1
|
Tanaka M, Sokabe M, Nakanishi K, Asai M. Effects of nestorone, a progesterone receptor agonist, on neonatal hypoxic-ischemic brain injury and reproductive functions in male and female rats. Neuropharmacology 2025; 271:110411. [PMID: 40081795 DOI: 10.1016/j.neuropharm.2025.110411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/23/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of neonatal death and neurological disorders. We recently demonstrated the neuroprotective effects of nestorone, a progesterone receptor agonist, in adult male rats subjected to focal cerebral ischemia; however, its effects on neonatal ischemic brain injury and on sexual differentiation and reproductive functions remain unclear. Therefore, the present study investigated the effects of nestorone on neonatal hypoxic-ischemic brain injury and reproductive functions in rats of both sexes. Seven-day-old male and female rat pups were subjected to occlusion of the right carotid artery and then exposed to 8 % oxygen (hypoxic-ischemia, HI). Brain lesion sizes and the numbers of activated astrocytes and microglia in male and female rats were significantly lower after administrating 10 μg/kg nestorone than vehicle 48 h after HI. Furthermore, the post-HI administration of nestorone for 7 days (10 μg/kg, once a day) significantly improved motor coordination and tactile responses 28 days after HI and cognitive performance 4 months after HI in male and female rats. The administration of nestorone did not affect the delivery rates or number of weaned pups in HI and sham-operated female rats or in intact female rats mated with HI or sham-operated males. These results suggest that nestorone exerts persistent neuroprotective effects against neonatal HI brain injury without serious adverse effects on reproductive functions in male and female rats. Therefore, nestorone is a promising potent and safe therapeutic agent in newborn infants with HIE of both sexes.
Collapse
Affiliation(s)
- Motoki Tanaka
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, 480-0392, Japan.
| | - Masahiro Sokabe
- Human Information Systems Laboratory, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa, 924-0838, Japan
| | - Keiko Nakanishi
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, 480-0392, Japan; Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, 480-0392, Japan
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, 480-0392, Japan
| |
Collapse
|
2
|
Yoshimura S, Dorok M, Mamrak U, Wehn A, Krestel E, Khalin I, Plesnila N. Reliable infarction of the middle cerebral artery territory in C57BL/6 mice using pterygopalatine artery ligation and filament optimization - The PURE-MCAo model. J Cereb Blood Flow Metab 2025; 45:871-884. [PMID: 39370987 PMCID: PMC11563556 DOI: 10.1177/0271678x241281841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 10/08/2024]
Abstract
Current techniques for inducing intraluminal filamentous middle cerebral artery occlusion (fMCAo) in mice produce highly variable results and often cause additional infarcts in the posterior cerebral artery (PCA) territory. The aim of the current study was to develop a novel procedure to overcome these shortcomings. Male C57BL/6 mice were subjected to 60 min of fMCAo with cerebral blood flow monitored by laser Doppler flowmetry. The influence of the length of the occlusion filament coating and the combination of common carotid artery (CCA) or pterygopalatine artery (PPA) ligation on lesion volume and functional outcome 24 h after reperfusion was evaluated. The use of appropriate filament and PPA ligation while maintaining CCA perfusion prevented the development of infarcts in the PCA area, resulted in pure MCA infarcts (68.3 ± 14.5 mm3) and reduced the variability of infarct volumes by more than half (from 26-38% to 14% standard deviation/mean). Using an improved fMCAo procedure, we were able to produce PCA area-unaffected reproducible (PURE) infarcts exclusively in the MCA territory. Thus PURE-MCAo reduced outcome variability by more than 50%. Our results may thus help to reduce the number of animals in preclinical stroke research and to increase the reproducibility of the fMCAo model.
Collapse
Affiliation(s)
- Sodai Yoshimura
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University Munich (LMU), Germany
- Department of Neurosurgery, Nihon University School of Medicine, Tokyo, Japan
| | - Maximilian Dorok
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University Munich (LMU), Germany
| | - Uta Mamrak
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University Munich (LMU), Germany
| | - Antonia Wehn
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University Munich (LMU), Germany
- Department of Neurosurgery, LMU University Hospital, Munich, Germany
| | - Eva Krestel
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University Munich (LMU), Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University Munich (LMU), Germany
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University Munich (LMU), Germany
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| |
Collapse
|
3
|
Wang J, Peng Y, Liu Y, Lian Z, Cai Z, Chen Y, He H, Yang M, Zhao J. Indole lactic acid derived from Akkermansia muciniphila activates the aryl hydrocarbon receptor to inhibit ferroptosis in ischemic stroke. Free Radic Biol Med 2025:S0891-5849(25)00230-8. [PMID: 40246252 DOI: 10.1016/j.freeradbiomed.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Ischemic stroke concurrent with gut microbiome dysbiosis induces intestinal damage, which exacerbates cerebral infarction. Probiotic or prebiotic interventions that reverse gut microbiome dysbiosis can promote recovery after ischemic stroke. Akkermansia muciniphila (AKK) safeguards intestinal health and is a promising probiotic; however, its role in ischemic stroke remains unclear. In this study, we found that live AKK, but not pasteurized AKK, mitigated ischemic-stroke-induced neurological injury, reduced cerebral infarction, and enhanced both blood-brain and intestinal barrier integrity. Moreover, the AKK supernatant reduced intestinal and cerebral injury, demonstrating efficacy comparable to that of live AKK. Metabolomic analysis revealed that the AKK supernatant was significantly enriched in indole lactic acid (ILA), a tryptophan metabolite. ILA levels were elevated in the serum and brains of pseudo-germ-free stroke rats administered AKK. Exogenous gavage with ILA mitigated ischemic-stroke-induced brain and intestinal damage. Mechanistically, ILA activated the aryl hydrocarbon receptor (AhR) and the nuclear transcription factor Nrf2, leading to the upregulation of SLC7A11 and GPX4 protein expression. This attenuated lipid peroxidation and intracellular iron accumulation triggered by ischemic stroke. Notably, intervention with the AhR inhibitor CH223191 abrogated the protective effects of ILA in ischemic stroke rats. These findings suggest that the therapeutic efficacy of AKK in ischemic stroke is at least partially attributable to ILA-mediated ferroptosis inhibition via AhR activation. AKK was selectively enriched by Puerariae lobatae Radix-resistant starch (PRS), promoting ILA generation more effectively than inulin and β-glucan. AKK and PRS synergistically alleviated ischemic-stroke-induced impairments, outperforming monomicrobial or prebiotic treatment alone. These findings reveal the unique mechanisms of AKK in ischemic stroke and provide a viable strategy for the clinical treatment of ischemic stroke through a novel synbiotic combination.
Collapse
Affiliation(s)
- Jiahan Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yongzheng Peng
- Department of Transfusion Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Yarui Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zhuoshi Lian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Ye Chen
- Department of Gastroenterology, Integrative Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China.
| | - Haoqing He
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Meilin Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Transfusion Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
4
|
Chen XF, Kroke B, Ni J, Munoz C, Appleman M, Jacobs B, Tran T, Nguyen KV, Qiu C, Stonestreet BS, Marshall J. Novel peptidomimetic compounds attenuate hypoxic-ischemic brain injury in neonatal rats. Exp Neurol 2025; 386:115151. [PMID: 39832663 DOI: 10.1016/j.expneurol.2025.115151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Hypoxic-ischemic (HI) brain injury is a common neurological problem in neonates. The postsynaptic density protein-95 (PSD-95) is an excitatory synaptic scaffolding protein that regulates synaptic function, and represents a potential therapeutic target to attenuate HI brain injury. Syn3 and d-Syn3 are novel high affinity cyclic peptides that bind the PDZ3 domain of PSD-95. We investigated the neuroprotective efficacy of Syn3 and d-Syn3 after exposure to HI in neonatal rodents. Postnatal (P) day-7 rats were treated with Syn3 and d-Syn3 at zero, 24, and 48-h after carotid artery ligation and 90-min of 8 % oxygen. Hemispheric volume atrophy and Iba-1 positive microglia were quantified by cresyl violet and immunohistochemical staining. Treatment with Syn3 and d-Syn3 reduced tissue volume loss by 47.0 % and 41.0 % in the male plus female, and by 42.1 % and 65.0 % in the male groups, respectively. Syn3 reduced tissue loss by 52.3 % in females. D-Syn3 reduced Iba-1 positive microglia/DAPI ratios in the pooled group, males, and females. Syn3 effects were observed in the pooled group and females. Changes in Iba-1 positive microglia/DAPI cellular ratios correlated directly with reduced hemispheric volume loss, suggesting that Syn3 and d-Syn3 provide neuroprotection in part by their effects on Iba-1 positive microglia. The pathogenic cis phosphorylated Thr231 in Tau (cis P-tau) is a marker of neuronal injury. Cis P-tau was induced in cortical cells of the placebo-treated pooled group, males and females after HI, and reduced by treatment with d-Syn3. Therefore, treatment with these peptidomimetic agents exert neuroprotective effects after exposure of neonatal subjects to HI related brain injury.
Collapse
Affiliation(s)
- Xiaodi F Chen
- Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA.
| | - Brynn Kroke
- Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jun Ni
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christian Munoz
- Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Mark Appleman
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Bryce Jacobs
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Tuong Tran
- Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA
| | - Kevin V Nguyen
- Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA
| | - Chenxi Qiu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA; Emerita, Department of Pediatrics, Women & Infants Hospital of RI, The Alpert Medical School of Brown University, Providence, RI, USA
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Kim D, Lee JW, Kim YT, Choe J, Kim G, Ha CM, Kim JG, Song KH, Yang S. Minimally Invasive Syringe-Injectable Hydrogel with Angiogenic Factors for Ischemic Stroke Treatment. Adv Healthc Mater 2025; 14:e2403119. [PMID: 39520382 PMCID: PMC11874675 DOI: 10.1002/adhm.202403119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/06/2024] [Indexed: 11/16/2024]
Abstract
Ischemic stroke (IS) accounts for most stroke incidents and causes intractable damage to brain tissue. This condition manifests as diverse aftereffects, such as motor impairment, emotional disturbances, and dementia. However, a fundamental approach to curing IS remains unclear. This study proposes a novel approach for treating IS by employing minimally invasive and injectable jammed gelatin-norbornene nanofibrous hydrogels (GNF) infused with growth factors (GFs). The developed GNF/GF hydrogels are administered to the motor cortex of a rat IS model to evaluate their therapeutic effects on IS-induced motor dysfunction. GNFs mimic a natural fibrous extracellular matrix architecture and can be precisely injected into a targeted brain area. The syringe-injectable jammed nanofibrous hydrogel system increased angiogenesis, inflammation, and sensorimotor function in the IS-affected brain. For clinical applications, the biocompatible GNF hydrogel has the potential to efficiently load disease-specific drugs, enabling targeted therapy for treating a wide range of neurological diseases.
Collapse
Affiliation(s)
- Donggue Kim
- Department of Nano‐BioengineeringIncheon National UniversityIncheon22012Republic of Korea
| | - Ji Woo Lee
- Department of Nano‐BioengineeringIncheon National UniversityIncheon22012Republic of Korea
| | - Yang Tae Kim
- Division of Life SciencesCollege of Life Sciences and BioengineeringIncheon National UniversityIncheon22012Republic of Korea
| | - Junhyeok Choe
- Department of Nano‐BioengineeringIncheon National UniversityIncheon22012Republic of Korea
| | - Gaeun Kim
- Department of Nano‐BioengineeringIncheon National UniversityIncheon22012Republic of Korea
| | - Chang Man Ha
- Research Division and Brain Research Core Facilities of Korea Brain Research InstituteDaegu41068Republic of Korea
| | - Jae Geun Kim
- Division of Life SciencesCollege of Life Sciences and BioengineeringIncheon National UniversityIncheon22012Republic of Korea
- Research Center of Brain‐Machine InterfaceIncheon National UniversityIncheon22012Republic of Korea
| | - Kwang Hoon Song
- Department of Nano‐BioengineeringIncheon National UniversityIncheon22012Republic of Korea
- Research Center of Brain‐Machine InterfaceIncheon National UniversityIncheon22012Republic of Korea
| | - Sunggu Yang
- Department of Nano‐BioengineeringIncheon National UniversityIncheon22012Republic of Korea
- Research Center of Brain‐Machine InterfaceIncheon National UniversityIncheon22012Republic of Korea
- gBrain Inc.Incheon21984Republic of Korea
| |
Collapse
|
6
|
Stadler J, Garmo LG, Doyle D, Cheng CI, Richardson G, Waheed Z, Tofan T, Srinageshwar B, Sharma A, Petersen RB, Dunbar GL, Rossignol J. Curcumin encapsulated in PAMAM dendrimers for the therapeutic treatment of ischemic stroke in rats. Front Cell Dev Biol 2025; 12:1467417. [PMID: 39834388 PMCID: PMC11743639 DOI: 10.3389/fcell.2024.1467417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Ischemic stroke is a devastating neurovascular condition that occurs when cerebral tissue fails to receive an adequate supply of oxygen. Despite being a leading cause of death and disability worldwide, therapeutic interventions are currently limited. Polyamidoamine (PAMAM) dendrimers are nanomolecules commonly used in biomedical applications due to their ability to encapsulate small-molecules and improve their pharmacokinetic properties. Curcumin is known to have anti-inflammatory and antioxidant effects yet suffers from poor solubility and bioavailability. The purpose of this study is to investigate the efficacy of curcumin encapsulated in PAMAM dendrimers as a potential therapeutic treatment for ischemic stroke by studying post-stroke lesion size, astrocyte reactivity, and functional recovery in a rat model of cerebral ischemia. Methods Forty-eight male and female Sprague-Dawley rats (280-380 g) underwent either a 90-min middle cerebral artery occlusion (MCAo) or sham surgery before receiving one of four treatments: (1) Hanks' balanced salt solution (HBSS) control, (2) empty dendrimer control, (3) curcumin control, or (4) curcumin encapsulated in PAMAM dendrimer. Neurobehavioral outcomes were evaluated at 1-, 3-, 5-, and 7-day post-surgery, after which animals were euthanized on day 8 to assess infarct volume and GFAP immunoreactivity. Results Animals that received formulations containing dendrimers (curcumin encapsulated in dendrimers or empty dendrimers) demonstrated significantly lower levels of GFAP immunoreactivity and improved functional recovery, including weight and neurobehavioral scores, compared to the formulations that did not contain dendrimers (curcumin and HBSS control). Additionally, the dendrimer-curcumin treatment group exhibited a significantly improved paw laterality index over the course of the study compared with the other three treatment groups. Conclusion Although the post-stroke administration of curcumin encapsulated in PAMAM dendrimers modulates the astrocytic response and promotes functional recovery following ischemic stroke in rats, its therapeutic benefits may be driven by PAMAM dendrimers as the empty dendrimer treatment group also showed significant improvements post-stroke. Further investigation regarding PAMAM dendrimers in treating neuroinflammatory conditions remains warranted.
Collapse
Affiliation(s)
- Justin Stadler
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Lucas G. Garmo
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - David Doyle
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Chin-I. Cheng
- Department of Statistics, Actuarial and Data Science, Central Michigan University, Mt. Pleasant, MI, United States
| | - Garrett Richardson
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Zain Waheed
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Tim Tofan
- School of Business, Wayne State University, Detroit, MI, United States
| | - Bhairavi Srinageshwar
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Ajit Sharma
- Department of Chemistry & Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
| | - Robert B. Petersen
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Gary L. Dunbar
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
| | - Julien Rossignol
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
7
|
Yanev P, Martin-Jimenez C, Vesga-Jimenez DJ, Zvinys L, Weinrich N, Cree MA, Preuss TM, Zhang X, Yepes M. Plasminogen activator inhibitor-1 mediates cerebral ischemia-induced astrocytic reactivity. J Cereb Blood Flow Metab 2025; 45:102-114. [PMID: 39113414 PMCID: PMC11572231 DOI: 10.1177/0271678x241270445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 11/20/2024]
Abstract
Although ischemia increases the abundance of plasminogen activator inhibitor-1 (PAI-1), its source and role in the ischemic brain remain unclear. We detected PAI-1-immunoreactive cells with morphological features of reactive astrocytes in the peri-ischemic cortex of mice after an experimentally-induced ischemic lesion, and of a chimpanzee that suffered a naturally-occurring stroke. We found that although the abundance of PAI-1 increases 24 hours after the onset of the ischemic injury in a non-reperfusion murine model of ischemic stroke, at that time-point there is no difference in astrocytic reactivity and the volume of the ischemic lesion between wild-type (Wt) animals and in mice either genetically deficient (PAI-1-/-) or overexpressing PAI-1 (PAI-1Tg). In contrast, 72 hours later astrocytic reactivity and the volume of the ischemic lesion were decreased in PAI-1-/- mice and increased in PAI-1Tg animals. Our immunoblottings and fractal analysis studies show that the abundance of astrocytic PAI-1 rises during the recovery phase from a hypoxic injury, which in turn increases the abundance of glial fibrillary acidic protein (GFAP) and triggers morphological features of reactive astrocytes. These studies indicate that cerebral ischemia-induced release of astrocytic PAI-1 triggers astrocytic reactivity associated with enlargement of the necrotic core.
Collapse
Affiliation(s)
- Pavel Yanev
- Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA
| | - Cynthia Martin-Jimenez
- Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA
| | | | - Laura Zvinys
- Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA
| | - Nicholas Weinrich
- Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA
| | - Mary Ann Cree
- Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA
| | - Xiaodong Zhang
- Imaging Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA
- Department of Neurology & Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
8
|
Przykaza Ł, Domin H, Śmiałowska M, Stanaszek L, Boguszewski PM, Kozniewska E. Neuro- and vasoprotective potential of neuropeptide Y Y2 receptor agonist, NPY13-36, against transient focal cerebral ischemia in spontaneously hypertensive rats. Neuroscience 2024; 562:10-23. [PMID: 39433082 DOI: 10.1016/j.neuroscience.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Numerous in vitro and in vivo experimental studies indicate that neuropeptide Y Y2 receptors (Y2R) are potential targets for neuroprotective therapy, including neuroprotection against ischemic stroke in healthy rats. Since stroke in humans is typically associated with comorbidities and long-term hypertension is the most common comorbidity leading to stroke, this study aimed to assess the neuroprotective potential of the Y2R agonist NPY13-36 in the rats with essential hypertension (SHR) subjected to 90 min middle cerebral artery suture occlusion with subsequent reperfusion (MCAOR). The cerebrocortical microflow in the ischemic focus and penumbra was continuously monitored with a Laser-Doppler flowmeter. NPY13-36 (10 μg/6 μl physiological saline solution) was administered intracerebroventricularly (i.c.v.) during ischemia or early reperfusion. The infarct area (triphenyltetrazolium chloride staining), behavioral tests (gait, mobility, and sensorimotor functions), and the response of the cerebrocortical microcirculation in the penumbra to hypercapnia and to the inhibition of the synthesis of nitric oxide were studied. Our results demonstrate that administration of NPY13-36 reduces the size of the infarct, improves motor functions, and restores microcirculatory response to the blockade of nitric oxide synthase when administered during reperfusion. The novelty of this study is a finding of the vasoprotective effect of NPY13-36 in brain ischemia/reperfusion. Moreover, this study provides evidence of the beneficial effects of NPY13-36 in animals with essential hypertension and indicates that Y2R ligands may be promising candidates for treating the ischemic brain in the case of this disease.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, A. Pawiński Str. 5, 02‑106 Warsaw, Poland.
| | - Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| | - Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, A. Pawiński Str. 5, 02‑106 Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, L. Pasteur Str. 5, 02-093 Warsaw, Poland
| | - Ewa Kozniewska
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, A. Pawiński Str. 5, 02‑106 Warsaw, Poland.
| |
Collapse
|
9
|
Du YT, Pan ZG, Chen BC, Sun FY. Carotid artery transplantation of brain endothelial cells enhances neuroprotection and neurorepair in ischaemic stroke rats. Acta Pharmacol Sin 2024; 45:2487-2496. [PMID: 38992118 PMCID: PMC11579341 DOI: 10.1038/s41401-024-01339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024]
Abstract
Brain microvascular endothelial cells (BMECs), an important component of the neurovascular unit, can promote angiogenesis and synaptic formation in ischaemic mice after brain parenchyma transplantation. Since the therapeutic efficacy of cell-based therapies depends on the extent of transplanted cell residence in the target tissue and cell migration ability, the delivery route has become a hot research topic. In this study, we investigated the effects of carotid artery transplantation of BMECs on neuronal injury, neurorepair, and neurological dysfunction in rats after cerebral ischaemic attack. Purified passage 1 endothelial cells (P1-BMECs) were prepared from mouse brain tissue. Adult rats were subjected to transient middle cerebral artery occlusion (MCAO) for 30 min. Then, the rats were treated with 5 × 105 P1-BMECs through carotid artery infusion or tail vein injection. We observed that carotid artery transplantation of BMECs produced more potent neuroprotective effects than caudal injection in MCAO rats, including reducing infarct size and alleviating neurological deficits in behavioural tests. Carotid artery-transplanted BMECs displayed a wider distribution in the ischaemic rat brain. Immunostaining for endothelial progenitor cells and the mature endothelial cell markers CD34 and RECA-1 showed that carotid artery transplantation of BMECs significantly increased angiogenesis. Carotid artery transplantation of BMECs significantly increased the number of surviving neurons, decreased the cerebral infarction volume, and alleviated neurological deficits. In addition, we found that carotid artery transplantation of BMECs significantly enhanced ischaemia-induced hippocampal neurogenesis, as measured by doublecortin (DCX) and Ki67 double staining within 2 weeks after ischaemic injury. We conclude that carotid artery transplantation of BMECs can promote cerebral angiogenesis, neurogenesis, and neurological function recovery in adult rats after ischaemic stroke. Our results suggest that carotid injection of BMECs may be a promising new approach for treating acute brain injuries.
Collapse
Affiliation(s)
- Yi-Ting Du
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Guang Pan
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Hua-Shan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bin-Chi Chen
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Feng-Yan Sun
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Schreihofer DA, Dalwadi D, Kim S, Metzger D, Oppong-Gyebi A, Das-Earl P, Schetz JA. Treatment of Stroke at a Delayed Timepoint with a Repurposed Drug Targeting Sigma 1 Receptors. Transl Stroke Res 2024; 15:1035-1049. [PMID: 37704905 DOI: 10.1007/s12975-023-01193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 08/04/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Sigma 1 receptors are intracellular chaperone proteins that have been explored as a subacute treatment to enhance post-stroke recovery. We recently identified the antitussive oxeladin as a selective sigma 1 receptor agonist with the ability to stimulate the release of brain-derived neurotrophic factor from neurons in vitro. In this study, we hypothesized that oral oxeladin citrate would stimulate BDNF secretion and improve stroke outcomes when administered to male rats starting 48 h after transient middle cerebral artery occlusion. Oxeladin did not alter blood clotting and crossed the blood brain barrier within 30 min of oral administration. Rats underwent 90 min of transient middle cerebral artery occlusion. Forty-eight hours later rats began receiving daily oxeladin (135 mg/kg) for 11 days. Oxeladin significantly improved neurological function on days 3, 7, and 14 following MCAO. Infarct size was not altered by a single dose, but the final extent of infarct after 14 days was decreased. However, there was no significant reduction in astrogliosis or microgliosis compared to vehicle-treated control rats. In agreement with in vitro studies, oxeladin increased the amount of mature BDNF in the cerebral cortex 2, 6, and 24 h after single oral dose. However, the increase in BDNF did not result in increases in cellular proliferation in the subventricular zone or dentate gyrus when compared to vehicle-treated controls. These results suggest that oxeladin may reduce the extent of infarct expansion in the subacute phase of stroke, although this action does not appear to involve a reduction in inflammation or increased cell proliferation.
Collapse
Affiliation(s)
- Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Helath Science Center, Fort Worth, Texas, 76107, USA.
| | | | - Seongcheol Kim
- Department of Cellular and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Daniel Metzger
- Department of Pharmacology and Neuroscience, University of North Texas Helath Science Center, Fort Worth, Texas, 76107, USA
| | - Anthony Oppong-Gyebi
- Department of Pharmacology and Neuroscience, University of North Texas Helath Science Center, Fort Worth, Texas, 76107, USA
- Cognizant Technology Solutions, 300 Frank W. Burr Blvd, Teaneck, NJ, 07666, USA
| | - Paromita Das-Earl
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA
| | - John A Schetz
- Department of Pharmacology and Neuroscience, University of North Texas Helath Science Center, Fort Worth, Texas, 76107, USA
| |
Collapse
|
11
|
Yang S, Yang Y, Zhou Y. Non-Invasive Monitoring of Cerebral Edema Using Ultrasonic Echo Signal Features and Machine Learning. Brain Sci 2024; 14:1175. [PMID: 39766374 PMCID: PMC11674144 DOI: 10.3390/brainsci14121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES Cerebral edema, a prevalent consequence of brain injury, is associated with significant mortality and disability. Timely diagnosis and monitoring are crucial for patient prognosis. There is a pressing clinical demand for a real-time, non-invasive cerebral edema monitoring method. Ultrasound methods are prime candidates for such investigations due to their non-invasive nature. METHODS Acute cerebral edema was introduced in rats by permanently occluding the left middle cerebral artery (MCA). Ultrasonic echo signals were collected at nine time points over a 24 h period to extract features from both the time and frequency domains. Concurrently, histomorphological changes were examined. We utilized support vector machine (SVM), logistic regression (LogR), decision tree (DT), and random forest (RF) algorithms for classifying cerebral edema types, and SVM, RF, linear regression (LR), and feedforward neural network (FNNs) for predicting the cerebral infarction volume ratio. RESULTS The integration of 16 ultrasonic features associated with cerebral edema development with the RF model enabled effective classification of cerebral edema types, with a high accuracy rate of 97.9%. Additionally, it provided an accurate prediction of the cerebral infarction volume ratio, with an R2 value of 0.8814. CONCLUSIONS Our proposed strategy classifies cerebral edema and predicts the cerebral infarction volume ratio with satisfactory precision. The fusion of ultrasound echo features with machine learning presents a promising non-invasive approach for the monitoring of cerebral edema.
Collapse
Affiliation(s)
- Shuang Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China; (S.Y.); (Y.Y.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yuanbo Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China; (S.Y.); (Y.Y.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yufeng Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China; (S.Y.); (Y.Y.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- National Medical Products Administration (NMPA), Key Laboratory for Quality Evaluation, Ultrasonic Surgical Equipment, 507 Gaoxin Ave., Donghu New Technology Development Zone, Wuhan 430075, China
| |
Collapse
|
12
|
Gao J, Liu R, Tang J, Pan M, Zhuang Y, Zhang Y, Liao H, Li Z, Shen N, Ma W, Chen J, Wan Q. Suppressing nuclear translocation of microglial PKM2 confers neuroprotection via downregulation of neuroinflammation after mouse cerebral ischemia-reperfusion injury. Int Immunopharmacol 2024; 141:112880. [PMID: 39153304 DOI: 10.1016/j.intimp.2024.112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key metabolic enzyme. Yet, its role in cerebral ischemia injury remains unclear. In this study we demonstrated that PKM2 expression was increased in the microglia after mouse cerebral ischemia-reperfusion (I/R) injury. We found that microglial polarization-mediated pro-inflammatory effect was mediated by PKM2 after cerebral I/R. Mechanistically, our results revealed that nuclear PKM2 mediated ischemia-induced microglial polarization through association with acetyl-H3K9. Hif-1α mediated the effect of nuclear PKM2/histone H3 on microglial polarization. PKM2-dependent Histone H3/Hif-1α modifications contributed the expression of CCL2 and induced up-regulation of microglial polarization in peri-infarct, resulting in neuroinflammation. Inhibiting nuclear translocation of microglial PKM2 reduced ischemia-induced pro-inflammation and promoted neuronal survival. Together, this study identifies nucleus PKM2 as a crucial mediator for regulating ischemia-induced neuroinflammation, suggesting PKM2 as a potential therapeutic target in ischemic stroke.
Collapse
Affiliation(s)
- Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Rui Liu
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Junchun Tang
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Mengxian Pan
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Yang Zhuang
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Ya Zhang
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Huabao Liao
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Zhuo Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Na Shen
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Wenlong Ma
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Juan Chen
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, 26 Shengli Street, Wuhan 430013, China.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China.
| |
Collapse
|
13
|
Vahidi S, Bigdeli MR, Shahsavarani H, Ahmadloo S, Roghani M. Neuroprotective Therapeutic Potential of microRNA-149-5p against Murine Ischemic Stroke. Mol Neurobiol 2024; 61:8886-8903. [PMID: 38573413 DOI: 10.1007/s12035-024-04159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Ischemic stroke resulting from blockade of brain vessels lacks effective treatments, prompting exploration for potential therapies. Among promising candidates, microRNA-149 (miR-149) has been investigated for its role in alleviating oxidative stress, inflammation, and neurodegeneration associated with ischemic conditions. To evaluate its therapeutic effect, male Wistar rats were categorized into five groups, each consisting of 27 rats: sham, MCAO, lentiviral control, lentiviral miR-149, and miR149-5p mimic. Treatments were microinjected intracerebroventricularly (ICV) (right side), and ischemia was induced using middle cerebral artery occlusion (MCAO) procedure. Post-MCAO, neurological function, histopathological changes, blood-brain barrier (BBB) permeability, cerebral edema, and mRNA levels of Fas ligand (Faslg) and glutamate ionotropic NMDA receptor 1 (GRIN1) were assessed, alongside biochemical assays. MiR-149 administration improved neurological function, reduced brain damage, preserved BBB integrity, and attenuated cerebral edema. Upregulation of miR149-5p decreased Faslg and GRIN1 expression in ischemic brain regions. MiR-149 also reduced oxidative stress, enhanced antioxidant activity, decreased caspase-1 and - 3 activity, and modulated inflammatory factors in ischemic brain regions. Moreover, DNA fragmentation as an index of cell death decreased following miR-149 treatment. In conclusion, the study underscores miR-149 potential as a neuroprotective agent against ischemic stroke, showcasing its efficacy in modulating various mechanisms and supporting its candidacy as a promising therapeutic target for innovative strategies in stroke treatment.
Collapse
Affiliation(s)
- Samira Vahidi
- Department of Animal Science and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad-Reza Bigdeli
- Department of Animal Science and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran.
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Salma Ahmadloo
- Department of Animal Science and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
14
|
Paramasivam P, Choi SW, Poddar R, Paul S. Impairment of neuronal tyrosine phosphatase STEP worsens post-ischemic inflammation and brain injury under hypertensive condition. J Neuroinflammation 2024; 21:271. [PMID: 39438980 PMCID: PMC11515672 DOI: 10.1186/s12974-024-03227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Hypertension is associated with poor outcome and higher mortality in patients with ischemic stroke. The impairment of adaptive vascular mechanisms under hypertensive condition compromises collateral blood flow after arterial occlusion in patients with acute ischemic stroke resulting in hypoperfusion. The increased oxidative stress caused by hypoperfusion is thought to be a trigger for the rapid evolution of ischemic infarct volume under hypertensive condition. However, the cellular factors and pathways that contribute to the exacerbation of ischemic brain injury under hypertensive condition is not yet understood. The current study reveals that predisposition to hypertension leads to basal loss of function of the neuron-specific tyrosine phosphatase STEP, which plays a crucial role in neuroprotection against excitotoxic insult. The findings further show that a mild ischemic insult in hypertensive rats triggers an early onset and sustained activation of the neuronal extracellular signal regulated kinase (ERK MAPK), a member of the mitogen activated protein kinase family and a substrate of STEP. This leads to rapid increase in the activation of neuronal NF-κB, expression of neuronal cyclooxygenase-2 and subsequent biosynthesis of the pro-inflammatory mediator prostaglandin E2, resulting in rapid morphological transformation of microglia to the pro-inflammatory state and subsequent exacerbation of ischemic brain injury. Restoration of STEP signaling with intravenous administration of a STEP-derived peptide mimetic reduces the pro-inflammatory response in neurons, activation of microglia, and ischemic brain injury. The findings suggest that the basal loss of STEP function under hypertensive condition contributes to the exacerbation of ischemic brain injury by enhancing post-ischemic inflammatory response. The study not only presents a novel role of STEP in regulating neuroimmune communication but also highlights the therapeutic potential of a STEP-mimetic in mitigating ischemic brain damage under hypertensive condition.
Collapse
Affiliation(s)
- Prabu Paramasivam
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Seong Won Choi
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
15
|
Castillo X, Ortiz G, Arnold E, Wu Z, Tovar Y Romo LB, Clapp C, Martínez de la Escalera G. The influence of the prolactin/vasoinhibin axis on post-stroke lesion volume, astrogliosis, and survival. J Neuroendocrinol 2024; 36:e13415. [PMID: 38808481 DOI: 10.1111/jne.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
Ischemic stroke is a significant global health issue, ranking fifth among all causes of death and a leading cause of serious long-term disability. Ischemic stroke leads to severe outcomes, including permanent brain damage and neuronal dysfunction. Therefore, decreasing and preventing neuronal injuries caused by stroke has been the focus of therapeutic research. In recent years, many studies have shown that fluctuations in hormonal levels influence the prognosis of ischemic stroke. Thus, it is relevant to understand the role of hormones in the pathophysiological mechanisms of ischemic stroke for preventing and treating this health issue. Here, we investigate the contribution of the prolactin/vasoinhibin axis, an endocrine system regulating blood vessel growth, immune processes, and neuronal survival, to the pathophysiology of ischemic stroke. Male mice with brain overexpression of prolactin or vasoinhibin by adeno-associated virus (AAV) intracerebroventricular injection or lacking the prolactin receptor (Prlr-/-) were exposed to transient middle cerebral artery occlusion (tMCAO) for 45 min followed by 48 h of reperfusion. Overexpression of vasoinhibin or the absence of the prolactin receptor led to an increased lesion volume and decreased survival rates in mice following tMCAO, whereas overexpression of prolactin had no effect. In addition, astrocytic distribution in the penumbra was altered, glial fibrillary acidic protein and S100b mRNA expressions were reduced, and interleukin-6 mRNA expression increased in the ischemic hemisphere of mice overexpressing vasoinhibin. Of note, prolactin receptor-null mice (Prlr-/-) showed a marked increase in serum vasoinhibin levels. Furthermore, vasoinhibin decreased astrocyte numbers in mixed hippocampal neuron-glia cultures. These observations suggest that increased vasoinhibin levels may hinder astrocytes' protective reactivity. Overall, this study suggests the involvement of the prolactin/vasoinhibin axis in the pathophysiology of ischemic stroke-induced brain injury and provides insights into the impact of its dysregulation on astrocyte reactivity and lesion size. Understanding these mechanisms could help develop therapeutic interventions in ischemic stroke and other related neurological disorders.
Collapse
Affiliation(s)
- Ximena Castillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Georgina Ortiz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- CONAHCYT-Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Zhijian Wu
- Ocular Gene Therapy Laboratory, Neurobiology, National Eye Institute (NIH), Bethesda, Maryland, USA
| | - Luis B Tovar Y Romo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | | |
Collapse
|
16
|
Sun W, Tiwari V, Davis G, Zhou G, Jonchhe S, Zha X. Time-Dependent Potentiation of the PERK Branch of UPR by GPR68 Offers Protection in Brain Ischemia. Stroke 2024; 55:2510-2521. [PMID: 39224971 PMCID: PMC11419283 DOI: 10.1161/strokeaha.124.048163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND In ischemia, acidosis occurs in/around injured tissue and parallels disease progression. Therefore, targeting an acid-sensitive receptor offers unique advantages in achieving the spatial and temporal specificity required for therapeutic interventions. We previously demonstrated that increased expression of GPR68 (G protein-coupled receptor 68), a proton-sensitive G protein-coupled receptor, mitigates ischemic brain injury. Here, we investigated the mechanism underlying GPR68-dependent protection. METHODS We performed biochemical and molecular analyses to examine poststroke signaling. We used in vitro brain slice cultures and in vivo mouse transient middle cerebral artery occlusion (tMCAO) models to investigate ischemia-induced injuries. RESULTS GPR68 deletion reduced PERK (protein kinase R-like ER kinase) expression in mouse brain. Compared with the wild-type mice, the GPR68-/- (knockout) mice exhibited a faster decline in eIF2α (eukaryotic initiation factor-2α) phosphorylation after tMCAO. Ogerin, a positive modulator of GPR68, stimulated eIF2α phosphorylation at 3 to 6 hours after tMCAO, primarily in the ipsilateral brain tissue. Consistent with the changes in eIF2α phosphorylation, Ogerin enhanced tMCAO-induced reduction in protein synthesis in ipsilateral brain tissue. In organotypic cortical slices, Ogerin reduced pH 6 and oxygen-glucose deprivation-induced neurotoxicity. Following tMCAO, intravenous delivery of Ogerin reduced brain infarction in wild-type but not knockout mice. Coapplication of a PERK inhibitor abolished Ogerin-induced protection. Delayed Ogerin delivery at 5 hours after tMCAO remained protective, and Ogerin has a similar protective effect in females. Correlated with these findings, tMCAO induced GPR68 expression at 6 hours, and Ogerin alters post-tMCAO proinflammatory/anti-inflammatory cytokine/chemokine expression profile. CONCLUSIONS These data demonstrate that GPR68 potentiation leads to neuroprotection, at least in part, through enhancing PERK-eIF2α activation in ischemic tissue but has little impact on healthy tissue.
Collapse
Affiliation(s)
- Wenyan Sun
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City (W.S., V.T., G.D., S.J., X.Z.)
- Now with: Tulane University, New Orleans, LA (W.S., V.T., X.Z.)
| | - Virendra Tiwari
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City (W.S., V.T., G.D., S.J., X.Z.)
- Now with: Tulane University, New Orleans, LA (W.S., V.T., X.Z.)
| | - Grace Davis
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City (W.S., V.T., G.D., S.J., X.Z.)
| | - Guokun Zhou
- Department of Physiology and Neuroscience, University of South Alabama, Mobile (G.Z.)
- Nantong University, Nantong City, China (G.Z.)
| | - Sarun Jonchhe
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City (W.S., V.T., G.D., S.J., X.Z.)
| | - Xiangming Zha
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City (W.S., V.T., G.D., S.J., X.Z.)
- Now with: Tulane University, New Orleans, LA (W.S., V.T., X.Z.)
| |
Collapse
|
17
|
Lee AH, Tai SH, Huang SY, Chang LD, Chen LY, Chen YN, Hsu HH, Lee EJ. Melatonin Improves Vasogenic Edema via Inhibition to Water Channel Aquaporin-4 (AQP4) and Metalloproteinase-9 (MMP-9) Following Permanent Focal Cerebral Ischemia. Biomedicines 2024; 12:2184. [PMID: 39457496 PMCID: PMC11504272 DOI: 10.3390/biomedicines12102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The efficacy of melatonin in reducing vasogenic and cytotoxic edema was investigated using a model of permanent middle cerebral artery occlusion (pMCAO). Methods: Rats underwent pMCAO, followed by intravenous administration of either melatonin (5 mg/kg) or a vehicle 10 min post-insult. Brain infarction and edema were assessed, and Western blot analyses were conducted to examine the expression levels of aquaporin-4 (AQP4), metalloproteinase-9 (MMP-9), and the neurovascular tight-junction protein ZO-1 upon sacrifice. The permeability of the blood-brain barrier (BBB) was measured using spectrophotometric quantification of Evans blue dye leakage. Results: Compared to controls, melatonin-treated rats exhibited a significant reduction in infarct volume by 26.9% and showed improved neurobehavioral outcomes (p < 0.05 for both). Melatonin treatment also led to decreased Evans blue dye extravasation and brain edema (p < 0.05 for both), along with lower expression levels of AQP4 and MMP-9 proteins and better preservation of ZO-1 protein (p < 0.05 for all). Conclusions: Therefore, melatonin offers neuroprotection against brain swelling induced by ischemia, possibly through its modulation of AQP4 and MMP-9 activities in glial cells and the extracellular matrix (ECM) during the early phase of ischemic injury.
Collapse
Affiliation(s)
- Ai-Hua Lee
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Department of Occupational Safety and Health, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Shih-Huang Tai
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Sheng-Yang Huang
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Li-Der Chang
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Liang-Yi Chen
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yu-Ning Chen
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Hao-Hsiang Hsu
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - E-Jian Lee
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
18
|
Liu Y, Zhao P, Cai Z, He P, Wang J, He H, Zhu Z, Guo X, Ma K, Peng K, Zhao J. Buqi-Huoxue-Tongnao decoction drives gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis. Chin Med 2024; 19:126. [PMID: 39278929 PMCID: PMC11403783 DOI: 10.1186/s13020-024-00991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Ischemic stroke belongs to "apoplexy" and its pathogenesis is characterized by qi deficiency and blood stasis combining with phlegm-damp clouding orifices. Buqi-Huoxue-Tongnao decoction (BHTD) is a traditional Chinese medicine formula for qi deficiency, blood stasis and phlegm obstruction syndrome. However, its efficacy and potential mechanism on ischemic stroke are still unclear. This study aims to investigate the protective effect and potential mechanism of BHTD against ischemic stroke. MATERIALS AND METHODS Middle cerebral artery occlusion (MCAO) surgery was carried out to establish an ischemic stroke model in rats. Subsequently, the rats were gavaged with different doses of BHTD (2.59, 5.175, 10.35 g/kg) for 14 days. The protective effects of BHTD on the brain and gut were evaluated by neurological function scores, cerebral infarction area, levels of brain injury markers (S-100B, NGB), indicators of gut permeability (FD-4) and bacterial translocation (DAO, LPS, D-lactate), and tight junction proteins (Occludin, Claudin-1, ZO-1) in brain and colon. 16S rRNA gene sequencing and metabolomic analysis were utilized to analyze the effects on gut microecology and screen for marker metabolites to explore potential mechanisms of BHTD protection against ischemic stroke. RESULTS BHTD could effectively mitigate brain impairment, including reducing neurological damage, decreasing cerebral infarction and repairing the blood-brain barrier, and BHTD showed the best effect at the dose of 10.35 g/kg. Moreover, BHTD reversed gut injury induced by ischemic stroke, as evidenced by decreased intestinal permeability, reduced intestinal bacterial translocation, and enhanced intestinal barrier integrity. In addition, BHTD rescued gut microbiota dysbiosis by increasing the abundance of beneficial bacteria, including Turicibacter and Faecalibaculum. Transplantation of the gut microbiota remodeled by BHTD into ischemic stroke rats recapitulated the protective effects of BHTD. Especially, BHTD upregulated tryptophan metabolism, which promoted gut microbiota to produce more indole lactic acid (ILA). Notably, supplementation with ILA by gavage could alleviate stroke injury, which suggested that driving the production of ILA in the gut might be a novel treatment for ischemic stroke. CONCLUSION BHTD could increase gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis. Our current finding provides evidence that traditional Chinese medicine can ameliorate central diseases through regulating the gut microbiology.
Collapse
Affiliation(s)
- Yarui Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Peng Zhao
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Zheng Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Peishi He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiahan Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haoqing He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhibo Zhu
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Xiaowen Guo
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Ke Ma
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Kang Peng
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China.
| | - Jie Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China.
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China.
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
19
|
Kong X, Lyu W, Lin X, Feng H, Xu L, Li C, Sun X, Lin C, Li J, Wei P. Transcranial direct current stimulation enhances the protective effect of isoflurane preconditioning on cerebral ischemia/reperfusion injury: A new mechanism associated with the nuclear protein Akirin2. CNS Neurosci Ther 2024; 30:e70033. [PMID: 39267282 PMCID: PMC11393012 DOI: 10.1111/cns.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
AIMS Ischemic stroke is a major cause of disability and mortality worldwide. Transcranial direct current stimulation (tDCS) and isoflurane (ISO) preconditioning exhibit neuroprotective properties. However, it remains unclear whether tDCS enhances the protective effect of ISO preconditioning on ischemic stroke, and the underlying mechanisms are yet to be clarified. METHOD A model of middle cerebral artery occlusion (MCAO), a rat ischemia-reperfusion (I/R) injury model, and an in vitro oxygen-glucose deprivation/re-oxygenation (O/R) model of ischemic injury were developed. ISO preconditioning and tDCS were administered daily for 7 days before MCAO modeling. Triphenyltetrazolium chloride staining, modified neurological severity score, and hanging-wire test were conducted to assess infarct volume and neurological outcomes. Untargeted metabolomic experiments, adeno-associated virus, lentiviral vectors, and small interfering RNA techniques were used to explore the underlying mechanisms. RESULTS tDCS/DCS enhanced the protective effects of ISO pretreatment on I/R injury-induced brain damage. This was evidenced by reduced infarct volume and improved neurological outcomes in rats with MCAO, as well as decreased cortical neuronal death after O/R injury. Untargeted metabolomic experiments identified oxidative phosphorylation (OXPHOS) as a critical pathological process for ISO-mediated neuroprotection from I/R injury. The combination of tDCS/DCS with ISO preconditioning significantly inhibited I/R injury-induced OXPHOS. Mechanistically, Akirin2, a small nuclear protein that regulates cell proliferation and differentiation, was found to decrease in the cortex of rats with MCAO and in cortical primary neurons subjected to O/R injury. Akirin2 functions upstream of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). tDCS/DCS was able to further upregulate Akirin2 levels and activate the Akirin2/PTEN signaling pathway in vivo and in vitro, compared with ISO pretreatment alone, thereby contributing to the improvement of cerebral I/R injury. CONCLUSION tDCS treatment enhances the neuroprotective effects of ISO preconditioning on ischemic stroke by inhibiting oxidative stress and activating Akirin2-PTEN signaling pathway, highlighting potential of combination therapy in ischemic stroke.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaojie Lin
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hao Feng
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chengwei Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xinyi Sun
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chunlong Lin
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
20
|
Lu XY, Lv QY, Li QL, Zhang H, Chen CT, Tian HM. Impact of acupuncture on ischemia/reperfusion injury: Unraveling the role of miR-34c-5p and autophagy activation. Brain Res Bull 2024; 215:111031. [PMID: 39002935 DOI: 10.1016/j.brainresbull.2024.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
We have previously reported that the expression of miR-34c-5p was up-regulated during acupuncture treatment in the setting of a cerebral ischemia/reperfusion injury (CIRI), indicating that miR-34c-5p plays an important role in healing from a CIRI-induced brain injury. This study sought to evaluate the effects of acupuncture on miR-34c-5p expression and autophagy in the forward and reverse directions using a rat focal cerebral ischemia/reperfusion model. After 120 minutes of middle cerebral artery occlusion and reperfusion, rats were treated with acupuncture at the "Dazhui" (DU20), "Baihui" (DU26) and "Renzhong" (DU14) points. Neurologic function deficit score, cerebral infarct area ratio, neuronal apoptosis and miR-34c-5p expression were evaluated 72 hr after treatment. The autophagy agonist RAPA and the antagonist 3MA were used to evaluate the neuro protective effects of autophagy-mediated acupuncture. We found that acupuncture treatment improved autophagy in the brain tissue of CIRI rats. Acupuncture reversed the negative effects of 3MA on CIRI, and acupuncture combined with RAPA further enhanced autophagy. We also found that acupuncture could increase miR-34c-5p expression in hippocampal neurons after ischemia/reperfusion. Acupuncture and a miR-34c agomir were able to enhance autophagy, improve neurologic deficits, and reduce the cerebral infarct area ratio and apoptosis rate by promoting the expression of miR-34c-5p. Silencing miR-34c resulted in a significantly reduced activating effect of acupuncture on autophagy and increased apoptosis, neurologic deficit symptoms, and cerebral infarct area ratio. This confirms that acupuncture can upregulate miR-34c-5p expression, which is beneficial in the treatment of CIRI.
Collapse
Affiliation(s)
- Xiao-Ye Lu
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China; Department of Rehabilitation, Changsha Central Hospital, Changsha, Hunan Province 410004, China
| | - Qian-Yi Lv
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Qi-Long Li
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Hong Zhang
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Chu-Tao Chen
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China.
| | - Hao-Mei Tian
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China.
| |
Collapse
|
21
|
Wang D, Saleem S, Sullivan RD, Zhao T, Reed GL. Differences in Acute Expression of Matrix Metalloproteinases-9, 3, and 2 Related to the Duration of Brain Ischemia and Tissue Plasminogen Activator Treatment in Experimental Stroke. Int J Mol Sci 2024; 25:9442. [PMID: 39273389 PMCID: PMC11394866 DOI: 10.3390/ijms25179442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Matrix metalloproteinases (MMPs) such as MMP-9, 3, and 2 degrade the cellular matrix and are believed to play a crucial role in ischemic stroke. We examined how the duration of ischemia (up to 4 h) and treatment with recombinant tissue plasminogen activator altered the comparative expression of these MMPs in experimental ischemic stroke with reperfusion. Both prolonged ischemia and r-tPA treatment markedly increased MMP-9 expression in the ischemic hemisphere (all p < 0.0001). The duration of ischemia and r-tPA treatment also significantly increased MMP-2 expression (p < 0.01-0.001) in the ischemic hemisphere (p < 0.01) but to a lesser degree than MMP-9. In contrast, MMP-3 expression significantly decreased in the ischemic hemisphere (p < 0.001) with increasing duration of ischemia and r-tPA treatment (p < 0.05-0001). MMP-9 expression was prominent in the vascular compartment and leukocytes. MMP-2 expression was evident in the vascular compartment and MMP-3 in NeuN+ neurons. Prolonging the duration of ischemia (up to 4 h) before reperfusion increased brain hemorrhage, infarction, swelling, and neurologic disability in both saline-treated (control) and r-tPA-treated mice. MMP-9 and MMP-2 expression were significantly positively correlated with, and MMP-3 was significantly negatively correlated with, infarct volume, swelling, and brain hemorrhage. We conclude that in experimental ischemic stroke with reperfusion, the duration of ischemia and r-tPA treatment significantly altered MMP-9, 3, and 2 expression, ischemic brain injury, and neurological disability. Each MMP showed unique patterns of expression that are strongly correlated with the severity of brain infarction, swelling, and hemorrhage. In summary, in experimental ischemic stroke in male mice with reperfusion, the duration of ischemia, and r-tPA treatment significantly altered the immunofluorescent expression of MMP-9, 3, and 2, ischemic brain injury, and neurological disability. In this model, each MMP showed unique patterns of expression that were strongly correlated with the severity of brain infarction, swelling, and hemorrhage.
Collapse
Affiliation(s)
| | | | | | | | - Guy L. Reed
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ 85004, USA; (D.W.); (S.S.); (R.D.S.); (T.Z.)
| |
Collapse
|
22
|
Tang T, Hu LB, Ding C, Zhang Z, Wang N, Wang T, Zhou H, Xia S, Fan L, Fu XJ, Yan F, Zhang X, Chen G, Li J. Src inhibition rescues FUNDC1-mediated neuronal mitophagy in ischaemic stroke. Stroke Vasc Neurol 2024; 9:367-379. [PMID: 37793899 PMCID: PMC11420917 DOI: 10.1136/svn-2023-002606] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Ischaemic stroke triggers neuronal mitophagy, while the involvement of mitophagy receptors in ischaemia/reperfusion (I/R) injury-induced neuronal mitophagy remain not fully elucidated. Here, we aimed to investigate the involvement of mitophagy receptor FUN14 domain-containing 1 (FUNDC1) and its modulation in neuronal mitophagy induced by I/R injury. METHODS Wild-type and FUNDC1 knockout mice were generated to establish models of neuronal I/R injury, including transient middle cerebral artery occlusion (tMCAO) in vivo and oxygen glucose deprivation/reperfusion in vitro. Stroke outcomes of mice with two genotypes were assessed. Neuronal mitophagy was analysed both in vivo and in vitro. Activities of FUNDC1 and its regulator Src were evaluated. The impact of Src on FUNDC1-mediated mitophagy was assessed through administration of Src antagonist PP1. RESULTS To our surprise, FUNDC1 knockout mice subjected to tMCAO showed stroke outcomes comparable to those of their wild-type littermates. Although neuronal mitophagy could be activated by I/R injury, FUNDC1 deletion did not disrupt neuronal mitophagy. Transient activation of FUNDC1, represented by dephosphorylation of Tyr18, was detected in the early stages (within 3 hours) of neuronal I/R injury; however, phosphorylated Tyr18 reappeared and even surpassed baseline levels in later stages (after 6 hours), accompanied by a decrease in FUNDC1-light chain 3 interactions. Spontaneous inactivation of FUNDC1 was associated with Src activation, represented by phosphorylation of Tyr416, which changed in parallel with the level of phosphorylated FUNDC1 (Tyr18) during neuronal I/R injury. Finally, FUNDC1-mediated mitophagy in neurons under I/R conditions can be rescued by pharmacological inhibition of Src. CONCLUSIONS FUNDC1 is inactivated by Src during the later stage (after 6 hours) of neuronal I/R injury, and rescue of FUNDC1-mediated mitophagy may serve as a potential therapeutic strategy for treating ischaemic stroke.
Collapse
Affiliation(s)
- Tianchi Tang
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Li-Bin Hu
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Chao Ding
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhihua Zhang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ning Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tingting Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hang Zhou
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Siqi Xia
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Linfeng Fan
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Xiong-Jie Fu
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Feng Yan
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Xiangnan Zhang
- Zhejiang University Department of Pharmacology, Hangzhou, Zhejiang, China
| | - Gao Chen
- Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jianru Li
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Tanaka M, Sokabe M, Asai M. Progesterone Receptor Agonist, Nestorone, Exerts Long-Term Neuroprotective Effects Against Permanent Focal Cerebral Ischemia in Adult and Aged Male Rats. Transl Stroke Res 2024:10.1007/s12975-024-01288-z. [PMID: 39172309 DOI: 10.1007/s12975-024-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Stroke is a leading cause of death and disability worldwide. Tissue plasminogen activator (tPA) is currently the most effective medicine for stroke; however, it has a narrow therapeutic time window (4.5 h after symptom onset). We demonstrated that nestorone, a progesterone (P4) receptor agonist, exerted neuroprotective effects against transient focal cerebral ischemia 6 h post-ischemic administration in adult male rats. This study examines its effects on permanent focal cerebral ischemia in adult and aged male rats, which are better models for evaluating treatment outcomes in typical stroke patients. Adult (6-month-old) or aged (18-month-old) male rats subjected to permanent middle cerebral artery occlusion (pMCAO) were continuously administered nestorone (10µg/day) or its vehicle (30% hydroxypropyl-β-cyclodextrin) for 7 days via an osmotic pump subcutaneously implanted, starting at 18 h post-pMCAO. Nestorone-treated adult male rats showed marked improvements in behavioral outcomes in the adhesive removal and rotarod tests and a significant reduction in infarct size compared to vehicle-treated rats 9 and 30 days post-pMCAO. The same administration of nestorone resulted in apparently comparable neuroprotective effects in aged male rats. The inflammatory mediator NF-κB/p65 was increased in Iba-1 positive cells 24 h post-pMCAO, but was significantly suppressed by subcutaneous injection of nestorone. These results suggested that nestorone exerts long-term neuroprotective effects against permanent focal cerebral ischemia in adult and aged male rats. Nestorone is thus a promising agent for post-stroke treatment owing to its wide age-independent therapeutic time window (18 h after symptom onset), which is longer than that of tPA therapy.
Collapse
Affiliation(s)
- Motoki Tanaka
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-Cho, Kasugai, 480-0392, Japan.
| | - Masahiro Sokabe
- Human Information Systems Laboratories, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa, 924-0838, Japan
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-Cho, Kasugai, 480-0392, Japan
| |
Collapse
|
24
|
Goh AR, Park J, Sim AY, Koo BN, Lee YH, Kim JY, Lee JE. Modulating monocyte-derived macrophage polarization in cerebral ischemic injury with hyperglycemia. Exp Neurol 2024; 378:114824. [PMID: 38777250 DOI: 10.1016/j.expneurol.2024.114824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Ischemic stroke (IS), characterized by high mortality rate, occurs owing to diminished or blocked blood flow to the brain. Hyperglycemia (HG) is a major contributor to the risk of IS. HG induces augmented oxidative stress and Blood-Brain Barrier breakdown, which increases the influx of blood-derived myeloid cells into the brain parenchyma. In cerebral ischemia, infiltrating monocytes undergo differentiation into pro-inflammatory or anti-inflammatory macrophages, having a large effect on outcomes of ischemic stroke. In addition, interleukin-4 (IL-4) and interleukin-13 (IL-13) engage in post-ischemia repair by polarizing the infiltrating monocytes into an anti-inflammatory phenotype. In this study, we aimed to determine the effect of phenotypic polarization of monocyte-derived macrophages on the prognosis of IS with HG (HG-IS). We first established a hyperglycemic mouse model using streptozotocin (150 mg/kg) and induced transient middle cerebral artery occlusion. We observed that blood-brain barrier permeability increased in HG-IS mice, as per two-photon live imaging and Evans blue staining. We also confirmed the increased infiltration of monocyte-derived macrophages and the downregulation of anti-inflammatory macrophages related to tissue remodeling after inflammation in HG-IS mice through immunohistochemistry, western blotting, and flow cytometry. We observed phenotypic changes in monocyte-derived macrophages, alleviated infarct volume, and improved motor function in HG-IS mice treated with IL-4 and IL-13. These findings suggest that the modulation of phenotypic changes in monocyte-derived macrophages following IS in hyperglycemic mice may influence ischemic recovery.
Collapse
Affiliation(s)
- A Ra Goh
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - A Young Sim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Joaquim LS, Steiner B, Farias B, Machado RS, Danielski LG, Mathias K, Stork S, Lanzzarin E, Novaes L, Bonfante S, Generoso JDS, Alano CG, Lemos I, Dominguini D, Giustina AD, Catalão CHR, Streck EL, Giridharan VV, Dal-Pizzol F, Barichello T, de Bitencourt RM, Petronilho F. Sepsis compromises post-ischemic stroke neurological recovery and is associated with sex differences. Life Sci 2024; 349:122721. [PMID: 38754813 DOI: 10.1016/j.lfs.2024.122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
AIMS Infection is a complication after stroke and outcomes vary by sex. Thus, we investigated if sepsis affects brain from ischemic stroke and sex involvement. MAIN METHODS Male and female Wistar rats, were submitted to middle cerebral artery occlusion (MCAO) and after 7 days sepsis to cecal ligation and perforation (CLP). Infarct size, neuroinflammation, oxidative stress, and mitochondrial activity were quantified 24 h after CLP in the prefrontal cortex and hippocampus. Survival and neurological score were assessed up to 15 days after MCAO or 8 days after CLP (starting at 2 h after MCAO) and memory at the end. KEY FINDINGS CLP decreased survival, increased neurological impairments in MCAO females. Early, in male sepsis following MCAO led to increased glial activation in the brain structures, and increased TNF-α and IL-1β in the hippocampus. All groups had higher IL-6 in both tissues, but the hippocampus had lower IL-10. CLP potentiated myeloperoxidase (MPO) in the prefrontal cortex of MCAO male and female. In MCAO+CLP, only male increased MPO and nitrite/nitrate in hippocampus. Males in all groups had protein oxidation in the prefrontal cortex, but only MCAO+CLP in the hippocampus. Catalase decreased in the prefrontal cortex and hippocampus of all males and females, and MCAO+CLP only increased this activity in males. Female MCAO+CLP had higher prefrontal cortex complex activity than males. In MCAO+CLP-induced long-term memory impairment only in females. SIGNIFICANCE The parameters evaluated for early sepsis after ischemic stroke show a worse outcome for males, while females are affected during long-term follow-up.
Collapse
Affiliation(s)
- Larissa Silva Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Beatriz Steiner
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Brenno Farias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Lucineia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil; Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Solange Stork
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Everton Lanzzarin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Linerio Novaes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Sandra Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Jaqueline da Silva Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Carolina Giassi Alano
- Laboratory of Experimental Biomedicine, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Isabela Lemos
- Laboratory of Experimental Biomedicine, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Amanda Della Giustina
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, ON, Canada
| | - Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Emilio Luiz Streck
- Laboratory of Experimental Biomedicine, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil; Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Rafael Mariano de Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
26
|
An H, Zhou B, Hayakawa K, Durán Laforet V, Park JH, Nakamura Y, Mandeville ET, Liu N, Guo S, Yu Z, Shi J, Wu D, Li W, Lo EH, Ji X. ATF5-Mediated Mitochondrial Unfolded Protein Response (UPR mt) Protects Neurons Against Oxygen-Glucose Deprivation and Cerebral Ischemia. Stroke 2024; 55:1904-1913. [PMID: 38913800 DOI: 10.1161/strokeaha.123.045550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/09/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved mitochondrial response that is critical for maintaining mitochondrial and energetic homeostasis under cellular stress after tissue injury and disease. Here, we ask whether UPRmt may be a potential therapeutic target for ischemic stroke. METHODS We performed the middle cerebral artery occlusion and oxygen-glucose deprivation models to mimic ischemic stroke in vivo and in vitro, respectively. Oligomycin and meclizine were used to trigger the UPRmt. We used 2,3,5-triphenyltetrazolium chloride staining, behavioral tests, and Nissl staining to evaluate cerebral injury in vivo. The Cell Counting Kit-8 assay and the Calcein AM Assay Kit were conducted to test cerebral injury in vitro. RESULTS Inducing UPRmt with oligomycin protected neuronal cultures against oxygen-glucose deprivation. UPRmt could also be triggered with meclizine, and this Food and Drug Administration-approved drug also protected neurons against oxygen-glucose deprivation. Blocking UPRmt with siRNA against activating transcription factor 5 eliminated the neuroprotective effects of meclizine. In a mouse model of focal cerebral ischemia, pretreatment with meclizine was able to induce UPRmt in vivo, which reduced infarction and improved neurological outcomes. CONCLUSIONS These findings suggest that the UPRmt is important in maintaining the survival of neurons facing ischemic/hypoxic stress. The UPRmt mechanism may provide a new therapeutic avenue for ischemic stroke.
Collapse
Affiliation(s)
- Hong An
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, China (H.A.)
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (H.A., J.S., D.W., X.J.)
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, China (B.Z.)
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
| | - Violeta Durán Laforet
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre, Spain (V.D.L.)
| | - Ji-Hyun Park
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
| | - Yoshihiko Nakamura
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Japan (Y.N.)
| | - Emiri T Mandeville
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
| | - Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA (N.L.)
| | - Shuzhen Guo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
| | - Zhanyang Yu
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
| | - Jingfei Shi
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (H.A., J.S., D.W., X.J.)
| | - Di Wu
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (H.A., J.S., D.W., X.J.)
| | - Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
| | - Xunming Ji
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (H.A., J.S., D.W., X.J.)
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China (X.J.)
| |
Collapse
|
27
|
Zhao H, Zhang T, Zhang H, Wang Y, Cheng L. Exercise-with-melatonin therapy improves sleep disorder and motor dysfunction in a rat model of ischemic stroke. Neural Regen Res 2024; 19:1336-1343. [PMID: 37905883 PMCID: PMC11467917 DOI: 10.4103/1673-5374.385844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/15/2023] [Accepted: 08/15/2023] [Indexed: 11/02/2023] Open
Abstract
Exercise-with-melatonin therapy has complementary and synergistic effects on spinal cord injury and Alzheimer’s disease, but its effect on stroke is still poorly understood. In this study, we established a rat model of ischemic stroke by occluding the middle cerebral artery for 60 minutes. We treated the rats with exercise and melatonin therapy for 7 consecutive days. Results showed that exercise-with-melatonin therapy significantly prolonged sleep duration in the model rats, increased delta power values, and regularized delta power rhythm. Additionally, exercise-with-melatonin therapy improved coordination, endurance, and grip strength, as well as learning and memory abilities. At the same time, it led to higher hippocampal CA1 neuron activity and postsynaptic density thickness and lower expression of glutamate receptor 2 than did exercise or melatonin therapy alone. These findings suggest that exercise-with-melatonin therapy can alleviate sleep disorder and motor dysfunction by increasing glutamate receptor 2 protein expression and regulating hippocampal CA1 synaptic plasticity.
Collapse
Affiliation(s)
- Haitao Zhao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Tong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Haojie Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Yunlei Wang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Lingna Cheng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| |
Collapse
|
28
|
Komatsu T, Ohta H, Takakura N, Hata J, Kitagawa T, Kurashina Y, Onoe H, Okano HJ, Iguchi Y. A Novel Rat Model of Embolic Cerebral Ischemia Using a Cell-Implantable Radiopaque Hydrogel Microfiber. Transl Stroke Res 2024; 15:636-646. [PMID: 36867349 DOI: 10.1007/s12975-023-01144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
The failure of neuroprotective treatment-related clinical trials, including stem cell therapies, may be partially due to a lack of suitable animal models. We have developed a stem cell-implantable radiopaque hydrogel microfiber that can survive for a long time in vivo. The microfiber is made of barium alginate hydrogel containing zirconium dioxide, fabricated in a dual coaxial laminar flow microfluidic device. We aimed to develop a novel focal stroke model using this microfiber. Using male Sprague-Dawley rats (n=14), a catheter (inner diameter, 0.42 mm; outer diameter, 0.55 mm) was navigated from the caudal ventral artery to the left internal carotid artery using digital subtraction angiography. A radiopaque hydrogel microfiber (diameter, 0.4 mm; length, 1 mm) was advanced through the catheter by slow injection of heparinized physiological saline to establish local occlusion. Both 9.4-T magnetic resonance imaging at 3 and 6 h and 2% 2,3,5-triphenyl tetrazolium chloride staining at 24 h after stroke model creation were performed. Neurological deficit score and body temperature were measured. The anterior cerebral artery-middle cerebral artery bifurcation was selectively embolized in all rats. Median operating time was 4 min (interquartile range [IQR], 3-8 min). Mean infarct volume was 388 mm3 (IQR, 354-420 mm3) at 24 h after occlusion. No infarction of the thalamus or hypothalamus was seen. Body temperature did not change significantly over time (P = 0.204). However, neurological deficit scores before and at 3, 6, and 24 h after model creation differed significantly (P < 0.001). We present a novel rat model of focal infarct restricted to the middle cerebral artery territory using a radiopaque hydrogel microfiber positioned under fluoroscopic guidance. By comparing the use of stem cell-containing versus non-containing fibers in this stroke model, it would be possible to determine the efficacy of "pure" cell transplantation in treating stroke.
Collapse
Affiliation(s)
- Teppei Komatsu
- Department of Neurology, the Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, Japan, 105-8461.
| | - Hiroki Ohta
- Division of Regenerative Medicine, Research Center for Medical Sciences, the Jikei University School of Medicine, Tokyo, Japan
| | - Naoki Takakura
- School of integrated DESIGN Engineering, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Junichi Hata
- Department of Radiological Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tomomichi Kitagawa
- Department of Neurology, the Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, Japan, 105-8461
| | - Yuta Kurashina
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Kanagawa, Japan
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Research Center for Medical Sciences, the Jikei University School of Medicine, Tokyo, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, the Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, Japan, 105-8461
| |
Collapse
|
29
|
Li Y, Xue W, Li S, Cui L, Gao Y, Li L, Chen R, Zhang X, Xu R, Jiang W, Zhang X, Wang L. Salidroside promotes angiogenesis after cerebral ischemia in mice through Shh signaling pathway. Biomed Pharmacother 2024; 174:116625. [PMID: 38643543 DOI: 10.1016/j.biopha.2024.116625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
AIMS The purpose of this study was to explore the impacts of salidroside on vascular regeneration, vascular structural changes and long-term neurological recuperation following cerebral ischemia and its possible mechanism. MAIN METHODS From Day 1 to Day 28, young male mice with middle cerebral artery blockage received daily doses of salidroside and measured neurological deficits. On the 7th day after stroke, the volume of cerebral infarction was determined using TTC and HE staining. Microvascular density, astrocyte coverage, angiogenesis and the expression of the Shh signaling pathway were detected by IF, qRTPCR and WB at 7, 14 and 28 days after stroke. Changes in blood flow, blood vessel density and diameter from stroke to 28 days were measured by the LSCI and TPMI. KEY FINDINGS Compared with the dMACO group, the salidroside treatment group significantly promoted the recovery of neurological function. Salidroside was found to enhance cerebral blood flow perfusion and reduce the infarct on the 7th day after stroke. From the 7th to the 28th day after stroke, salidroside treatment boosted the expression of CD31, CD31+/BrdU+, and GFAP in the cortex around the infarction site. On the 14th day after stroke, salidroside significantly enhanced the width and density of blood vessels. Salidroside increased the expression of histones and genes in the Shh signaling pathway during treatment, and this effect was weakened by the Shh inhibitor Cyclopamine. SIGNIFICANCE Salidroside can restore nerve function, improve cerebral blood flow, reduce cerebral infarction volume, increase microvessel density and promote angiogenesis via the Shh signaling pathway.
Collapse
Affiliation(s)
- Ying Li
- Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Weihong Xue
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Songyi Li
- Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Lili Cui
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yuxiao Gao
- Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Linlin Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Rong Chen
- Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Xiao Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Renhao Xu
- Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Wei Jiang
- Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China.
| | - Lina Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China.
| |
Collapse
|
30
|
Hu W, Kong X, Cui Y, Wang H, Gao J, Wang X, Chen S, Li X, Li S, Che F, Wan Q. Surfeit Locus Protein 4 as a Novel Target for Therapeutic Intervention in Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2024; 61:2033-2048. [PMID: 37843800 DOI: 10.1007/s12035-023-03687-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Surfeit locus protein 4 (SURF4) functions as a cargo receptor that is capable of transporting newly formed proteins from the lumen of the endoplasmic reticulum into vesicles and Golgi bodies. However, the role of SURF4 in the central nervous system remains unclear. The aim of this study is to investigate the role of SURF4 and its underlying mechanisms in cerebral ischemia/reperfusion (I/R) injury in rats, and whether it can be used effectively for novel therapeutic intervention. We also examined whether transcranial direct-current stimulation (tDCS) can exert a neuroprotective effect via SURF4-dependent signalling. Following cerebral I/R injury in rats, a significant increase was observed in the expression of SURF4. In both I/R injury and oxygen-glucose deprivation (OGD) insult, suppressing the expression of SURF4 demonstrated a neuroprotective effect, while overexpression of SURF4 resulted in increased neuronal death. We further showed that the levels of nerve growth factor precursor (proNGF), p75 neurotrophin receptor (p75NTR), sortilin, and PTEN were increased following cerebral I/R injury, and that SURF4 acted through the PTEN/proNGF signal pathway to regulate neuronal viability. We demonstrated that tDCS treatment reduced SURF4 expression and decreased the infarct volume after cerebral I/R injury. Together, this study indicates that SURF4 plays a critical role in ischemic neuronal injury and may serve as a molecular target for the development of therapeutic strategies in acute ischemic stroke.
Collapse
Affiliation(s)
- Wenjie Hu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
- Department of Biological Science, Jining Medical University, Rizhao, China
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Yu Cui
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Xiyuran Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Shujun Chen
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Xiaohua Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Shifang Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, 27 East Jiefang Road, Linyi, China.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China.
- Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, Qingdao High-tech Industrial Development District, 7 Fenglong Road, Qingdao, China.
| |
Collapse
|
31
|
Chen XF, Wu Y, Kim B, Nguyen KV, Chen A, Qiu J, Santoso AR, Disdier C, Lim YP, Stonestreet BS. Neuroprotective efficacy of hypothermia and Inter-alpha Inhibitor Proteins after hypoxic ischemic brain injury in neonatal rats. Neurotherapeutics 2024; 21:e00341. [PMID: 38453562 PMCID: PMC11070713 DOI: 10.1016/j.neurot.2024.e00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Therapeutic hypothermia is the standard of care for hypoxic-ischemic (HI) encephalopathy. Inter-alpha Inhibitor Proteins (IAIPs) attenuate brain injury after HI in neonatal rats. Human (h) IAIPs (60 mg/kg) or placebo (PL) were given 15 min, 24 and 48 h to postnatal (P) day-7 rats after carotid ligation and 8% oxygen for 90 min with (30 °C) and without (36 °C) exposure to hypothermia 1.5 h after HI for 3 h. Hemispheric volume atrophy (P14) and neurobehavioral tests including righting reflex (P8-P10), small open field (P13-P14), and negative geotaxis (P14) were determined. Hemispheric volume atrophy in males was reduced (P < 0.05) by 41.9% in the normothermic-IAIP and 28.1% in the hypothermic-IAIP compared with the normothermic-PL group, and in females reduced (P < 0.05) by 30.3% in the normothermic-IAIP, 45.7% in hypothermic-PL, and 55.2% in hypothermic-IAIP compared with the normothermic-PL group after HI. Hypothermia improved (P < 0.05) the neuroprotective effects of hIAIPs in females. The neuroprotective efficacy of hIAIPs was comparable to hypothermia in female rats (P = 0.183). Treatment with hIAIPs, hypothermia, and hIAIPs with hypothermia decreased (P < 0.05) the latency to enter the peripheral zone in the small open field test in males. We conclude that hIAIPs provide neuroprotection from HI brain injury that is comparable to the protection by hypothermia, hypothermia increases the effects of hIAIPs in females, and hIAIPs and hypothermia exhibit some sex-related differential effects.
Collapse
Affiliation(s)
- Xiaodi F Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Yuqi Wu
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Boram Kim
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Kevin V Nguyen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Ainuo Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Joseph Qiu
- ProThera Biologics, Inc., Providence, RI, USA
| | | | - Clemence Disdier
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, USA; The Alpert Medical School of Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
32
|
Wang H, Ma W, Hu W, Li X, Shen N, Li Z, Kong X, Lin T, Gao J, Zhu T, Che F, Chen J, Wan Q. Cathodal bilateral transcranial direct-current stimulation regulates selenium to confer neuroprotection after rat cerebral ischaemia-reperfusion injury. J Physiol 2024; 602:1175-1197. [PMID: 38431908 DOI: 10.1113/jp285806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenlong Ma
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenjie Hu
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaohua Li
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Na Shen
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhuo Li
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Tao Lin
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, Qingdao University, Linyi, Shandong, China
| | - Juan Chen
- Department of Neurology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, Qingdao, China
| |
Collapse
|
33
|
Nguyen LTT, Le XT, Nguyen HT, Nguyen TV, Pham HNT, Van Thi Pham A, Matsumoto K. Kaempferol-3-O-(2″-O-galloyl-β-D-glucopyranoside): a novel neuroprotective agent from Diospryros kaki against cerebral ischemia-induced brain injury. J Nat Med 2024; 78:312-327. [PMID: 38143256 DOI: 10.1007/s11418-023-01765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
Our previous study demonstrated neuroprotective and therapeutic effects of a standardized flavonoid extract from leaves of Diospyros kaki L.f. (DK) on middle cerebral artery occlusion-and-reperfusion (MCAO/R)-induced brain injury and its underlying mechanisms. This study aimed to clarify flavonoid components responsible for the effects of DK using in vitro and in vivo transient brain ischemic models. Organotypic hippocampal slice cultures (OHSCs) subjected to oxygen- and glucose-deprivation (OGD) were performed to evaluate in vitro neuroprotective activity of DK extract and nine isolated flavonoid components. MCAO/R mice were employed to elucidate in vivo neuroprotective effects of the flavonoid component that exhibited the most potent neuroprotective effect in OHSCs. DK extract and seven flavonoids [quercetin, isoquercetin, hyperoside, quercetin-3-O-(2″-O-galloyl-β-D-galactopyranoside), kaempferol, astragalin, and kaempferol-3-O-(2″-O-galloyl-β-D-glucopyranoside) compound (9)] attenuated OGD-induced neuronal cell damage and compound (9) possessed the most potent neuroprotective activity in OHSCs. The MCAO/R mice showed cerebral infarction, massive weight loss, characteristic neurological symptoms, and deterioration of neuronal cells in the brain. Compound (9) and a reference drugs, edaravone, significantly attenuated these physical and neurological impairments. Compound (9) mitigated the blood-brain barrier dysfunction and the change of glutathione and malondialdehyde content in the MCAO mouse brain. Edaravone suppressed the oxidative stress but did not significantly affect the blood-brain barrier permeability. The present results indicated that compound (9) is a flavonoid constituent of DK with a potent neuroprotective activity against transient ischemia-induced brain damage and this action, at least in part, via preservation of blood-brain barrier integrity and suppression of oxidative stress caused by ischemic insult.
Collapse
Affiliation(s)
- Loan Thanh Thi Nguyen
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, Hanoi, Vietnam
- Department of Pharmacology, Hanoi Medical University, Hanoi, Vietnam
| | - Xoan Thi Le
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, Hanoi, Vietnam.
| | - Ha Thi Nguyen
- Department of Extraction Technology, Vietnam National Institute of Medicinal Materials, Hanoi, Vietnam
| | - Tai Van Nguyen
- Department of Phytochemistry, National Institute of Medicinal Materials, Hanoi, Vietnam
| | - Hang Nguyet Thi Pham
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, Hanoi, Vietnam
| | - Anh Van Thi Pham
- Department of Pharmacology, Hanoi Medical University, Hanoi, Vietnam
| | - Kinzo Matsumoto
- Graduate School of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka, Japan
| |
Collapse
|
34
|
Li ZW, Tang H, Chen XX, Li XX, Xu HH, Chen MH, Ba HJ, Lin Q, Dai JX, Cai JY, Lu C, Chen XD, Han GS, Sun J. Urolithin B Attenuates Cerebral Ischemia-reperfusion Injury by Modulating Nrf2-regulated Anti-oxidation in Rats. Neuroscience 2024; 538:46-58. [PMID: 38110170 DOI: 10.1016/j.neuroscience.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 12/20/2023]
Abstract
Ischemia-reperfusion (IR) induces a wide range of irreversible injuries. Cerebral IR injury (IRI) refers to additional brain tissue damage that occurs after blood flow is restored following cerebral ischemia. Currently, no established methods exist for treating IRI. Oxidative stress is recognized as a primary mechanism initiating IRI and a crucial focal target for its treatment. Urolithin B, a metabolite derived from ellagitannins, antioxidant polyphenols, has demonstrated protective effects against oxidative stress in various disease conditions. However, the precise mechanism underlying UB's effect on IRI remains unclear. In our current investigation, we assessed UB's ability to mitigate neurological functional impairment induced by IR using a neurological deficit score. Additionally, we examined cerebral infarction following UB administration through TTC staining and neuron Nissl staining. UB's inhibition of neuronal apoptosis was demonstrated through the TUNEL assay and Caspase-3 measurement. Additionally, we examined UB's effect on oxidative stress levels by analyzing malondialdehyde (MDA) concentration, superoxide dismutase (SOD) activity, and immunohistochemistry analysis of inducible nitric oxide synthase (iNOS) and 8-hydroxyl-2'-deoxyguanosine (8-OHdG). Notably, UB demonstrated a reduction in oxidative stress levels. Mechanistically, UB was found to stimulate the Nrf2/HO-1 signaling pathway, as evidenced by the significant reduction in UB's neuroprotective effects upon administration of ATRA, an Nrf2 inhibitor. In summary, UB effectively inhibits oxidative stress induced by IR through the activation of the Nrf2/HO-1 signaling pathway. These findings suggest that UB holds promise as a therapeutic agent for the treatment of IRI.
Collapse
Affiliation(s)
- Zhi-Wei Li
- Department of Neurosurgery, Wenzhou Central Hospital, Wenzhou, China
| | - Hua Tang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xin-Xin Chen
- Department of Neurology, Wenzhou Central Hospital, Wenzhou, China
| | - Xuan-Xuan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huan-Huan Xu
- Department of Blood Donation Service, Wenzhou Central Blood Station, Wenzhou, China
| | - Mao-Hua Chen
- Department of Neurosurgery, Wenzhou Central Hospital, Wenzhou, China
| | - Hua-Jun Ba
- Department of Neurosurgery, Wenzhou Central Hospital, Wenzhou, China
| | - Qun Lin
- Department of Neurosurgery, Wenzhou Central Hospital, Wenzhou, China
| | - Jun-Xia Dai
- Department of Neurosurgery, Wenzhou Central Hospital, Wenzhou, China
| | - Jian-Yong Cai
- Department of Neurosurgery, Wenzhou Central Hospital, Wenzhou, China
| | - Chuan Lu
- Department of Neurosurgery, Wenzhou Central Hospital, Wenzhou, China
| | - Xian-Dong Chen
- Department of Neurosurgery, Wenzhou Central Hospital, Wenzhou, China
| | - Guo-Sheng Han
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Jun Sun
- Department of Neurosurgery, Wenzhou Central Hospital, Wenzhou, China.
| |
Collapse
|
35
|
Zhong Z, Tao G, Hao S, Ben H, Qu W, Sun F, Huang Z, Qiu M. Alleviating sleep disturbances and modulating neuronal activity after ischemia: Evidence for the benefits of zolpidem in stroke recovery. CNS Neurosci Ther 2024; 30:e14637. [PMID: 38380702 PMCID: PMC10880125 DOI: 10.1111/cns.14637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 01/01/2024] [Accepted: 01/20/2024] [Indexed: 02/22/2024] Open
Abstract
AIMS Sleep disorders are prevalent among stroke survivors and impede stroke recovery, yet they are still insufficiently considered in the management of stroke patients, and the mechanisms by which they occur remain unclear. There is evidence that boosting phasic GABA signaling with zolpidem during the repair phase improves stroke recovery by enhancing neural plasticity; however, as a non-benzodiazepine hypnotic, the effects of zolpidem on post-stroke sleep disorders remain unclear. METHOD Transient ischemic stroke in male rats was induced with a 30-minute middle cerebral artery occlusion. Zolpidem or vehicle was intraperitoneally delivered once daily from 2 to 7 days after the stroke, and the electroencephalogram and electromyogram were recorded simultaneously. At 24 h after ischemia, c-Fos immunostaining was used to assess the effect of transient ischemic stroke and acute zolpidem treatment on neuronal activity. RESULTS In addition to the effects on reducing brain damage and mitigating behavioral deficits, repeated zolpidem treatment during the subacute phase of stroke quickly ameliorated circadian rhythm disruption, alleviated sleep fragmentation, and increased sleep depth in ischemic rats. Immunohistochemical staining showed that in contrast to robust activation in para-infarct and some remote areas by 24 h after the onset of focal ischemia, the activity of the ipsilateral suprachiasmatic nucleus, the biological rhythm center, was strongly suppressed. A single dose of zolpidem significantly upregulated c-Fos expression in the ipsilateral suprachiasmatic nucleus to levels comparable to the contralateral side. CONCLUSION Stroke leads to suprachiasmatic nucleus dysfunction. Zolpidem restores suprachiasmatic nucleus activity and effectively alleviates post-stroke sleep disturbances, indicating its potential to promote stroke recovery.
Collapse
Affiliation(s)
- Zhi‐Gang Zhong
- Department of Neurobiology, Institute for Basic Research on Aging and Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Gui‐Jin Tao
- Department of Neurobiology, Institute for Basic Research on Aging and Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Shu‐Mei Hao
- Department of Neurobiology, Institute for Basic Research on Aging and Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Hui Ben
- Department of Neurobiology, Institute for Basic Research on Aging and Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Wei‐Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Feng‐Yan Sun
- Department of Neurobiology, Institute for Basic Research on Aging and Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Zhi‐Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Mei‐Hong Qiu
- Department of Neurobiology, Institute for Basic Research on Aging and Medicine, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
36
|
Chen L, Xiong Y, Chopp M, Pang H, Emanuele M, Zhang ZG, Mahmood A, Zhang Y. Vepoloxamer improves functional recovery in rat after traumatic brain injury: A dose-response and therapeutic window study. Neurochem Int 2024; 173:105659. [PMID: 38142856 PMCID: PMC10872547 DOI: 10.1016/j.neuint.2023.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. There are no effective therapies available for TBI patients. Vepoloxamer is an amphiphilic polyethylene-polypropylene-polyethylene tri-block copolymer that seals membranes and restores plasma membrane integrity in damaged cells. We previously demonstrated that treatment of TBI rats with Vepoloxamer improves functional recovery. However, additional studies are needed to potentially translate Vepoloxamer treatment from preclinical studies into clinical applications. We thus conducted a study to investigate dose-response and therapeutic window of Vepoloxamer on functional recovery of adult rats after TBI. To identify the most effective dose of Vepoloxamer, male Wistar adult rats with controlled cortical impact (CCI) injury were randomly treated with 0 (vehicle), 100, 300, or 600 mg/kg of Vepoloxamer, administered intravenously (IV) at 2 h after TBI. We then performed a therapeutic window study in which the rats were treated IV with the most effective single dose of Vepoloxamer at different time points of 2 h, 4 h, 1 day, or 3 days after TBI. A battery of cognitive and neurological tests was performed. Animals were killed 35 days after TBI for histopathological analysis. Dose-response experiments showed that Vepoloxamer at all three tested doses (100, 300, 600 mg/kg) administered 2 h post injury significantly improved cognitive functional recovery, whereas Vepoloxamer at doses of 300 and 600 mg/kg, but not the 100 mg/kg dose, significantly reduced lesion volume compared to saline treatment. However, Vepoloxamer at 300 mg/kg showed significantly improved neurological and cognitive outcomes than treatment with a dose of 600 mg/kg. In addition, our data demonstrated that the dose of 300 mg/kg of Vepoloxamer administered at 2 h, 4 h, 1 day, or 3 days post injury significantly improved neurological function compared with vehicle, whereas Vepoloxamer administered at 2 h or 4 h post injury significantly improved cognitive function compared with the 1-day and 3-day treatments, with the most robust effect administered at 2 h post injury. The present study demonstrated that Vepoloxamer improves functional recovery in a dose-and time-dependent manner, with therapeutic efficacy compared with vehicle evident even when the treatment is initiated 3 days post TBI in the rat.
Collapse
Affiliation(s)
- Liang Chen
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Haiyan Pang
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, 48202, USA
| | | | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Yanlu Zhang
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, 48202, USA.
| |
Collapse
|
37
|
Kubota H, Tsutsui M, Kuniyoshi K, Yamashita H, Shimokawa H, Sugahara K, Kakinohana M. Alleviated cerebral infarction in male mice lacking all nitric oxide synthase isoforms after middle cerebral artery occlusion. J Anesth 2024; 38:44-56. [PMID: 37910301 DOI: 10.1007/s00540-023-03271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/05/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE The role of the nitric oxide synthases (NOSs) system in cerebral infarction has been examined in pharmacological studies with non-selective NOSs inhibitors. However, due to the non-specificity of the non-selective NOSs inhibitors, its role remains to be fully elucidated. We addressed this issue in mice in which neuronal, inducible, and endothelial NOS isoforms were completely disrupted. METHODS AND RESULTS We newly generated mice lacking all three NOSs by crossbreeding each single NOS-/- mouse. In the male, cerebral infarct size at 24 h after middle cerebral artery occlusion (MCAO) was significantly smaller in the triple n/i/eNOSs-/- genotype as compared with wild-type genotype. Neurological deficit score and mortality rate were also significantly lower in the triple n/i/eNOSs-/- than in the WT genotype. In contrast, in the female, there was no significant difference in the cerebral infarct size in the two genotypes. In the male triple n/i/eNOSs-/- genotype, orchiectomy significantly increased the cerebral infarct size, and in the orchiectomized male triple n/i/eNOSs-/- genotype, treatment with testosterone significantly reduced it. Cyclopaedic and quantitative comparisons of mRNA expression levels in cerebral infarct lesions between the male wild-type and triple n/i/eNOSs-/- genotypes at 1 h after MCAO revealed significant involvements of decreased oxidative stress and mitigated mitochondrial dysfunction in the alleviated cerebral infarction in the male triple n/i/eNOSs-/- genotype. CONCLUSIONS These results provide the first evidence that the NOSs system exerts a deleterious effect against acute ischemic brain injury in the male.
Collapse
Affiliation(s)
- Haruaki Kubota
- Department of Pharmacology, Graduate School of Medicine, University the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
- Department of Anesthesiology, Graduate School of Medicine, University the Ryukyus, Nishihara, Okinawa, Japan
| | - Masato Tsutsui
- Department of Pharmacology, Graduate School of Medicine, University the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.
| | - Kanako Kuniyoshi
- Department of Pharmacology, Graduate School of Medicine, University the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Hirotaka Yamashita
- Department of Pharmacology, Graduate School of Medicine, University the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Graduate School, International University of Health and Welfare, Narita, Japan
| | - Kazuhiro Sugahara
- Department of Anesthesiology, Graduate School of Medicine, University the Ryukyus, Nishihara, Okinawa, Japan
| | - Manabu Kakinohana
- Department of Anesthesiology, Graduate School of Medicine, University the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
38
|
Cui Y, Zhang Z, Lv M, Duan Z, Liu W, Gao J, Xu R, Wan Q. Chromatin target of protein arginine methyltransferases alleviates cerebral ischemia/reperfusion-induced injury by regulating RNA alternative splicing. iScience 2024; 27:108688. [PMID: 38188517 PMCID: PMC10770728 DOI: 10.1016/j.isci.2023.108688] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
RNA splicing is a post-transcriptional event that regulates many physiological and pathological events. However, whether RNA splicing regulates cerebral I/R-induced brain injury remains largely unknown. In this study, we found that the chromatin target of Prmts (CHTOP) was highly expressed in neurons, and anti-inflammatory cytokine interleukin-10 (IL-10) upregulates its expression after ischemia. In addition, overexpression or knockdown of CHTOP alleviated or exacerbated neuronal death in both experimental stroke mice and cultured neurons. Mechanistically, RNA alternative splicing is altered early after oxygen and glucose deprivation/reoxygenation (OGD/R). CHTOP interacted with nuclear speckle-related proteins to regulate alternative mRNA splicing of neuronal survival-related genes after OGD/R. In addition, I/R injury-induced cytokines IL-10 regulate CHTOP-mediated RNA splicing to alleviate ischemic brain injury. Taken together, this study reveals the alteration of RNA splicing after OGD/R and identifies the IL-10-CHTOP-RNA splicing axis as a modulator of brain injury, which may be promising therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Zhongying Duan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Wenhao Liu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Jingchen Gao
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Rui Xu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
39
|
Geiseler SJ, Hadzic A, Lambertus M, Forbord KM, Sajedi G, Liesz A, Morland C. L-Lactate Treatment at 24 h and 48 h after Acute Experimental Stroke Is Neuroprotective via Activation of the L-Lactate Receptor HCA 1. Int J Mol Sci 2024; 25:1232. [PMID: 38279234 PMCID: PMC10816130 DOI: 10.3390/ijms25021232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Stroke is the main cause for acquired disabilities. Pharmaceutical or mechanical removal of the thrombus is the cornerstone of stroke treatment but can only be administered to a subset of patients and within a narrow time window. Novel treatment options are therefore required. Here we induced stroke by permanent occlusion of the distal medial cerebral artery of wild-type mice and knockout mice for the lactate receptor hydroxycarboxylic acid receptor 1 (HCA1). At 24 h and 48 h after stroke induction, we injected L-lactate intraperitoneal. The resulting atrophy was measured in Nissl-stained brain sections, and capillary density and neurogenesis were measured after immunolabeling and confocal imaging. In wild-type mice, L-lactate treatment resulted in an HCA1-dependent reduction in the lesion volume accompanied by enhanced angiogenesis. In HCA1 knockout mice, on the other hand, there was no increase in angiogenesis and no reduction in lesion volume in response to L-lactate treatment. Nevertheless, the lesion volumes in HCA1 knockout mice-regardless of L-lactate treatment-were smaller than in control mice, indicating a multifactorial role of HCA1 in stroke. Our findings suggest that L-lactate administered 24 h and 48 h after stroke is protective in stroke. This represents a time window where no effective treatment options are currently available.
Collapse
Affiliation(s)
- Samuel J. Geiseler
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (A.H.); (M.L.); (K.M.F.); (G.S.)
| | - Alena Hadzic
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (A.H.); (M.L.); (K.M.F.); (G.S.)
| | - Marvin Lambertus
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (A.H.); (M.L.); (K.M.F.); (G.S.)
| | - Karl Martin Forbord
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (A.H.); (M.L.); (K.M.F.); (G.S.)
| | - Ghazal Sajedi
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (A.H.); (M.L.); (K.M.F.); (G.S.)
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, 81377 Munich, Germany;
- Graduate School of Systemic Neurosciences Munich, 82152 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway; (A.H.); (M.L.); (K.M.F.); (G.S.)
| |
Collapse
|
40
|
Zheng Y, Zhu T, Li G, Xu L, Zhang Y. PCSK9 inhibitor protects against ischemic cerebral injury by attenuating inflammation via the GPNMB/CD44 pathway. Int Immunopharmacol 2024; 126:111195. [PMID: 38048667 DOI: 10.1016/j.intimp.2023.111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Ischemic stroke is the second leading cause of death worldwide, and neuroinflammation has been recognized as a critical player in its progression. Meanwhile, proprotein convertase subtilisin/kexin type 9 inhibitor (PCSK9i) has been demonstrated to inhibit inflammatory response. However, the effects of PCSK9i on ischemic stroke remain unclear and require further investigation. METHODS Temporary middle cerebral artery occlusion (tMCAO) was performed to establish animal models of ischemic stroke in C57BL/6 mice. The PCSK9i were administered subcutaneously after 2 h tMCAO. Neurological function and cerebral infarct volume were measured by mNSS and TTC staining, respectively. RNA-seq was performed to investigate the changes in mechanistic pathways. Western blotting and immunofluorescence were applied to detect expression of GPNMB, CD44, IL-6, and iNOS. RESULTS Treatment with PCSK9i significantly improved neurological deficits and reduced the volume of cerebral infarction. PCSK9i suppressed neuroinflammation by activating the GPNMB/CD44 signaling pathway, further exerting their protective effects. CONCLUSION Taken together, treatment with PCSK9i is an effective way to prevent ischemic stroke-induced brain injury.
Collapse
Affiliation(s)
- Yaling Zheng
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianrui Zhu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Luran Xu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yue Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
41
|
Arul MR, Alahmadi I, Turro DG, Ruikar A, Abdulmalik S, Williams JT, Sanganahalli BG, Liang BT, Verma R, Kumbar SG. Fluorescent liposomal nanocarriers for targeted drug delivery in ischemic stroke therapy. Biomater Sci 2023; 11:7856-7866. [PMID: 37902365 PMCID: PMC10697427 DOI: 10.1039/d3bm00951c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023]
Abstract
Ischemic stroke causes acute CNS injury and long-term disability, with limited treatment options such as surgical clot removal or clot-busting drugs. Neuroprotective therapies are needed to protect vulnerable brain regions. The purinergic receptor P2X4 is activated during stroke and exacerbates post-stroke damage. The chemical compound 5-(3-Bromophenyl)-1,3-dihydro-2H-Benzofuro[3,2-e]-1,4-diazepin-2-one (5BDBD) inhibits P2X4 and has shown neuroprotective effects in rodents. However, it is difficult to formulate for systemic delivery to the CNS. The current manuscript reports for the first time, the synthesis and characterization of 5BDBD PEGylated liposomal formulations and evaluates their feasibility to treat stroke in a preclinical mice model. A PEGylated liposomal formulation of 5BDBD was synthesized and characterized, with encapsulation efficacy of >80%, and release over 48 hours. In vitro and in vivo experiments with Nile red encapsulation showed cytocompatibility and CNS infiltration of nanocarriers. Administered 4 or 28 hours after stroke onset, the nanoformulation provided significant neuroprotection, reducing infarct volume by ∼50% compared to controls. It outperformed orally-administered 5BDBD with a lower dose and shorter treatment duration, suggesting precise delivery by nanoformulation improves outcomes. The fluorescent nanoformulations may serve as a platform for delivering and tracking therapeutic agents for stroke treatment.
Collapse
Affiliation(s)
- Michael R Arul
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Ibtihal Alahmadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | | | - Aditya Ruikar
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Sama Abdulmalik
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | | | - Basavaraju G Sanganahalli
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Bruce T Liang
- Calhuan Cardiology Centre, UConn Health, Farmington, CT, USA
| | - Rajkumar Verma
- Department of Neurosciences, UConn Health, Farmington, CT, USA.
| | - Sangamesh G Kumbar
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
42
|
Chen Y, Lin L, Bhuiyan MIH, He K, Jha R, Song S, Fiesler VM, Begum G, Yin Y, Sun D. Transient ischemic stroke triggers sustained damage of the choroid plexus blood-CSF barrier. Front Cell Neurosci 2023; 17:1279385. [PMID: 38107410 PMCID: PMC10725199 DOI: 10.3389/fncel.2023.1279385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Neuroinflammation is a pathological event associated with many neurological disorders, including dementia and stroke. The choroid plexus (ChP) is a key structure in the ventricles of the brain that secretes cerebrospinal fluid (CSF), forms a blood-CSF barrier, and responds to disease conditions by recruiting immune cells and maintaining an immune microenvironment in the brain. Despite these critical roles, the exact structural and functional changes to the ChP over post-stroke time remain to be elucidated. We induced ischemic stroke in C57BL/6J mice via transient middle cerebral artery occlusion which led to reduction of cerebral blood flow and infarct stroke. At 1-7 days post-stroke, we detected time-dependent increase in the ChP blood-CSF barrier permeability to albumin, tight-junction damage, and dynamic changes of SPAK-NKCC1 protein complex, a key ion transport regulatory system for CSF production and clearance. A transient loss of SPAK protein complex but increased phosphorylation of the SPAK-NKCC1 complex was observed in both lateral ventricle ChPs. Most interestingly, stroke also triggered elevation of proinflammatory Lcn2 mRNA and its protein as well as infiltration of anti-inflammatory myeloid cells in ChP at day 5 post-stroke. These findings demonstrate that ischemic strokes cause significant damage to the ChP blood-CSF barrier, contributing to neuroinflammation in the subacute stage.
Collapse
Affiliation(s)
- Yang Chen
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lin Lin
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Kai He
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Roshani Jha
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, United States
| | - Victoria M. Fiesler
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yan Yin
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, United States
| |
Collapse
|
43
|
Xu H, Dong J, Li Y, Zhang L, Yin J, Zhu C, Wang X, Ren K, Zhang H, Zhao D. Neuritin has a neuroprotective role in the rat model of acute ischemia stroke by inhibiting neuronal apoptosis and NLRP3 inflammasome. J Stroke Cerebrovasc Dis 2023; 32:107391. [PMID: 37832268 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVES This study explored the anti-inflammatory, anti-neuronal apoptosis, and neuroprotective effects of Neuritin in rat models of acute ischemia stroke (AIS). METHODS AIS was induced in male Sprague Dawley rats by middle cerebral artery occlusion (MCAO). Rats were divided into sham, MCAO, MCAO+neuritin, MCAO + neuritin + PBS, MCAO + neuritin+MCC950, and MCAO + neuritin + MSU groups. Neurological score assessment, brain water content measurement, HE staining, TTC staining, TUNEL staining, ELISA, and Western blot were performed. RESULTS Neuritin significantly improved the neurobehavioral score, infarct size, brain water content, apoptosis, and neuroinflammatory response compared with the MCAO and MCAO + PBS groups within 24 h after AIS. Moreover, Neuritin inhibited the protein expression of NLRP3 inflammasome, and reduced the expression of IL-18 and IL-1B, thereby reducing the inflammatory response. Meanwhile, the neuroprotection, anti-inflammation, and anti-apoptosis effects of Neuritin were enhanced by MCC950 but partly counteracted by MSU. CONCLUSION Neuritin may reduce brain injury after AIS by inhibiting the expression of NLRP3 inflammasome and then inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Hui Xu
- Department of Neurosurgery, the First Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China
| | - Jiangtao Dong
- Department of Neurosurgery, the First Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China
| | - Yang Li
- Department of Neurosurgery, the First Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China
| | - Lei Zhang
- Department of Neuromedicine, Beitun Hospital, the Tenth Division of Xinjiang Production and Construction Corps, Beitun 836000, China
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China
| | - Chao Zhu
- Department of Neurosurgery, the First Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China
| | - Xu Wang
- Department of Neurosurgery, the First Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China
| | - Kunhao Ren
- Department of Neurosurgery, the First Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China
| | - Hao Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China
| | - Dong Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China.
| |
Collapse
|
44
|
Zhou C, Zhu X, Li J, Luo Y, Zhou Y. Dynamic assessment of brain perfusion in a middle cerebral artery occlusion rat model by contrast-enhanced ultrasound imaging: a pilot study. Acta Radiol 2023; 64:3042-3051. [PMID: 37872652 DOI: 10.1177/02841851231205163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BACKGROUND The middle cerebral artery occlusion model (MCAo) is a commonly used animal model for cerebral ischemia studies but lacks accessible imaging techniques for the assessment of hemodynamic changes of the model. PURPOSE The study aims to explore the value of contrast-enhanced ultrasound (CEUS) in evaluating brain perfusion in the early stages after MCAo surgery. MATERIAL AND METHODS In total, 18 adult male Sprague-Dawley rats were subjected to right MCAo using an intraluminal filament model, and CEUS was performed at the three following timepoints: before (T0), immediately after (T1), and 6 h after permanent MCAo (T2). Twelve rats successfully completed the study, and their brains were removed and stained using 2, 3, 5-triphenyltetrazolium chloride (TTC). CEUS video images were visualized offline, and the time-intensity curves (TICs) were analyzed. Different cerebrovascular patterns and manifestations of the contrast enhancement in rat ischemic hemispheres were observed. Semi-quantitative parameters of TICs in ischemic areas (ROIi) and the surrounding normal- or hypo-perfused areas (ROIn) were calculated and compared between T0, T1, and T2, and also between ROIi and ROIn. RESULTS A significant correlation was found between the lesion volume (%) determined by TTC and CEUS parameters (r = -0.691, P = 0.013 for peak intensity; r = -0.742, P = 0.006 for area under the curve) at T2. After the same occlusion, there were differences in contrast perfusion in each group. CONCLUSION This study suggests that CEUS could be an effective imaging tool for studying cerebral ischemia and perfusion in small animals as long as the transcranial acoustic window allows it.
Collapse
Affiliation(s)
- Chenyun Zhou
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Xiaoxia Zhu
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Jin Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Yan Luo
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Yuqing Zhou
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
45
|
Wu DM, Liu JP, Liu J, Ge WH, Wu SZ, Zeng CJ, Liang J, Liu K, Lin Q, Hong XW, Sun YE, Lu J. Immune pathway activation in neurons triggers neural damage after stroke. Cell Rep 2023; 42:113368. [PMID: 37917581 DOI: 10.1016/j.celrep.2023.113368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Ischemic brain injury is a severe medical condition with high incidences in elderly people without effective treatment for the resulting neural damages. Using a unilateral mouse stroke model, we analyze single-cell transcriptomes of ipsilateral and contralateral cortical penumbra regions to objectively reveal molecular events with single-cell resolution at 4 h and 1, 3, and 7 days post-injury. Here, we report that neurons are among the first cells that sense the lack of blood supplies by elevated expression of CCAAT/enhancer-binding protein β (C/EBPβ). To our surprise, the canonical inflammatory cytokine gene targets for C/EBPβ, including interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α), are subsequently induced also in neuronal cells. Neuronal-specific silencing of C/EBPβ or IL-1β and TNF-α substantially alleviates downstream inflammatory injury responses and is profoundly neural protective. Taken together, our findings reveal a neuronal inflammatory mechanism underlying early pathological triggers of ischemic brain injury.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Clinical Medicine Center, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong 528000, China
| | - Ji-Ping Liu
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jie Liu
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; Clinical Medicine Center, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Wei-Hong Ge
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Su-Zhen Wu
- Clinical Medicine Center, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong 528000, China
| | - Chi-Jia Zeng
- Clinical Medicine Center, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong 528000, China
| | - Jia Liang
- Life Science Institution, Jinzhou Medical University, Jinzhou 121000, China
| | - KeJian Liu
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Quan Lin
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiao-Wu Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Institute of Fudan University in Ningbo, Zhejiang 315336, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jun Lu
- Clinical Medicine Center, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong 528000, China.
| |
Collapse
|
46
|
Simanenkova AV, Fuks OS, Timkina NV, Tikhomirova PA, Vlasov TD, Karonova TL. Neuroprotective effects of glucose-lowering drugs in rat focal brain ischemia-reperfusion model. "ARTERIAL’NAYA GIPERTENZIYA" ("ARTERIAL HYPERTENSION") 2023; 29:579-592. [DOI: 10.18705/1607-419x-2023-29-6-579-592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Background. Ischemic stroke is one of the leading causes of death in patients with type 2 diabetes mellitus (DM). According to the results of clinical and experimental studies, the ability of glucagon-like peptide-1 receptor agonists (GLP-1RA) to reduce the risk and severity of stroke in DM has been proven; data on the sodium-glucose cotransporter-2 inhibitors (SGLT-2i) effect are scarce. There has been no direct comparative study of the GLP-1RA and SGLT-2i neuroprotective effect.Objective. To evaluate and to compare the effect of GLP-1RA of varying duration of action and SGLT-2i of varying selectivity on the neurological deficit severity and the brain damage volume in a transient focal brain ischemia model in rats without DM.Design and methods. Male Wistar rats were divided into groups (n = 10 each) depending on the therapy received: “EMPA” (empagliflozin per os 2 mg/kg once daily), “CANA” (canagliflozin per os 25 mg/kg once daily), “LIRA” (liraglutide 1 mg/kg s. c. once daily), “DULA” (dulaglutide 0,12 mg/kg s. c. every 72 hours), “SEMA” (semaglutide 0,012 mg /kg s. c. once daily), “MET” (metformin per os 200 mg/kg once daily — comparison group), “Control” (administration of 0,9 % NaCl solution s. c. once daily). After 7 days, all groups underwent transient focal 30-minute filament middle cerebral artery occlusion. After 48 hours of reperfusion, neurological deficit was assessed using the Garcia scale, then the brain was collected and sections were stained with 1 % triphenyltetrazolium chloride solution to calculate the damage volume.Results. Neurological deficit severity in the “LIRA” (14,50 (12,25; 15,25) points) and “SEMA” (14,00 (13,50; 18,00) points) groups was significantly less than in the “Control” group (11.00 (6,75; 12,00) points). The use of both SGLT-2i, as well as metformin, had no effect on the neurological status. At the same time, therapy with all study drugs had an infarct-limiting effect, compared with the “Control” group (damage volume 24,50 (14,69; 30,12) % of the total brain volume). At the same time, the brain damage volume in the “MET” group (12,93 (6,65, 26,66) %) was greater than that in the “EMPA” (6,08 (2,97, 7,63) %), “CANA” (5,11 (3,96; 8,34) %), “LIRA” (3,40 (2,09; 8,08) %), “DULA” (4,37 (2,72; 5,40) %), “SEMA” (5,19 (4,11; 7,83) %) groups.Conclusions. SGLT-2i of varying selectivity and GLP-1RA of varying duration of action have a similar infarct-limiting effect in acute experimental brain ischemia. At the same time, GLP-1RA neuroprotective potential is higher, as it is characterized by an additional positive effect on the neurological status.
Collapse
Affiliation(s)
| | - O. S. Fuks
- Almazov National Medical Research Centre
| | - N. V. Timkina
- Almazov National Medical Research Centre; Pavlov University
| | | | | | - T. L. Karonova
- Almazov National Medical Research Centre; Pavlov University
| |
Collapse
|
47
|
Zhang X, Sang X, Chen Y, Yu H, Sun Y, Liang X, Zheng X, Wang X, Yang H, Bi J, Zhang L, Wang P. VCAM-1 + hUC-MSCs Exert Considerable Neuroprotection Against Cerebral Infarction in Rats by Suppression of NLRP3-Induced Pyroptosis. Neurochem Res 2023; 48:3084-3098. [PMID: 37336824 DOI: 10.1007/s11064-023-03968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) are spindle-like heterogeneous cell populations with advantageous bidirectional immunomodulatory and hematopoietic support effects. Vascular cellular adhesion molecule-1 (VCAM-1)+ MSCs have been reported to exhibit immunoregulatory and proangiogenic capacities. Here, we studied the effects of VCAM-1+ human umbilical cord (hUC)-MSCs on neuroprotection against cerebral infarction. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO), and VCAM-1- and VCAM-1+ hUC-MSCs were intravenously injected into the rat 4 h post-MCAO surgery. Thereafter, modified neurological severity scores (mNSS) were determined, and the Morris water maze test, 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin (H&E), Nissl, TUNEL staining, and qRT-PCR were conducted. Following induction of oxygen-glucose deprivation/reoxygenation (OGD/R), SH-SY5Y cells were co-cultured with VCAM-1- and VCAM-1+ hUC-MSCs. CCK-8, flow cytometry, ELISA, and western blot analyses were performed in vitro. Compared with VCAM-1- hUC-MSCs, administration of VCAM-1+ hUC-MSCs revealed improved therapeutic efficacy against cerebral infarction in rats, as confirmed by lower mNSS scores and infarct volumes, as well as improved learning and memory capacities. In addition, VCAM-1+ hUC-MSCs exhibited improved efficacy against neurological defects in rats with cerebral infarction, accompanied by inhibition of the NLRP3-mediated inflammatory response. VCAM-1+ hUC-MSC co-culture improved the viability and diminished NLRP3-mediated inflammatory response in OGD/R-treated SH-SY5Y cells. Moreover, NLRP3 overexpression in SH-SY5Y cells prevented the beneficial effects of VCAM-1+ hUC-MSC co-culture. Overall, our findings demonstrated the relevance of VCAM-1+ hUC-MSC-based cytotherapy for preclinical neuroprotection against cerebral infarction.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xiaoyu Sang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yanting Chen
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Hao Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuan Sun
- The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xilong Liang
- Department of Biostatistics, School of Public Health, Yale University, 38 Crown Street, APT 203, New Haven, CT, 06510, USA
| | - Xiaolei Zheng
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xiao Wang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Hui Yang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Leisheng Zhang
- Department of Neurosurgery, Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Ping Wang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China.
| |
Collapse
|
48
|
Zhang J, Cai W, Wei X, Shi Y, Zhang K, Hu C, Wan J, Luo K, Shen W. Moxibustion ameliorates cerebral ischemia-reperfusion injury by regulating ferroptosis in rats. Clin Exp Pharmacol Physiol 2023; 50:779-788. [PMID: 37417429 DOI: 10.1111/1440-1681.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 07/08/2023]
Abstract
Moxibustion is an effective treatment for the clinical management of acute cerebral infarction. However, its exact mechanism of action is still not fully understood. This study aimed to investigate the protective effect of moxibustion on cerebral ischemia-reperfusion injury (CIRI) in rats. Middle cerebral artery occlusion/reperfusion (MCAO/R) was used to construct a CIRI rat model, all animals were randomly divided into four groups including sham operation group, MCAO/R group (MCAO/R), moxibustion therapy + MCAO/R (Moxi) and ferrostatin-1 + MCAO/R (Fer-1) group. In the Moxi group, moxibustion treatment was initiated 24 h after modeling, once a day for 30 mins each time for 7 days. Moreover, the Fer-1 group received intraperitoneal injections of Fer-1 12 h after modeling, once a day for a total of 7 days. The results showed that moxibustion could reduce nerve function damage and neuronal death. Additionally, moxibustion could reduce the production of lipid peroxides such as lipid peroxide, malondialchehyche and ACSL4 to regulate lipid metabolism, promote the production of glutathione and glutathione peroxidase 4 and reduce the expression of hepcidin by inhibiting the production of inflammatory factor interleukin-6, therefore, downregulating the expression of SLC40A1, reducing the iron level in the cerebral cortex, reducing the accumulation of reactive oxygen species and inhibiting ferroptosis. Based on our studies, it can be concluded that moxibustion has the ability to inhibit ferroptosis of nerve cells post CIRI and plays a protective role in the brain. This protective role can be attributed to the regulation of iron metabolism of nerve cells, reduction of iron deposition in the hippocampus and lowering the level of lipid peroxidation.
Collapse
Affiliation(s)
- JingRuo Zhang
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Acupuncture and Moxibustion, Jiaxing Hospital of TCM, Zhejiang Chinese Medicine University, Jiaxing, China
| | - Wa Cai
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xifang Wei
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanbo Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Hospital of TCM, Zhejiang Chinese Medicine University, Jiaxing, China
| | - Kun Zhang
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Hu
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Wan
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaitao Luo
- Department of Acupuncture and Moxibustion, Jiaxing Hospital of TCM, Zhejiang Chinese Medicine University, Jiaxing, China
| | - Weidong Shen
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
49
|
Metwally SAH, Paruchuri SS, Yu L, Capuk O, Pennock N, Sun D, Song S. Pharmacological Inhibition of NHE1 Protein Increases White Matter Resilience and Neurofunctional Recovery after Ischemic Stroke. Int J Mol Sci 2023; 24:13289. [PMID: 37686096 PMCID: PMC10488118 DOI: 10.3390/ijms241713289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
To date, recanalization interventions are the only available treatments for ischemic stroke patients; however, there are no effective therapies for reducing stroke-induced neuroinflammation. We recently reported that H+ extrusion protein Na+/H+ exchanger-1 (NHE1) plays an important role in stroke-induced inflammation and white matter injury. In this study, we tested the efficacy of two potent NHE1 inhibitors, HOE642 and Rimeporide, with a delayed administration regimen starting at 24 h post-stroke in adult C57BL/6J mice. Post-stroke HOE642 and Rimeporide treatments accelerated motor and cognitive function recovery without affecting the initial ischemic infarct, neuronal damage, or reactive astrogliosis. However, the delayed administration of NHE1 blockers after ischemic stroke significantly reduced microglial inflammatory activation while enhanced oligodendrogenesis and white matter myelination, with an increased proliferation and decreased apoptosis of the oligodendrocytes. Our findings suggest that NHE1 protein plays an important role in microglia-mediated inflammation and white matter damage. The pharmacological blockade of NHE1 protein activity reduced microglia inflammatory responses and enhanced oligodendrogenesis and white matter repair, leading to motor and cognitive function recovery after stroke. Our study reveals the potential of targeting NHE1 protein as a therapeutic strategy for ischemic stroke therapy.
Collapse
Affiliation(s)
- Shamseldin Ayman Hassan Metwally
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Satya Siri Paruchuri
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lauren Yu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Okan Capuk
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nicholas Pennock
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15213, USA
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15213, USA
| |
Collapse
|
50
|
Li K, Peng L, Xing Q, Zuo X, Huang W, Zhan L, Li H, Sun W, Zhong X, Zhu T, Pan G, Xu E. Transplantation of hESCs-Derived Neural Progenitor Cells Alleviates Secondary Damage of Thalamus After Focal Cerebral Infarction in Rats. Stem Cells Transl Med 2023; 12:553-568. [PMID: 37399126 PMCID: PMC10428088 DOI: 10.1093/stcltm/szad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/04/2023] [Indexed: 07/05/2023] Open
Abstract
Human embryonic stem cells-derived neural progenitor cells (hESCs-NPCs) transplantation holds great potential to treat stroke. We previously reported that delayed secondary degeneration occurs in the ventroposterior nucleus (VPN) of ipsilateral thalamus after distal branch of middle cerebral artery occlusion (dMCAO) in adult male Sprague-Dawley (SD) rats. In this study, we investigate whether hESCs-NPCs would benefit the neural recovery of the secondary damage in the VPN after focal cerebral infarction. Permanent dMCAO was performed with electrocoagulation. Rats were randomized into Sham, dMCAO groups with or without hESCs-NPCs treatment. HESCs-NPCs were engrafted into the peri-infarct regions of rats at 48 h after dMCAO. The transplanted hESCs-NPCs survive and partially differentiate into mature neurons after dMCAO. Notably, hESCs-NPCs transplantation attenuated secondary damage of ipsilateral VPN and improved neurological functions of rats after dMCAO. Moreover, hESCs-NPCs transplantation significantly enhanced the expression of BDNF and TrkB and their interaction in ipsilateral VPN after dMCAO, which was reversed by the knockdown of TrkB. Transplantated hESCs-NPCs reconstituted thalamocortical connection and promoted the formation of synapses in ipsilateral VPN post-dMCAO. These results suggest that hESCs-NPCs transplantation attenuates secondary damage of ipsilateral thalamus after cortical infarction, possibly through activating BDNF/TrkB pathway, enhancing thalamocortical projection, and promoting synaptic formation. It provides a promising therapeutic strategy for secondary degeneration in the ipsilateral thalamus post-dMCAO.
Collapse
Affiliation(s)
- Kongping Li
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Linhui Peng
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Qi Xing
- Department of Neurology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangdong, People’s Republic of China
| | - Xialin Zuo
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wenhao Huang
- Department of Neurology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangdong, People’s Republic of China
| | - Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Heying Li
- Department of Neurology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangdong, People’s Republic of China
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaofen Zhong
- Department of Neurology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangdong, People’s Republic of China
| | - Tieshi Zhu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Guangjin Pan
- Department of Neurology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangdong, People’s Republic of China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|