1
|
Sultana S, Sultana S, Najib Ullah SNM, Zafar A. Novel Products as Promising Therapeutic Agents for Angiogenesis Inhibition. Curr Drug Deliv 2025; 22:181-194. [PMID: 38204254 DOI: 10.2174/0115672018277869231217165048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE Angiogenesis is the process of forming new blood vessels from pre-existing vessels and occurs during development, wound healing, and tumor growth. In this review, we aimed to present a comprehensive view of various factors contributing to angiogenesis during carcinogenesis. Anti-angiogenesis agents prevent or slow down cancer growth by interrupting the nutrients and blood supply to the tumor cells, and thus can prove beneficial for treatment. METHOD The discovery of several novel angiogenic inhibitors has helped to reduce both morbidity and mortality from several life-threatening diseases, such as carcinomas. There is an urgent need for a new comprehensive treatment strategy combining novel anti-angiogenic agents for the control of cancer. The article contains details of various angiogenic inhibitors that have been adopted by scientists to formulate and optimize such systems in order to make them suitable for cancer. RESULTS The results of several researches have been summarized in the article and all of the data support the claim that anti-angiogenic agent is beneficial for cancer treatment. CONCLUSION This review focuses on novel antiangiogenic agents that play a crucial role in controlling carcinogenesis.
Collapse
Affiliation(s)
- Shaheen Sultana
- Department of Pharmaceutics, IIMT College of Pharmacy, Uttar Pradesh 201310, India
| | - Shahnaz Sultana
- Department of Pharmacognosy and Phytochemistry, Jazan University, Kingdom of Saudi Arabia
| | | | - Ameeduzzafar Zafar
- Department of Pharmaceutics, Jouf University, Al-Jouf, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
de Oliveira Filho VA, Gubiani JR, Borgonovi VD, Hilário F, de Amorim MR, Minori K, Bertolini VKS, Ferreira AG, Biz AR, Soares MA, Teles HL, Gadelha FR, Berlinck RGS, Miguel DC. In Vitro and In Vivo Leishmanicidal Activity of Beauvericin. JOURNAL OF NATURAL PRODUCTS 2024; 87:2829-2838. [PMID: 39626110 DOI: 10.1021/acs.jnatprod.4c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Leishmaniasis is a worldwide disease caused by more than 20 species of Leishmania parasites. Leishmania amazonensis and L. braziliensis are among the main causative agents of cutaneous leishmaniasis, presenting a broad spectrum of clinical forms. As these pathologies lead to unsatisfactory treatment outcomes, the discovery of alternative chemotherapeutic options is urgently required. In this investigation, a leishmanicidal bioassay-guided fractionation of the growth media extract produced by Aspergillus terreus P63 led to the isolation of the cyclic depsipeptide beauvericin (1). The viability of L. amazonensis, L. braziliensis and mammalian cells (macrophages and L929 fibroblasts) was assessed in 1 incubated cultures. Leishmania promastigotes were sensitive to 1, with EC50 values ranging from 0.7 to 1.3 μM. Microscopy analysis indicated that Leishmania spp. parasites showed morphological abnormalities in a dose-dependent manner in the presence of 1. L. amazonensis intracellular amastigotes were more sensitive to 1 than promastigotes (EC50 = 0.8 ± 0.1 μM), with a good selectivity index (22-30). 1 reduced the infectivity index at very low concentrations, maintaining the integrity of the primary murine host cell for up to the highest concentration tested for 1. In vivo assays of 1 conducted using BALB/c mice infected with stationary-phase promastigotes of L. amazonensis in the tail base presented a significant reduction in the lesion parasite load. A second round of in vivo assays was performed to assess the efficacy of the topical use of 1. The results demonstrated a significant decrease in the total ulcerated area of mice treated with 1 when compared with untreated animals. Our results present promising in vitro and in vivo leishmanicidal effects of beauvericin, emphasizing that systemic inoculation of 1 led to a decrease in the parasite load at the lesion site, whereas topical administration of 1 delayed the progression of leishmaniasis ulcers, a cure criterion established for cutaneous leishmaniasis management.
Collapse
Affiliation(s)
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Vitória D Borgonovi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Felipe Hilário
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Marcelo R de Amorim
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Karen Minori
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil
| | - Vitor K S Bertolini
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Andressa R Biz
- Departamento de Botânica e Ecologia. Universidade Federal de Mato Grosso - UFMT, Cuiabá 78060-900, MT, Brazil
| | - Marcos A Soares
- Departamento de Botânica e Ecologia. Universidade Federal de Mato Grosso - UFMT, Cuiabá 78060-900, MT, Brazil
| | - Helder L Teles
- Instituto de Ciências Exatas e Naturais, Universidade Federal de Rondonópolis, Campus de Rondonópolis, 78736-900 Rondonópolis, MT, Brazil
| | - Fernanda R Gadelha
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Danilo C Miguel
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil
| |
Collapse
|
3
|
Srivastava R, Ahmad F, Mishra BN, Mathkor DM, Singh V, Haque S. Terrein: isolation, chemical synthesis, bioactivity and future prospects of a potential therapeutic fungal metabolite. Nat Prod Res 2024:1-13. [PMID: 39641157 DOI: 10.1080/14786419.2024.2436112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The increasing risk of drug-resistant infections and unexpected pandemics like Covid-19 has prompted researchers to explore the area of drug repurposing. Natural products, being a result of the evolutionary optimisation processes can be potential starting points for such drug discovery programs. One such unexplored chemical is terrein, a secondary fungal metabolite. Although discovered in 1935 from Aspergillus terreus, the therapeutic potential of terrein has largely remained undeciphered. Research has primarily been focused on its biosynthetic pathways and its mycotoxic effects. However, in the last two decades, its biological properties including anticancer, anti-inflammatory anti-melanogenic, and bacteriocidal activities have been reported. These reports are preliminary in nature and do not adequately establish its overall therapeutic application. From its structural and therapeutic properties, it can be conjectured that terrein may act as a novel multimodal therapeutic. This comprehensive study reviews the synthesis, production and application aspects of terrein to understand its importance.
Collapse
Affiliation(s)
- Rashi Srivastava
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
4
|
Theobald S, Vesth TC, Geib E, Nybo JL, Frisvad JC, Larsen TO, Kuo A, LaButti K, Lyhne EK, Kjærbølling I, Ledsgaard L, Barry K, Clum A, Chen C, Nolan M, Sandor L, Lipzen A, Mondo S, Pangilinan J, Salamov A, Riley R, Wiebenga A, Müller A, Kun RS, dos Santos Gomes AC, Henrissat B, Magnuson JK, Simmons BA, Mäkelä MR, Mortensen UH, Grigoriev IV, Brock M, Baker SE, de Vries RP, Andersen MR. Genomic Analysis of Aspergillus Section Terrei Reveals a High Potential in Secondary Metabolite Production and Plant Biomass Degradation. J Fungi (Basel) 2024; 10:507. [PMID: 39057392 PMCID: PMC11278011 DOI: 10.3390/jof10070507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Aspergillus terreus has attracted interest due to its application in industrial biotechnology, particularly for the production of itaconic acid and bioactive secondary metabolites. As related species also seem to possess a prosperous secondary metabolism, they are of high interest for genome mining and exploitation. Here, we present draft genome sequences for six species from Aspergillus section Terrei and one species from Aspergillus section Nidulantes. Whole-genome phylogeny confirmed that section Terrei is monophyletic. Genome analyses identified between 70 and 108 key secondary metabolism genes in each of the genomes of section Terrei, the highest rate found in the genus Aspergillus so far. The respective enzymes fall into 167 distinct families with most of them corresponding to potentially unique compounds or compound families. Moreover, 53% of the families were only found in a single species, which supports the suitability of species from section Terrei for further genome mining. Intriguingly, this analysis, combined with heterologous gene expression and metabolite identification, suggested that species from section Terrei use a strategy for UV protection different to other species from the genus Aspergillus. Section Terrei contains a complete plant polysaccharide degrading potential and an even higher cellulolytic potential than other Aspergilli, possibly facilitating additional applications for these species in biotechnology.
Collapse
Affiliation(s)
- Sebastian Theobald
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Tammi C. Vesth
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Elena Geib
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (E.G.); (M.B.)
| | - Jane L. Nybo
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Jens C. Frisvad
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Thomas O. Larsen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Ellen K. Lyhne
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Inge Kjærbølling
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Line Ledsgaard
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Cindy Chen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Matt Nolan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Stephen Mondo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, 3584 Utrecht, The Netherlands; (A.W.); (A.M.); (R.S.K.); (A.C.d.S.G.)
| | - Astrid Müller
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, 3584 Utrecht, The Netherlands; (A.W.); (A.M.); (R.S.K.); (A.C.d.S.G.)
| | - Roland S. Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, 3584 Utrecht, The Netherlands; (A.W.); (A.M.); (R.S.K.); (A.C.d.S.G.)
| | - Ana Carolina dos Santos Gomes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, 3584 Utrecht, The Netherlands; (A.W.); (A.M.); (R.S.K.); (A.C.d.S.G.)
| | - Bernard Henrissat
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jon K. Magnuson
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (J.K.M.); (B.A.S.)
- US Department of Energy Joint Bioenergy Institute, 5885 Hollis St., Emeryville, CA 94608, USA
| | - Blake A. Simmons
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (J.K.M.); (B.A.S.)
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miia R. Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland;
| | - Uffe H. Mortensen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Matthias Brock
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (E.G.); (M.B.)
| | - Scott E. Baker
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (J.K.M.); (B.A.S.)
- US Department of Energy Joint Bioenergy Institute, 5885 Hollis St., Emeryville, CA 94608, USA
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, 3584 Utrecht, The Netherlands; (A.W.); (A.M.); (R.S.K.); (A.C.d.S.G.)
| | - Mikael R. Andersen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| |
Collapse
|
5
|
Wang W, Xu KW, Wang M, Wu P, Zhang ZR, Gao X, Li YQ, Wu GX, Zhang CS, Zhao DL. Phytotoxic and Antimicrobial Terrein Derivatives and Butenolides Isolated from the Endophytic Fungus Aspergillus terreus HT5. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20713-20723. [PMID: 38095326 DOI: 10.1021/acs.jafc.3c05955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Two new terrein derivatives, aspergilethers A and B (1 and 2), two known analogues (3 and 4), and three known butenolides (5-7) were isolated from the endophyte Aspergillus terreus HT5. Their structures were determined by spectroscopic analysis and ECD and NMR calculations. Interestingly, 1 and 2 had unpresented medium aliphatic side chains in terrein derivatives, with different absolute configurations at C-7, which was very scarce. (+)-Terrein (3) exhibited potent postemergence phytotoxicity toward Amaranthaceae, Portulacaceae, and Fabaceae, with MIC values of 250-1000 μg/mL. Transcriptome analysis and qRT-PCR suggested that (+)-terrein induced the transcriptional expression of aging-related genes to accelerate organ senescence and stimulated plant detoxification response. The conjugated system between keto carbonyl and double bonds in the cyclopentenone ring and side chain, and the configurations of C-2 and C-3, played critical roles in the phytotoxicity of terrein derivatives. Meanwhile, 3 was first reported to display moderate antioomycetes activity toward Phytophthora nicotiana.
Collapse
Affiliation(s)
- Wei Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Citrus Research Institute of Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China
| | - Kang-Wen Xu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Mei Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Peng Wu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zi-Ru Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xi Gao
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yi-Qiang Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Guo-Xing Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Cheng-Sheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Dong-Lin Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
6
|
Goutam J, Sharma G, Yadav V, Pathak G, Kharwar RN, Sharma D. A Focused Review of the Pharmacological Potentials of Terrein as an Anticancer Agent. Nat Prod Commun 2023; 18. [DOI: 10.1177/1934578x231174128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
Abstract
Terrein is one of the most important biomolecules of fungal origin being studied from a medicinal perspective. Secondary metabolites are the intermediate products produced during the metabolism of organisms for a large number of functions, for example, defense and communication signals. From the outset, terrein has largely been studied as an anticancer secondary biomolecule. Aspergillus terreus is the only fungal source of some valuable drugs and mycotoxins. From the beginning, a few species of Aspergillus were known to be viable chemical factories. Terrein is a potent biological molecule present in the fungus that is responsible for its medicinal and agricultural values. Numerous evaluations conducted on terrein showed it to have marked biological activities (antimicrobial, antiproliferative, anti-oxidative, and others). To date, terrein has emerged as a very attractive therapeutic regimen against cancer due to its dual targeting nature; tumor angiogenesis and cell proliferation. This focused review provides details of the therapeutic value of terrein and its modes of action as an anticancer agent. Besides this, terrein has other marked bioactivities and manifold uses in the field of medicine, which have also been discussed here.
Collapse
Affiliation(s)
- Jyoti Goutam
- Mycopathology and Microbial Technology Laboratory, Centre of Advance Study in Botany, Banaras Hindu University, Varanasi, India
| | - Gunjan Sharma
- Immunology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vandana Yadav
- Central Animal House Facility, ICMR-National Institute of Pathology, New Delhi, India
| | - Gauri Pathak
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Ravindra Nath Kharwar
- Mycopathology and Microbial Technology Laboratory, Centre of Advance Study in Botany, Banaras Hindu University, Varanasi, India
| | - Divakar Sharma
- Department of Microbiology, Lady Hardinge Medical College, New Delhi, India
| |
Collapse
|
7
|
Abuhijjleh RK, Al Saeedy DY, Ashmawy NS, Gouda AE, Elhady SS, Al-Abd AM. Chemomodulatory Effect of the Marine-Derived Metabolite "Terrein" on the Anticancer Properties of Gemcitabine in Colorectal Cancer Cells. Mar Drugs 2023; 21:md21050271. [PMID: 37233465 DOI: 10.3390/md21050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Terrein (Terr) is a bioactive marine secondary metabolite that possesses antiproliferative/cytotoxic properties by interrupting various molecular pathways. Gemcitabine (GCB) is an anticancer drug used to treat several types of tumors such as colorectal cancer; however, it suffers from tumor cell resistance, and therefore, treatment failure. METHODS The potential anticancer properties of terrein, its antiproliferative effects, and its chemomodulatory effects on GCB were assessed against various colorectal cancer cell lines (HCT-116, HT-29, and SW620) under normoxic and hypoxic (pO2 ≤ 1%) conditions. Further analysis via flow cytometry was carried out in addition to quantitative gene expression and 1HNMR metabolomic analysis. RESULTS In normoxia, the effect of the combination treatment (GCB + Terr) was synergistic in HCT-116 and SW620 cell lines. In HT-29, the effect was antagonistic when the cells were treated with (GCB + Terr) under both normoxic and hypoxic conditions. The combination treatment was found to induce apoptosis in HCT-116 and SW620. Metabolomic analysis revealed that the change in oxygen levels significantly affected extracellular amino acid metabolite profiling. CONCLUSIONS Terrein influenced GCB's anti-colorectal cancer properties which are reflected in different aspects such as cytotoxicity, cell cycle progression, apoptosis, autophagy, and intra-tumoral metabolism under normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Reham Khaled Abuhijjleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Dalia Yousef Al Saeedy
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Naglaa S Ashmawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11591, Egypt
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed E Gouda
- Life Science Unit, Biomedical Research Division, Nawah Scientific, Al-Mokkatam, Cairo 11571, Egypt
| | - Sameh S Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Mohamed Al-Abd
- Life Science Unit, Biomedical Research Division, Nawah Scientific, Al-Mokkatam, Cairo 11571, Egypt
- National Research Centre, Department of Pharmacology, Medical and Clinical Research Institute, Cairo 12622, Egypt
| |
Collapse
|
8
|
Amr K, Ibrahim N, Elissawy AM, Singab ANB. Unearthing the fungal endophyte Aspergillus terreus for chemodiversity and medicinal prospects: a comprehensive review. Fungal Biol Biotechnol 2023; 10:6. [PMID: 36966331 PMCID: PMC10040139 DOI: 10.1186/s40694-023-00153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/22/2023] [Indexed: 03/27/2023] Open
Abstract
Aspergillus terreus microorganism represents a promising prospective source for drug discovery since it is rich in diverse kinds of bioactive secondary metabolites. It contributed to many biotechnological applications and its metabolites are used in the synthesis of certain pharmaceuticals and food products, in addition to its useful uses in fermentation processes. There are about 346 compounds identified from marine and terrestrial-derived A. terreus from 1987 until 2022, 172 compounds of them proved a vast array of bioactivity. This review aimed to create an up-to-date comprehensive literature data of A. terreus's secondary metabolites classes supported by its different bioactivity data to be a scientific record for the next work in drug discovery.
Collapse
Affiliation(s)
- Khadiga Amr
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt.
- Center of Drug Discovery Research and Development, Ain-Shams University, Organization of African Unity Street 1, Cairo, 11566, Egypt.
| |
Collapse
|
9
|
Sako H, Omori K, Nakayama M, Mandai H, Ideguchi H, Yoshimura-Nakagawa S, Sakaida K, Nagata-Kamei C, Kobayashi H, Ishii S, Ono M, Ibaragi S, Yamamoto T, Suga S, Takashiba S. The Fungal Metabolite (+)-Terrein Abrogates Inflammatory Bone Resorption via the Suppression of TNF-α Production in a Ligature-Induced Periodontitis Mouse Model. J Fungi (Basel) 2023; 9:jof9030314. [PMID: 36983482 PMCID: PMC10055831 DOI: 10.3390/jof9030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Current periodontal treatment focuses on the mechanical removal of the source of infection, such as bacteria and their products, and there is no approach to control the host inflammatory response that leads to tissue destruction. In order to control periodontal inflammation, we have previously reported the optimization of (+)-terrein synthesis methods and the inhibitory effect of (+)-terrein on osteoclast differentiation in vitro. However, the pharmacological effect of (+)-terrein in vivo in the periodontitis model is still unknown. In this study, we investigated the effect of synthetic (+)-terrein on inflammatory bone resorption using a ligature-induced periodontitis mouse model. Synthetic (+)-terrein (30 mg/kg) was administered intraperitoneally twice a week to the mouse periodontitis model. The control group was treated with phosphate buffer. One to two weeks after the induction of periodontitis, the periodontal tissues were harvested for radiological evaluation (micro-CT), histological evaluation (HE staining and TRAP staining), and the evaluation of inflammatory cytokine production in the periodontal tissues and serum (quantitative reverse-transcription PCR, ELISA). The synthetic (+)-terrein-treated group suppressed alveolar bone resorption and the number of osteoclasts in the periodontal tissues compared to the control group (p < 0.05). In addition, synthetic (+)-terrein significantly suppressed both mRNA expression of TNF-α in the periodontal tissues and the serum concentration of TNF-α (both p < 0.05). In conclusion, we have demonstrated that synthetic (+)-terrein abrogates alveolar bone resorption via the suppression of TNF-α production and osteoclast differentiation in vivo. Therefore, we could expect potential clinical effects when using (+)-terrein on inflammatory bone resorption, including periodontitis.
Collapse
Affiliation(s)
- Hidefumi Sako
- Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Correspondence: ; Tel.: +81-86-235-6677; Fax: +81-86-235-6679
| | - Masaaki Nakayama
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, Gifu 509-0261, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Saki Yoshimura-Nakagawa
- Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kyosuke Sakaida
- Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital, Okayama 700-8558, Japan
| | - Chiaki Nagata-Kamei
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hiroya Kobayashi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Satoki Ishii
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Okayama 700-8530, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery and Biopathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Tadashi Yamamoto
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Okayama 700-8530, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| |
Collapse
|
10
|
Bai X, Sheng Y, Tang Z, Pan J, Wang S, Tang B, Zhou T, Shi L, Zhang H. Polyketides as Secondary Metabolites from the Genus Aspergillus. J Fungi (Basel) 2023; 9:261. [PMID: 36836375 PMCID: PMC9962652 DOI: 10.3390/jof9020261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Polyketides are an important class of structurally diverse natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups. These compounds have attracted the worldwide attention of pharmaceutical researchers since they are endowed with a wide array of biological properties. As one of the most common filamentous fungi in nature, Aspergillus spp. is well known as an excellent producer of polyketide compounds with therapeutic potential. By extensive literature search and data analysis, this review comprehensively summarizes Aspergillus-derived polyketides for the first time, regarding their occurrences, chemical structures and bioactivities as well as biosynthetic logics.
Collapse
Affiliation(s)
- Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Sheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenxing Tang
- School of Culinary Arts, Tourism College of Zhejiang, Hangzhou 311231, China
| | - Jingyi Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu’e Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
11
|
Tilvi S, Parvatkar R, Awashank A, Khan S. Investigation of Secondary Metabolites from Marine‐Derived Fungi
Aspergillus. ChemistrySelect 2022. [DOI: 10.1002/slct.202203742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Supriya Tilvi
- Bio-organic Chemistry Laboratory Chemical Oceanography Division CSIR-National Institute of Oceanography Donapaula Goa
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India- 201002
| | - Rajesh Parvatkar
- Department of Chemistry Government College of Arts, Science and Commerce Sankhali Goa India 403505
| | - Avinash Awashank
- CSIR-National Institute of Oceanography, Regional Centre, Four Bungalows, Andheri (West) Mumbai Maharashtra India- 400053
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India- 201002
| | - Safia Khan
- Bio-organic Chemistry Laboratory Chemical Oceanography Division CSIR-National Institute of Oceanography Donapaula Goa
| |
Collapse
|
12
|
Zou ZB, Zhang G, Zhou YQ, Xie CL, Xie MM, Xu L, Hao YJ, Luo LZ, Zhang XK, Yang XW, Wang JS. Chemical Constituents of the Deep-Sea-Derived Penicillium citreonigrum MCCC 3A00169 and Their Antiproliferative Effects. Mar Drugs 2022; 20:md20120736. [PMID: 36547883 PMCID: PMC9781865 DOI: 10.3390/md20120736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022] Open
Abstract
Six new citreoviridins (citreoviridins J-O, 1-6) and twenty-two known compounds (7-28) were isolated from the deep-sea-derived Penicillium citreonigrum MCCC 3A00169. The structures of the new compounds were determined by spectroscopic methods, including the HRESIMS, NMR, ECD calculations, and dimolybdenum tetraacetate-induced CD (ICD) experiments. Citreoviridins J-O (1-6) are diastereomers of 6,7-epoxycitreoviridin with different chiral centers at C-2-C-7. Pyrenocine A (7), terrein (14), and citreoviridin (20) significantly induced apoptosis for HeLa cells with IC50 values of 5.4 μM, 11.3 μM, and 0.7 μM, respectively. To be specific, pyrenocine A could induce S phase arrest, while terrein and citreoviridin could obviously induce G0-G1 phase arrest. Citreoviridin could inhibit mTOR activity in HeLa cells.
Collapse
Affiliation(s)
- Zheng-Biao Zou
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Gang Zhang
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medica College, 1999 Guankouzhong Road, Xiamen 361023, China
| | - Yu-Qi Zhou
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen 361102, China
| | - Chun-Lan Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Lin Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - You-Jia Hao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Lian-Zhong Luo
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medica College, 1999 Guankouzhong Road, Xiamen 361023, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen 361102, China
- Correspondence: (X.-K.Z.); (X.-W.Y.); (J.-S.W.); Tel.: +86-592-2181851 (X.-K.Z.); +86-592-2195319 (X.-W.Y.); +86-258-4315512 (J.-S.W.)
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
- Correspondence: (X.-K.Z.); (X.-W.Y.); (J.-S.W.); Tel.: +86-592-2181851 (X.-K.Z.); +86-592-2195319 (X.-W.Y.); +86-258-4315512 (J.-S.W.)
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
- Correspondence: (X.-K.Z.); (X.-W.Y.); (J.-S.W.); Tel.: +86-592-2181851 (X.-K.Z.); +86-592-2195319 (X.-W.Y.); +86-258-4315512 (J.-S.W.)
| |
Collapse
|
13
|
Huang D, Yang J, Li C, Hui Y, Chen W. Recent Advances in Isolation, Synthesis and Biological Evaluation of Terrein. Chem Biodivers 2021; 18:e2100594. [PMID: 34704347 DOI: 10.1002/cbdv.202100594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Terrein is a small-molecule polyketide compound with a simple structure mainly isolated from fungi. Since its discovery in 1935, many scholars have conducted a series of research on its structure identification, isolation source, production increase, synthesis and biological activity. Studies have shown that terrein has a variety of biological activities, not only can inhibit melanin production and epidermal hyperplasia, but also has anti-cancer, anti-inflammatory, anti-angiopoietic secretion, antibacterial, insecticidal activities, and so on. It has potential application prospects in beauty, medicine, agriculture and other fields. This article reviews the process of structural identification of terrein since 1935, and summarizes the latest advances in its isolation, source, production increase, synthesis, and biological activity evaluation, with a view to providing a reference and helping for the in-depth research of terrein.
Collapse
Affiliation(s)
- Dan Huang
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Jianni Yang
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Chen Li
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Yang Hui
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Wenhao Chen
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| |
Collapse
|
14
|
Abstract
Infections due to Aspergillus species are an acute threat to human health; members of the Aspergillus section Fumigati are the most frequently occurring agents, but depending on the local epidemiology, representatives of section Terrei or section Flavi are the second or third most important. Aspergillus terreus species complex is of great interest, as it is usually amphotericin B resistant and displays notable differences in immune interactions in comparison to Aspergillus fumigatus. The latest epidemiological surveys show an increased incidence of A. terreus as well as an expanding clinical spectrum (chronic infections) and new groups of at-risk patients being affected. Hallmarks of these non-Aspergillus fumigatus invasive mold infections are high potential for tissue invasion, dissemination, and possible morbidity due to mycotoxin production. We seek to review the microbiology, epidemiology, and pathogenesis of A. terreus species complex, address clinical characteristics, and highlight the underlying mechanisms of amphotericin B resistance. Selected topics will contrast key elements of A. terreus with A. fumigatus. We provide a comprehensive resource for clinicians dealing with fungal infections and researchers working on A. terreus pathogenesis, aiming to bridge the emerging translational knowledge and future therapeutic challenges on this opportunistic pathogen.
Collapse
|
15
|
Kahlert L, Bernardi D, Hauser M, Ióca LP, Berlinck RGS, Skellam EJ, Cox RJ. Early Oxidative Transformations During the Biosynthesis of Terrein and Related Natural Products. Chemistry 2021; 27:11895-11903. [PMID: 34114710 PMCID: PMC8453496 DOI: 10.1002/chem.202101447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 01/09/2023]
Abstract
The mycotoxin terrein is derived from the C10‐precursor 6‐hydroxymellein (6‐HM) via an oxidative ring contraction. Although the corresponding biosynthetic gene cluster (BGC) has been identified, details of the enzymatic oxidative transformations are lacking. Combining heterologous expression and in vitro studies we show that the flavin‐dependent monooxygenase (FMO) TerC catalyzes the initial oxidative decarboxylation of 6‐HM. The reactive intermediate is further hydroxylated by the second FMO TerD to yield a highly oxygenated aromatic species, but further reconstitution of the pathway was hampered. A related BGC was identified in the marine‐derived Roussoella sp. DLM33 and confirmed by heterologous expression. These studies demonstrate that the biosynthetic pathways of terrein and related (polychlorinated) congeners diverge after oxidative decarboxylation of the lactone precursor that is catalyzed by a conserved FMO and further indicate that early dehydration of the side chain is an essential step.
Collapse
Affiliation(s)
- Lukas Kahlert
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Darlon Bernardi
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany.,Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP, 13560-970, São Carlos, SP, Brazil
| | - Maurice Hauser
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP, 13560-970, São Carlos, SP, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP, 13560-970, São Carlos, SP, Brazil
| | - Elizabeth J Skellam
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany.,Department of Chemistry & BioDiscovery Institute, University of North Texas, 1155 Union Circle 305220, Denton, Texas, 76203, USA
| | - Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
16
|
Sakaida K, Omori K, Nakayama M, Mandai H, Nakagawa S, Sako H, Kamei C, Yamamoto S, Kobayashi H, Ishii S, Ono M, Ibaragi S, Yamashiro K, Yamamoto T, Suga S, Takashiba S. The Fungal Metabolite (+)-Terrein Abrogates Ovariectomy-Induced Bone Loss and Receptor Activator of Nuclear Factor-κB Ligand-Induced Osteoclastogenesis by Suppressing Protein Kinase-C α/βII Phosphorylation. Front Pharmacol 2021; 12:674366. [PMID: 34168561 PMCID: PMC8219168 DOI: 10.3389/fphar.2021.674366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 12/05/2022] Open
Abstract
Osteoporosis is a common disease characterized by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. Severe bone loss due to osteoporosis triggers pathological fractures and consequently decreases the daily life activity and quality of life. Therefore, prevention of osteoporosis has become an important issue to be addressed. We have reported that the fungal secondary metabolite (+)-terrein (TER), a natural compound derived from Aspergillus terreus, has shown receptor activator of nuclear factor-κB ligand (RANKL)–induced osteoclast differentiation by suppressing nuclear factor of activated T-cell 1 (NFATc1) expression, a master regulator of osteoclastogenesis. TER has been shown to possess extensive biological and pharmacological benefits; however, its effects on bone metabolism remain unclear. In this study, we investigated the effects of TER on the femoral bone metabolism using a mouse-ovariectomized osteoporosis model (OVX mice) and then on RANKL signal transduction using mouse bone marrow macrophages (mBMMs). In vivo administration of TER significantly improved bone density, bone mass, and trabecular number in OVX mice (p < 0.01). In addition, TER suppressed TRAP and cathepsin-K expression in the tissue sections of OVX mice (p < 0.01). In an in vitro study, TER suppressed RANKL-induced phosphorylation of PKCα/βII, which is involved in the expression of NFATc1 (p < 0.05). The PKC inhibitor, GF109203X, also inhibited RANKL-induced osteoclastogenesis in mBMMs as well as TER. In addition, TER suppressed the expression of osteoclastogenesis-related genes, such as Ocstamp, Dcstamp, Calcr, Atp6v0d2, Oscar, and Itgb3 (p < 0.01). These results provide promising evidence for the potential therapeutic application of TER as a novel treatment compound against osteoporosis.
Collapse
Affiliation(s)
- Kyosuke Sakaida
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuhiro Omori
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Masaaki Nakayama
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, Gifu, Japan
| | - Saki Nakagawa
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Hidefumi Sako
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Chiaki Kamei
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoshi Yamamoto
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Hiroya Kobayashi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoki Ishii
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Okayama, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Soichiro Ibaragi
- Department of Oral Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keisuke Yamashiro
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Tadashi Yamamoto
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
17
|
Mohamed AF, Abuamara TMM, Amer ME, Ei-Moselhy LE, Gomah TA, Matar ER, Shebl RI, Desouky SE, Abu-Elghait M. Genetic and Histopathological Alterations in Caco-2 and HuH-7 Cells Treated with Secondary Metabolites of Marine fungi. J Gastrointest Cancer 2021; 53:480-495. [PMID: 33974218 DOI: 10.1007/s12029-021-00640-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2021] [Indexed: 11/26/2022]
Abstract
The present work aimed to study the activity of naturally derived fungal secondary metabolites as anticancer agents concerning their cytotoxicity, apoptotic, genetic, and histopathological profile. It was noticed that Aspergillus terreus, Aspergillus flavus, and Aspergillus fumigatus induced variable toxic potential that was cell type, secondary metabolite type, and concentration dependent. Human colonic adenocarcinoma cells (Caco-2) showed less sensitivity than hepatocyte-derived cellular carcinoma cells (HuH-7), and in turn, the half-maximal inhibitory concentration (IC50) was variable. Also, the apoptotic potential of Aspergillus species-derived fungal secondary metabolites was proven via detection of up-regulated pro-apoptotic genes and down-regulation of anti-apoptotic genes. The expression level was cell type dependent. Concurrently, apoptotic profile was accompanied with cellular DNA accumulation at the G2/M phase, as well as an elevation in Pre-G1 phase but not during G0/G1 and S phases. Also, there were characteristic apoptotic features of treated cells presented as abnormal intra-nuclear eosinophilic structures, dead cells with mixed euchromatin and heterochromatin, ruptured cell membranes, apoptotic cells with irregular cellular and nuclear membranes, as well as peripheral chromatin condensation. It can be concluded that Aspergillus secondary metabolites are promising agents that can be used as supplementary agents to the currently applied anti-cancer drug regimen.
Collapse
Affiliation(s)
- Aly Fahmy Mohamed
- The International center for training and advanced researches (ICTAR -Egypt), Cairo, Egypt
| | - Tamer M M Abuamara
- Histology department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed E Amer
- Histology department, Faculty of medicine, Al-Azhar University, Damietta, Egypt
| | - Laila E Ei-Moselhy
- Histology department, Faculty of medicine (girls), Al-Azhar University, Damietta, Egypt
| | | | - Emadeldin R Matar
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Rania Ibrahim Shebl
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Said E Desouky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar Uniersity, 11847, Nasr City, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar Uniersity, 11847, Nasr City, Cairo, Egypt.
| |
Collapse
|
18
|
Navale V, Vamkudoth KR, Ajmera S, Dhuri V. Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicol Rep 2021; 8:1008-1030. [PMID: 34408970 PMCID: PMC8363598 DOI: 10.1016/j.toxrep.2021.04.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Aspergillus species are the paramount ubiquitous fungi that contaminate various food substrates and produce biochemicals known as mycotoxins. Aflatoxins (AFTs), ochratoxin A (OTA), patulin (PAT), citrinin (CIT), aflatrem (AT), secalonic acids (SA), cyclopiazonic acid (CPA), terrein (TR), sterigmatocystin (ST) and gliotoxin (GT), and other toxins produced by species of Aspergillus plays a major role in food and human health. Mycotoxins exhibited wide range of toxicity to the humans and animal models even at nanomolar (nM) concentration. Consumption of detrimental mycotoxins adulterated foodstuffs affects human and animal health even trace amounts. Bioaerosols consisting of spores and hyphal fragments are active elicitors of bronchial irritation and allergy, and challenging to the public health. Aspergillus is the furthermost predominant environmental contaminant unswervingly defile lives with a 40-90 % mortality risk in patients with conceded immunity. Genomics, proteomics, transcriptomics, and metabolomics approaches useful for mycotoxins' detection which are expensive. Antibody based detection of toxins chemotypes may result in cross-reactivity and uncertainty. Aptamers (APT) are single stranded DNA (ssDNA/RNA), are specifically binds to the target molecules can be generated by systematic evolution of ligands through exponential enrichment (SELEX). APT are fast, sensitive, simple, in-expensive, and field-deployable rapid point of care (POC) detection of toxins, and a better alternative to antibodies.
Collapse
Affiliation(s)
- Vishwambar Navale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | | | - Vaibhavi Dhuri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| |
Collapse
|
19
|
Buachan P, Namsa-Aid M, Sung HK, Peng C, Sweeney G, Tanechpongtamb W. Inhibitory effects of terrein on lung cancer cell metastasis and angiogenesis. Oncol Rep 2021; 45:94. [PMID: 33846818 PMCID: PMC8047749 DOI: 10.3892/or.2021.8045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Cancer metastasis is the leading cause of mortality in cancer patients. Over 70% of lung cancer patients are diagnosed at advanced or metastatic stages, and this results in an increased incidence of mortality. Terrein is a secondary bioactive fungal metabolite isolated from Aspergillus terreus. Numerous studies have demonstrated that terrein has anticancer properties, but in the present study, the cellular mechanisms underlying the inhibition of lung cancer cell metastasis by terrein was investigated for the first time. Using MTT assays, the cytotoxic effects of terrein were first examined in human lung cancer cells (A549 cells) and then compared with its cytotoxic effects in three noncancer control cell lines (Vero kidney, L6 skeletal muscle and H9C2 cardiomyoblast cells). The results indicated that terrein significantly reduced the viability of all these cells but exhibited a different level of toxicity in each cell type; these results revealed a specific concentration range in which the effect of terrein was specific to A549 cells. This significant cytotoxic effect of terrein in A549 cells was verified using LDH assays. It was then demonstrated that terrein attenuated the proliferation of A549 cells using IncuCyte image analysis. Regarding its antimetastatic effects, terrein significantly inhibited A549 cell adhesion, migration and invasion. In addition, terrein suppressed the angiogenic processes of A549 cells, including vascular endothelial growth factor (VEGF) secretion, capillary-like tube formation and VEGF/VEGFR2 interaction. These phenomena were accompanied by reduced protein levels of integrins, FAK, and their downstream mediators (e.g., PI3K, AKT, mTORC1 and P70S6K). All these data indicated that terrein was able to inhibit all the major metastatic processes in human lung cancer cells, which is crucial for cancer treatment.
Collapse
Affiliation(s)
- Paiwan Buachan
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Maneekarn Namsa-Aid
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Hye Kyoung Sung
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Wanlaya Tanechpongtamb
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
20
|
Tilvi S, Parvatkar R, Singh KS, Devi P. Chemical Investigation of Marine-Derived Fungus Aspergillus flavipes for Potential Anti-Inflammatory Agents. Chem Biodivers 2021; 18:e2000956. [PMID: 33533162 DOI: 10.1002/cbdv.202000956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
The marine fungus, Aspergillus flavipes (MTCC 5220), was isolated from the pneumatophore of a mangrove plant Acanthus ilicifolius found in Goa, India. The crude extract of A. flavipes was found to show anti-inflammatory activity. It blocked interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production in lipopolysaccharide (LPS)-activated THP-1 cells with IC50 of 2.69±0.5 μM and 6.64±0.4 μM, respectively. The chemical investigation led to the isolation of optically inactive 4β-[(1E)-propen-1-yl]cyclopentane-1β,2β-diol (1) along with a new optically active diastereoisomeric compound, 4β-[(1E)-propen-1-yl]cyclopentane-1β,2α-diol (2). In addition, the fungus also produced known compounds (+)-terrein (3), butyrolactone I (4) and butyrolactone II (5) in high yields. Among these, (+)-terrein (3) exhibited IL-6 and TNF-α inhibition activity with IC50 of 8.5±0.68 μM and 15.76±0.18 μM, respectively, while butyrolactone I (4) exhibited IC50 of 12.03±0.85 μM (IL-6) and 43.29±0.76 μM (TNF-α) inhibition activity with low toxicity to host cells in LPS stimulated THP-1 cells. This is the first report of the isolation and characterization of 4β-[(1E)-propen-1-yl]cyclopentane-1β,2α-diol (2). The structures of all the isolated compounds were elucidated on the basis of extensive detailed NMR spectroscopic data. Anti-inflammatory activity of the fungi A. flavipes is presented here for the first time, which was due to (+)-terrein and butyrolactone I, as the major constituents and they can be further explored in the therapeutic area.
Collapse
Affiliation(s)
- Supriya Tilvi
- Bio-Organic Chemistry Laboratory, Chemical Oceanography Division, CSIR-National Institute of Oceanography, Donapaula, 403004, Goa, India
| | - Rajesh Parvatkar
- Government College of Arts, Science and Commerce, Sankhali, 403505, Goa, India
| | - Keisham S Singh
- Bio-Organic Chemistry Laboratory, Chemical Oceanography Division, CSIR-National Institute of Oceanography, Donapaula, 403004, Goa, India
| | - Prabha Devi
- Bio-Organic Chemistry Laboratory, Chemical Oceanography Division, CSIR-National Institute of Oceanography, Donapaula, 403004, Goa, India
| |
Collapse
|
21
|
Nakagawa S, Omori K, Nakayama M, Mandai H, Yamamoto S, Kobayashi H, Sako H, Sakaida K, Yoshimura H, Ishii S, Ibaragi S, Hirai K, Yamashiro K, Yamamoto T, Suga S, Takashiba S. The fungal metabolite (+)-terrein abrogates osteoclast differentiation via suppression of the RANKL signaling pathway through NFATc1. Int Immunopharmacol 2020; 83:106429. [PMID: 32222639 DOI: 10.1016/j.intimp.2020.106429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Pathophysiological bone resorption is commonly associated with periodontal disease and involves the excessive resorption of bone matrix by activated osteoclasts. Receptor activator of nuclear factor (NF)-κB ligand (RANKL) signaling pathways have been proposed as targets for inhibiting osteoclast differentiation and bone resorption. The fungal secondary metabolite (+)-terrein is a natural compound derived from Aspergillus terreus that has previously shown anti-interleukin-6 properties related to inflammatory bone resorption. However, its effects and molecular mechanism of action on osteoclastogenesis and bone resorption remain unclear. In the present study, we showed that 10 µM synthetic (+)-terrein inhibited RANKL-induced osteoclast formation and bone resorption in a dose-dependent manner and without cytotoxicity. RANKL-induced messenger RNA expression of osteoclast-specific markers including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), the master regulator of osteoclastogenesis, cathepsin K, tartrate-resistant acid phosphatase (Trap) was completely inhibited by synthetic (+)-terrein treatment. Furthermore, synthetic (+)-terrein decreased RANKL-induced NFATc1 protein expression. This study revealed that synthetic (+)-terrein attenuated osteoclast formation and bone resorption by mediating RANKL signaling pathways, especially NFATc1, and indicated the potential effect of (+)-terrein on inflammatory bone resorption including periodontal disease.
Collapse
Affiliation(s)
- Saki Nakagawa
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Kazuhiro Omori
- Department of Periodontics and Endodontics, Okayama University Hospital, Japan.
| | - Masaaki Nakayama
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Hiroki Mandai
- Department of Medical Technology, School of Health Science, Gifu University of Medical Science, Japan.
| | - Satoshi Yamamoto
- Department of Periodontics and Endodontics, Okayama University Hospital, Japan.
| | - Hiroya Kobayashi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Hidefumi Sako
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Kyosuke Sakaida
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Hiroshi Yoshimura
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Japan.
| | - Satoki Ishii
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Japan.
| | - Soichiro Ibaragi
- Department of Oral Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Kimito Hirai
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Keisuke Yamashiro
- Department of Periodontics and Endodontics, Okayama University Hospital, Japan.
| | - Tadashi Yamamoto
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Japan.
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| |
Collapse
|
22
|
Induced terreins production from marine red algal-derived endophytic fungus Aspergillus terreus EN-539 co-cultured with symbiotic fungus Paecilomyces lilacinus EN-531. J Antibiot (Tokyo) 2019; 73:108-111. [PMID: 31624337 DOI: 10.1038/s41429-019-0242-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Abstract
The coculture of marine red algal-derived endophytic fungi Aspergillus terreus EN-539 and Paecilomyces lilacinus EN-531 induced the production of a new terrein derivative, namely asperterrein (1) and a known dihydroterrein (2), which were not detected in the axenic cultures of both strains. The production of the known secondary metabolites terrein (3), butyrolactone I (4), and dankasterone (6), derived from A. terreus EN-539, were depressed significantly in the coculture. Compounds 1-3 exhibited inhibitory activity against Alternaria brassicae, Escherichia coli, Physalospora piricola, and Staphylococcus aureus with MIC values ranging from 4 to 64 μg ml-1.
Collapse
|
23
|
Asfour HZ, Awan ZA, Bagalagel AA, Elfaky MA, Abdelhameed RFA, Elhady SS. Large-Scale Production of Bioactive Terrein by Aspergillus terreus Strain S020 Isolated from the Saudi Coast of the Red Sea. Biomolecules 2019; 9:biom9090480. [PMID: 31547354 PMCID: PMC6769563 DOI: 10.3390/biom9090480] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023] Open
Abstract
The diversity of symbiotic fungi derived from two marine sponges and sediment collected off Obhur, Jeddah (Saudi Arabia), was investigated in the current study. A total of 23 isolates were purified using a culture-dependent approach. Using the morphological properties combined with internal transcribed spacer-rDNA (ITS-rDNA) sequences, 23 fungal strains (in the majority Penicillium and Aspergillus) were identified from these samples. The biological screening (cytotoxic and antimicrobial activities) of small-scale cultures of these fungi yielded several target fungal strains which produced bioactive secondary metabolites. Amongst these isolates, the crude extract of Aspergillus terreus strain S020, which was cultured in fermentation static broth, 21 L, for 40 days at room temperature on potato dextrose broth, displayed strong antimicrobial activities against Pseudomonas aeruginosa and Staphylococcus aureus and significant antiproliferative effects on human carcinoma cells. Chromatographic separation of the crude extract by silica gel column chromatography indicated that the S020 isolate could produce a series of chemical compounds. Among these, pure crystalline terrein was separated with a high yield of 537.26 ± 23.42 g/kg extract, which represents the highest fermentation production of terrein to date. Its chemical structure was elucidated on the basis of high-resolution electrospray ionization mass spectrometry (HRESIMS) or high-resolution mass spectrometry (HRMS), 1D, and 2D NMR spectroscopic analyses and by comparison with reported data. The compound showed strong cytotoxic activity against colorectal carcinoma cells (HCT-116) and hepatocellular carcinoma cells (HepG2), with IC50 values of 12.13 and 22.53 µM, respectively. Our study highlights the potential of A. terreus strain S020 for the industrial production of bioactive terrein on a large scale and the importance of future investigations of these strains to identify the bioactive leads in these fungal extracts.
Collapse
Affiliation(s)
- Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Zuhier A Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Alaa A Bagalagel
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mahmoud A Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Sameh S Elhady
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt.
| |
Collapse
|
24
|
Ferguson R, Subramanian V. The secretion of the angiogenic and neurotrophic factor angiogenin is COPII and microtubule dependent. Exp Cell Res 2019; 381:265-279. [PMID: 31128105 DOI: 10.1016/j.yexcr.2019.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
Abstract
The RNaseA superfamily member Angiogenin (ANG) is a secreted protein involved in neovascularization, cell proliferation and stress response. Dysregulation of ANG expression is found in many cancers with poor prognosis and mutations in ANG are associated with neurodegenerative diseases. While the uptake and nuclear translocation of ANG is relatively well characterised, little is known about how it reaches the plasma membrane and its mode of secretion. We generated SH-SY5Y neuroblastoma cell lines constitutively expressing wild type (WT) Hemagglutinin (HA) epitope tagged mouse Ang1 (mAng1), and two amyotrophic lateral sclerosis associated ANG variants (C39W and K40I). Herein, we show that these cell lines secrete mAng1 into the culture media. Using small molecule inhibitors we probed the route taken between the endoplasmic reticulum and trans-Golgi network during secretion and have characterised it as COPII and microtubule dependent. In addition, we show that disruption by the PI3-kinase inhibitor wortmannin of the later stages of transit to the plasma membrane leads to mAng1 trafficking to lysosomal compartments. This suggests an autophagy dependent regulation of secretion.
Collapse
Affiliation(s)
- Ross Ferguson
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Vasanta Subramanian
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
25
|
Ferguson R, Holloway DE, Chandrasekhar A, Acharya KR, Subramanian V. The catalytic activity and secretion of zebrafish RNases are essential for their in vivo function in motor neurons and vasculature. Sci Rep 2019; 9:1107. [PMID: 30710110 PMCID: PMC6358602 DOI: 10.1038/s41598-018-37140-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Angiogenin (hANG), a member of the Ribonuclease A superfamily has angiogenic, neurotrophic and neuroprotective activities. Mutations in hANG have been found in patients with Amyotrophic lateral sclerosis (ALS). The zebrafish (Danio rerio) rnasel-1, 2 and 3 are orthologues of hANG and of these only Rnasel-1 and Rnasel-2 have been shown to be angiogenic. Herein we show that NCI-65828, a potent and specific small molecule inhibitor of hANG inhibits Rnasel-1 to a similar extent. Treatment of early zebrafish embryos with NCI-65828, or with terrein, a fungal metabolite which prevents the secretion of hANG, resulted in spinal neuron aberrations as well defects in trunk vasculature. Our detailed expression analysis and inhibitor studies suggest that Rnasel-1 plays important roles in neuronal migration and pathfinding as well as in angiogenesis in zebrafish. Our studies suggest the usefulness of the zebrafish as a model to dissect the molecular consequences of the ANG ALS variants.
Collapse
Affiliation(s)
- Ross Ferguson
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Daniel E Holloway
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Anand Chandrasekhar
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Vasanta Subramanian
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
26
|
Yamamoto S, Omori K, Mandai H, Nakayama M, Nakagawa S, Kobayashi H, Kunimine T, Yoshimura H, Sakaida K, Sako H, Ibaragi S, Yamamoto T, Maeda H, Suga S, Takashiba S. Fungal metabolite (+)-terrein suppresses IL-6/sIL-6R-induced CSF1 secretion by inhibiting JAK1 phosphorylation in human gingival fibroblasts. Heliyon 2018; 4:e00979. [PMID: 30519664 PMCID: PMC6260243 DOI: 10.1016/j.heliyon.2018.e00979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/16/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
Control of bacterial infection-induced inflammatory responses is one of the effective therapeutic approaches of periodontal diseases. Natural products such as lipid mediators and metabolites from microorganisms have been used for decreasing inflammation. We previously reported that (+)-terrein inhibited activation of STAT3 and ERK1/2 in interleukin-6 (IL-6) signaling cascade, leading to prevent vascular endothelial growth factor (VEGF) secretion in human gingival fibroblasts (HGFs). However, little is still known about the role of (+)-terrein on inflammatory responses. In this study, we provided the possibility of novel action that (+)-terrein inhibits activation of Janus-activated kinase 1 (JAK1), which has a central function in IL-6 signaling cascade, and alters expression of mRNAs and proteins induced by IL-6/soluble IL-6 receptor (sIL-6R) stimulation in HGFs. First, we performed PCR array to examine IL-6/sIL-6R-induced mRNA expression, and then expression of mRNA and protein of colony stimulating factor-1 (CSF1) and VEGF were clearly determined by quantitative RT-PCR and ELISA, respectively. Treatment with (+)-terrein suppressed expression of mRNA and protein of CSF1 and VEGF by IL-6/sIL-6R stimulation. Next, to test the effect of (+)-terrein on IL-6/sIL-6R signaling cascade, we demonstrated whether (+)-terrein affects phosphorylation of JAK1 and its downstream proteins, Akt and SHP-2. Western blotting revealed that (+)-terrein inhibited IL-6/sIL-6R-induced phosphorylation of JAK1, Akt, and SHP-2. Therefore, (+)-terrein suppresses IL-6/sIL-6R-induced expression of CSF1 and VEGF via inhibition of JAK1, Akt, and SHP-2. Based on our results, we suggest that (+)-terrein is a candidate compound for anti-inflammatory effect associated with IL-6 signaling.
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Kazuhiro Omori
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, 700-8558, Japan
- Corresponding author.
| | - Hiroki Mandai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Masaaki Nakayama
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Saki Nakagawa
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Hiroya Kobayashi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Tadashi Kunimine
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hiroshi Yoshimura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kyosuke Sakaida
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Hidefumi Sako
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Tadashi Yamamoto
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Hiroshi Maeda
- Department of Endodontics, Osaka Dental University, Osaka, 540-0008, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
- Corresponding author.
| |
Collapse
|
27
|
Zhang X, Wu Z, Lai Y, Li D, Wang J, Luo Z, Xue Y, Zhu H, Chen C, Zhang Y. (±)-Terreinlactone A, a Pair of 3-Substituted δ-Lactone Enantiomers Derived from Terrein from the Fungus Aspergillus terreus. Chem Pharm Bull (Tokyo) 2018; 66:764-767. [DOI: 10.1248/cpb.c18-00200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xuwen Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
- Humanwell Healthcare (Group) Co., Ltd
| | - Zhaodi Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Yongji Lai
- Department of Pharmacy, the Central Hospital of Wuhan
| | - Dongyan Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Yongbo Xue
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
28
|
Mori A, Nishioka Y, Yamada M, Nishibata Y, Masuda S, Tomaru U, Honma N, Moriyama T, Ishizu A. Brain-derived neurotrophic factor induces angiogenin secretion and nuclear translocation in human umbilical vein endothelial cells. Pathol Res Pract 2018; 214:521-526. [PMID: 29573867 DOI: 10.1016/j.prp.2018.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/25/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a well-known humoral protein that induces growth of neurons. Recent studies have suggested that BDNF could act as an angiogenesis inducer similar to vascular endothelial growth factor (VEGF). Angiogenin is a strong mediator of angiogenesis. It has particular characteristics both as a secreted protein and a transcription factor. After being incorporated into the cytoplasm, angiogenin is immediately transferred to the nucleus and then mediates the angiogenic effects of angiogenesis inducers, including VEGF. The aim of this study is to determine the association between BDNF and angiogenin. At first, we determined the secretion of angiogenin from human umbilical vein endothelial cells (HUVEC) induced by BDNF with enzyme-linked immunosorbent assay. Next, we determined BDNF-induced nuclear translocation of angiogenin by immunofluorescent staining. In addition, we examined the mRNA expression of angiogenin in HUVEC before and after BDNF stimulation by quantitative reverse transcriptase-polymerase chain reaction. As a result, we noted that BDNF induced angiogenin secretion and nuclear translocation without an increase in the mRNA expression in HUVEC. Furthermore, we demonstrated that BDNF-induced HUVEC proliferation was significantly suppressed when neomycin, a specific inhibitor of nuclear translocation of angiogenin, was administered. These findings indicate that nuclear translocation of angiogenin is critically involved in BDNF-induced proliferation of HUVEC. In conclusion, angiogenin contributes to angiogenesis induced by BDNF.
Collapse
Affiliation(s)
- Ayako Mori
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Nishioka
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Mai Yamada
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuka Nishibata
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sakiko Masuda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoyuki Honma
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Akihiro Ishizu
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
29
|
Goutam J, Sharma G, Tiwari VK, Mishra A, Kharwar RN, Ramaraj V, Koch B. Isolation and Characterization of "Terrein" an Antimicrobial and Antitumor Compound from Endophytic Fungus Aspergillus terreus (JAS-2) Associated from Achyranthus aspera Varanasi, India. Front Microbiol 2017; 8:1334. [PMID: 28790982 PMCID: PMC5526331 DOI: 10.3389/fmicb.2017.01334] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/30/2017] [Indexed: 12/25/2022] Open
Abstract
The present study aimed at characterizing biological potentials of endophyte Aspergillus terreus JAS-2 isolated from Achyranthus aspera. Crude extracted from endophytic fungus JAS-2 was purified and chemically characterized by chromatographic and spectroscopic studies respectively. Spectral assignment of NMR (nuclear magnetic resonance) data, 1H proton and 13C carbon analysis along with FTIR data elucidated the structure of compound as 4,5-Dihydroxy-3-(1-propenyl)-2-cyclopenten-1-one. After purification and identification a set of experiment was conducted to explore efficacy of compound. Results revealed that on accessing the antifungal activity of compound, growth diameter of tested phytopathogenic fungi was reduced to 50% at higher concentration taken (10 μgμl−1). Compound exhibited in-vitro bacterial cell inhibition at 20 μgml−1 concentration along with moderate antioxidant behavior. Evaluation of anticancer activity against human lung cancer cell line (A-549) exhibited its IC50 value to be 121.9 ± 4.821 μgml−1. Further cell cycle phase distribution were analyzed on the basis of DNA content and evaluated by FACS (Fluorescence Activated Cell Sorting) and it was revealed that at 150 μgml−1 of compound maximum cells were found in sub G1 phase which represents apoptotic dead cells. Terrein (4, 5-Dihydroxy-3-(1-propenyl)-2-cyclopenten-1-one) a multi-potential was isolated from endophytic fungus JAS-2, from well recognized medicinal herb A. aspera. To best of our knowledge, this is the first report of “Terrein” from endophytic derived fungus. This compound had also exhibited anticancer and antifungal activity against human lung cancer cell line A-549 and Bipolaris sorokiniana respectively which is causal organism of many plants disease. Hence endophytes are serving as alternative sources of drug molecules.
Collapse
Affiliation(s)
- Jyoti Goutam
- Department of Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Gunjan Sharma
- Department of Zoology, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Amrita Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Ravindra N Kharwar
- Department of Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | | | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu UniversityVaranasi, India
| |
Collapse
|
30
|
Yin Y, Cai M, Zhou X, Li Z, Zhang Y. Polyketides in Aspergillus terreus: biosynthesis pathway discovery and application. Appl Microbiol Biotechnol 2016; 100:7787-98. [PMID: 27455860 DOI: 10.1007/s00253-016-7733-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/03/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023]
Abstract
The knowledge of biosynthesis gene clusters, production improving methods, and bioactivity mechanisms is very important for the development of filamentous fungi metabolites. Metabolic engineering and heterologous expression methods can be applied to improve desired metabolite production, when their biosynthesis pathways have been revealed. And, stable supplement is a necessary basis of bioactivity mechanism discovery and following clinical trial. Aspergillus terreus is an outstanding producer of many bioactive agents, and a large part of them are polyketides. In this review, we took polyketides from A. terreus as examples, focusing on 13 polyketide synthase (PKS) genes in A. terreus NIH 2624 genome. The biosynthesis pathways of nine PKS genes have been reported, and their downstream metabolites are lovastatin, terreic acid, terrein, geodin, terretonin, citreoviridin, and asperfuranone, respectively. Among them, lovastatin is a well-known hypolipidemic agent. Terreic acid, terrein, citreoviridin, and asperfuranone show good bioactivities, especially anticancer activities. On the other hand, geodin and terretonin are mycotoxins. So, biosynthesis gene cluster information is important for the production or elimination of them. We also predicted three possible gene clusters that contain four PKS genes by homologous gene alignment with other Aspergillus strains. We think that this is an effective way to mine secondary metabolic gene clusters.
Collapse
Affiliation(s)
- Ying Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
31
|
Zhao C, Guo L, Wang L, Zhu G, Zhu W. Improving the yield of (+)-terrein from the salt-tolerant Aspergillus terreus PT06-2. World J Microbiol Biotechnol 2016; 32:77. [DOI: 10.1007/s11274-016-2029-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/10/2016] [Indexed: 01/10/2023]
|
32
|
Yin Y, Ding Y, Feng G, Li J, Xiao L, Karuppiah V, Sun W, Zhang F, Li Z. Modification of artificial sea water for the mass production of (+)-terrein by Aspergillus terreus strain PF26 derived from marine sponge Phakellia fusca. Lett Appl Microbiol 2015; 61:580-7. [PMID: 26394071 DOI: 10.1111/lam.12496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED (+)-Terrein shows multiple bioactivities, however, its mass production is a big challenge. Aspergillus terreus strain PF26 derived from South China Sea sponge Phakellia fusca has been cultured to produce (+)-terrein successfully, but artificial sea water (ASW) of high salinity used in the fermentation medium may cause the corrosion risk of metal bioreactor, which limits the fermentation on a large scale. In this study, we modified the components of ASW by removing NaCl and CaCl2 from the original formula, which reduced about 80% salinity of ASW. As a result, 7·56 g l(-1) (+)-terrein production was achieved in shake flask, which was 78·72% higher than using the original ASW, and the cultivation time was decreased from 24 to 15 days. Then, the modified ASW was used for the fermentation of A. terreus strain PF26 in a 500 l stirred bioreactor, consequently 2·5 g l(-1) of (+)-terrein production was achieved. SIGNIFICANCE AND IMPACT OF THE STUDY The fermentation of marine micro-organisms always needs to use sea water or artificial sea water (ASW), which limits the fermentation on a large scale, as the high-salinity medium may cause the corrosion risk of bioreactor. In this study, the ASW formula is simplified to reduce the sea water salinity and improve the yield of (+)-terrein, finally, the modified ASW was successfully used for the mass production of (+)-terrein by A. terreus strain PF26 in a 500 l bioreactor.
Collapse
Affiliation(s)
- Y Yin
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Y Ding
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - G Feng
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - J Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - L Xiao
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - V Karuppiah
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - W Sun
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - F Zhang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Z Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Marine natural products as breast cancer resistance protein inhibitors. Mar Drugs 2015; 13:2010-29. [PMID: 25854646 PMCID: PMC4413197 DOI: 10.3390/md13042010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 02/08/2023] Open
Abstract
Breast cancer resistance protein (BCRP) is a protein belonging to the ATP-binding cassette (ABC) transporter superfamily that has clinical relevance due to its multi-drug resistance properties in cancer. BCRP can be associated with clinical cancer drug resistance, in particular acute myelogenous or acute lymphocytic leukemias. The overexpression of BCRP contributes to the resistance of several chemotherapeutic drugs, such as topotecan, methotrexate, mitoxantrone, doxorubicin and daunorubicin. The Food and Drugs Administration has already recognized that BCRP is clinically one of the most important drug transporters, mainly because it leads to a reduction of clinical efficacy of various anticancer drugs through its ATP-dependent drug efflux pump function as well as its apparent participation in drug resistance. This review article aims to summarize the different research findings on marine natural products with BCRP inhibiting activity. In this sense, the potential modulation of physiological targets of BCRP by natural or synthetic compounds offers a great possibility for the discovery of new drugs and valuable research tools to recognize the function of the complex ABC-transporters.
Collapse
|
34
|
Zhang F, Mijiti M, Ding W, Song J, Yin Y, Sun W, Li Z. (+)‑Terrein inhibits human hepatoma Bel‑7402 proliferation through cell cycle arrest. Oncol Rep 2015; 33:1191-200. [PMID: 25592371 DOI: 10.3892/or.2015.3719] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/11/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatoma is a common malignant tumor. Thus, the development of a high‑efficacy therapeutic drug for hepatoma is required. In this study, (+)‑terrein isolated from the marine sponge‑derived Aspergillus terreus PF‑26 against cell growth, apoptosis and cell cycle were assessed by MTT and flow cytometry. mRNA array containing 73 cell cycle‑related genes and three cell morphology‑related genes was generated and its performance evaluated. The cell cycle pathway map was created using the pathview package. The results showed that (+)‑terrein inhibited the growth of Bel‑7402 cells with alterations in cell morphology and a reduced transcript expression of cell morphology genes (fibronectin, N‑cadherin, and vimentin). In addition, flow cytometric analysis revealed that (+)‑terrein arrested the Bel‑7402 cell cycle without inducing apoptosis. Based on multiple mRNA analysis, the downregulated expression of the CCND2, CCNE2, CDKN1C, CDKN2B, ANAPC, PKMYT1, CHEK2 and PCNA genes was observed in 10 µM (+)‑terrein‑treated Bel‑7402 cells (>2‑fold and P≤0.05), compared with the controls. Thus, the antiprolife-rative mechanism of (+)‑terrein against Bel‑7402 cells may be due to the cell cycle arrest by blocking cell cycle gene expression and changing cell morphology.
Collapse
Affiliation(s)
- Fengli Zhang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Meiheriguli Mijiti
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Wei Ding
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jiale Song
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ying Yin
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Wei Sun
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
35
|
Chen YF, Wang SY, Shen H, Yao XF, Zhang FL, Lai D. The marine-derived fungal metabolite, terrein, inhibits cell proliferation and induces cell cycle arrest in human ovarian cancer cells. Int J Mol Med 2014; 34:1591-8. [PMID: 25318762 DOI: 10.3892/ijmm.2014.1964] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/29/2014] [Indexed: 11/05/2022] Open
Abstract
The difficulties faced in the effective treatment of ovarian cancer are multifactorial, but are mainly associated with relapse and drug resistance. Cancer stem-like cells have been reported to be an important contributor to these hindering factors. In this study, we aimed to investigate the anticancer activities of a bioactive fungal metabolite, namely terrein, against the human epithelial ovarian cancer cell line, SKOV3, primary human ovarian cancer cells and ovarian cancer stem-like cells. Terrein was separated and purified from the fermentation metabolites of the marine sponge-derived fungus, Aspergillus terreus strain PF26. Its anticancer activities against ovarian cancer cells were investigated by cell proliferation assay, cell migration assay, cell apoptosis and cell cycle assays. The ovarian cancer stem-like cells were enriched and cultured in a serum-free in vitro suspension system. Terrein inhibited the proliferation of the ovarian cancer cells by inducing G2/M phase cell cycle arrest. The underlying mechanisms involved the suppression of the expression of LIN28, an important marker gene of stemness in ovarian cancer stem cells. Of note, our study also demonstrated the ability of terrein to inhibit the proliferation of ovarian cancer stem-like cells, in which the expression of LIN28 was also downregulated. Our findings reveal that terrein (produced by fermention) may prove to be a promising drug candidate for the treatment of ovarian cancer by inhibiting the proliferation of cancer stem-like cells.
Collapse
Affiliation(s)
- Yi-Fei Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Shu-Ying Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Hong Shen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Xiao-Fen Yao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Feng-Li Zhang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| |
Collapse
|
36
|
Synthetic (+)-terrein suppresses interleukin-6/soluble interleukin-6 receptor induced-secretion of vascular endothelial growth factor in human gingival fibroblasts. Bioorg Med Chem 2014; 22:5338-44. [PMID: 25151086 DOI: 10.1016/j.bmc.2014.07.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 07/26/2014] [Accepted: 07/29/2014] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-6 is a proinflammatory cytokine that performs a wide variety of biological functions, including important roles in the progression of chronic inflammatory diseases such as periodontal disease. (+)-Terrein, a secondary bioactive fungal metabolite isolated from Aspergillus terreus, has various biological activities; however, its anti-inflammatory effects are still unknown. The purpose of this study was to examine the effect of synthetic (+)-terrein on IL-6 signaling and related protein production in human gingival fibroblasts. To our knowledge, this study is the first to report that synthetic (+)-terrein is not cytotoxic at concentrations less than 20 μM and suppresses IL-6/soluble IL-6 receptor (sIL-6R)-induced phosphorylation of signal transducer and activator of transcription-3, extracellular signal-regulated kinase 1/2, and c-jun N-terminal kinase 1/2-signaling proteins that are downstream of IL-6 signaling. In addition, synthetic (+)-terrein suppresses IL-6/sIL-6R-induced vascular endothelial growth factor (VEGF) secretion in a concentration-dependent manner (p<0.01). These data suggest that synthetic (+)-terrein has potential anti-IL-6 signaling activity and suppresses VEGF-associated inflammatory disease progression.
Collapse
|
37
|
Ben-Ami R. Angiogenesis at the mold-host interface: a potential key to understanding and treating invasive aspergillosis. Future Microbiol 2014; 8:1453-62. [PMID: 24199803 DOI: 10.2217/fmb.13.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Invasive aspergillosis (IA) in neutropenic patients is characterized by angioinvasion, intravascular thrombosis and tissue infarction, features that lead to sequestration of infected tissue and impaired fungal clearance. Recent research has shown that host angiogenesis, the homeostatic compensatory response to tissue hypoxia, is downregulated by Aspergillus fumigatus secondary metabolites. A. fumigatus metabolites inhibit multiple key angiogenic mediators, notably basic FGF, VEGF and their respective receptors. Moreover, repletion of basic FGF and VEGF enhances angiogenesis at the site of infection, induces trafficking of polymorphonuclear leukocytes into fungal-infected tissue and enhances antifungal drug activity. This review summarizes the emerging roles of vasculopathy and angiogenesis in the pathogenesis of IA, emphasizing the importance of the underlying mode of immunosuppression. Modulation of angiogenesis is a potential target for novel therapeutic strategies against IA.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Medical Center & the Sackler School of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
38
|
Zaehle C, Gressler M, Shelest E, Geib E, Hertweck C, Brock M. Terrein biosynthesis in Aspergillus terreus and its impact on phytotoxicity. ACTA ACUST UNITED AC 2014; 21:719-31. [PMID: 24816227 DOI: 10.1016/j.chembiol.2014.03.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 12/18/2022]
Abstract
Terrein is a fungal metabolite with ecological, antimicrobial, antiproliferative, and antioxidative activities. Although it is produced by Aspergillus terreus as one of its major secondary metabolites, not much is known about its biosynthetic pathway. Here, we describe an unexpected discovery of the terrein biosynthesis gene locus made while we were looking for a PKS gene involved in production of conidia coloration pigments common for Aspergilli. The gene, ATEG_00145, here named terA, is essential for terrein biosynthesis and heterologous production of TerA in Aspergillus niger revealed an unusual plasticity in the products formed, yielding a mixture of 4-hydroxy-6-methylpyranone, orsellinic acid, and 6,7-dihydroxymellein. Biochemical and molecular genetic analyses indicate a low extension cycle specificity of TerA. Furthermore, 6-hydroxymellein was identified as a key intermediate in terrein biosynthesis. We find that terrein production is highly induced on plant-derived media, that terrein has phytotoxic activity on plant growth, and induces lesions on fruit surfaces.
Collapse
Affiliation(s)
- Christoph Zaehle
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Markus Gressler
- Research Group Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Ekaterina Shelest
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07743 Jena, Germany
| | - Elena Geib
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany.
| | - Matthias Brock
- Research Group Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Institute for Microbiology, Friedrich-Schiller University, 07743 Jena, Germany.
| |
Collapse
|
39
|
Xiao L, Yin Y, Sun W, Zhang F, Li Z. Enhanced production of (+)-terrein by Aspergillus terreus strain PF26 with epigenetic modifier suberoylanilide hydroxamic acid. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Porameesanaporn Y, Uthaisang-Tanechpongtamb W, Jarintanan F, Jongrungruangchok S, Thanomsub Wongsatayanon B. Terrein induces apoptosis in HeLa human cervical carcinoma cells through p53 and ERK regulation. Oncol Rep 2013; 29:1600-8. [PMID: 23417151 DOI: 10.3892/or.2013.2288] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/09/2013] [Indexed: 11/05/2022] Open
Abstract
Terrein, a fungal metabolite derived from Aspergillus terreus, has been shown to have a variety of biological activities in human cells including inhibition of melanogenesis, as well as anti-inflammatory, antioxidant and anticancer properties. In the present study, terrein was shown to have marked anticancer activity on HeLa human cervical carcinoma cells. Terrein exhibited inhibition of proliferation within the same ranges for other cancer cell types with an IC50 at 0.29 mM. The growth inhibition that induced cell death was via apoptosis mechanisms. Chromatin condensation was observed using the Hoechst 33342 stain, a DNA-specific dye. The increase of DNA fragmentation or the sub-G0 peak was also detected by flow cytometry. The signaling used by terrein to induce apoptosis was via the death-receptor and mitochondrial pathways; the cleavage of specific fluorogenic substrates by caspase-3, -8 and -9 activities are clearly demonstrated. The mitochondria were damaged as demonstrated by the decrease of the red/green ratio of the JC-1 staining and the increase of the Bax/Bcl-2 expression ratio. Further analysis of the upstream signaling by the quantitative real-time polymerase chain reaction showed that p53, p21 and ERK were upregulated which indicates the importance of their roles on terrein signaling. This study is the first to show that terrein has an effect on the anticancer properties in cervical cancer cells by inducing apoptosis through p53 and ERK regulation. Our data may help expand the function of the terrein compound and may also aid in the discovery of new anticancer agents.
Collapse
Affiliation(s)
- Yuwarat Porameesanaporn
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | | | | | | | | |
Collapse
|
41
|
Yin Y, Xu B, Li Z, Zhang B. Enhanced production of (+)-terrein in fed-batch cultivation of Aspergillus terreus strain PF26 with sodium citrate. World J Microbiol Biotechnol 2012; 29:441-6. [DOI: 10.1007/s11274-012-1196-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|
42
|
Yin Y, Gao Q, Zhang F, Li Z. Medium optimization for the high yield production of single (+)-terrein by Aspergillus terreus strain PF26 derived from marine sponge Phakellia fusca. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Xu B, Yin Y, Zhang F, Li Z, Wang L. Operating conditions optimization for (+)-terrein production in a stirred bioreactor by Aspergillus terreus strain PF-26 from marine sponge Phakellia fusca. Bioprocess Biosyst Eng 2012; 35:1651-5. [DOI: 10.1007/s00449-012-0735-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
|
44
|
Abstract
Section Terrei of Aspergillus was studied using a polyphasic approach including sequence analysis of parts of the β-tubulin and calmodulin genes and the ITS region, macro- and micromorphological analyses and examination of extrolite profiles to describe three new species in this section. Based on phylogenetic analysis of calmodulin and β-tubulin sequences seven lineages were observed among isolates that have previously been treated as A. terreus and its subspecies by Raper & Fennell (1965) and others. Aspergillus alabamensis, A. terreus var. floccosus, A. terreus var. africanus, A. terreus var. aureus, A. hortai and A. terreus NRRL 4017 all represent distinct lineages from the A. terreus clade. Among them, A. terreus var. floccosus, A. terreus NRRL 4017 and A. terreus var. aureus could also be distinguished from A. terreus by using ITS sequence data. New names are proposed for A. terreus var. floccosus, A. terreus var. africanus, A. terreus var. aureus, while Aspergillus hortai is recognised at species level. Aspergillus terreus NRRL 4017 is described as the new species A. pseudoterreus. Also included in section Terrei are some species formerly placed in sections Flavipedes and Versicolores. A. clade including the type isolate of A. niveus (CBS 115.27) constitutes a lineage closely related to A. carneus. Fennellia nivea, the hypothesized teleomorph is not related to this clade. Aspergillus allahabadii, A. niveus var. indicus, and two species originally placed in section Versicolores, A. ambiguus and A. microcysticus, also form well-defined lineages on all trees. Species in Aspergillus section Terrei are producers of a diverse array of secondary metabolites. However, many of the species in the section produce different combinations of the following metabolites: acetylaranotin, asperphenamate, aspochalamins, aspulvinones, asteltoxin, asterric acid, asterriquinones, aszonalenins, atrovenetins, butyrolactones, citreoisocoumarins, citreoviridins, citrinins, decaturins, fulvic acid, geodins, gregatins, mevinolins, serantrypinone, terreic acid (only the precursor 3,6-dihydroxytoluquinone found), terreins, terrequinones, terretonins and territrems. The cholesterol-lowering agent mevinolin was found in A. terreus and A. neoafricanus only. The hepatotoxic extrolite citrinin was found in eight species: A. alabamensis, A. allahabadii, A. carneus, A. floccosus, A. hortai, A. neoindicus, A. niveus and A. pseudoterreus. The neurotoxic extrolite citreoviridin was found in five species: A. neoafricanus, A. aureoterreus, A. pseudoterreus, A. terreus and A. neoniveus. Territrems, tremorgenic extrolites, were found in some strains of A. alabamensis and A. terreus.
Collapse
Affiliation(s)
- R.A. Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, the Netherlands
- Correspondence: Robert A. Samson,
| | - S.W. Peterson
- Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, USA
| | - J.C. Frisvad
- Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - J. Varga
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, the Netherlands
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
| |
Collapse
|
45
|
HOSOE T, MORIYAMA H, WAKANA D, ITABASHI T, KAWAI KI, YAGUCHI T, IIZUKA T, HOSHI K, FUKUYAMA Y, KOUDA Y, C. LAU F. Inhibitory effects of dihydroterrein and terrein isolated from Aspergillus novofumigatus on platelet aggregation. ACTA ACUST UNITED AC 2009. [DOI: 10.2520/myco.59.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|