1
|
Badurdeen S, Galinsky R, Roberts CT, Crossley KJ, Zahra VA, Thiel A, Pham Y, Davis PG, Hooper SB, Polglase GR, Camm EJ. Rapid oxygen titration following cardiopulmonary resuscitation mitigates cerebral overperfusion and striatal mitochondrial dysfunction in asphyxiated newborn lambs. J Cereb Blood Flow Metab 2025; 45:630-642. [PMID: 39576879 PMCID: PMC11584996 DOI: 10.1177/0271678x241302738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Asphyxiated neonates must have oxygenation rapidly restored to limit ongoing hypoxic-ischemic injury. However, the effects of transient hyperoxia after return of spontaneous circulation (ROSC) are poorly understood. We randomly allocated acutely asphyxiated, near-term lambs to cardiopulmonary resuscitation in 100% oxygen ("standard oxygen", n = 8) or air (n = 7) until 5 minutes after ROSC, or to resuscitation in 100% oxygen immediately weaned to air upon ROSC ("rapid-wean", n = 7). From 5 minutes post-ROSC, oxygen was titrated to target preductal oxygen saturation between 90-95%. Cerebral tissue oxygenation was transiently but markedly elevated following ROSC in the standard oxygen group compared to the air and rapid-wean groups. The air group had a delayed rise in cerebral tissue oxygenation from 5 minutes after ROSC coincident with up-titration of oxygen. These alterations in oxygen kinetics corresponded with similar overshoots in cerebral perfusion (pressure and flow), indicating a physiological mechanism. Transient cerebral tissue hyperoxia in the standard oxygen and air groups resulted in significant alterations in mitochondrial respiration and dynamics, relative to the rapid-wean group. Overall, rapid-wean of oxygen following ROSC preserved striatal mitochondrial respiratory function and reduced the expression of genes involved in free radical generation and apoptosis, suggesting a potential therapeutic strategy to limit cerebral reperfusion injury.
Collapse
Affiliation(s)
- Shiraz Badurdeen
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Melbourne Children’s Global Health, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville VIC, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Calum T Roberts
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Monash Newborn, Monash Children’s Hospital, Clayton, Australia
| | - Kelly J Crossley
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Valerie A Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Alison Thiel
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Peter G Davis
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville VIC, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Department of Paediatrics, Monash University, Clayton, Australia
| | - Emily J Camm
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Uslu A, Gökdemir BN, Çekmen N, Ersoy Z. An Innovative Study Focused on Reducing Unnecessary Oxygen Exposure in Pediatric Patients. J Perianesth Nurs 2024; 39:881-886. [PMID: 38864799 DOI: 10.1016/j.jopan.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 06/13/2024]
Abstract
PURPOSE In the perioperative period, fractional-inspired oxygen is used at values up to 80% to stay within the safe range, even for a short time. A clear value for the safe range has not been specified, and therefore, clinicians prefer a high oxygen value. This study aims to reduce unnecessary oxygen exposure in pediatrice patients and to provide the optimum fractional inspired oxygen value. DESIGN The study was designed as a prospective randomized controlled study, including 139 patients aged 1 to 8 years without comorbidity. METHODS Three groups were formed by adjusting the fractional inspired oxygen to 30%, 50%, or 80% intraoperatively. In the intraoperative period, a strict inspired oxygen protocol (hypoxemia threshold was SpO2 < 90) and oxygen reserve index, fractional expired oxygen value, and peripheral oxygen saturation were used to maintain the balance of hypoxemia and hyperoxemia. FINDINGS One hundred and nine children were included. The mean oxygen reserve index was significantly lower in the 30% group than in the other groups (0.09 ± 0.05, P < .0001). The mean arterial pressure in the 30% group was significantly lower than the 80% group but within the normal range (78 ± 6 mmHg, P < .003). There was no significant difference between the groups regarding delirium and pain in the recovery unit. CONCLUSIONS Due to the known and unknown harmful effects of unnecessary oxygen exposure, it may be time to use optimal oxygen and to fear unnecessary oxygen, not less oxygen. As the next step, we think studies should be conducted with patient groups with lower oxygen concentrations (eg, %21 vs %24 vs %30), more patients, and arterial blood gas monitoring.
Collapse
Affiliation(s)
- Ahmed Uslu
- Department of Anesthesiology and Reanimation, University of Baskent, Ankara, Turkey.
| | - Begüm N Gökdemir
- Department of Anesthesiology and Reanimation, University of Baskent, Ankara, Turkey
| | - Nedim Çekmen
- Department of Anesthesiology and Reanimation, University of Baskent, Ankara, Turkey
| | - Zeynep Ersoy
- Department of Anesthesiology and Reanimation, University of Baskent, Ankara, Turkey
| |
Collapse
|
3
|
Hencz AJ, Magony A, Thomas C, Kovacs K, Szilagyi G, Pal J, Sik A. Short-term hyperoxia-induced functional and morphological changes in rat hippocampus. Front Cell Neurosci 2024; 18:1376577. [PMID: 38686017 PMCID: PMC11057248 DOI: 10.3389/fncel.2024.1376577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Excess oxygen (O2) levels may have a stimulating effect, but in the long term, and at high concentrations of O2, it is harmful to the nervous system. The hippocampus is very sensitive to pathophysiological changes and altered O2 concentrations can interfere with hippocampus-dependent learning and memory functions. In this study, we investigated the hyperoxia-induced changes in the rat hippocampus to evaluate the short-term effect of mild and severe hyperoxia. Wistar male rats were randomly divided into control (21% O2), mild hyperoxia (30% O2), and severe hyperoxia groups (100% O2). The O2 exposure lasted for 60 min. Multi-channel silicon probes were used to study network oscillations and firing properties of hippocampal putative inhibitory and excitatory neurons. Neural damage was assessed using the Gallyas silver impregnation method. Mild hyperoxia (30% O2) led to the formation of moderate numbers of silver-impregnated "dark" neurons in the hippocampus. On the other hand, exposure to 100% O2 was associated with a significant increase in the number of "dark" neurons located mostly in the hilus. The peak frequency of the delta oscillation decreased significantly in both mild and severe hyperoxia in urethane anesthetized rats. Compared to normoxia, the firing activity of pyramidal neurons under hyperoxia increased while it was more heterogeneous in putative interneurons in the cornu ammonis area 1 (CA1) and area 3 (CA3). These results indicate that short-term hyperoxia can change the firing properties of hippocampal neurons and network oscillations and damage neurons. Therefore, the use of elevated O2 concentration inhalation in hospitals (i.e., COVID treatment and surgery) and in various non-medical scenarios (i.e., airplane emergency O2 masks, fire-fighters, and high altitude trekkers) must be used with extreme caution.
Collapse
Affiliation(s)
| | - Andor Magony
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Chloe Thomas
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Krisztina Kovacs
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gabor Szilagyi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Jozsef Pal
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Badurdeen S, Cheong JLY, Donath S, Graham H, Hooper SB, Polglase GR, Jacobs S, Davis PG. Early Hyperoxemia and 2-year Outcomes in Infants with Hypoxic-ischemic Encephalopathy: A Secondary Analysis of the Infant Cooling Evaluation Trial. J Pediatr 2024; 267:113902. [PMID: 38185204 DOI: 10.1016/j.jpeds.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE To determine the causal relationship between exposure to early hyperoxemia and death or major disability in infants with hypoxic-ischemic encephalopathy (HIE). STUDY DESIGN We analyzed data from the Infant Cooling Evaluation (ICE) trial that enrolled newborns ≥35 weeks' gestation with moderate-severe HIE, randomly allocated to hypothermia or normothermia. The primary outcome was death or major sensorineural disability at 2 years. We included infants with arterial pO2 measured within 2 hours of birth. Using a directed acyclic graph, we established that markers of severity of perinatal hypoxia-ischemia and pCO2 were a minimally sufficient set of variables for adjustment in a regression model to estimate the causal relationship between arterial pO2 and death/disability. RESULTS Among 221 infants, 116 (56%) had arterial pO2 and primary outcome data. The unadjusted analysis revealed a U-shaped relationship between arterial pO2 and death or major disability. Among hyperoxemic infants (pO2 100-500 mmHg) the proportion with death or major disability was 40/58 (0.69), while the proportion in normoxemic infants (pO2 40-99 mmHg) was 20/48 (0.42). In the adjusted model, hyperoxemia increased the risk of death or major disability (adjusted risk ratio 1.61, 95% CI 1.07-2.00, P = .03) in relation to normoxemia. CONCLUSION Early hyperoxemia increased the risk of death or major disability among infants who had an early arterial pO2 in the ICE trial. Limitations include the possibility of residual confounding and other causal biases. Further work is warranted to confirm this relationship in the era of routine therapeutic hypothermia.
Collapse
Affiliation(s)
- Shiraz Badurdeen
- Newborn Research Centre, The Royal Women's Hospital, Melbourne, Victoria, Australia; Melbourne Children's Global Health, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The Mercy Hospital for Women, Heidelberg, Victoria, Australia; Department of Obstetrics, Gynaecology, and Newborn Health, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Jeanie L Y Cheong
- Newborn Research Centre, The Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Obstetrics, Gynaecology, and Newborn Health, The University of Melbourne, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Susan Donath
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Hamish Graham
- Melbourne Children's Global Health, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart B Hooper
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Graeme R Polglase
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Sue Jacobs
- Newborn Research Centre, The Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Obstetrics, Gynaecology, and Newborn Health, The University of Melbourne, Melbourne, Victoria, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Peter G Davis
- Newborn Research Centre, The Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Obstetrics, Gynaecology, and Newborn Health, The University of Melbourne, Melbourne, Victoria, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Sankaran D, Giusto EM, Lesneski AL, Hardie ME, Joudi HM, Lane ECA, Hammitt VL, Tully KC, Vali P, Lakshminrusimha S. Randomized Trial of 21% versus 100% Oxygen during Chest Compressions Followed by Gradual versus Abrupt Oxygen Titration after Return of Spontaneous Circulation in Neonatal Lambs. CHILDREN 2023; 10:children10030575. [PMID: 36980132 PMCID: PMC10047452 DOI: 10.3390/children10030575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
The combination of perinatal acidemia with postnatal hyperoxia is associated with a higher incidence of hypoxic-ischemic encephalopathy (HIE) in newborn infants. In neonatal cardiac arrest, current International Liaison Committee on Resuscitation (ILCOR) and Neonatal Resuscitation Program (NRP) guidelines recommend increasing inspired O2 to 100% during chest compressions (CC). Following the return of spontaneous circulation (ROSC), gradual weaning from 100% O2 based on pulse oximetry (SpO2) can be associated with hyperoxia and risk for cerebral tissue injury owing to oxidative stress. We hypothesize that compared to gradual weaning from 100% O2 with titration based on preductal SpO2, abrupt or rapid weaning of inspired O2 to 21% after ROSC or use of 21% O2 during CC followed by upward titration of inspired O2 to achieve target SpO2 after ROSC will limit hyperoxia after ROSC. Nineteen lambs were randomized before delivery and asphyxial arrest was induced by umbilical cord occlusion. There was no difference in oxygenation during chest compressions between the three groups. Gradual weaning of inspired O2 from 100% O2 after ROSC resulted in supraphysiological PaO2 and higher cerebral oxygen delivery compared to 21% O2 during CC or 100% O2 during CC followed by abrupt weaning to 21% O2 after ROSC. The use of 21% O2 during CC was associated with very low PaO2 after ROSC and higher brain tissue lactic acid compared to other groups. Our findings support the current recommendations to use 100% O2 during CC and additionally suggest the benefit of abrupt decrease in inspired oxygen to 21% O2 after ROSC. Clinical studies are warranted to investigate optimal oxygen titration after chest compressions and ROSC during neonatal resuscitation.
Collapse
Affiliation(s)
- Deepika Sankaran
- Department of Pediatrics, University of California, Davis, Sacramento, CA 95817, USA
- Correspondence:
| | - Evan M. Giusto
- Department of Pediatrics, University of California, Davis, Sacramento, CA 95817, USA
| | - Amy L. Lesneski
- Department of Stem Cell Research, University of California, Davis, Sacramento, CA 95817, USA
| | - Morgan E. Hardie
- Department of Pediatrics, University of California, Davis, Sacramento, CA 95817, USA
| | - Houssam M. Joudi
- Department of Pediatrics, University of California, Davis, Sacramento, CA 95817, USA
| | - Emily C. A. Lane
- Department of Pediatrics, University of California, Davis, Sacramento, CA 95817, USA
| | - Victoria L. Hammitt
- Department of Stem Cell Research, University of California, Davis, Sacramento, CA 95817, USA
| | - Kirstie C. Tully
- Department of Stem Cell Research, University of California, Davis, Sacramento, CA 95817, USA
| | - Payam Vali
- Department of Pediatrics, University of California, Davis, Sacramento, CA 95817, USA
| | | |
Collapse
|
6
|
Li J, Liu HT, Zhao J, Chen HJ. Telomerase reverse transcriptase (TERT) promotes neurogenesis after hypoxic-ischemic brain damage in neonatal rats. Neurol Res 2022; 44:819-829. [PMID: 35400306 DOI: 10.1080/01616412.2022.2056339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jiao Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Ting Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hong-Ju Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Sankaran D, Vali P, Chen P, Lesneski AL, Hardie ME, Alhassen Z, Wedgwood S, Wyckoff MH, Lakshminrusimha S. Randomized trial of oxygen weaning strategies following chest compressions during neonatal resuscitation. Pediatr Res 2021; 90:540-548. [PMID: 33941864 PMCID: PMC8530847 DOI: 10.1038/s41390-021-01551-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 04/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The Neonatal Resuscitation Program (NRP) recommends using 100% O2 during chest compressions and adjusting FiO2 based on SpO2 after return of spontaneous circulation (ROSC). The optimal strategy for adjusting FiO2 is not known. METHODS Twenty-five near-term lambs asphyxiated by umbilical cord occlusion to cardiac arrest were resuscitated per NRP. Following ROSC, lambs were randomized to gradual decrease versus abrupt wean to 21% O2 followed by FiO2 titration to achieve NRP SpO2 targets. Carotid blood flow and blood gases were monitored. RESULTS Three minutes after ROSC, PaO2 was 229 ± 32 mmHg in gradual wean group compared to 57 ± 13 following abrupt wean to 21% O2 (p < 0.001). PaO2 remained high in the gradual wean group at 10 min after ROSC (110 ± 10 vs. 67 ± 12, p < 0.01) despite similar FiO2 (~0.3) in both groups. Cerebral O2 delivery (C-DO2) was higher above physiological range following ROSC with gradual wean (p < 0.05). Lower blood oxidized/reduced glutathione ratio (suggesting less oxidative stress) was observed with abrupt wean. CONCLUSION Weaning FiO2 abruptly to 0.21 with adjustment based on SpO2 prevents surge in PaO2 and C-DO2 and minimizes oxidative stress compared to gradual weaning from 100% O2 following ROSC. Clinical trials with neurodevelopmental outcomes comparing post-ROSC FiO2 weaning strategies are warranted. IMPACT In a lamb model of perinatal asphyxial cardiac arrest, abrupt weaning of inspired oxygen to 21% prevents excessive oxygen delivery to the brain and oxidative stress compared to gradual weaning from 100% oxygen following return of spontaneous circulation. Clinical studies assessing neurodevelopmental outcomes comparing abrupt and gradual weaning of inspired oxygen after recovery from neonatal asphyxial arrest are warranted.
Collapse
Affiliation(s)
- Deepika Sankaran
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA.
| | - Payam Vali
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Peggy Chen
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Amy L Lesneski
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Morgan E Hardie
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Ziad Alhassen
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Stephen Wedgwood
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Myra H Wyckoff
- Division of Neonatology, Department of Pediatrics, University of Texas South Western (UTSW), Dallas, TX, USA
| | - Satyan Lakshminrusimha
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
8
|
El-Dib M, Szakmar E, Chakkarapani E, Aly H. Challenges in respiratory management during therapeutic hypothermia for neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101263. [PMID: 34244080 DOI: 10.1016/j.siny.2021.101263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neonatal encephalopathy (NE) is a serious condition with devastating neurological outcomes that can impact oxygenation and ventilation. The currently recommended therapeutic hypothermia (TH) for these infants may also has several respiratory implications. It decreases metabolic rate and oxygen demands; however, it increases oxygen solubility in the blood and impacts its release to peripheral tissue including the brain. Respiratory management of infants treated with TH should aim for minimizing exposure to hypocapnia or hyperoxia. Inspiratory gas should be heated to 37 °C and humidified to prevent airway and alveolar injury. Blood gas values should be corrected to the core temperature during TH and the use of alkaline buffers is discouraged. While mild sedation/analgesia may ameliorate the discomfort related to cooling, paralytic agents/heavy sedation should be used with caution considering their side effects. Finally, the use of caffeine still needs careful investigation in this population.
Collapse
Affiliation(s)
- Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., CWN#418, Boston, MA, 02115, USA.
| | - Eniko Szakmar
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., CWN#418, Boston, MA, 02115, USA; 1st Department of Pediatrics, Semmelweis University, 54 Bokay St., HU-1083, Budapest, Hungary.
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical School, University of Bristol, Regional Neonatal Intensive Care Unit, St Michael's Hospital University Hospitals Bristol NHS Trust, Southwell Street, Bristol, BS2 8EG, United Kingdom.
| | - Hany Aly
- Department of Neonatology, Cleveland Clinic Children's Hospital, 9500 Euclid Avenue # M31-37 Cleveland, OH, 44195, USA.
| | | |
Collapse
|
9
|
Abstract
Neonatal encephalopathy due to perinatal hypoxia-ischemia (hypoxic-ischemic encephalopathy [HIE]) occurs at a rate of 1 to 3 per 1000 live births. Therapeutic hypothermia is the standard of care and the only currently available therapy to reduce the risk of death or disability in newborns with moderate to severe HIE. Hypothermia therapy needs to be initiated within 6 hours after birth in order to provide the best chance for neuroprotection. All pediatricians and delivery room attendants should be trained to recognize encephalopathy and understand the eligibility criteria for treatment. The modified Sarnat examination is the most frequently used tool to assess the degree of encephalopathy and has six categories, each of which can have mild, moderate, severe abnormalities. Apart from historical and biochemical criteria, a neonate must have 3 of 6 categories scored in the moderate or severe range in order to qualify for hypothermia as was done in the randomized trials. Whether an infant qualifies or there is concern that an infant might have HIE, transfer to a center that can perform treatment should be initiated immediately. Hypothermia significantly reduces the risk of death or moderate to severe impairments at 2 years and at school age. On average, only 7 neonates need to be treated for one neonate to benefit. Although easy in concept, implementation of hypothermia does require expertise and should be carried out under the guidance of a neonatologist. If infants are passively cooled prior to transport, core temperature needs to be closely monitored with a target of 33.5°C ± 0.5°C. Maintenance of homeostasis is important in order to prevent conditions that may result in additional brain injury. Seizures are common in neonates with HIE, but electrographic seizures are rare in the first few hours after birth if the insult occurred during labor and delivery. Prophylactic antiepileptic drugs should not be administered. Brain monitoring in the form of electroencephalogram (EEG) and or amplitude-integrated EEG should be implemented as soon as possible to help with prognosis and to accurately diagnose seizures.
Collapse
Affiliation(s)
- Sonia Lomeli Bonifacio
- NeuroNICU, Division of Neonatal and Developmental Medicine, 750 Welch Road, Suite 315, Palo Alto, CA, USA.
| | - Shandee Hutson
- Department of Neonatology, NICN, Sharp Mary Birch Hospital for Women and Newborns, 8555 Aero Drive #104, San Diego, CA 92123, USA
| |
Collapse
|
10
|
Giannakis S, Ruhfus M, Markus M, Stein A, Hoehn T, Felderhoff-Mueser U, Sabir H. Mechanical Ventilation, Partial Pressure of Carbon Dioxide, Increased Fraction of Inspired Oxygen and the Increased Risk for Adverse Short-Term Outcomes in Cooled Asphyxiated Newborns. CHILDREN-BASEL 2021; 8:children8060430. [PMID: 34063852 PMCID: PMC8224013 DOI: 10.3390/children8060430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022]
Abstract
Neonates treated with therapeutic hypothermia (TH) following perinatal asphyxia (PA) suffer a considerable rate of disability and mortality. Several risk factors associated with adverse outcomes have been identified. Mechanical ventilation might increase the risk for hyperoxia and hypocapnia in cooled newborns. We carried out a retrospective study in 71 asphyxiated cooled newborns. We analyzed the association of ventilation status and adverse short-term outcomes and investigated the effect of the former on pCO2 and oxygen delivery before, during and after TH. Death, abnormal findings on magnetic resonance imaging, and pathological amplitude-integrated electroencephalography traces were used to define short-term outcomes. The need for mechanical ventilation was significantly higher in the newborns with adverse outcomes (38% vs. 5.6%, p = 0.001). Compared to spontaneously breathing neonates, intubated newborns suffered from significantly more severe asphyxia, had significantly lower levels of mean minimum pCO2 over the first 6 and 72 h of life (HOL) (p = 0.03 and p = 0.01, respectively) and increased supply of inspired oxygen, which was, in turn, significantly higher in the newborns with adverse outcomes (p < 0.01). Intubated newborns with adverse short-term outcomes had lower levels of pCO2 over the first 36 HOL. In conclusion, need for mechanical ventilation was significantly higher in newborns with more severe asphyxia. In ventilated newborns, level of encephalopathy, lower pCO2 levels, and increased oxygen supplementation were significantly higher in the adverse short-term outcomes group. Ventilatory parameters need to be carefully monitored in cooled asphyxiated newborns.
Collapse
Affiliation(s)
- Stamatios Giannakis
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Faculty of Medicine, University Children’s Hospital, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany; (S.G.); (M.M.); (T.H.)
| | - Maria Ruhfus
- Department of Pediatrics I/Neonatology, University Hospital Essen, University Duisburg Essen, 45147 Essen, Germany; (M.R.); (A.S.); (U.F.-M.)
| | - Mona Markus
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Faculty of Medicine, University Children’s Hospital, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany; (S.G.); (M.M.); (T.H.)
| | - Anja Stein
- Department of Pediatrics I/Neonatology, University Hospital Essen, University Duisburg Essen, 45147 Essen, Germany; (M.R.); (A.S.); (U.F.-M.)
| | - Thomas Hoehn
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Faculty of Medicine, University Children’s Hospital, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany; (S.G.); (M.M.); (T.H.)
| | - Ursula Felderhoff-Mueser
- Department of Pediatrics I/Neonatology, University Hospital Essen, University Duisburg Essen, 45147 Essen, Germany; (M.R.); (A.S.); (U.F.-M.)
| | - Hemmen Sabir
- Department of Pediatrics I/Neonatology, University Hospital Essen, University Duisburg Essen, 45147 Essen, Germany; (M.R.); (A.S.); (U.F.-M.)
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany
- German Centre for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
11
|
Shaw DM, Cabre G, Gant N. Hypoxic Hypoxia and Brain Function in Military Aviation: Basic Physiology and Applied Perspectives. Front Physiol 2021; 12:665821. [PMID: 34093227 PMCID: PMC8171399 DOI: 10.3389/fphys.2021.665821] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/22/2021] [Indexed: 01/04/2023] Open
Abstract
Acute hypobaric hypoxia (HH) is a major physiological threat during high-altitude flight and operations. In military aviation, although hypoxia-related fatalities are rare, incidences are common and are likely underreported. Hypoxia is a reduction in oxygen availability, which can impair brain function and performance of operational and safety-critical tasks. HH occurs at high altitude, due to the reduction in atmospheric oxygen pressure. This physiological state is also partially simulated in normobaric environments for training and research, by reducing the fraction of inspired oxygen to achieve comparable tissue oxygen saturation [normobaric hypoxia (NH)]. Hypoxia can occur in susceptible individuals below 10,000 ft (3,048 m) in unpressurised aircrafts and at higher altitudes in pressurised environments when life support systems malfunction or due to improper equipment use. Between 10,000 ft and 15,000 ft (4,572 m), brain function is mildly impaired and hypoxic symptoms are common, although both are often difficult to accurately quantify, which may partly be due to the effects of hypocapnia. Above 15,000 ft, brain function exponentially deteriorates with increasing altitude until loss of consciousness. The period of effective and safe performance of operational tasks following exposure to hypoxia is termed the time-of-useful-consciousness (TUC). Recovery of brain function following hypoxia may also lag beyond arterial reoxygenation and could be exacerbated by repeated hypoxic exposures or hyperoxic recovery. This review provides an overview of the basic physiology and implications of hypoxia for military aviation and discusses the utility of hypoxia recognition training.
Collapse
Affiliation(s)
- David M Shaw
- Aviation Medicine Unit, Royal New Zealand Air Force Base Auckland, Auckland, New Zealand.,School of Sport, Exercise and Nutrition, Massey University, Auckland, New Zealand
| | - Gus Cabre
- Aviation Medicine Unit, Royal New Zealand Air Force Base Auckland, Auckland, New Zealand
| | - Nicholas Gant
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Abstract
Oxygen is commonly used in the delivery room during neonatal resuscitation. The transition from intrauterine to extrauterine life is a challenge to newborns, and exposure to too much oxygen can cause an increase in oxidative stress. The goal of resuscitation is to achieve normal oxygen levels as quickly as possible while avoiding excessive oxygen exposure and preventing inadequate oxygen supplementation. Although it has been shown that room air resuscitation is as effective as using 100% oxygen, often preterm infants need some degree of oxygen supplementation. The ideal concentration of oxygen with which to initiate resuscitation is yet to be determined. Current delivery room resuscitation guidelines recommend the use of room air for term newborns and preterm newborns of greater than or equal to 35 weeks' gestation and the use of a fraction of inspired oxygen of 0.21 to 0.3 for preterm infants of less than 35 weeks' gestation. Further recommendations include titrating oxygen supplementation as needed to obtain goal saturations. However, there is no current consensus on an intermediate oxygen concentration to start resuscitation or goal range saturations for preterm and asphyxiated term infants.
Collapse
Affiliation(s)
- Esther Kim
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Margaret Nguyen
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
13
|
Abstract
Premature infants undergo a complex postnatal adaptation at birth. For last two centuries, oxygen has been integral to respiratory support of preterm infants at birth. Excess oxygen can cause oxidative stress and tissue injury. Preterm infants due to lung immaturity may need oxygen for successful transition at birth. Although, considerable progress has been made in the last 3 decades, optimum oxygen therapy for preterm delivery room resuscitation remains unknown. In this review, we discuss the history and physiology behind oxygen therapy in the delivery room, evaluate current literature, provide practice points and point out knowledge gaps of oxygen therapy in preterm infant at birth.
Collapse
|
14
|
Abstract
Low- and middle-income countries and resource-limited regions are major contributors to perinatal and infant mortality. Oxygen is widely used for resuscitation in high- and middle-income settings. However, oxygen supplementation is not available in resource-limited regions. Oxygen supplementation for resuscitation at birth has adverse effects in human/animal model studies. There has been a change with resultant recommendations for restrictive oxygen use in neonatal resuscitation. Neonatal resuscitation without supplemental oxygen decreases mortality and morbidities. Oxygen in resource-limited settings for neonatal resuscitation is ideal as a backup for selected resuscitations but should not be a limiting factor for implementing basic life-saving efforts.
Collapse
|
15
|
Szakmar E, Jermendy A, El-Dib M. Respiratory management during therapeutic hypothermia for hypoxic-ischemic encephalopathy. J Perinatol 2019; 39:763-773. [PMID: 30858610 DOI: 10.1038/s41372-019-0349-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
Abstract
Therapeutic hypothermia (TH) has become the standard of care treatment to improve morbidity and mortality in infants with hypoxic-ischemic encephalopathy (HIE). Although TH has clearly proven to be beneficial, recent studies suggest optimization of respiratory management as an approach to prevent further damage and improve neurodevelopmental outcome. The ventilatory management of asphyxiated neonates presents a challenge because both the hypoxic insult and TH have an impact on respiratory functions. Although the danger of recurrence of hypocapnia is well recognized, a brief period of severe hyperoxia also can be detrimental to the previously compromised brain and have been shown to increase the risk of adverse neurodevelopmental outcomes. Therefore, judicious ventilatory management with rigorous monitoring is of particular importance in patients with HIE. In the present review, we provide an overview of the currently available evidence on pulmonary function, respiratory morbidities, and ventilation strategies in HIE and we highlight possible future research directions.
Collapse
Affiliation(s)
- Eniko Szakmar
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Agnes Jermendy
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
Stepanova A, Konrad C, Manfredi G, Springett R, Ten V, Galkin A. The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A. J Neurochem 2019; 148:731-745. [PMID: 30582748 DOI: 10.1111/jnc.14654] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 01/22/2023]
Abstract
Reactive oxygen species (ROS) are by-products of physiological mitochondrial metabolism that are involved in several cellular signaling pathways as well as tissue injury and pathophysiological processes, including brain ischemia/reperfusion injury. The mitochondrial respiratory chain is considered a major source of ROS; however, there is little agreement on how ROS release depends on oxygen concentration. The rate of H2 O2 release by intact brain mitochondria was measured with an Amplex UltraRed assay using a high-resolution respirometer (Oroboros) equipped with a fluorescent optical module and a system of controlled gas flow for varying the oxygen concentration. Three types of substrates were used: malate and pyruvate, succinate and glutamate, succinate alone or glycerol 3-phosphate. For the first time we determined that, with any substrate used in the absence of inhibitors, H2 O2 release by respiring brain mitochondria is linearly dependent on the oxygen concentration. We found that the highest rate of H2 O2 release occurs in conditions of reverse electron transfer when mitochondria oxidize succinate or glycerol 3-phosphate. H2 O2 production by complex III is significant only in the presence of antimycin A and, in this case, the oxygen dependence manifested mixed (linear and hyperbolic) kinetics. We also demonstrated that complex II in brain mitochondria could contribute to ROS generation even in the absence of its substrate succinate when the quinone pool is reduced by glycerol 3-phosphate. Our results underscore the critical importance of reverse electron transfer in the brain, where a significant amount of succinate can be accumulated during ischemia providing a backflow of electrons to complex I at the early stages of reperfusion. Our study also demonstrates that ROS generation in brain mitochondria is lower under hypoxic conditions than in normoxia. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Anna Stepanova
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, UK.,Department of Pediatrics, Columbia University, New York, NY, USA
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Roger Springett
- Cardiovascular Division, King's College London, British Heart Foundation Centre of Excellence London, London, UK
| | - Vadim Ten
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Alexander Galkin
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, UK.,Department of Pediatrics, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Oxygen therapy of the newborn from molecular understanding to clinical practice. Pediatr Res 2019; 85:20-29. [PMID: 30297877 DOI: 10.1038/s41390-018-0176-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/30/2023]
Abstract
Oxygen is one of the most critical components of life. Nature has taken billions of years to develop optimal atmospheric oxygen concentrations for human life, evolving from very low, peaking at 30% before reaching 20.95%. There is now increased understanding of the potential toxicity of both too much and too little oxygen, especially for preterm and asphyxiated infants and of the potential and lifelong impact of oxygen exposure, even for a few minutes after birth. In this review, we discuss the contribution of knowledge gleaned from basic science studies and their implication in the care and outcomes of the human infant within the first few minutes of life and afterwards. We emphasize current knowledge gaps and research that is needed to answer a problem that has taken Nature a considerably longer time to resolve.
Collapse
|
18
|
Kapadia V, Rabi Y, Oei JL. The Goldilocks principle. Oxygen in the delivery room: When is it too little, too much, and just right? Semin Fetal Neonatal Med 2018; 23:347-354. [PMID: 29983332 DOI: 10.1016/j.siny.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oxygen has been used to stabilize newborn infants for more than a century. Over the last two decades, a paradigm shift towards using less oxygen has occurred but without firm evidence of benefit. Using lower levels of oxygen has also added new conundrums to clinical care. Can oxygen delivery to sick newborn babies meet the Goldilocks principle, of being "just right"? This review discusses the history of oxygen use in the delivery room and the impetus to change from the long-established practice of using pure oxygen to using lower oxygen concentrations. The review also highlights knowledge gaps, particularly for oxygen exposure and monitoring, as well as the sequelae of oxygen administration, including short- and long-term outcomes.
Collapse
Affiliation(s)
- Vishal Kapadia
- Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center at Dallas, Texas, USA
| | - Yacov Rabi
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ju Lee Oei
- Department of Newborn Care, The Royal Hospital for Women, Randwick, New South Wales, Australia; School of Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia; NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
19
|
Abstract
Oxygen is the most commonly used medicine used during neonatal resuscitation in the delivery room. Oxygen therapy in delivery room should be used judiciously to avoid oxygen toxicity while delivering sufficient oxygen to prevent hypoxia. Measurement of appropriate oxygenation relies on pulse oximetry, but adequate ventilation and perfusion are equally important for oxygen delivery. In this article, we review oxygenation while transitioning from fetal to neonatal life, the importance of appropriate oxygen therapy, its measurement in the delivery room, and current recommendations for oxygen therapy and its limitations.
Collapse
Affiliation(s)
- Vishal Kapadia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9063, USA.
| | - Myra H Wyckoff
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9063, USA
| |
Collapse
|
20
|
Neural stem cell therapies and hypoxic-ischemic brain injury. Prog Neurobiol 2018; 173:1-17. [PMID: 29758244 DOI: 10.1016/j.pneurobio.2018.05.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic brain injury is a significant cause of morbidity and mortality in the adult as well as in the neonate. Extensive pre-clinical studies have shown promising therapeutic effects of neural stem cell-based treatments for hypoxic-ischemic brain injury. There are two major strategies of neural stem cell-based therapies: transplanting exogenous neural stem cells and boosting self-repair of endogenous neural stem cells. Neural stem cell transplantation has been proved to improve functional recovery after brain injury through multiple by-stander mechanisms (e.g., neuroprotection, immunomodulation), rather than simple cell-replacement. Endogenous neural stem cells reside in certain neurogenic niches of the brain and response to brain injury. Many molecules (e.g., neurotrophic factors) can stimulate or enhance proliferation and differentiation of endogenous neural stem cells after injury. In this review, we first present an overview of neural stem cells during normal brain development and the effect of hypoxic-ischemic injury on the activation and function of endogenous neural stem cells in the brain. We then summarize and discuss the current knowledge of strategies and mechanisms for neural stem cell-based therapies on brain hypoxic-ischemic injury, including neonatal hypoxic-ischemic brain injury and adult ischemic stroke.
Collapse
|
21
|
|
22
|
Smit E, Liu X, Gill H, Jary S, Wood T, Thoresen M. The effect of resuscitation in 100% oxygen on brain injury in a newborn rat model of severe hypoxic-ischaemic encephalopathy. Resuscitation 2015; 96:214-9. [PMID: 26300234 DOI: 10.1016/j.resuscitation.2015.07.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
AIM Infants with birth asphyxia frequently require resuscitation. Current guidance is to start newborn resuscitation in 21% oxygen. However, infants with severe hypoxia-ischaemia may require prolonged resuscitation with oxygen. To date, no study has looked at the effect of resuscitation in 100% oxygen following a severe hypoxic-ischaemic insult. METHODS Postnatal day 7 Wistar rats underwent a severe hypoxic-ischaemic insult (modified Vannucci unilateral brain injury model) followed by immediate resuscitation in either 21% or 100% oxygen for 30 min. Seven days following the insult, negative geotaxis testing was performed in survivors, and the brains were harvested. Relative ipsilateral cortical and hippocampal area loss was assessed histologically. RESULTS Total area loss in the affected hemisphere and area loss within the hippocampus did not significantly differ between the two groups. The same results were seen for short-term neurological assessment. No difference was seen in weight gain between pups resuscitated in 21% and 100% oxygen. CONCLUSION Resuscitation in 100% oxygen does not cause a deleterious effect on brain injury following a severe hypoxic-ischaemic insult in a rat model of hypoxia-ischaemia. Further work investigating the effects of resuscitation in 100% oxygen is warranted, especially for newborn infants with severe hypoxic-ischaemic encephalopathy.
Collapse
Affiliation(s)
- Elisa Smit
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Xun Liu
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Hannah Gill
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Sally Jary
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Thomas Wood
- Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marianne Thoresen
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
23
|
Smitherman E, Hernandez A, Stavinoha PL, Huang R, Kernie SG, Diaz-Arrastia R, Miles DK. Predicting Outcome after Pediatric Traumatic Brain Injury by Early Magnetic Resonance Imaging Lesion Location and Volume. J Neurotrauma 2015; 33:35-48. [PMID: 25808802 DOI: 10.1089/neu.2014.3801] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Brain lesions after traumatic brain injury (TBI) are heterogeneous, rendering outcome prognostication difficult. The aim of this study is to investigate whether early magnetic resonance imaging (MRI) of lesion location and lesion volume within discrete brain anatomical zones can accurately predict long-term neurological outcome in children post-TBI. Fluid-attenuated inversion recovery (FLAIR) MRI hyperintense lesions in 63 children obtained 6.2±5.6 days postinjury were correlated with the Glasgow Outcome Scale Extended-Pediatrics (GOS-E Peds) score at 13.5±8.6 months. FLAIR lesion volume was expressed as hyperintensity lesion volume index (HLVI)=(hyperintensity lesion volume / whole brain volume)×100 measured within three brain zones: zone A (cortical structures); zone B (basal ganglia, corpus callosum, internal capsule, and thalamus); and zone C (brainstem). HLVI-total and HLVI-zone C predicted good and poor outcome groups (p<0.05). GOS-E Peds correlated with HLVI-total (r=0.39; p=0.002) and HLVI in all three zones: zone A (r=0.31; p<0.02); zone B (r=0.35; p=0.004); and zone C (r=0.37; p=0.003). In adolescents ages 13-17 years, HLVI-total correlated best with outcome (r=0.5; p=0.007), whereas in younger children under the age of 13, HLVI-zone B correlated best (r=0.52; p=0.001). Compared to patients with lesions in zone A alone or in zones A and B, patients with lesions in all three zones had a significantly higher odds ratio (4.38; 95% confidence interval, 1.19-16.0) for developing an unfavorable outcome.
Collapse
Affiliation(s)
- Emily Smitherman
- 1 University of Texas Southwestern Medical Center, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Ana Hernandez
- 2 Department of Neuropsychology, Children's Medical Center , Dallas, Texas
| | - Peter L Stavinoha
- 2 Department of Neuropsychology, Children's Medical Center , Dallas, Texas.,3 Department of Psychiatry, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Rong Huang
- 4 Department of Clinical Research, Children's Medical Center , Dallas, Texas
| | - Steven G Kernie
- 5 Department of Pediatrics, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Ramon Diaz-Arrastia
- 6 Department of Neurology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Darryl K Miles
- 5 Department of Pediatrics, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
24
|
Cherry BH, Nguyen AQ, Hollrah RA, Olivencia-Yurvati AH, Mallet RT. Modeling cardiac arrest and resuscitation in the domestic pig. World J Crit Care Med 2015; 4:1-12. [PMID: 25685718 PMCID: PMC4326759 DOI: 10.5492/wjccm.v4.i1.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/03/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
Cardiac arrest remains a leading cause of death and permanent disability worldwide. Although many victims are initially resuscitated, they often succumb to the extensive ischemia-reperfusion injury inflicted on the internal organs, especially the brain. Cardiac arrest initiates a complex cellular injury cascade encompassing reactive oxygen and nitrogen species, Ca2+ overload, ATP depletion, pro- and anti-apoptotic proteins, mitochondrial dysfunction, and neuronal glutamate excitotoxity, which injures and kills cells, compromises function of internal organs and ignites a destructive systemic inflammatory response. The sheer complexity and scope of this cascade challenges the development of experimental models of and effective treatments for cardiac arrest. Many experimental animal preparations have been developed to decipher the mechanisms of damage to vital internal organs following cardiac arrest and cardiopulmonary resuscitation (CPR), and to develop treatments to interrupt the lethal injury cascades. Porcine models of cardiac arrest and resuscitation offer several important advantages over other species, and outcomes in this large animal are readily translated to the clinical setting. This review summarizes porcine cardiac arrest-CPR models reported in the literature, describes clinically relevant phenomena observed during cardiac arrest and resuscitation in pigs, and discusses numerous methodological considerations in modeling cardiac arrest/CPR. Collectively, published reports show the domestic pig to be a suitable large animal model of cardiac arrest which is responsive to CPR, defibrillatory countershocks and medications, and yields extensive information to foster advances in clinical treatment of cardiac arrest.
Collapse
|
25
|
Wang H, Li Y, Jiang N, Chen X, Zhang Y, Zhang K, Wang T, Hao Y, Ma L, Zhao C, Wang Y, Sun T, Yu J. Protective effect of oxysophoridine on cerebral ischemia/reperfusion injury in mice. Neural Regen Res 2014; 8:1349-59. [PMID: 25206429 PMCID: PMC4107767 DOI: 10.3969/j.issn.1673-5374.2013.15.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/20/2013] [Indexed: 11/18/2022] Open
Abstract
Oxysophoridine, a new alkaloid extracted from Sophora alopecuroides L., has been shown to have a protective effect against ischemic brain damage. In this study, a focal cerebral ischemia/reperfusion injury model was established using middle cerebral artery occlusion in mice. Both 62.5, 125, and 250 mg/kg oxysophoridine, via intraperitoneal injection, and 6 mg/kg nimodipine, via intragastric administration, were administered daily for 7 days before modeling. After 24 hours of reperfusion, mice were tested for neurological deficit, cerebral infarct size was assessed and brain tissue was collected. Results showed that oxysophoridine at 125, 250 mg/kg and 6 mg/kg nimodipine could reduce neurological deficit scores, cerebral infarct size and brain water content in mice. These results provided evidence that oxysophoridine plays a protective role in cerebral ischemia/reperfusion injury. In addition, oxysophoridine at 62.5, 125, and 250 mg/kg and 6 mg/kg nimodipine increased adenosine-triphosphate content, and decreased malondialdehyde and nitric oxide content. These compounds enhanced the activities of glutathione-peroxidase, superoxide dismutase, catalase, and lactate dehydrogenase, and decreased the activity of nitric oxide synthase. Protein and mRNA expression levels of N-methyl-D-aspartate receptor subunit NR1 were markedly inhibited in the presence of 250 mg/kg oxysophoridine and 6 mg/kg nimodipine. Our experimental findings indicated that oxysophoridine has a neuroprotective effect against cerebral ischemia/reperfusion injury in mice, and that the effect may be due to its ability to inhibit oxidative stress and expression of the N-methyl-D-aspartate receptor subunit NR1.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yuxiang Li
- College of Nursing, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China ; Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, China
| | - Ning Jiang
- Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, China
| | - Xiaoping Chen
- Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, China
| | - Yi Zhang
- Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, China
| | - Kuai Zhang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Tengfei Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yinju Hao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Chengjun Zhao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yanrong Wang
- Key Laboratory of Reproduction and Genetics of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jianqiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China ; Collaborative Innovation Center of Ningxia Hui Autonomous Region for Medicines, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
26
|
Kraitsy K, Uecal M, Grossauer S, Bruckmann L, Pfleger F, Ropele S, Fazekas F, Gruenbacher G, Patz S, Absenger M, Porubsky C, Smolle-Juettner F, Tezer I, Molcanyi M, Fasching U, Schaefer U. Repetitive long-term hyperbaric oxygen treatment (HBOT) administered after experimental traumatic brain injury in rats induces significant remyelination and a recovery of sensorimotor function. PLoS One 2014; 9:e97750. [PMID: 24848795 PMCID: PMC4029808 DOI: 10.1371/journal.pone.0097750] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/24/2014] [Indexed: 12/20/2022] Open
Abstract
Cells in the central nervous system rely almost exclusively on aerobic metabolism. Oxygen deprivation, such as injury-associated ischemia, results in detrimental apoptotic and necrotic cell loss. There is evidence that repetitive hyperbaric oxygen therapy (HBOT) improves outcomes in traumatic brain-injured patients. However, there are no experimental studies investigating the mechanism of repetitive long-term HBOT treatment-associated protective effects. We have therefore analysed the effect of long-term repetitive HBOT treatment on brain trauma-associated cerebral modulations using the lateral fluid percussion model for rats. Trauma-associated neurological impairment regressed significantly in the group of HBO-treated animals within three weeks post trauma. Evaluation of somatosensory-evoked potentials indicated a possible remyelination of neurons in the injured hemisphere following HBOT. This presumption was confirmed by a pronounced increase in myelin basic protein isoforms, PLP expression as well as an increase in myelin following three weeks of repetitive HBO treatment. Our results indicate that protective long-term HBOT effects following brain injury is mediated by a pronounced remyelination in the ipsilateral injured cortex as substantiated by the associated recovery of sensorimotor function.
Collapse
Affiliation(s)
- Klaus Kraitsy
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Muammer Uecal
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Stefan Grossauer
- Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Lukas Bruckmann
- Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Florentina Pfleger
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Clinical Division of General Neurology, Medical University of Graz, Graz, Austria
| | - Franz Fazekas
- Clinical Division of General Neurology, Medical University of Graz, Graz, Austria
| | - Gerda Gruenbacher
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Silke Patz
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Markus Absenger
- Core Facility Microscopy, Centre for Medical Research, Medical University of Graz, Graz, Austria
| | - Christian Porubsky
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Freyja Smolle-Juettner
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Irem Tezer
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Marek Molcanyi
- Department of Neurosurgery, University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Ulrike Fasching
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Ute Schaefer
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
27
|
Back SA, Rosenberg PA. Pathophysiology of glia in perinatal white matter injury. Glia 2014; 62:1790-815. [PMID: 24687630 DOI: 10.1002/glia.22658] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/13/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022]
Abstract
Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection. During the acute phase of WMI, pronounced oxidative damage occurs that targets late oligodendrocyte progenitors (pre-OLs). The developmental predilection for WMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible pre-OLs that are vulnerable to a variety of chemical mediators including reactive oxygen species, glutamate, cytokines, and adenosine. During the chronic phase of WMI, the white matter displays abberant regeneration and repair responses. Early OL progenitors respond to WMI with a rapid robust proliferative response that results in a several fold regeneration of pre-OLs that fail to terminally differentiate along their normal developmental time course. Pre-OL maturation arrest appears to be related in part to inhibitory factors that derive from reactive astrocytes in chronic lesions. Recent high field magnetic resonance imaging (MRI) data support that three distinct forms of chronic WMI exist, each of which displays unique MRI and histopathological features. These findings suggest the possibility that therapies directed at myelin regeneration and repair could be initiated early after WMI and monitored over time. These new mechanisms of acute and chronic WMI provide access to a variety of new strategies to prevent or promote repair of WMI in premature infants.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon; Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
28
|
Kapadia VS, Chalak LF, DuPont TL, Rollins NK, Brion LP, Wyckoff MH. Perinatal asphyxia with hyperoxemia within the first hour of life is associated with moderate to severe hypoxic-ischemic encephalopathy. J Pediatr 2013; 163:949-54. [PMID: 23759422 DOI: 10.1016/j.jpeds.2013.04.043] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/27/2013] [Accepted: 04/23/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To determine whether early hyperoxemia in neonates with severe perinatal acidemia is associated with the development of hypoxic-ischemic encephalopathy (HIE). STUDY DESIGN We identified 120 infants at ≥ 36 weeks gestational age with perinatal acidosis born at Parkland Hospital who qualified for a screening neurologic exam for cooling therapy. Based on a PaO2 measurement during the first hour of life, the cohort was divided into infants with hyperoxemia (PaO2 >100 mmHg) and those without hyperoxemia (PaO2 ≤ 100 mmHg). The rate of moderate-severe encephalopathy was compared between the groups using χ(2) analysis, as well as multiple logistic regression, taking into account baseline characteristics and confounding variables. RESULTS Thirty-six infants (30%) had an initial PaO2 >100 mmHg. Infants with and without hyperoxemia had similar baseline maternal and infant characteristics. Infants with hyperoxemia had a higher incidence of HIE than those without hyperoxemia (58% vs 27%; P = .003). Admission hyperoxemia was associated with a higher risk of HIE (OR, 4; 95% CI, 1.4-10.5; adjusted P = .01). Among the neonates with moderate-severe HIE during the first 6 hours of life, those with hyperoxemia had a higher incidence of abnormal brain magnetic resonance imaging results, consistent with hypoxic ischemic injury, compared with those without hyperoxemia (79% vs 33%; P = .015). CONCLUSION In neonates with perinatal acidemia, admission hyperoxemia is associated with a higher incidence of HIE. Among neonates with HIE, admission hyperoxemia is associated with abnormal brain magnetic resonance imaging findings. The judicious use of oxygen during and after resuscitation is warranted.
Collapse
Affiliation(s)
- Vishal S Kapadia
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | | | | | | |
Collapse
|
29
|
Bennett KS, Clark AE, Meert KL, Topjian AA, Schleien CL, Shaffner DH, Dean JM, Moler FW. Early oxygenation and ventilation measurements after pediatric cardiac arrest: lack of association with outcome. Crit Care Med 2013; 41:1534-42. [PMID: 23552509 PMCID: PMC3683244 DOI: 10.1097/ccm.0b013e318287f54c] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To explore oxygenation and ventilation status early after cardiac arrest in infants and children. We hypothesize that hyperoxia is common and associated with worse outcome after pediatric cardiac arrest. DESIGN Retrospective cohort study. SETTING Fifteen hospitals within the Pediatric Emergency Care Applied Research Network. PATIENTS Children who suffered a cardiac arrest event and survived for at least 6 hours after return of circulation. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Analysis of 195 events revealed that abnormalities in oxygenation and ventilation are common during the initial 6 hours after pediatric cardiac arrest. Hyperoxia was frequent, affecting 54% of patients. Normoxia was documented in 34% and hypoxia in 22% of patients. These percentages account for a 10% overlap of patients who had both hyperoxia and hypoxia. Ventilation status was more evenly distributed with hyperventilation observed in 38%, normoventilation in 29%, and hypoventilation in 46%, with a 13% overlap of patients who had both hyperventilation and hypoventilation. Derangements in both oxygenation and ventilation were common early after cardiac arrest such that both normoxia and normocarbia were documented in only 25 patients (13%). Neither oxygenation nor ventilation status was associated with outcome. After controlling for potential confounders, arrest location and rhythm were significantly associated with worse outcome; however, hyperoxia was not (odds ratio for good outcome, 1.02 [0.46, 2.84]; p = 0.96). CONCLUSIONS Despite recent resuscitation guidelines that advocate maintenance of normoxia and normoventilation after pediatric cardiac arrest, this is uncommonly achieved in practice. Although we did not demonstrate an association between hyperoxia and worse outcome, the small proportion of patients kept within normal ranges limited our power. Preclinical data suggesting potential harm with hyperoxia remain compelling, and further investigation, including prospective, large studies involving robust recording of physiological derangements, is necessary to further advance our understanding of this important topic.
Collapse
|
30
|
Longitudinal diffusion tensor and manganese-enhanced MRI detect delayed cerebral gray and white matter injury after hypoxia-ischemia and hyperoxia. Pediatr Res 2013; 73:171-9. [PMID: 23174702 DOI: 10.1038/pr.2012.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Hypoxia-ischemia (HI) induces delayed inflammation and long-term gray and white matter brain injury that may be altered by hyperoxia. METHODS HI and 2 h of hyperoxia (100% O2) or room air (21% O2) in 7-d-old (P7) rats were studied by magnetic resonance imaging at 7 Tesla during 42 d: apparent diffusion coefficient (ADC) maps on day 1; T(1)-weighted manganese-enhanced images on day 7; diffusion tensor images on days 21 and 42; and T2 maps at all time points. RESULTS The long-term brain tissue destruction on T2 maps was more severe in HI+hyperoxia than HI+room air. ADC was lower in HI+hyperoxia vs. HI+room air and sham and was correlated with long-term outcome. Manganese enhancement indicating inflammation was seen in both the groups along with more microglial activation in HI+hyperoxia on day 7. Fractional anisotropy (FA) in corpus callosum was lower and radial diffusivity was higher in HI+hyperoxia than that in HI+room air and sham on day 21. From day 21 to day 42, FA and radial diffusivity in HI+hyperoxia were unchanged, whereas in HI+room air, FA increased and radial diffusivity decreased to values similar to sham. CONCLUSION Hyperoxia caused a more severe tissue destruction, delayed irreversible white matter injury, and increased inflammatory response resulting in a worsening in the trajectory of injury after HI in developing gray and white matter.
Collapse
|
31
|
Abstract
When effective ventilation fails to establish a heart rate of greater than 60 bpm, cardiac compressions should be initiated to improve perfusion. The 2-thumb method is the most effective and least fatiguing technique. A ratio of 3 compressions to 1 breath is recommended to provide adequate ventilation, the most common cause of newborn cardiovascular collapse. Interruptions in compressions should be limited to not diminishing the perfusion generated. Oxygen (100%) is recommended during compressions and can be reduced once adequate heart rate and oxygen saturation are achieved. Limited clinical data are available to form newborn cardiac compression recommendations.
Collapse
Affiliation(s)
- Vishal Kapadia
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9063, USA
| | | |
Collapse
|
32
|
Fan YY, Zhang XN, He P, Shen Z, Shen Y, Wang XF, Hu WW, Chen Z. Transient lack of glucose but not O2 is involved in ischemic postconditioning-induced neuroprotection. CNS Neurosci Ther 2012; 19:30-7. [PMID: 23167958 DOI: 10.1111/cns.12033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/22/2012] [Accepted: 10/10/2012] [Indexed: 12/18/2022] Open
Abstract
AIM Cerebral ischemic postconditioning has emerged recently as a kind of endogenous strategy for neuroprotection. We set out to test whether hypoxia or glucose deprivation (GD) would substitute for ischemia in postconditioning. METHODS Adult male C57BL/6J mice were treated with postconditioning evoked by ischemia (bilateral common carotid arteries occlusion) or hypoxia (8% O(2) ) after 45-min middle cerebral arterial occlusion. Corticostriatal slices from mice were subjected to 1-min oxygen-glucose deprivation (OGD), GD, or oxygen deprivation (OD) postconditioning at 5 min after 15-min OGD. RESULTS Hypoxic postconditioning did not decrease infarct volume or improve neurologic function at 24 h after reperfusion, while ischemic postconditioning did. Similarly, OGD and GD but not OD postconditioning attenuated the OGD/reperfusion-induced injury in corticostriatal slices. The effective duration of low-glucose (1 mmol/L) postconditioning was longer than that of OGD postconditioning. Moreover, OGD and GD but not OD postconditioning reversed the changes of glutamate, GABA, glutamate transporter-1 protein expression, and glutamine synthetase activity induced by OGD/reperfusion. CONCLUSIONS These results suggest that the transient lack of glucose but not oxygen plays a key role in ischemic postconditioning-induced neuroprotection, at least partly by regulating glutamate metabolism. Low-glucose postconditioning might be a clinically safe and feasible therapeutic approach against cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yan-Ying Fan
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sabir H, Jary S, Tooley J, Liu X, Thoresen M. Increased inspired oxygen in the first hours of life is associated with adverse outcome in newborns treated for perinatal asphyxia with therapeutic hypothermia. J Pediatr 2012; 161:409-16. [PMID: 22521111 DOI: 10.1016/j.jpeds.2012.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/23/2012] [Accepted: 03/05/2012] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To assess whether increased inspired oxygen and/or hypocarbia during the first 6 hours of life are associated with adverse outcome at 18 months in term neonates treated with therapeutic hypothermia. STUDY DESIGN Blood gas values and ventilatory settings were monitored hourly in 61 newborns for 6 hours after birth. We investigated if there was an association between increased inspired oxygen and/or hypocarbia and adverse outcome (death or disability by Bayley Scales of Newborn Development II examination at 18-20 months). RESULTS Hypothermia was started from 3 hours 45 minutes (10 minutes-10 hours) and median lowest Pco(2) level within the first 6 hours of life was 30 mm Hg (16.5-96 mm Hg). The median highest fraction of inspiratory oxygen within the first hour of life was 0.43 (0.21-1.00). The area under the curve fraction of inspiratory oxygen and Pao(2) for hours 1-6 of life was 0.23 (0.21-1.0) and 86 mm Hg (22-197 mm Hg), respectively. We did not find any association between any measures of hypocapnia and adverse outcome (P > .05), but increased inspired oxygen correlated with adverse outcome, even when excluding newborns with initial oxygenation failure (P < .05). CONCLUSION Increased fraction of inspired oxygen within the first 6 hours of life was significantly associated with adverse outcome in newborns treated with therapeutic hypothermia following hypoxic ischemic encephalopathy.
Collapse
Affiliation(s)
- Hemmen Sabir
- School of Clinical Sciences, University of Bristol, St Michael's Hospital, Bristol, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice. J Neurosci 2012; 32:3235-44. [PMID: 22378894 DOI: 10.1523/jneurosci.6303-11.2012] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress and Ca(2+) toxicity are mechanisms of hypoxic-ischemic (HI) brain injury. This work investigates if partial inhibition of mitochondrial respiratory chain protects HI brain by limiting a generation of oxidative radicals during reperfusion. HI insult was produced in p10 mice treated with complex I (C-I) inhibitor, pyridaben, or vehicle. Administration of P significantly decreased the extent of HI injury. Mitochondria isolated from the ischemic hemisphere in pyridaben-treated animals showed reduced H(2)O(2) emission, less oxidative damage to the mitochondrial matrix, and increased tolerance to the Ca(2+)-triggered opening of the permeability transition pore. A protective effect of pyridaben administration was also observed when the reperfusion-driven oxidative stress was augmented by the exposure to 100% O(2) which exacerbated brain injury only in vehicle-treated mice. In vitro, intact brain mitochondria dramatically increased H(2)O(2) emission in response to hyperoxia, resulting in substantial loss of Ca(2+) buffering capacity. However, in the presence of the C-I inhibitor, rotenone, or the antioxidant, catalase, these effects of hyperoxia were abolished. Our data suggest that the reperfusion-driven recovery of C-I-dependent mitochondrial respiration contributes not only to the cellular survival, but also causes oxidative damage to the mitochondria, potentiating a loss of Ca(2+) buffering capacity. This highlights a novel neuroprotective strategy against HI brain injury where the major therapeutic principle is a pharmacological attenuation, rather than an enhancement of mitochondrial oxidative metabolism during early reperfusion.
Collapse
|
35
|
Hypoxic-ischemic injury in the developing brain: the role of reactive oxygen species originating in mitochondria. Neurol Res Int 2012; 2012:542976. [PMID: 22548167 PMCID: PMC3323863 DOI: 10.1155/2012/542976] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/12/2011] [Accepted: 11/22/2011] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial dysfunction is the most fundamental mechanism of cell damage in cerebral hypoxia-ischemia and reperfusion. Mitochondrial respiratory chain (MRC) is increasingly recognized as a source for reactive oxygen species (ROS) in the postischemic tissue. Potentially, ROS originating in MRC can contribute to the reperfusion-driven oxidative stress, promoting mitochondrial membrane permeabilization. The loss of mitochondrial membranes integrity during reperfusion is considered as the major mechanism of secondary energy failure. This paper focuses on current data that support a pathogenic role of ROS originating from mitochondrial respiratory chain in the promotion of secondary energy failure and proposes potential therapeutic strategy against reperfusion-driven oxidative stress following hypoxia-ischemia-reperfusion injury of the developing brain.
Collapse
|
36
|
Resuscitation with 100% oxygen increases injury and counteracts the neuroprotective effect of therapeutic hypothermia in the neonatal rat. Pediatr Res 2012; 71:247-52. [PMID: 22337259 DOI: 10.1038/pr.2011.43] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Mild therapeutic hypothermia (HT) reduces brain injury in survivors after perinatal asphyxia. Recent guidelines suggest that resuscitation of term infants should be started with air, but supplemental oxygen is still in use. It is not known whether supplemental oxygen during resuscitation affects the protection offered by subsequent HT. RESULTS Wilcoxon median (95% confidence interval) hippocampal injury scores (range 0.0-4.0; 0 to ≥90% injury) were 21% O(2) normothermia (NT): 2.00 (1.25-2.50), 21% O(2) HT: 1.00 (0.50-1.50), 100% O(2) NT: 2.50 (1.50-3.25), and 100% O(2) HT: 2.00 (1.25-2.50). Although HT significantly reduced hippocampal injury (B = -0.721, SEM = 0.297, P = 0.018), reoxygenation with 100% O(2) increased injury (B = +0.647, SEM = 0.297, P = 0.033). Regression constant B = 1.896, SEM = 0.257 and normally distributed residuals. DISCUSSION We confirm an ~50% neuroprotective effect of therapeutic HT in the neonatal rat. Reoxygenation with 100% O(2) increased injury and worsened reflex performance. HT was neuroprotective whether applied after reoxygenation with air or 100% O(2). However, HT after 100% O(2) gave no net neuroprotection. METHODS In an established neonatal rat model, hypoxia-ischemia (HI) was followed by 30-min reoxygenation in either 21% O(2) or 100% O(2) before 5 h of NT (37 °C) or HT (32 °C). The effects of HT and 100% O(2) on histopathologic injury in the hippocampus, basal ganglia, and cortex, and on postural reflex performance 7 d after the insult, were estimated by linear regression.
Collapse
|
37
|
Mild hypoxemia during initial reperfusion alleviates the severity of secondary energy failure and protects brain in neonatal mice with hypoxic-ischemic injury. J Cereb Blood Flow Metab 2012; 32:232-41. [PMID: 22108720 PMCID: PMC3272612 DOI: 10.1038/jcbfm.2011.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reperfusion triggers an oxidative stress. We hypothesized that mild hypoxemia in reperfusion attenuates oxidative brain injury following hypoxia-ischemia (HI). In neonatal HI-mice, the reperfusion was initiated by reoxygenation with room air (RA) followed by the exposure to 100%, 21%, 18%, 15% oxygen for 60 minutes. Systemic oxygen saturation (SaO(2)), cerebral blood flow (CBF), brain mitochondrial respiration and permeability transition pore (mPTP) opening, markers of oxidative injury, and cerebral infarcts were assessed. Compared with RA-littermates, HI-mice exposed to 18% oxygen exhibited significantly decreased infarct volume, oxidative injury in the brain mitochondria and tissue. This was coupled with improved mitochondrial tolerance to mPTP opening. Oxygen saturation maintained during reperfusion at 85% to 95% was associated (r=0.57) with the best neurologic outcome. Exposure to 100% or 15% oxygen significantly exacerbated brain injury and oxidative stress. Compared with RA-mice, hyperoxia dramatically increased reperfusion CBF, but exposure to 15% oxygen significantly reduced CBF to values observed during the HI-insult. Mild hypoxemia during initial reperfusion alleviates the severity of HI-brain injury by limiting the reperfusion-driven oxidative stress to the mitochondria and mPTP opening. This suggests that at the initial stage of reperfusion, a slightly decreased systemic oxygenation (SaO(2) 85% to 95%) may be beneficial for infants with birth asphyxia.
Collapse
|
38
|
Bregy A, Nixon R, Lotocki G, Alonso OF, Atkins CM, Tsoulfas P, Bramlett HM, Dietrich WD. Posttraumatic hypothermia increases doublecortin expressing neurons in the dentate gyrus after traumatic brain injury in the rat. Exp Neurol 2011; 233:821-8. [PMID: 22197046 DOI: 10.1016/j.expneurol.2011.12.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 12/12/2022]
Abstract
Previous studies have demonstrated that moderate hypothermia reduces histopathological damage and improves behavioral outcome after experimental traumatic brain injury (TBI). Further investigations have clarified the mechanisms underlying the beneficial effects of hypothermia by showing that cooling reduces multiple cell injury cascades. The purpose of this study was to determine whether hypothermia could also enhance endogenous reparative processes following TBI such as neurogenesis and the replacement of lost neurons. Male Sprague-Dawley rats underwent moderate fluid-percussion brain injury and then were randomized into normothermia (37°C) or hypothermia (33°C) treatment. Animals received injections of 5-bromo-2'-deoxyuridine (BrdU) to detect mitotic cells after brain injury. After 3 or 7 days, animals were perfusion-fixed and processed for immunocytochemistry and confocal analysis. Sections were stained for markers selective for cell proliferation (BrdU), neuroblasts and immature neurons (doublecortin), and mature neurons (NeuN) and then analyzed using non-biased stereology to quantify neurogenesis in the dentate gyrus (DG). At 7 days after TBI, both normothermic and hypothermic TBI animals demonstrated a significant increase in the number of BrdU-immunoreactive cells in the DG as compared to sham-operated controls. At 7 days post-injury, hypothermia animals had a greater number of BrdU (ipsilateral cortex) and doublecortin (ipsilateral and contralateral cortex) immunoreactive cells in the DG as compared to normothermia animals. Because adult neurogenesis following injury may be associated with enhanced functional recovery, these data demonstrate that therapeutic hypothermia sustains the increase in neurogenesis induced by TBI and this may be one of the mechanisms by which hypothermia promotes reparative strategies in the injured nervous system.
Collapse
Affiliation(s)
- Amade Bregy
- Department of Neurological Surgery, The Neurotrauma Research Center, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kielland A, Camassa LMA, Døhlen G, Munthe LA, Blomhoff R, Amiry-Moghaddam M, Carlsen H. NF-κB activity in perinatal brain during infectious and hypoxic-ischemic insults revealed by a reporter mouse. Brain Pathol 2011; 22:499-510. [PMID: 22059637 DOI: 10.1111/j.1750-3639.2011.00548.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Infants suffering from infection or hypoxia-ischemia around the time of birth can develop brain damage resulting in life-long impairment such as cerebral palsy, epilepsy and cognitive disability. Inflammation appears to be an important contributor irrespective of whether the primary event is infection or hypoxia-ischemia. Activation of the transcription factor NF-κB is a hallmark of inflammation. To study perinatal brain inflammation, we developed a transgenic reporter mouse for imaging NF-κB activity in live animals and tissue samples. The reporter genes firefly luciferase and a destabilized version of enhanced GFP (dEGFP) were regulated by common NF-κB sites using a bidirectional promoter. Luciferase activity was imaged in vivo, while dEGFP was detected at cellular level in tissue sections. In newborn mice subjected to experimental models of infections or hypoxia-ischemia; luciferase signal increased in brains of live animals. In brain sections dEGFP expression, revealing NF-κB activation was observed in the endothelial cells of the blood-brain barrier in all disease models. In meningitis and hypoxia-ischemia expression of dEGFP was also induced in perivascular astrocytes. In conclusion, by using this transgenic reporter mouse in experimental models of perinatal complications, we could assess NF-κB activity in vivo and subsequently determine the cellular origin in the tissues.
Collapse
Affiliation(s)
- Anders Kielland
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
40
|
Gilley JA, Kernie SG. Excitatory amino acid transporter 2 and excitatory amino acid transporter 1 negatively regulate calcium-dependent proliferation of hippocampal neural progenitor cells and are persistently upregulated after injury. Eur J Neurosci 2011; 34:1712-23. [PMID: 22092549 DOI: 10.1111/j.1460-9568.2011.07888.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Using a transgenic mouse (Mus musculus) in which nestin-expressing progenitors are labeled with enhanced green fluorescent protein, we previously characterized the expression of excitatory amino acid transporter 2 (GltI) and excitatory amino acid transporter 1 (Glast) on early neural progenitors in vivo. To address their functional role in this cell population, we manipulated their expression in P7 neurospheres isolated from the dentate gyrus. We observed that knockdown of GltI or Glast was associated with decreased bromodeoxyuridine incorporation and neurosphere formation. Moreover, we determined that both glutamate transporters regulated progenitor proliferation in a calcium-dependent and metabotropic glutamate receptor-dependent manner. To address the relevance of this in vivo, we utilized models of acquired brain injury, which are known to induce hippocampal neurogenesis. We observed that GltI and Glast were specifically upregulated in progenitors following brain injury, and that this increased expression was maintained for many weeks. Additionally, we found that recurrently injured animals with increased expression of glutamate transporters within the progenitor population were resistant to subsequent injury-induced proliferation. These findings demonstrate that GltI and Glast negatively regulate calcium-dependent proliferation in vitro and that their upregulation after injury is associated with decreased proliferation after brain trauma.
Collapse
Affiliation(s)
- Jennifer A Gilley
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
41
|
Hegewald C, Alt R, Hetz S, Cross M, Acikgoez A, Till H, Metzger R, Metzger M. Reduced oxygen stress promotes propagation of murine postnatal enteric neural progenitors in vitro. Neurogastroenterol Motil 2011; 23:e412-24. [PMID: 21815967 DOI: 10.1111/j.1365-2982.2011.01761.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Neural stem and progenitor cells of the Enteric Nervous System (ENS) are regarded as a novel cell source for applications in regenerative medicine. However, improvements to the current ENS cell culture protocols will be necessary to generate clinically useful cell numbers under defined culture conditions. Beneficial effects of physiologically low oxygen concentrations and/or the addition of anti-oxidants on propagation of various types of stem cells have previously been demonstrated. In this study, we tested the effects of such culture conditions on ENS stem and progenitor cell behavior. METHODS Enteric neural progenitor cells were isolated from postnatal day 3 mouse intestine and propagated either as monolayers or neurosphere-like bodies. The influence of hypoxic culture conditions and/or anti-oxidants on enteric cell propagation were studied systematically using proliferation, differentiation and apoptosis assays, whereas effects on gene expression were determined by qRT-PCR, western blot, and immunocytochemistry. KEY RESULTS Both hypoxic culture conditions and anti-oxidants supported a significantly improved enteric cell propagation and the generation of differentiated neural cell types. Enteric neural progenitors were shown to be specifically vulnerable to persistent oxidative stress. CONCLUSIONS & INFERENCES Our findings are consistent with previous reports of improved maintenance of brain stem cells cultured under reduced oxygen stress conditions and may therefore be applied to future cell culture protocols in ENS stem cell research.
Collapse
Affiliation(s)
- C Hegewald
- Translational Centre for Regenerative Medicine, University of Leipzig, Philipp-Rosenthal-Strasse 55, Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Wiktorowicz JE, Stafford S, Rea H, Urvil P, Soman K, Kurosky A, Perez-Polo JR, Savidge TC. Quantification of cysteinyl S-nitrosylation by fluorescence in unbiased proteomic studies. Biochemistry 2011; 50:5601-14. [PMID: 21615140 PMCID: PMC3133729 DOI: 10.1021/bi200008b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cysteinyl S-nitrosylation has emerged as an important post-translational modification affecting protein function in health and disease. Great emphasis has been placed on global, unbiased quantification of S-nitrosylated proteins because of physiologic and oxidative stimuli. However, current strategies have been hampered by sample loss and altered protein electrophoretic mobility. Here, we describe a novel quantitative approach that uses accurate, sensitive fluorescence modification of cysteine S-nitrosylation that leaves electrophoretic mobility unaffected (SNOFlo) and introduce unique concepts for measuring changes in S-nitrosylation status relative to protein abundance. Its efficacy in defining the functional S-nitrosoproteome is demonstrated in two diverse biological applications: an in vivo rat hypoxia-ischemia/reperfusion model and antimicrobial S-nitrosoglutathione-driven transnitrosylation of an enteric microbial pathogen. The suitability of this approach for investigating endogenous S-nitrosylation is further demonstrated using Ingenuity Pathways analysis that identified nervous system and cellular development networks as the top two networks. Functional analysis of differentially S-nitrosylated proteins indicated their involvement in apoptosis, branching morphogenesis of axons, cortical neurons, and sympathetic neurites, neurogenesis, and calcium signaling. Major abundance changes were also observed for fibrillar proteins known to be stress-responsive in neurons and glia. Thus, both examples demonstrate the technique's power in confirming the widespread involvement of S-nitrosylation in hypoxia-ischemia/reperfusion injury and in antimicrobial host responses.
Collapse
Affiliation(s)
- John E Wiktorowicz
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch , Galveston, Texas 77555, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yousuf S, Atif F, Ahmad M, Ishrat T, Khan B, Islam F. Neuroprotection Offered by Majun Khadar, a Traditional Unani Medicine, during Cerebral Ischemic Damage in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:754025. [PMID: 20047892 PMCID: PMC3142668 DOI: 10.1093/ecam/nep224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 12/01/2009] [Indexed: 12/23/2022]
Abstract
Stroke results in damages to many biochemical, molecular and behavioral deficits. Present study provides evidence of the protective efficacy of a Unani herbal medicine, Majun Khadar (MK), against cerebral ischemia-induced behavioral dysfunctions and neurochemical alterations in the hippocampus (HIP). Transient focal cerebral ischemia was induced for 2 h followed by reperfusion for 22 h in a rat model. Rats were divided into four groups: sham, middle cerebral artery occluded (MCAO), drug sham (MK; 0.816 g kg(-1) orally for 15 days) and MK pre-treated ischemic group (MK + MCAO). Levels of enzymatic and non-enzymatic antioxidants were estimated in HIP along with behavioral testing. MK pre-treatment significantly (P < .05-.001) restored the activities of glutathione peroxidase (GP×), glutathione reductase (GR), glutathione S-transferase (GST) and decreased the level of lipid peroxidation (LPO) and H2O2 content in HIP in the MK + MCAO group which were severely altered in the MCAO group. The content of glutathione (GSH), total thiols (TT) and ascorbic acid (AsA) was significantly depleted in the MCAO group; pretreatment with MK was able to restore its levels. Also in the MK + MCAO group, significant (P < .5-.001) recovery in behavioral testing by rota rod and open-field activities was seen as compared with the MCAO group. MK alone did not show any change neither in the status of various antioxidants nor behavioral functions over sham values. Although detailed studies are required for the evaluation of exact neuroprotective mechanism of MK against cerebral ischemia these preliminary experimental findings conclude that MK exhibits neuroprotective effect in cerebral ischemia by potentiating the antioxidant defense system of the brain.
Collapse
Affiliation(s)
- Seema Yousuf
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Fahim Atif
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
- Brain Research Laboratory, Department of Emergency Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Muzamil Ahmad
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Tauheed Ishrat
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Badruzzaman Khan
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Fakhrul Islam
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Brain injury is the leading cause of death in pediatric intensive care units, and improvements in therapy and in understanding the pathogenesis are urgently needed. This review presents recent advances in the understanding of neuroprotective therapy and brain-specific monitoring for critically ill pediatric patients. RECENT FINDINGS Two neuroprotective strategies are becoming increasingly accepted as they are applied to different mechanisms of brain injury. The rapid application of hypothermia and avoidance of hyperoxia after cardiac arrest and other brain injuries are each being more commonly used as both human and animal data advocating for these approaches accumulate. In addition, more advanced and noninvasive technologies are emerging that are designed to serve as surrogates for brain function and may be used to help predict outcome. Near-infrared spectroscopy is one such commonly used technique that has prompted many studies to understand how to incorporate it into practice. SUMMARY Protection of the pediatric brain from both a primary insult and the common subsequent secondary injury is essential for improving long-term neurologic outcomes. Whereas monitoring technology is being constantly modified, it must be proven efficacious in order to understand the utility of new and presumed neuroprotective therapies like hypothermia and avoidance of hyperoxia.
Collapse
|
46
|
Woodworth KN, Palmateer J, Swide J, Grafe MR. Short- and long-term behavioral effects of exposure to 21%, 40% and 100% oxygen after perinatal hypoxia-ischemia in the rat. Int J Dev Neurosci 2011; 29:629-38. [PMID: 21600973 DOI: 10.1016/j.ijdevneu.2011.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/21/2011] [Accepted: 05/04/2011] [Indexed: 01/22/2023] Open
Abstract
Until recently, supplementation with 100% oxygen was standard therapy for newborns who required resuscitation at birth or suffered later hypoxic-ischemic events. Exposure to high concentrations of oxygen, however, may worsen oxidative stress induced by ischemic injury. In this study we investigated the short- and long-term behavioral outcomes in rats that had undergone hypoxic-ischemic brain injury on postnatal day 7, followed by 2h exposure to 21%, 40%, or 100% oxygen, compared to normal controls. There were no differences in the development of walking, head lifting and righting reflexes from postnatal days 9 to 15. Cliff avoidance showed some abnormal responses in the H21 animals. From postnatal days 28 to 56, three tests of sensorimotor coordination were performed weekly: ledged tapered beam, cylinder, and bilateral tactile stimulation. The ledged tapered beam test without prior training of animals was sensitive to injury, but did not distinguish between treatment groups. The cylinder test showed a greater use of the unimpaired limb in female 21% and 40% oxygen groups compared to controls. Performance in both cylinder and the beam tests showed a correlation with the degree of brain injury. The bilateral tactile stimulation test showed that the male 21% oxygen groups had worse sensory asymmetry than male 40% or 100% oxygen groups, but was not statistically significantly different from controls. We thus found a minor benefit to post-hypoxia-ischemic treatment with 100% and 40% oxygen compared to 21% in one test of early motor skills. Our results for long-term sensorimotor behavior, however, showed conflicting results, however, as males treated with 40% or 100% oxygen had less sensory asymmetry (better performance) in the bilateral tactile stimulation test than males treated with 21% oxygen, while females had impaired motor performance in the cylinder test with both 21% and 40% oxygen.
Collapse
Affiliation(s)
- K Nina Woodworth
- Department of Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L113 Portland, OR 97239-3098, United States
| | | | | | | |
Collapse
|
47
|
Wachtel EV, Hendricks-Muñoz KD. Current management of the infant who presents with neonatal encephalopathy. Curr Probl Pediatr Adolesc Health Care 2011; 41:132-53. [PMID: 21458747 DOI: 10.1016/j.cppeds.2010.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neonatal encephalopathy after perinatal hypoxic-ischemic insult is a major contributor to global child mortality and morbidity. Brain injury in term infants in response to hypoxic-ischemic insult is a complex process evolving over hours to days, which provides a unique window of opportunity for neuroprotective treatment interventions. Advances in neuroimaging, brain monitoring techniques, and tissue biomarkers have improved the ability to diagnose, monitor, and care for newborn infants with neonatal encephalopathy as well as predict their outcome. However, challenges remain in early identification of infants at risk for neonatal encephalopathy, determination of timing and extent of hypoxic-ischemic brain injury, as well as optimal management and treatment duration. Therapeutic hypothermia is the most promising neuroprotective intervention to date for infants with moderate to severe neonatal encephalopathy after perinatal asphyxia and has currently been incorporated in many neonatal intensive care units in developed countries. However, only 1 in 6 babies with encephalopathy will benefit from hypothermia therapy; many infants still develop significant adverse outcomes. To enhance the outcome, specific diagnostic predictors are needed to identify patients likely to benefit from hypothermia treatment. Studies are needed to determine the efficacy of combined therapeutic strategies with hypothermia therapy to achieve maximal neuroprotective effect. This review focuses on important concepts in the pathophysiology, diagnosis, and management of infants with neonatal encephalopathy due to perinatal asphyxia, including an overview of recently introduced novel therapies.
Collapse
Affiliation(s)
- Elena V Wachtel
- Department of Pediatrics, Division of Neonatology, New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|
48
|
Gilley JA, Yang CP, Kernie SG. Developmental profiling of postnatal dentate gyrus progenitors provides evidence for dynamic cell-autonomous regulation. Hippocampus 2011; 21:33-47. [PMID: 20014381 DOI: 10.1002/hipo.20719] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The dentate gyrus of the hippocampus is one of the most prominent regions in the postnatal mammalian brain where neurogenesis continues throughout life. There is tremendous speculation regarding the potential implications of adult hippocampal neurogenesis, though it remains unclear to what extent this ability becomes attenuated during normal aging, and what genetic changes in the progenitor population ensue over time. Using defined elements of the nestin promoter, we developed a transgenic mouse that reliably labels neural stem and early progenitors with green fluorescent protein (GFP). Using a combination of immunohistochemical and flow cytometry techniques, we characterized the progenitor cells within the dentate gyrus and created a developmental profile from postnatal day 7 (P7) until 6 months of age. In addition, we demonstrate that the proliferative potential of these progenitors is controlled at least in part by cell-autonomous cues. Finally, to identify what may underlie these differences, we performed stem cell-specific microarrays on GFP-expressing sorted cells from isolated P7 and postnatal day 28 (P28) dentate gyrus. We identified several differentially expressed genes that may underlie the functional differences that we observe in neurosphere assays from sorted cells and differentiation assays at these different ages. These data suggest that neural progenitors from the dentate gyrus are differentially regulated by cell-autonomous factors that change over time.
Collapse
Affiliation(s)
- Jennifer A Gilley
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | | | | |
Collapse
|
49
|
Nestin reporter transgene labels multiple central nervous system precursor cells. Neural Plast 2011; 2010:894374. [PMID: 21527990 PMCID: PMC3080708 DOI: 10.1155/2010/894374] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/18/2010] [Accepted: 12/27/2010] [Indexed: 02/08/2023] Open
Abstract
Embryonic neuroepithelia and adult subventricular zone (SVZ) stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP) specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes.
Collapse
|
50
|
The Cerebral Palsy Demonstration Project: a multidimensional research approach to cerebral palsy. Semin Pediatr Neurol 2011; 18:31-9. [PMID: 21575839 DOI: 10.1016/j.spen.2011.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerebral palsy is the most common cause of physical impairment in pediatrics. As a heterogeneous disorder in all its disparate aspects it defies a simplistic research approach that seeks to further our understanding of its mechanisms, outcomes and treatments. Within NeuroDevNet, with its focus on abnormal brain development, cerebral palsy was selected as one of the three neurodevelopmental disabilities to be the focus of a dedicated demonstration project. The Cerebral Palsy Demonstration Project will feature a multi-dimensional approach utilizing epidemiologic, imaging, genetics, animal models and stem cell modalities that will at all times emphasize clinical relevance, translation into practice, and potential synergies between investigators now segregated by both academic disciplines and geographic distance. The objective is to create a national platform of varied complementary and inter-digitated efforts. The specific research plan to enable this will be outlined in detail.
Collapse
|