B.); (M.P.Z.)
| | - Mark P. Zwart
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (D.B.); (M.P.Z.)
| |
Collapse
|
42
|
Aimone CD, Lavington E, Hoyer JS, Deppong DO, Mickelson-Young L, Jacobson A, Kennedy GG, Carbone I, Hanley-Bowdoin L, Duffy S. Population diversity of cassava mosaic begomoviruses increases over the course of serial vegetative propagation. J Gen Virol 2021; 102:001622. [PMID: 34310272 PMCID: PMC8491896 DOI: 10.1099/jgv.0.001622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/05/2021] [Indexed: 01/06/2023] Open
Abstract
Cassava mosaic disease (CMD) represents a serious threat to cassava, a major root crop for more than 300 million Africans. CMD is caused by single-stranded DNA begomoviruses that evolve rapidly, making it challenging to develop durable disease resistance. In addition to the evolutionary forces of mutation, recombination and reassortment, factors such as climate, agriculture practices and the presence of DNA satellites may impact viral diversity. To gain insight into the factors that alter and shape viral diversity in planta, we used high-throughput sequencing to characterize the accumulation of nucleotide diversity after inoculation of infectious clones corresponding to African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in the susceptible cassava landrace Kibandameno. We found that vegetative propagation had a significant effect on viral nucleotide diversity, while temperature and a satellite DNA did not have measurable impacts in our study. EACMCV diversity increased linearly with the number of vegetative propagation passages, while ACMV diversity increased for a time and then decreased in later passages. We observed a substitution bias toward C→T and G→A for mutations in the viral genomes consistent with field isolates. Non-coding regions excluding the promoter regions of genes showed the highest levels of nucleotide diversity for each genome component. Changes in the 5' intergenic region of DNA-A resembled the sequence of the cognate DNA-B sequence. The majority of nucleotide changes in coding regions were non-synonymous, most with predicted deleterious effects on protein structure, indicative of relaxed selection pressure over six vegetative passages. Overall, these results underscore the importance of knowing how cropping practices affect viral evolution and disease progression.
Collapse
Affiliation(s)
- Catherine D. Aimone
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Erik Lavington
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - David O. Deppong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Leigh Mickelson-Young
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - George G. Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC 27695, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
43
|
Cao M, Zhang S, Liao R, Wang X, Xuan Z, Zhan B, Li Z, Zhang J, Du X, Tang Z, Li S, Zhou Y. Spatial Virome Analysis of Zanthoxylum armatum Trees Affected With the Flower Yellowing Disease. Front Microbiol 2021; 12:702210. [PMID: 34305869 PMCID: PMC8298004 DOI: 10.3389/fmicb.2021.702210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Zanthoxylum armatum is an important woody crop with multiple applications in pharmaceutics, cosmetics, and food industries. With continuous increases in the plantation area, integrated pest management is required for scale production when diseases caused by biotic factors such as pests and pathogens have become new problems, one of which is the infectious flower yellowing disease (FYD). Here, isolates of a new illarvirus (3) and a new nepovirus-associated subviral satellite RNA (12) were identified in Z. armatum, in addition to 38 new isolates of four previously reported RNA viruses. Sequence variation can be observed in viral/subviral quasispecies and among predominant isolates from the same or different samples and geographic origins. Intriguingly, RNA sequencing of different diseased trees invariably showed an extraordinary pattern of particularly high reads accumulation of the green Sichuan pepper-nepovirus (GSPNeV) and the satellite RNA in symptomatic tissues. In addition, we also examined small RNAs of the satellite RNA, which show similar patterns to those of coinfecting viruses. This study provides further evidence to support association of the FYD with viral/subviral infections and deepens our understanding of the diversity and molecular characteristics of the viruses and satellite, as well as their interactions with the host.
Collapse
Affiliation(s)
- Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Song Zhang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Ruiling Liao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Xiaoru Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Zhiyou Xuan
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Binhui Zhan
- State Key Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqi Li
- Jiangjin Agricultural Technology Extension Station, Chongqing, China
| | - Jie Zhang
- Bishan Modern Agricultural Development Promotion Center, Chongqing, China
| | - Xinnian Du
- Zhaotong Forestry and Grassland Pest Monitoring and Testing Center, Yunnan, China
| | - Zhengsen Tang
- Zhaotong Forestry and Grassland Pest Monitoring and Testing Center, Yunnan, China
| | - Shifang Li
- State Key Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yan Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
44
|
Chiquito-Almanza E, Caballero-Pérez J, Acosta-Gallegos JA, Montero-Tavera V, Mariscal-Amaro LA, Anaya-López JL. Diversity and Distribution of Viruses Infecting Wild and Domesticated Phaseolus spp. in the Mesoamerican Center of Domestication. Viruses 2021; 13:v13061153. [PMID: 34208696 PMCID: PMC8235658 DOI: 10.3390/v13061153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Viruses are an important disease source for beans. In order to evaluate the impact of virus disease on Phaseolus biodiversity, we determined the identity and distribution of viruses infecting wild and domesticated Phaseolus spp. in the Mesoamerican Center of Domestication (MCD) and the western state of Nayarit, Mexico. We used small RNA sequencing and assembly to identify complete or near-complete sequences of forty-seven genomes belonging to nine viral species of five genera, as well as partial sequences of two putative new endornaviruses and five badnavirus- and pararetrovirus-like sequences. The prevalence of viruses in domesticated beans was significantly higher than in wild beans (97% vs. 19%; p < 0.001), and all samples from domesticated beans were positive for at least one virus species. In contrast, no viruses were detected in 80-83% of the samples from wild beans. The Bean common mosaic virus and Bean common mosaic necrosis virus were the most prevalent viruses in wild and domesticated beans. Nevertheless, Cowpea mild mottle virus, transmitted by the whitefly Bemisia tabaci, has the potential to emerge as an important pathogen because it is both seed-borne and a non-persistently transmitted virus. Our results provide insights into the distribution of viruses in cultivated and wild Phaseolus spp. and will be useful for the identification of emerging viruses and the development of strategies for bean viral disease management in a center of diversity.
Collapse
Affiliation(s)
- Elizabeth Chiquito-Almanza
- Biotechnology Department, National Institute for Forestry Agriculture and Livestock Research (INIFAP), Celaya, Guanajuato 38110, Mexico; (E.C.-A.); (V.M.-T.)
| | - Juan Caballero-Pérez
- Faculty of Chemistry, Autonomous University of Querétaro, Santiago de Querétaro 76017, Mexico;
| | - Jorge A. Acosta-Gallegos
- Bean Breeding Program, National Institute for Forestry Agriculture and Livestock Research (INIFAP), Celaya, Guanajuato 38110, Mexico;
| | - Victor Montero-Tavera
- Biotechnology Department, National Institute for Forestry Agriculture and Livestock Research (INIFAP), Celaya, Guanajuato 38110, Mexico; (E.C.-A.); (V.M.-T.)
| | - Luis Antonio Mariscal-Amaro
- Forestry and Plant Protection Program, National Institute for Forestry Agriculture and Livestock Research (INIFAP), Celaya, Guanajuato 38110, Mexico;
| | - José Luis Anaya-López
- Biotechnology Department, National Institute for Forestry Agriculture and Livestock Research (INIFAP), Celaya, Guanajuato 38110, Mexico; (E.C.-A.); (V.M.-T.)
- Correspondence:
| |
Collapse
|
45
|
Susi H, Laine A. Agricultural land use disrupts biodiversity mediation of virus infections in wild plant populations. THE NEW PHYTOLOGIST 2021; 230:2447-2458. [PMID: 33341977 PMCID: PMC8248426 DOI: 10.1111/nph.17156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 06/08/2023]
Abstract
Human alteration of natural habitats may change the processes governing species interactions in wild communities. Wild populations are increasingly impacted by agricultural intensification, yet it is unknown whether this alters biodiversity mediation of disease dynamics. We investigated the association between plant diversity (species richness, diversity) and infection risk (virus richness, prevalence) in populations of Plantago lanceolata in natural landscapes as well as those occurring at the edges of cultivated fields. Altogether, 27 P. lanceolata populations were surveyed for population characteristics and sampled for PCR detection of five recently characterized viruses. We find that plant species richness and diversity correlated negatively with virus infection prevalence. Virus species richness declined with increasing plant diversity and richness in natural populations while in agricultural edge populations species richness was moderately higher, and not associated with plant richness. This difference was not explained by changes in host richness between these two habitats, suggesting potential pathogen spill-over and increased transmission of viruses across the agro-ecological interface. Host population connectivity significantly decreased virus infection prevalence. We conclude that human use of landscapes may change the ecological laws by which natural communities are formed with far reaching implications for ecosystem functioning and disease.
Collapse
Affiliation(s)
- Hanna Susi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiPO Box 65Helsinki00014Finland
| | - Anna‐Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiPO Box 65Helsinki00014Finland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| |
Collapse
|
46
|
Sommers P, Chatterjee A, Varsani A, Trubl G. Integrating Viral Metagenomics into an Ecological Framework. Annu Rev Virol 2021; 8:133-158. [PMID: 34033501 DOI: 10.1146/annurev-virology-010421-053015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral metagenomics has expanded our knowledge of the ecology of uncultured viruses, within both environmental (e.g., terrestrial and aquatic) and host-associated (e.g., plants and animals, including humans) contexts. Here, we emphasize the implementation of an ecological framework in viral metagenomic studies to address questions in virology rarely considered ecological, which can change our perception of viruses and how they interact with their surroundings. An ecological framework explicitly considers diverse variants of viruses in populations that make up communities of interacting viruses, with ecosystem-level effects. It provides a structure for the study of the diversity, distributions, dynamics, and interactions of viruses with one another, hosts, and the ecosystem, including interactions with abiotic factors. An ecological framework in viral metagenomics stands poised to broadly expand our knowledge in basic and applied virology. We highlight specific fundamental research needs to capitalize on its potential and advance the field. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pacifica Sommers
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Anushila Chatterjee
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA; .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
47
|
The Resistance Responses of Potato Plants to Potato Virus Y Are Associated with an Increased Cellular Methionine Content and an Altered SAM:SAH Methylation Index. Viruses 2021; 13:v13060955. [PMID: 34064103 PMCID: PMC8224460 DOI: 10.3390/v13060955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
Plant-virus interactions are frequently influenced by elevated temperature, which often increases susceptibility to a virus, a scenario described for potato cultivar Chicago infected with potato virus Y (PVY). In contrast, other potato cultivars such as Gala may have similar resistances to PVY at both normal (22 °C) and high (28 °C) temperatures. To elucidate the mechanisms of temperature-independent antivirus resistance in potato, we analysed responses of Gala plants to PVY at different temperatures using proteomic, transcriptional and metabolic approaches. Here we show that in Gala, PVY infection generally upregulates the accumulation of major enzymes associated with the methionine cycle (MTC) independently of temperature, but that temperature (22 °C or 28 °C) may finely regulate what classes accumulate. The different sets of MTC-related enzymes that are up-regulated at 22 °C or 28 °C likely account for the significantly increased accumulation of S-adenosyl methionine (SAM), a key component of MTC which acts as a universal methyl donor in methylation reactions. In contrast to this, we found that in cultivar Chicago, SAM levels were significantly reduced which correlated with the enhanced susceptibility to PVY at high temperature. Collectively, these data suggest that MTC and its major transmethylation function determines resistance or susceptibility to PVY.
Collapse
|
48
|
Daugrois JH, Filloux D, Julian C, Claude L, Ferdinand R, Fernandez E, Fontes H, Rott PC, Roumagnac P. Comparison of the Virome of Quarantined Sugarcane Varieties and the Virome of Grasses Growing near the Quarantine Station. Viruses 2021; 13:922. [PMID: 34065683 PMCID: PMC8157134 DOI: 10.3390/v13050922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Visacane is a sugarcane quarantine station located in the South of France, far away from sugarcane growing areas. Visacane imports up to 100 sugarcane varieties per year, using safe control and confinement measures of plants and their wastes to prevent any risk of pathogen spread outside of the facilities. Viruses hosted by the imported material are either known or unknown to cause disease in cultivated sugarcane. Poaceae viruses occurring in plants surrounding the quarantine glasshouse are currently unknown. These viruses could be considered as a source of new sugarcane infections and potentially cause new sugarcane diseases in cases of confinement barrier failure. The aim of this study was to compare the plant virome inside and outside of the quarantine station to identify potential confinement failures and risks of cross infections. Leaves from quarantined sugarcane varieties and from wild Poaceae growing near the quarantine were collected and processed by a metagenomics approach based on virion-associated nucleic acids extraction and library preparation for Illumina sequencing. While viruses belonging to the same virus genus or family were identified in the sugarcane quarantine and its surroundings, no virus species was detected in both environments. Based on the data obtained in this study, no virus movement between quarantined sugarcane and nearby grassland has occurred so far, and the confinement procedures of Visacane appear to be properly implemented.
Collapse
Affiliation(s)
- Jean H. Daugrois
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Denis Filloux
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Charlotte Julian
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Lisa Claude
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Romain Ferdinand
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Emmanuel Fernandez
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Hugo Fontes
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, 13200 Arles, France;
- Institut Méditerranéen de Biodiversité et Ecologie, UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, IUT d’Avignon, 337 chemin des Meinajariés, Site Agroparc BP 61207, 84911 Avignon, France
| | - Philippe C. Rott
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34090 Montpellier, France; (J.H.D.); (D.F.); (C.J.); (L.C.); (R.F.); (E.F.); (P.C.R.)
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| |
Collapse
|
49
|
François S, Antoine-Lorquin A, Kulikowski M, Frayssinet M, Filloux D, Fernandez E, Roumagnac P, Froissart R, Ogliastro M. Characterisation of the Viral Community Associated with the Alfalfa Weevil ( Hypera postica) and Its Host Plant, Alfalfa ( Medicago sativa). Viruses 2021; 13:791. [PMID: 33925168 PMCID: PMC8145008 DOI: 10.3390/v13050791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Advances in viral metagenomics have paved the way of virus discovery by making the exploration of viruses in any ecosystem possible. Applied to agroecosystems, such an approach opens new possibilities to explore how viruses circulate between insects and plants, which may help to optimise their management. It could also lead to identifying novel entomopathogenic viral resources potentially suitable for biocontrol strategies. We sampled the larvae of a natural population of alfalfa weevils (Hypera postica), a major herbivorous pest feeding on legumes, and its host plant alfalfa (Medicago sativa). Insect and plant samples were collected from a crop field and an adjacent meadow. We characterised the diversity and abundance of viruses associated with weevils and alfalfa, and described nine putative new virus species, including four associated with alfalfa and five with weevils. In addition, we found that trophic accumulation may result in a higher diversity of plant viruses in phytophagous pests compared to host plants.
Collapse
Affiliation(s)
- Sarah François
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, South Park Road, Oxford OX1 3SY, UK
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| | - Aymeric Antoine-Lorquin
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| | - Maximilien Kulikowski
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| | - Marie Frayssinet
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| | - Denis Filloux
- CIRAD, UMR PHIM, 34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Emmanuel Fernandez
- CIRAD, UMR PHIM, 34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Rémy Froissart
- MIVEGEC Infectious and Vector Diseases: Ecology, Genetics, Evolution and Control, University of Montpellier, CNRS, IRD, 34394 Montpellier, France;
| | - Mylène Ogliastro
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| |
Collapse
|
50
|
Farooq T, Adeel M, He Z, Umar M, Shakoor N, da Silva W, Elmer W, White JC, Rui Y. Nanotechnology and Plant Viruses: An Emerging Disease Management Approach for Resistant Pathogens. ACS NANO 2021; 15:6030-6037. [PMID: 33761237 DOI: 10.1021/acsnano.0c10910] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytoviruses are highly destructive plant pathogens, causing significant agricultural losses due to their genomic diversity, rapid, and dynamic evolution, and the general inadequacy of management options. Although an increasing number of studies are being published demonstrating the efficacy of engineered nanomaterials to treat a range of plant pathogens, very little work has been done with phytoviruses. Herein, we describe the emerging field of "Nanophytovirology" as a potential management approach to combat plant viral diseases. Because of their special physiochemical properties, nanoparticles (NPs) can interact with viruses, their vectors, and the host plants in a variety of specific and useful ways. We specifically describe the potential mechanisms underlying NPs-plant-virus interactions and explore the antiviral role of NPs. We discuss the limited literature, as well as the challenges and research gaps that are instrumental to the successful development of a nanotechnology-based, multidisciplinary approach for timely detection, treatment, and prevention of viral diseases.
Collapse
Affiliation(s)
- Tahir Farooq
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P.R. China
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Zifu He
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Muhammad Umar
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, Tasmania 7008, Australia
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Washington da Silva
- The NSF Center for Sustainable Nanotechnology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Wade Elmer
- The NSF Center for Sustainable Nanotechnology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Jason C White
- The NSF Center for Sustainable Nanotechnology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|