1
|
Gouveia FV, Germann J, Ibrahim GM. Brain network alterations in fragile X syndrome. Neurosci Biobehav Rev 2025; 172:106101. [PMID: 40074163 DOI: 10.1016/j.neubiorev.2025.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Fragile X syndrome (FXS), caused by FMR1 gene mutations, leads to widespread brain alterations significantly impacting cognition and behaviour. Recent advances have provided a deeper understanding of the neural substrates of FXS. This review provides a comprehensive overview of the current knowledge of neuronal network alterations in FXS. We highlight imaging studies that demonstrate network-level disruptions within resting-state networks, including the default mode network, frontoparietal network, salience network, and basal ganglia network, linked to cognitive, emotional and motor deficits in FXS. Next, we link dysregulated network activity in FXS to molecular studies showing neurometabolic imbalances, particularly in GABAergic and glutamatergic systems. Additionally, gene-brain-behavior correlations are explored with gene expression maps to illustrate regional FMR1 expression patterns tied to clinical symptoms. A graph analysis and meta-analytic mapping further link these dysfunctional networks to the specific symptoms of FXS. We conclude by highlighting gaps in the literature, including the need for greater global collaboration, inclusion of underrepresented populations, and consideration of transdiagnostic effects in future research to advance neuroimaging and therapeutic approaches for FXS.
Collapse
Affiliation(s)
| | - Jürgen Germann
- Division of Brain, Imaging and Behaviour, Krembil Research Institute, University Health Network and University of Toronto, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - George M Ibrahim
- Neuroscience and Mental Health, The Hospital for Sick Children, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Division of Neurosurgery, The Hospital for Sick Children, Canada
| |
Collapse
|
2
|
Winarni TI, Aishworiya R, Culpepper H, Zafarullah M, Mendoza G, Wilaisakditipakorn TJ, Likhitweerawong N, Law J, Hagerman R, Tassone F. In Utero Alcohol and Unsuitable Home Environmental Exposure Combined with FMR1 Full Mutation Allele Cause Severe Fragile X Syndrome Phenotypes. Int J Mol Sci 2025; 26:2840. [PMID: 40243429 PMCID: PMC11988866 DOI: 10.3390/ijms26072840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
We investigated the molecular and clinical profile of five boys carrying the fragile X messenger ribonucleoprotein 1 (FMR1) mutation and who suffered from the effects of prenatal alcohol exposure. Fragile X syndrome (FXS) testing was performed using PCR and Southern Blot analysis, and fragile X messenger ribonucleoprotein protein (FMRP) expression levels were measured by Western blot analysis. Clinical evaluation included cognitive functions, adaptive skills, autism phenotype, and severity of behavior measures. Fetal Alcohol Spectrum Disorder (FASD) was also assessed. Five adopted male siblings were investigated, four of which (cases 1, 2, 3, and 4) were diagnosed with FXS, FASD, and ASD, and one, the fraternal triplet (case 5), was diagnosed with FASD and ASD and no FXS. The molecular profile of case 1 and 2 showed the presence of a hypermethylated full mutation (FM) and the resulting absence of FMRP. Cases 3 and 4 (identical twins) were FM-size mosaics (for the presence of an FM and a deleted allele), resulting in 16% and 50% FMRP expression levels, respectively. FMRP expression level was normal in case 5 (fraternal twin). Severe behavioral problems were observed in all cases, including aggression, tantrum, self-harming, anxiety, and defiant behavior, due to different mutations of the FMR1 gene, in addition to biological exposure, home environmental factors, and potentially to additional background gene effects.
Collapse
Affiliation(s)
- Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia;
| | - Ramkumar Aishworiya
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore 119074, Singapore;
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Hannah Culpepper
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (H.C.); (M.Z.); (G.M.)
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (H.C.); (M.Z.); (G.M.)
| | - Guadalupe Mendoza
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (H.C.); (M.Z.); (G.M.)
| | - Tanaporn Jasmine Wilaisakditipakorn
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (T.J.W.); (J.L.); (R.H.)
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA;
| | - Narueporn Likhitweerawong
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA;
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Julie Law
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (T.J.W.); (J.L.); (R.H.)
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA;
| | - Randi Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (T.J.W.); (J.L.); (R.H.)
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA;
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (H.C.); (M.Z.); (G.M.)
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA;
| |
Collapse
|
3
|
Jiraanont P, Zafarullah M, Sulaiman N, Espinal GM, Randol JL, Durbin-Johnson B, Schneider A, Hagerman RJ, Hagerman PJ, Tassone F. FMR1 Protein Expression Correlates with Intelligence Quotient in Both Peripheral Blood Mononuclear Cells and Fibroblasts from Individuals with an FMR1 Mutation. J Mol Diagn 2024; 26:498-509. [PMID: 38522837 PMCID: PMC11983694 DOI: 10.1016/j.jmoldx.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable form of intellectual disability and is caused by CGG repeat expansions exceeding 200 (full mutation). Such expansions lead to hypermethylation and transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. As a consequence, little or no FMR1 protein (FMRP) is produced; absence of the protein, which normally is responsible for neuronal development and maintenance, causes the syndrome. Previous studies have demonstrated the causal relationship between FMRP levels and cognitive abilities in peripheral blood mononuclear cells (PBMCs) and dermal fibroblast cell lines of patients with FXS. However, it is arguable whether PBMCs or fibroblasts would be the preferred surrogate for measuring molecular markers, particularly FMRP, to represent the cognitive impairment, a core symptom of FXS. To address this concern, CGG repeats, methylation status, FMR1 mRNA, and FMRP levels were measured in both PBMCs and fibroblasts derived from 66 individuals. The findings indicated a strong association between FMR1 mRNA expression levels and CGG repeat numbers in PBMCs of premutation males after correcting for methylation status. Moreover, FMRP expression levels from both PBMCs and fibroblasts of male participants with a hypermethylated full mutation and with mosaicism demonstrated significant association between the intelligence quotient levels and FMRP levels, suggesting that PBMCs may be preferable for FXS clinical studies, because of their greater accessibility.
Collapse
Affiliation(s)
- Poonnada Jiraanont
- Division of Molecular and Cellular Medicine, Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Noor Sulaiman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Glenda M Espinal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Jamie L Randol
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Blythe Durbin-Johnson
- Division of Biostatistics, University of California, Davis, School of Medicine, Davis, California
| | - Andrea Schneider
- Department of Pediatrics, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Randi J Hagerman
- Department of Pediatrics, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California.
| |
Collapse
|
4
|
Coulson RL, Frattini V, Moyer CE, Hodges J, Walter P, Mourrain P, Zuo Y, Wang GX. Translational modulator ISRIB alleviates synaptic and behavioral phenotypes in Fragile X syndrome. iScience 2024; 27:109259. [PMID: 38510125 PMCID: PMC10951902 DOI: 10.1016/j.isci.2024.109259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/31/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Fragile X syndrome (FXS) is caused by the loss of fragile X messenger ribonucleoprotein (FMRP), a translational regulator that binds the transcripts of proteins involved in synaptic function and plasticity. Dysregulated protein synthesis is a central effect of FMRP loss, however, direct translational modulation has not been leveraged in the treatment of FXS. Thus, we examined the effect of the translational modulator integrated stress response inhibitor (ISRIB) in treating synaptic and behavioral symptoms of FXS. We show that FMRP loss dysregulates synaptic protein abundance, stabilizing dendritic spines through increased PSD-95 levels while preventing spine maturation through reduced glutamate receptor accumulation, thus leading to the formation of dense, immature dendritic spines, characteristic of FXS patients and Fmr1 knockout (KO) mice. ISRIB rescues these deficits and improves social recognition in Fmr1 KO mice. These findings highlight the therapeutic potential of targeting core translational mechanisms in FXS and neurodevelopmental disorders more broadly.
Collapse
Affiliation(s)
- Rochelle L. Coulson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Valentina Frattini
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Caitlin E. Moyer
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Hodges
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Peter Walter
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- INSERM 1024, Ecole Normale Supérieure, Paris, France
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gordon X. Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Subramanian M, Mills WT, Paranjpe MD, Onuchukwu US, Inamdar M, Maytin AR, Li X, Pomerantz JL, Meffert MK. Growth-suppressor microRNAs mediate synaptic overgrowth and behavioral deficits in Fragile X mental retardation protein deficiency. iScience 2024; 27:108676. [PMID: 38235335 PMCID: PMC10792201 DOI: 10.1016/j.isci.2023.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Abnormal neuronal and synapse growth is a core pathology resulting from deficiency of the Fragile X mental retardation protein (FMRP), but molecular links underlying the excessive synthesis of key synaptic proteins remain incompletely defined. We find that basal brain levels of the growth suppressor let-7 microRNA (miRNA) family are selectively lowered in FMRP-deficient mice and activity-dependent let-7 downregulation is abrogated. Primary let-7 miRNA transcripts are not altered in FMRP-deficiency and posttranscriptional misregulation occurs downstream of MAPK pathway induction and elevation of Lin28a, a let-7 biogenesis inhibitor. Neonatal restoration of brain let-7 miRNAs corrects hallmarks of FMRP-deficiency, including dendritic spine overgrowth and social and cognitive behavioral deficits, in adult mice. Blockade of MAPK hyperactivation normalizes let-7 miRNA levels in both brain and peripheral blood plasma from Fmr1 KO mice. These results implicate dysregulated let-7 miRNA biogenesis in the pathogenesis of FMRP-deficiency, and highlight let-7 miRNA-based strategies for future biomarker and therapeutic development.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William T. Mills
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manish D. Paranjpe
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Uche S. Onuchukwu
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manasi Inamdar
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda R. Maytin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinbei Li
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mollie K. Meffert
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Schmidt KC, Loutaev I, Burlin TV, Thurm A, Sheeler C, Smith CB. Decreased rates of cerebral protein synthesis in conscious young adults with fragile X syndrome demonstrated by L-[1- 11C]leucine PET. J Cereb Blood Flow Metab 2022; 42:1666-1675. [PMID: 35350914 PMCID: PMC9441731 DOI: 10.1177/0271678x221090997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. Fragile X mental retardation protein, a putative translation suppressor, is significantly reduced in FXS. The prevailing hypothesis is that rates of cerebral protein synthesis (rCPS) are increased by the absence of this regulatory protein. We have previously reported increased rCPS in the Fmr1 knockout mouse model of FXS. To address the hypothesis in human subjects, we measured rCPS in young men with FXS with L-[1-11C]leucine PET. In previous studies we had used sedation during imaging, and we did not find increases in rCPS as had been seen in the mouse model. Since mouse measurements were conducted in awake animals, we considered the possibility that sedation may have confounded our results. In the present study we used a modified and validated PET protocol that made it easier for participants with FXS to undergo the study awake. We compared rCPS in 10 fragile X participants and 16 healthy controls all studied while awake. Contrary to the prevailing hypothesis and findings in Fmr1 knockout mice, results indicate that rCPS in awake participants with FXS are decreased in whole brain and most brain regions by 13-21% compared to healthy controls.
Collapse
Affiliation(s)
- Kathleen C Schmidt
- Section on Neuroadaptation & Protein Metabolism, National
Institute of Mental Health, National Institutes of Health, Bethesda, MD,
USA
| | - Inna Loutaev
- Section on Neuroadaptation & Protein Metabolism, National
Institute of Mental Health, National Institutes of Health, Bethesda, MD,
USA
| | - Thomas V Burlin
- Section on Neuroadaptation & Protein Metabolism, National
Institute of Mental Health, National Institutes of Health, Bethesda, MD,
USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, Office of
the Clinical Director, National Institute of Mental Health, National Institutes
of Health, Bethesda, MD, USA
| | - Carrie Sheeler
- Section on Neuroadaptation & Protein Metabolism, National
Institute of Mental Health, National Institutes of Health, Bethesda, MD,
USA
| | - Carolyn Beebe Smith
- Section on Neuroadaptation & Protein Metabolism, National
Institute of Mental Health, National Institutes of Health, Bethesda, MD,
USA
| |
Collapse
|
7
|
Kalinowska M, van der Lei MB, Kitiashvili M, Mamcarz M, Oliveira MM, Longo F, Klann E. Deletion of Fmr1 in parvalbumin-expressing neurons results in dysregulated translation and selective behavioral deficits associated with fragile X syndrome. Mol Autism 2022; 13:29. [PMID: 35768828 PMCID: PMC9245312 DOI: 10.1186/s13229-022-00509-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS), the most common genetic cause of autism spectrum disorder and intellectual disability, is caused by the lack of fragile X mental retardation protein (FMRP) expression. FMRP is an mRNA binding protein with functions in mRNA transport, localization, and translational control. In Fmr1 knockout mice, dysregulated translation has been linked to pathophysiology, including abnormal synaptic function and dendritic morphology, and autistic-like behavioral phenotypes. The role of FMRP in morphology and function of excitatory neurons has been well studied in mice lacking Fmr1, but the impact of Fmr1 deletion on inhibitory neurons remains less characterized. Moreover, the contribution of FMRP in different cell types to FXS pathophysiology is not well defined. We sought to characterize whether FMRP loss in parvalbumin or somatostatin-expressing neurons results in FXS-like deficits in mice. METHODS We used Cre-lox recombinase technology to generate two lines of conditional knockout mice lacking FMRP in either parvalbumin or somatostatin-expressing cells and carried out a battery of behavioral tests to assess motor function, anxiety, repetitive, stereotypic, social behaviors, and learning and memory. In addition, we used fluorescent non-canonical amino acid tagging along with immunostaining to determine whether de novo protein synthesis is dysregulated in parvalbumin or somatostatin-expressing neurons. RESULTS De novo protein synthesis was elevated in hippocampal parvalbumin and somatostatin-expressing inhibitory neurons in Fmr1 knockout mice. Cell type-specific deletion of Fmr1 in parvalbumin-expressing neurons resulted in anxiety-like behavior, impaired social behavior, and dysregulated de novo protein synthesis. In contrast, deletion of Fmr1 in somatostatin-expressing neurons did not result in behavioral abnormalities and did not significantly impact de novo protein synthesis. This is the first report of how loss of FMRP in two specific subtypes of inhibitory neurons is associated with distinct FXS-like abnormalities. LIMITATIONS The mouse models we generated are limited by whole body knockout of FMRP in parvalbumin or somatostatin-expressing cells and further studies are needed to establish a causal relationship between cellular deficits and FXS-like behaviors. CONCLUSIONS Our findings indicate a cell type-specific role for FMRP in parvalbumin-expressing neurons in regulating distinct behavioral features associated with FXS.
Collapse
Affiliation(s)
- Magdalena Kalinowska
- grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY USA
| | - Mathijs B. van der Lei
- grid.5284.b0000 0001 0790 3681Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Michael Kitiashvili
- grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY USA
| | - Maggie Mamcarz
- grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY USA
| | - Mauricio M. Oliveira
- grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY USA
| | - Francesco Longo
- grid.8761.80000 0000 9919 9582Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden ,grid.8761.80000 0000 9919 9582Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA. .,NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Brašić JR, Goodman JA, Nandi A, Russell DS, Jennings D, Barret O, Martin SD, Slifer K, Sedlak T, Mathur AK, Seibyl JP, Berry-Kravis EM, Wong DF, Budimirovic DB. Fragile X Mental Retardation Protein and Cerebral Expression of Metabotropic Glutamate Receptor Subtype 5 in Men with Fragile X Syndrome: A Pilot Study. Brain Sci 2022; 12:314. [PMID: 35326270 PMCID: PMC8946825 DOI: 10.3390/brainsci12030314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple lines of evidence suggest that a deficiency of Fragile X Mental Retardation Protein (FMRP) mediates dysfunction of the metabotropic glutamate receptor subtype 5 (mGluR5) in the pathogenesis of fragile X syndrome (FXS), the most commonly known single-gene cause of inherited intellectual disability (ID) and autism spectrum disorder (ASD). Nevertheless, animal and human studies regarding the link between FMRP and mGluR5 expression provide inconsistent or conflicting findings about the nature of those relationships. Since multiple clinical trials of glutamatergic agents in humans with FXS did not demonstrate the amelioration of the behavioral phenotype observed in animal models of FXS, we sought measure if mGluR5 expression is increased in men with FXS to form the basis for improved clinical trials. Unexpectedly marked reductions in mGluR5 expression were observed in cortical and subcortical regions in men with FXS. Reduced mGluR5 expression throughout the living brains of men with FXS provides a clue to examine FMRP and mGluR5 expression in FXS. In order to develop the findings of our previous study and to strengthen the objective tools for future clinical trials of glutamatergic agents in FXS, we sought to assess the possible value of measuring both FMRP levels and mGluR5 expression in men with FXS. We aimed to show the value of measurement of FMRP levels and mGluR5 expression for the diagnosis and treatment of individuals with FXS and related conditions. We administered 3-[18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB), a specific mGluR5 radioligand for quantitative measurements of the density and the distribution of mGluR5s, to six men with the full mutation (FM) of FXS and to one man with allele size mosaicism for FXS (FXS-M). Utilizing the seven cortical and subcortical regions affected in neurodegenerative disorders as indicator variables, adjusted linear regression of mGluR5 expression and FMRP showed that mGluR5 expression was significantly reduced in the occipital cortex and the thalamus relative to baseline (anterior cingulate cortex) if FMRP levels are held constant (F(7,47) = 6.84, p < 0.001).These findings indicate the usefulness of cerebral mGluR5 expression measured by PET with [18F]FPEB and FMRP values in men with FXS and related conditions for assessments in community facilities within a hundred-mile radius of a production center with a cyclotron. These initial results of this pilot study advance our previous study regarding the measurement of mGluR5 expression by combining both FMRP levels and mGluR5 expression as tools for meaningful clinical trials of glutamatergic agents for men with FXS. We confirm the feasibility of this protocol as a valuable tool to measure FMRP levels and mGluR5 expression in clinical trials of individuals with FXS and related conditions and to provide the foundations to apply precision medicine to tailor treatment plans to the specific needs of individuals with FXS and related conditions.
Collapse
Affiliation(s)
- James Robert Brašić
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
| | - Jack Alexander Goodman
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT 06473, USA;
| | - Ayon Nandi
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
| | - David S. Russell
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
| | - Danna Jennings
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
- Denali Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Olivier Barret
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Institut de Biologie François Jacob, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Université Paris-Saclay, CEDEX, 92265 Fontenay-aux-Roses, France
| | - Samuel D. Martin
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
- Department of Neuroscience, Zanvyl Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Keith Slifer
- Department of Psychiatry and Behavioral Sciences-Child Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Thomas Sedlak
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
- Department of Psychiatry and Behavioral Sciences-General Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anil Kumar Mathur
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
| | - John P. Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
| | - Elizabeth M. Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Dean F. Wong
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
- Laboratory of Central Nervous System (CNS) Neuropsychopharmacology and Multimodal, Imaging (CNAMI), Mallinckrodt Institute of Radiology, Washington University, Saint Louis, MO 63110, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry and Behavioral Sciences-Child Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Psychiatry, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Liu X, Kumar V, Tsai NP, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022; 14:805929. [PMID: 35069112 PMCID: PMC8770333 DOI: 10.3389/fnmol.2021.805929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vipendra Kumar
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nien-Pei Tsai
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Benjamin D. Auerbach
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach
| |
Collapse
|
10
|
Takatani S, Tahara T, Tsuji M, Ozaki D, Shibata N, Hashizume Y, Suzuki M, Onoe H, Watanabe Y, Doi H. Synthesis of L-[5- 11 C]Leucine and L-α-[5- 11 C]Methylleucine via Pd 0 -mediated 11 C-Methylation and Microfluidic Hydrogenation: Potentiality of Leucine PET Probes for Tumor Imaging. ChemMedChem 2021; 16:3271-3279. [PMID: 34128324 DOI: 10.1002/cmdc.202100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 11/06/2022]
Abstract
The efficient synthesis of L-[5-11 C]leucine and L-α-[5-11 C]methylleucine has been investigated using a continuous two-step sequence of rapid reactions consisting of Pd0 -mediated 11 C-methylation and microfluidic hydrogenation. The synthesis of L-[5-11 C]leucine and L-α-[5-11 C]methylleucine was accomplished within 40 min with a decay-corrected radiochemical yield of 15-38 % based on [11 C]CH3 I, radiochemical purity of 95-99 %, and chemical purity of 95-99 %. The Pd impurities in the injectable solution measured using inductively coupled plasma mass spectrometry met the international criteria for human use. Positron emission tomography scanning after an intravenous injection of L-[5-11 C]leucine or L-α-[5-11 C]methyl leucine in A431 tumor-bearing mice was performed. As a result, L-α-[5-11 C]methylleucine was found to be a potentially useful probe for visualizing the tumor. Tissue distribution analysis showed that the accumulation value of L-α-[5-11 C]methylleucine in tumor tissue was high [12±3% injected dose/g tissue (%ID/g)].
Collapse
Affiliation(s)
- Shuhei Takatani
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Tsuyoshi Tahara
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Mieko Tsuji
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Daiki Ozaki
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Nina Shibata
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yoshinobu Hashizume
- RIKEN Program for Drug Discovery and Medical Technology Platforms, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masaaki Suzuki
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,National Center for Geriatrics and Gerontology 35 Gengo, Morioka Obu, Aichi, 474-8511, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, (Japan)
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
11
|
Dionne O, Corbin F. An "Omic" Overview of Fragile X Syndrome. BIOLOGY 2021; 10:433. [PMID: 34068266 PMCID: PMC8153138 DOI: 10.3390/biology10050433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 01/16/2023]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder associated with a wide range of cognitive, behavioral and medical problems. It arises from the silencing of the fragile X mental retardation 1 (FMR1) gene and, consequently, in the absence of its encoded protein, FMRP (fragile X mental retardation protein). FMRP is a ubiquitously expressed and multifunctional RNA-binding protein, primarily considered as a translational regulator. Pre-clinical studies of the past two decades have therefore focused on this function to relate FMRP's absence to the molecular mechanisms underlying FXS physiopathology. Based on these data, successful pharmacological strategies were developed to rescue fragile X phenotype in animal models. Unfortunately, these results did not translate into humans as clinical trials using same therapeutic approaches did not reach the expected outcomes. These failures highlight the need to put into perspective the different functions of FMRP in order to get a more comprehensive understanding of FXS pathophysiology. This work presents a review of FMRP's involvement on noteworthy molecular mechanisms that may ultimately contribute to various biochemical alterations composing the fragile X phenotype.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC J1H 5H4, Canada;
| | | |
Collapse
|
12
|
Dionne O, Lortie A, Gagnon F, Corbin F. Rates of protein synthesis are reduced in peripheral blood mononuclear cells (PBMCs) from fragile X individuals. PLoS One 2021; 16:e0251367. [PMID: 33974659 PMCID: PMC8112704 DOI: 10.1371/journal.pone.0251367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/23/2021] [Indexed: 12/30/2022] Open
Abstract
Background Fragile X syndrome (FXS) is the leading inherited cause of intellectual disability and is caused by the loss of expression of the Fragile X mental retardation protein (FMRP). In animal model of FXS, the absence of FMRP leads to an aberrant rate of neuronal protein synthesis, which in turn is believed to be at the origin of defects regarding spine morphology and synaptic plasticity. Normalisation of protein synthesis in these models has been associated with a rescue of FXS behavioral and biochemicals phenotype, thus establishing the rate of protein synthesis as one of the most promising monitoring biomarker for FXS. However, rate of protein synthesis alteration in fragile X individuals is not well characterized. Method We applied a robust radiolabeled assay to measure rate of protein synthesis in freshly extracted peripheral blood mononuclear cells (PBMCs) and blood platelets. We ultimately settle on PBMCs to measure and compare rate of protein synthesis in 13 males with fragile X and 14 matched controls individuals. Results Using this method, we measured a 26.9% decrease (p = 0,0193) in the rate of protein synthesis in fragile X individuals PBMCs. Furthermore, the rate of protein synthesis measurements obtained were highly reproducible, highlighting the robustness of the method. Conclusion Our work presents the first evidence of a diminution of the rate of protein synthesis in a human peripheral model of fragile X. Our results also support the finding of previous studies using brain PET imaging in Fragile X individuals. Since our assay only requires a simple venous puncture, it could be used in other cases of intellectual disability in order to determine if an aberrant rate of protein synthesis is a common general mechanism leading to impairment in synaptic plasticity and to intellectual disability.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
- * E-mail: (OD); (FC)
| | - Audrey Lortie
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Florence Gagnon
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - François Corbin
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
- * E-mail: (OD); (FC)
| |
Collapse
|
13
|
Clifton NE, Thomas KL, Wilkinson LS, Hall J, Trent S. FMRP and CYFIP1 at the Synapse and Their Role in Psychiatric Vulnerability. Complex Psychiatry 2020; 6:5-19. [PMID: 34883502 PMCID: PMC7673588 DOI: 10.1159/000506858] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
There is increasing awareness of the role genetic risk variants have in mediating vulnerability to psychiatric disorders such as schizophrenia and autism. Many of these risk variants encode synaptic proteins, influencing biological pathways of the postsynaptic density and, ultimately, synaptic plasticity. Fragile-X mental retardation 1 (FMR1) and cytoplasmic fragile-X mental retardation protein (FMRP)-interacting protein 1 (CYFIP1) contain 2 such examples of highly penetrant risk variants and encode synaptic proteins with shared functional significance. In this review, we discuss the biological actions of FMRP and CYFIP1, including their regulation of (i) protein synthesis and specifically FMRP targets, (ii) dendritic and spine morphology, and (iii) forms of synaptic plasticity such as long-term depression. We draw upon a range of preclinical studies that have used genetic dosage models of FMR1 and CYFIP1 to determine their biological function. In parallel, we discuss how clinical studies of fragile X syndrome or 15q11.2 deletion patients have informed our understanding of FMRP and CYFIP1, and highlight the latest psychiatric genomic findings that continue to implicate FMRP and CYFIP1. Lastly, we assess the current limitations in our understanding of FMRP and CYFIP1 biology and how they must be addressed before mechanism-led therapeutic strategies can be developed for psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas E. Clifton
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L. Thomas
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
14
|
Schmidt KC, Loutaev I, Quezado Z, Sheeler C, Smith CB. Regional rates of brain protein synthesis are unaltered in dexmedetomidine sedated young men with fragile X syndrome: A L-[1- 11C]leucine PET study. Neurobiol Dis 2020; 143:104978. [PMID: 32569795 PMCID: PMC7425798 DOI: 10.1016/j.nbd.2020.104978] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. Fragile X mental retardation protein (FMRP), a putative translation suppressor, is absent or significantly reduced in FXS. One prevailing hypothesis is that rates of protein synthesis are increased by the absence of this regulatory protein. In accord with this hypothesis, we have previously reported increased rates of cerebral protein synthesis (rCPS) in the Fmr1 knockout mouse model of FXS and others have reported similar effects in hippocampal slices. To address the hypothesis in human subjects, we applied the L[1-11C]leucine PET method to measure rCPS in adults with FXS and healthy controls. All subjects were males between the ages of 18 and 24 years and free of psychotropic medication. As most fragile X participants were not able to undergo the PET study awake, we used dexmedetomidine for sedation during the imaging studies. We found no differences between rCPS measured during dexmedetomidine-sedation and the awake state in ten healthy controls. In the comparison of rCPS in dexmedetomidine-sedated fragile X participants (n = 9) and healthy controls (n = 14) we found no statistically significant differences. Our results from in vivo measurements in human brain do not support the hypothesis that rCPS are elevated due to the absence of FMRP. This hypothesis is based on findings in animal models and in vitro measurements in human peripheral cells. The absence of a translation suppressor may produce a more complex response in pathways regulating translation than previously thought. We may need to revise our working hypotheses regarding FXS and our thinking about potential therapeutics.
Collapse
Affiliation(s)
- Kathleen C Schmidt
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, 10 Center Drive, Room 2D54, Bethesda, MD 20892-1298, United States of America
| | - Inna Loutaev
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, 10 Center Drive, Room 2D54, Bethesda, MD 20892-1298, United States of America
| | - Zenaide Quezado
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1512, United States of America
| | - Carrie Sheeler
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, 10 Center Drive, Room 2D54, Bethesda, MD 20892-1298, United States of America
| | - Carolyn Beebe Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, 10 Center Drive, Room 2D54, Bethesda, MD 20892-1298, United States of America.
| |
Collapse
|
15
|
Utami KH, Yusof NABM, Kwa JE, Peteri UK, Castrén ML, Pouladi MA. Elevated de novo protein synthesis in FMRP-deficient human neurons and its correction by metformin treatment. Mol Autism 2020; 11:41. [PMID: 32460900 PMCID: PMC7251671 DOI: 10.1186/s13229-020-00350-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
FXS is the most common genetic cause of intellectual (ID) and autism spectrum disorders (ASD). FXS is caused by loss of FMRP, an RNA-binding protein involved in the translational regulation of a large number of neuronal mRNAs. Absence of FMRP has been shown to lead to elevated protein synthesis and is thought to be a major cause of the synaptic plasticity and behavioural deficits in FXS. The increase in protein synthesis results in part from abnormal activation of key protein translation pathways downstream of ERK1/2 and mTOR signalling. Pharmacological and genetic interventions that attenuate hyperactivation of these pathways can normalize levels of protein synthesis and improve phenotypic outcomes in animal models of FXS. Several efforts are currently underway to trial this strategy in patients with FXS. To date, elevated global protein synthesis as a result of FMRP loss has not been validated in the context of human neurons. Here, using an isogenic human stem cell-based model, we show that de novo protein synthesis is elevated in FMRP-deficient neural cells. We further show that this increase is associated with elevated ERK1/2 and Akt signalling and can be rescued by metformin treatment. Finally, we examined the effect of normalizing protein synthesis on phenotypic abnormalities in FMRP-deficient neural cells. We find that treatment with metformin attenuates the increase in proliferation of FMRP-deficient neural progenitor cells but not the neuronal deficits in neurite outgrowth. The elevated level of protein synthesis and the normalization of neural progenitor proliferation by metformin treatment were validated in additional control and FXS patient-derived hiPSC lines. Overall, our results validate that loss of FMRP results in elevated de novo protein synthesis in human neurons and suggest that approaches targeting this abnormality are likely to be of partial therapeutic benefit in FXS.
Collapse
Affiliation(s)
- Kagistia Hana Utami
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore.
| | - Nur Amirah Binte Mohammad Yusof
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Jing Eugene Kwa
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Ulla-Kaisa Peteri
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Razak KA, Dominick KC, Erickson CA. Developmental studies in fragile X syndrome. J Neurodev Disord 2020; 12:13. [PMID: 32359368 PMCID: PMC7196229 DOI: 10.1186/s11689-020-09310-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/13/2020] [Indexed: 01/27/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of autism and intellectual disabilities. Humans with FXS exhibit increased anxiety, sensory hypersensitivity, seizures, repetitive behaviors, cognitive inflexibility, and social behavioral impairments. The main purpose of this review is to summarize developmental studies of FXS in humans and in the mouse model, the Fmr1 knockout mouse. The literature presents considerable evidence that a number of early developmental deficits can be identified and that these early deficits chart a course of altered developmental experience leading to symptoms well characterized in adolescents and adults. Nevertheless, a number of critical issues remain unclear or untested regarding the development of symptomology and underlying mechanisms. First, what is the role of FMRP, the protein product of Fmr1 gene, during different developmental ages? Does the absence of FMRP during early development lead to irreversible changes, or could reintroduction of FMRP or therapeutics aimed at FMRP-interacting proteins/pathways hold promise when provided in adults? These questions have implications for clinical trial designs in terms of optimal treatment windows, but few studies have systematically addressed these issues in preclinical and clinical work. Published studies also point to complex trajectories of symptom development, leading to the conclusion that single developmental time point studies are unlikely to disambiguate effects of genetic mutation from effects of altered developmental experience and compensatory plasticity. We conclude by suggesting a number of experiments needed to address these major gaps in the field.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Psychology and Graduate Neuroscience Program, University of California, Riverside, USA
| | - Kelli C Dominick
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA
| | - Craig A Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA. .,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA.
| |
Collapse
|
17
|
Loss of fragile X mental retardation protein precedes Lewy pathology in Parkinson's disease. Acta Neuropathol 2020; 139:319-345. [PMID: 31768670 DOI: 10.1007/s00401-019-02099-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) and the gradual appearance of α-synuclein (α-syn)-containing neuronal protein aggregates. Although the exact mechanism of α-syn-mediated cell death remains elusive, recent research suggests that α-syn-induced alterations in neuronal excitability contribute to cell death in PD. Because the fragile X mental retardation protein (FMRP) controls the expression and function of numerous neuronal genes related to neuronal excitability and synaptic function, we here investigated the role of FMRP in α-syn-associated pathological changes in cell culture and mouse models of PD as well as in post-mortem human brain tissue from PD patients. We found FMRP to be decreased in cultured DA neurons and in the mouse brain in response to α-syn overexpression. FMRP was, furthermore, lost in the SNc of PD patients and in patients with early stages of incidental Lewy body disease (iLBD). Unlike fragile X syndrome (FXS), FMR1 expression in response to α-syn was regulated by a mechanism involving Protein Kinase C (PKC) and cAMP response element-binding protein (CREB). Reminiscent of FXS neurons, α-syn-overexpressing cells exhibited an increase in membrane N-type calcium channels, increased phosphorylation of ERK1/2, eIF4E and S6, increased overall protein synthesis, and increased expression of Matrix Metalloproteinase 9 (MMP9). FMRP affected neuronal function in a PD animal model, because FMRP-KO mice were resistant to the effect of α-syn on striatal dopamine release. In summary, our results thus reveal a new role of FMRP in PD and support the examination of FMRP-regulated genes in PD disease progression.
Collapse
|
18
|
Cooke SK, Russin J, Moulton K, Nadel J, Loutaev I, Gu Q, Li Z, Smith CB. Effects of the presence and absence of amino acids on translation, signaling, and long-term depression in hippocampal slices from Fmr1 knockout mice. J Neurochem 2019; 151:764-776. [PMID: 31539452 DOI: 10.1111/jnc.14874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/02/2019] [Accepted: 08/18/2019] [Indexed: 01/28/2023]
Abstract
Fragile X syndrome (FXS) is caused by silencing of the FMR1 gene and consequent absence of its protein product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that can suppress translation. The absence of FMRP leads to symptoms of FXS including intellectual disability and has been proposed to lead to abnormalities in synaptic plasticity. Synaptic plasticity, protein synthesis, and cellular growth pathways have been studied extensively in hippocampal slices from a mouse model of FXS (Fmr1 KO). Enhanced metabotropic glutamate receptor 5 (mGluR5)-dependent long-term depression (LTD), increased rates of protein synthesis, and effects on signaling molecules have been reported. These phenotypes were found under amino acid starvation, a condition that has widespread, powerful effects on activation and translation of proteins involved in regulating protein synthesis. We asked if this non-physiological condition could have effects on Fmr1 KO phenotypes reported in hippocampal slices. We performed hippocampal slice experiments in the presence and absence of amino acids. We measured rates of incorporation of a radiolabeled amino acid into protein to determine protein synthesis rates. By means of western blots, we assessed relative levels of total and phosphorylated forms of proteins involved in signaling pathways regulating translation. We measured evoked field potentials in area CA1 to assess the strength of the long-term depression response to mGluR activation. In the absence of amino acids, we replicate many of the reported findings in Fmr1 KO hippocampal slices, but in the more physiological condition of inclusion of amino acids in the medium, we did not find evidence of enhanced mGluR5-dependent LTD. Activation of mGluR5 increased protein synthesis in both wild type and Fmr1 KO. Moreover, mGluR5 activation increased eIF2α phosphorylation and decreased phosphorylation of p70S6k in slices from Fmr1 KO. We propose that the eIF2α response is a cellular attempt to compensate for the lack of regulation of translation by FMRP. Our findings call for a re-examination of the mGluR theory of FXS.
Collapse
Affiliation(s)
- Spencer K Cooke
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacob Russin
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristen Moulton
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Nadel
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Inna Loutaev
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Qinhua Gu
- Section on Synapse Development and Plasticity, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Zheng Li
- Section on Synapse Development and Plasticity, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Carolyn Beebe Smith
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Tomasi G, Veronese M, Bertoldo A, Smith CB, Schmidt KC. Substitution of venous for arterial blood sampling in the determination of regional rates of cerebral protein synthesis with L-[1- 11C]leucine PET: A validation study. J Cereb Blood Flow Metab 2019; 39:1849-1863. [PMID: 29664322 PMCID: PMC6727135 DOI: 10.1177/0271678x18771242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We developed and validated a method to estimate input functions for determination of regional rates of cerebral protein synthesis (rCPS) with L-[1-11C]leucine PET without arterial sampling. The method is based on a population-derived input function (PDIF) approach, with venous samples for calibration. Population input functions were constructed from arterial blood data measured in 25 healthy 18-24-year-old males who underwent L-[1-11C]leucine PET scans while awake. To validate the approach, three additional groups of 18-27-year-old males underwent L-[1-11C]leucine PET scans with both arterial and venous blood sampling: 13 awake healthy volunteers, 10 sedated healthy volunteers, and 5 sedated subjects with fragile X syndrome. Rate constants of the L-[1-11C]leucine kinetic model were estimated voxel-wise with measured arterial input functions and with venous-calibrated PDIFs. Venous plasma leucine measurements were used with venous-calibrated PDIFs for rCPS computation. rCPS determined with PDIFs calibrated with 30-60 min venous samples had small errors (RMSE: 4-9%), and no statistically significant differences were found in any group when compared to rCPS determined with arterial input functions. We conclude that in young adult males, PDIFs calibrated with 30-60 min venous samples can be used in place of arterial input functions for determination of rCPS with L-[1-11C]leucine PET.
Collapse
Affiliation(s)
- Giampaolo Tomasi
- Section on Neuroadaptation & Protein
Metabolism, National Institute of Mental Health, Bethesda, MD, USA
| | - Mattia Veronese
- Department of Neuroimaging, IoPPN,
King’s College London, London, UK
| | | | - Carolyn B Smith
- Section on Neuroadaptation & Protein
Metabolism, National Institute of Mental Health, Bethesda, MD, USA
| | - Kathleen C Schmidt
- Section on Neuroadaptation & Protein
Metabolism, National Institute of Mental Health, Bethesda, MD, USA
- Kathleen C Schmidt, Section on
Neuroadaptation & Protein Metabolism, National Institute of Mental Health,
Bldg 10, Room 2D54, 10 Center Drive, Bethesda, MD 20892-1298, USA.
| |
Collapse
|
20
|
Zafarullah M, Tassone F. Molecular Biomarkers in Fragile X Syndrome. Brain Sci 2019; 9:E96. [PMID: 31035599 PMCID: PMC6562871 DOI: 10.3390/brainsci9050096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability (ID) and a known monogenic cause of autism spectrum disorder (ASD). It is a trinucleotide repeat disorder, in which more than 200 CGG repeats in the 5' untranslated region (UTR) of the fragile X mental retardation 1 (FMR1) gene causes methylation of the promoter with consequent silencing of the gene, ultimately leading to the loss of the encoded fragile X mental retardation 1 protein, FMRP. FMRP is an RNA binding protein that plays a primary role as a repressor of translation of various mRNAs, many of which are involved in the maintenance and development of neuronal synaptic function and plasticity. In addition to intellectual disability, patients with FXS face several behavioral challenges, including anxiety, hyperactivity, seizures, repetitive behavior, and problems with executive and language performance. Currently, there is no cure or approved medication for the treatment of the underlying causes of FXS, but in the past few years, our knowledge about the proteins and pathways that are dysregulated by the loss of FMRP has increased, leading to clinical trials and to the path of developing molecular biomarkers for identifying potential targets for therapies. In this paper, we review candidate molecular biomarkers that have been identified in preclinical studies in the FXS mouse animal model and are now under validation for human applications or have already made their way to clinical trials.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, 95817 CA, USA.
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, 95817 CA, USA.
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA.
| |
Collapse
|
21
|
Pal R, Bhattacharya A. Modelling Protein Synthesis as A Biomarker in Fragile X Syndrome Patient-Derived Cells. Brain Sci 2019; 9:E59. [PMID: 30862080 PMCID: PMC6468675 DOI: 10.3390/brainsci9030059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/26/2022] Open
Abstract
The most conserved molecular phenotype of Fragile X Syndrome (FXS) is aberrant protein synthesis. This has been validated in a variety of experimental model systems from zebrafish to rats, patient-derived lymphoblasts and fibroblasts. With the advent of personalized medicine paradigms, patient-derived cells and their derivatives are gaining more translational importance, not only to model disease in a dish, but also for biomarker discovery. Here we review past and current practices of measuring protein synthesis in FXS, studies in patient derived cells and the inherent challenges in measuring protein synthesis in them to offer usable avenues of modeling this important metabolic metric for further biomarker development.
Collapse
Affiliation(s)
- Rakhi Pal
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bellary Road, Bengaluru 560065, India.
| | - Aditi Bhattacharya
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, GKVK Post, Bellary Road, Bengaluru 560065, India.
| |
Collapse
|
22
|
Jacquemont S, Pacini L, Jønch AE, Cencelli G, Rozenberg I, He Y, D'Andrea L, Pedini G, Eldeeb M, Willemsen R, Gasparini F, Tassone F, Hagerman R, Gomez-Mancilla B, Bagni C. Protein synthesis levels are increased in a subset of individuals with fragile X syndrome. Hum Mol Genet 2019; 27:2039-2051. [PMID: 29590342 PMCID: PMC5985734 DOI: 10.1093/hmg/ddy099] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Fragile X syndrome (FXS) is a monogenic form of intellectual disability and autism spectrum disorder caused by the absence of the fragile X mental retardation protein (FMRP). In biological models for the disease, this leads to upregulated mRNA translation and as a consequence, deficits in synaptic architecture and plasticity. Preclinical studies revealed that pharmacological interventions restore those deficits, which are thought to mediate the FXS cognitive and behavioral symptoms. Here, we characterized the de novo rate of protein synthesis in patients with FXS and their relationship with clinical severity. We measured the rate of protein synthesis in fibroblasts derived from 32 individuals with FXS and from 17 controls as well as in fibroblasts and primary neurons of 27 Fmr1 KO mice and 20 controls. Here, we show that levels of protein synthesis are increased in fibroblasts of individuals with FXS and Fmr1 KO mice. However, this cellular phenotype displays a broad distribution and a proportion of fragile X individuals and Fmr1 KO mice do not show increased levels of protein synthesis, having measures in the normal range. Because the same Fmr1 KO animal measures in fibroblasts predict those in neurons we suggest the validity of this peripheral biomarker. Our study offers a potential explanation for the comprehensive drug development program undertaken thus far yielding negative results and suggests that a significant proportion, but not all individuals with FXS, may benefit from the reduction of excessive levels of protein synthesis.
Collapse
Affiliation(s)
- Sébastien Jacquemont
- Sainte-Justine University Hospital Research Centre, Montreal, QC H3T 1C5.,University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Laura Pacini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Aia E Jønch
- Department of Clinical Genetics, Odense University Hospital.,Human Genetics, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Giulia Cencelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Izabela Rozenberg
- Neuroscience Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Yunsheng He
- Biomarker Development, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Laura D'Andrea
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marwa Eldeeb
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, 1738, 3000DR Rotterdam, The Netherlands
| | - Fabrizio Gasparini
- Neuroscience Discovery, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine and Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA 95817, USA
| | - Randi Hagerman
- Department of Pediatric and Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Baltazar Gomez-Mancilla
- Neuroscience Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4056 Basel, Switzerland.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.,Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
23
|
Maurin T, Bardoni B. Fragile X Mental Retardation Protein: To Be or Not to Be a Translational Enhancer. Front Mol Biosci 2018; 5:113. [PMID: 30619879 PMCID: PMC6297276 DOI: 10.3389/fmolb.2018.00113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Thomas Maurin
- Université Côte d'Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| | - Barbara Bardoni
- CNRS LIA "Neogenex", Valbonne, France.,Université Côte d'Azur, INSERM, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, Valbonne, France
| |
Collapse
|
24
|
Nayak T, Trotter J, Sakry D. The Intracellular Cleavage Product of the NG2 Proteoglycan Modulates Translation and Cell-Cycle Kinetics via Effects on mTORC1/FMRP Signaling. Front Cell Neurosci 2018; 12:231. [PMID: 30131676 PMCID: PMC6090502 DOI: 10.3389/fncel.2018.00231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
The NG2 proteoglycan is expressed by oligodendrocyte precursor cells (OPCs) and is abundantly expressed by tumors such as melanoma and glioblastoma. Functions of NG2 include an influence on proliferation, migration and neuromodulation. Similar to other type-1 membrane proteins, NG2 undergoes proteolysis, generating a large ectodomain, a C-terminal fragment (CTF) and an intracellular domain (ICD) via sequential action of α- and γ-secretases which is enhanced by neuronal activity. Functional roles of NG2 have so far been shown for the full-length protein, the released ectodomain and CTF, but not for the ICD. In this study, we characterized the role of the NG2 ICD in OPC and Human Embryonic Kidney (HEK) cells. Overexpressed ICD is predominantly localized in the cell cytosol, including the distal processes of OPCs. Nuclear localisation of a fraction of the ICD is dependent on Nuclear Localisation Signals. Immunoprecipitation and Mass Spectrometry followed by functional analysis indicated that the NG2 ICD modulates mRNA translation and cell-cycle kinetics. In OPCs and HEK cells, ICD overexpression results in an mTORC1-dependent upregulation of translation, as well as a shift of the cell population toward S-phase. NG2 ICD increases the active (phosphorylated) form of mTOR and modulates downstream signaling cascades, including increased phosphorylation of p70S6K1 and increased expression of eEF2. Strikingly, levels of FMRP, an RNA-binding protein that is regulated by mTOR/p70S6K1/eEF2 were decreased. In neurons, FMRP acts as a translational repressor under activity-dependent control and is mutated in Fragile X Syndrome (FXS). Knock-down of endogenous NG2 in primary OPC reduced translation and mTOR/p70S6K1 phosphorylation in Oli-neu. Here, we identify the NG2 ICD as a regulator of translation in OPCs via modulation of the well-established mTORC1 pathway. We show that FXS-related FMRP signaling is not exclusive to neurons but plays a role in OPCs. This provides a signal cascade in OPC which can be influenced by the neuronal network, since the NG2 ICD has been shown to be generated by constitutive as well as activity-dependent cleavage. Our results also elucidate a possible role of NG2 in tumors exhibiting enhanced rates of translation and rapid cell cycle kinetics.
Collapse
Affiliation(s)
- Tanmoyita Nayak
- Department of Biology, Molecular Cell Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jacqueline Trotter
- Department of Biology, Molecular Cell Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dominik Sakry
- Department of Biology, Molecular Cell Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
25
|
Tomasi G, Veronese M, Bertoldo A, Beebe Smith C, Schmidt KC. Effects of shortened scanning intervals on calculated regional rates of cerebral protein synthesis determined with the L-[1-11C]leucine PET method. PLoS One 2018; 13:e0195580. [PMID: 29659612 PMCID: PMC5901930 DOI: 10.1371/journal.pone.0195580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/26/2018] [Indexed: 11/19/2022] Open
Abstract
To examine effects of scan duration on estimates of regional rates of cerebral protein synthesis (rCPS), we reanalyzed data from thirty-nine previously reported L-[1-11C]leucine PET studies. Subjects consisted of 12 healthy volunteers studied twice, awake and under propofol sedation, and 15 subjects with fragile X syndrome (FXS) studied once under propofol sedation. All scans were acquired on a high resolution scanner. We used a basis function method for voxelwise estimation of parameters of the kinetic model of L-[1-11C]leucine and rCPS over the interval beginning at the time of tracer injection and ending 30, 45, 60, 75 or 90 min later. For each study and scan interval, regional estimates in nine regions and whole brain were obtained by averaging voxelwise estimates over all voxels in the region. In all three groups rCPS was only slightly affected by scan interval length and was very stable between 60 and 90 min. Furthermore, statistical comparisons of rCPS between awake and sedated healthy volunteers provided almost identical results when they were based on 60 min scan data as when they were based on data from the full 90 min interval. Statistical comparisons between sedated healthy volunteers and sedated subjects with FXS also yielded almost identical results when based on 60 and 90 min scan intervals. We conclude that, under the conditions of our studies, scan duration can be shortened to 60 min without loss of precision.
Collapse
Affiliation(s)
- Giampaolo Tomasi
- Section on Neuroadaptation & Protein Metabolism, National Institute of Mental Health, Bethesda, Maryland, United States of America
| | - Mattia Veronese
- Department of Neuroimaging, IoPPN, King’s College London, London, United Kingdom
| | | | - Carolyn Beebe Smith
- Section on Neuroadaptation & Protein Metabolism, National Institute of Mental Health, Bethesda, Maryland, United States of America
| | - Kathleen C. Schmidt
- Section on Neuroadaptation & Protein Metabolism, National Institute of Mental Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Banerjee A, Ifrim MF, Valdez AN, Raj N, Bassell GJ. Aberrant RNA translation in fragile X syndrome: From FMRP mechanisms to emerging therapeutic strategies. Brain Res 2018; 1693:24-36. [PMID: 29653083 PMCID: PMC7377270 DOI: 10.1016/j.brainres.2018.04.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023]
Abstract
Research in the past decades has unfolded the multifaceted role of Fragile X mental retardation protein (FMRP) and how its absence contributes to the pathophysiology of Fragile X syndrome (FXS). Excess signaling through group 1 metabotropic glutamate receptors is commonly observed in mouse models of FXS, which in part is attributed to dysregulated translation and downstream signaling. Considering the wide spectrum of cellular and physiologic functions that loss of FMRP can affect in general, it may be advantageous to pursue disease mechanism based treatments that directly target translational components or signaling factors that regulate protein synthesis. Various FMRP targets upstream and downstream of the translational machinery are therefore being investigated to further our understanding of the molecular mechanism of RNA and protein synthesis dysregulation in FXS as well as test their potential role as therapeutic interventions to alleviate FXS associated symptoms. In this review, we will broadly discuss recent advancements made towards understanding the role of FMRP in translation regulation, new pre-clinical animal models with FMRP targets located at different levels of the translational and signal transduction pathways for therapeutic intervention as well as future use of stem cells to model FXS associated phenotypes.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Marius F Ifrim
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arielle N Valdez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nisha Raj
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
27
|
Abstract
Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) with different radiotracers enable regional evaluation of blood flow and glucose metabolism, of receptors and transporters of several molecules, and of abnormal deposition of peptides and proteins in the brain. The cerebellum has been used as a reference region for different radiotracers in several disease conditions. Whole-brain voxel-wise analysis is not affected by a priori knowledge bias and should be preferred. SPECT and PET have contributed to establishing the cerebellum role in motion, cognition, and emotion control in physiologic and pathophysiologic conditions. The basic abnormal imaging findings include decreased or increased uptake of flow or metabolism tracers in the cerebellum alone or as part of a network. Decreased uptake is generally observed in primary structural damage of the cerebellum, but can also represent a distant effect of cerebral damage (crossed diaschisis). Increased uptake can be observed in Freidreich ataxia, inflammatory or immune-mediated diseases of the cerebellum, and in status epilepticus. The possibility is also recognized that primary structural damage of the cerebellum might determine distance effects on other brain structures (reversed diaschisis). So far, SPECT and PET have been predominantly used in clinical studies to investigate cerebellar changes in neurologic and psychiatric diseases and in connection with pharmacologic, transcranial magnetic stimulation, deep-brain stimulation, or surgical treatments.
Collapse
|
28
|
Sidorov MS, Deck GM, Dolatshahi M, Thibert RL, Bird LM, Chu CJ, Philpot BD. Delta rhythmicity is a reliable EEG biomarker in Angelman syndrome: a parallel mouse and human analysis. J Neurodev Disord 2017; 9:17. [PMID: 28503211 PMCID: PMC5422949 DOI: 10.1186/s11689-017-9195-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/21/2017] [Indexed: 01/11/2023] Open
Abstract
Background Clinicians have qualitatively described rhythmic delta activity as a prominent EEG abnormality in individuals with Angelman syndrome, but this phenotype has yet to be rigorously quantified in the clinical population or validated in a preclinical model. Here, we sought to quantitatively measure delta rhythmicity and evaluate its fidelity as a biomarker. Methods We quantified delta oscillations in mouse and human using parallel spectral analysis methods and measured regional, state-specific, and developmental changes in delta rhythms in a patient population. Results Delta power was broadly increased and more dynamic in both the Angelman syndrome mouse model, relative to wild-type littermates, and in children with Angelman syndrome, relative to age-matched neurotypical controls. Enhanced delta oscillations in children with Angelman syndrome were present during wakefulness and sleep, were generalized across the neocortex, and were more pronounced at earlier ages. Conclusions Delta rhythmicity phenotypes can serve as reliable biomarkers for Angelman syndrome in both preclinical and clinical settings. Electronic supplementary material The online version of this article (doi:10.1186/s11689-017-9195-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael S Sidorov
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599 USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599 USA.,Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Gina M Deck
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114 USA.,Harvard Medical School, Boston, MA 02215 USA.,Present Address: The Neurology Foundation, Rhode Island Hospital and Warren Alpert School of Medicine at Brown University, Providence, RI 02903 USA
| | - Marjan Dolatshahi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114 USA.,Harvard Medical School, Boston, MA 02215 USA
| | - Ronald L Thibert
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Lynne M Bird
- Department of Pediatrics, University of California, San Diego, CA USA.,Division of Dysmorphology/Genetics, Rady Children's Hospital, San Diego, CA USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114 USA.,Harvard Medical School, Boston, MA 02215 USA
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599 USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599 USA.,Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 USA
| |
Collapse
|
29
|
Higashimori H, Schin CS, Chiang MSR, Morel L, Shoneye TA, Nelson DL, Yang Y. Selective Deletion of Astroglial FMRP Dysregulates Glutamate Transporter GLT1 and Contributes to Fragile X Syndrome Phenotypes In Vivo. J Neurosci 2016; 36:7079-94. [PMID: 27383586 PMCID: PMC4938857 DOI: 10.1523/jneurosci.1069-16.2016] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/04/2016] [Accepted: 05/22/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED How the loss of fragile X mental retardation protein (FMRP) in different brain cell types, especially in non-neuron glial cells, induces fragile X syndrome (FXS) phenotypes has just begun to be understood. In the current study, we generated inducible astrocyte-specific Fmr1 conditional knock-out mice (i-astro-Fmr1-cKO) and restoration mice (i-astro-Fmr1-cON) to study the in vivo modulation of FXS synaptic phenotypes by astroglial FMRP. We found that functional expression of glutamate transporter GLT1 is 40% decreased in i-astro-Fmr1-cKO somatosensory cortical astrocytes in vivo, which can be fully rescued by the selective re-expression of FMRP in astrocytes in i-astro-Fmr1-cON mice. Although the selective loss of astroglial FMRP only modestly increases spine density and length in cortical pyramidal neurons, selective re-expression of FMRP in astrocytes significantly attenuates abnormal spine morphology in these neurons of i-astro-Fmr1-cON mice. Moreover, we found that basal protein synthesis levels and immunoreactivity of phosphorylated S6 ribosomal protein (p-s6P) is significantly increased in i-astro-Fmr1-cKO mice, while the enhanced cortical protein synthesis observed in Fmr1 KO mice is mitigated in i-astro-Fmr1-cON mice. Furthermore, ceftriaxone-mediated upregulation of surface GLT1 expression restores functional glutamate uptake and attenuates enhanced neuronal excitability in Fmr1 KO mice. In particular, ceftriaxone significantly decreases the growth rate of abnormally accelerated body weight and completely corrects spine abnormality in Fmr1 KO mice. Together, these results show that the selective loss of astroglial FMRP contributes to cortical synaptic deficits in FXS, presumably through dysregulated astroglial glutamate transporter GLT1 and impaired glutamate uptake. These results suggest the involvement of astrocyte-mediated mechanisms in the pathogenesis of FXS. SIGNIFICANCE STATEMENT Previous studies to understand how the loss of function of fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS) have largely focused on neurons; whether the selective loss of astroglial FMRP in vivo alters astrocyte functions and contributes to the pathogenesis of FXS remain essentially unknown. This has become a long-standing unanswered question in the fragile X field, which is also relevant to autism pathogenesis. Our current study generated astrocyte-specific Fmr1 conditional knock-out and restoration mice, and provided compelling evidence that the selective loss of astroglial FMRP contributes to cortical synaptic deficits in FXS, likely through the dysregulated astroglial glutamate transporter GLT1 expression and impaired glutamate uptake. These results demonstrate previously undescribed astrocyte-mediated mechanisms in the pathogenesis of FXS.
Collapse
Affiliation(s)
- Haruki Higashimori
- Tufts University, Department of Neuroscience, Boston, Massachusetts 02111
| | - Christina S Schin
- Tufts University, Department of Neuroscience, Boston, Massachusetts 02111
| | - Ming Sum R Chiang
- Tufts University, Department of Neuroscience, Boston, Massachusetts 02111
| | - Lydie Morel
- Tufts University, Department of Neuroscience, Boston, Massachusetts 02111
| | - Temitope A Shoneye
- Tufts University, Department of Neuroscience, Boston, Massachusetts 02111
| | - David L Nelson
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, and
| | - Yongjie Yang
- Tufts University, Department of Neuroscience, Boston, Massachusetts 02111, Tufts University, Sackler School of Biomedical Sciences, Boston, Massachusetts 02111
| |
Collapse
|
30
|
Synaptic Plasticity, a Prominent Contributor to the Anxiety in Fragile X Syndrome. Neural Plast 2016; 2016:9353929. [PMID: 27239350 PMCID: PMC4864533 DOI: 10.1155/2016/9353929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/04/2016] [Indexed: 01/03/2023] Open
Abstract
Fragile X syndrome (FXS) is an inheritable neuropsychological disease caused by expansion of the CGG trinucleotide repeat affecting the fmr1 gene on X chromosome, resulting in silence of the fmr1 gene and failed expression of FMRP. Patients with FXS suffer from cognitive impairment, sensory integration deficits, learning disability, anxiety, autistic traits, and so forth. Specifically, the morbidity of anxiety in FXS individuals remains high from childhood to adulthood. By and large, it is common that the change of brain plasticity plays a key role in the progression of disease. But for now, most studies excessively emphasized the one-sided factor on the change of synaptic plasticity participating in the generation of anxiety during the development of FXS. Here we proposed an integrated concept to acquire better recognition about the details of this process.
Collapse
|
31
|
Enriquez-Barreto L, Morales M. The PI3K signaling pathway as a pharmacological target in Autism related disorders and Schizophrenia. MOLECULAR AND CELLULAR THERAPIES 2016; 4:2. [PMID: 26877878 PMCID: PMC4751644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 01/25/2016] [Indexed: 11/21/2023]
Abstract
This review is focused in PI3K's involvement in two widespread mental disorders: Autism and Schizophrenia. A large body of evidence points to synaptic dysfunction as a cause of these diseases, either during the initial phases of brain synaptic circuit's development or later modulating synaptic function and plasticity. Autism related disorders and Schizophrenia are complex genetic conditions in which the identification of gene markers has proved difficult, although the existence of single-gene mutations with a high prevalence in both diseases offers insight into the role of the PI3K signaling pathway. In the brain, components of the PI3K pathway regulate synaptic formation and plasticity; thus, disruption of this pathway leads to synapse dysfunction and pathological behaviors. Here, we recapitulate recent evidences that demonstrate the imbalance of several PI3K elements as leading causes of Autism and Schizophrenia, together with the plausible new pharmacological paths targeting this signaling pathway.
Collapse
Affiliation(s)
- Lilian Enriquez-Barreto
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Morales
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Enriquez-Barreto L, Morales M. The PI3K signaling pathway as a pharmacological target in Autism related disorders and Schizophrenia. MOLECULAR AND CELLULAR THERAPIES 2016; 4:2. [PMID: 26877878 PMCID: PMC4751644 DOI: 10.1186/s40591-016-0047-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 01/25/2016] [Indexed: 01/01/2023]
Abstract
This review is focused in PI3K’s involvement in two widespread mental disorders: Autism and Schizophrenia. A large body of evidence points to synaptic dysfunction as a cause of these diseases, either during the initial phases of brain synaptic circuit’s development or later modulating synaptic function and plasticity. Autism related disorders and Schizophrenia are complex genetic conditions in which the identification of gene markers has proved difficult, although the existence of single-gene mutations with a high prevalence in both diseases offers insight into the role of the PI3K signaling pathway. In the brain, components of the PI3K pathway regulate synaptic formation and plasticity; thus, disruption of this pathway leads to synapse dysfunction and pathological behaviors. Here, we recapitulate recent evidences that demonstrate the imbalance of several PI3K elements as leading causes of Autism and Schizophrenia, together with the plausible new pharmacological paths targeting this signaling pathway.
Collapse
Affiliation(s)
- Lilian Enriquez-Barreto
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Morales
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Guo W, Ceolin L, Collins KA, Perroy J, Huber KM. Elevated CaMKIIα and Hyperphosphorylation of Homer Mediate Circuit Dysfunction in a Fragile X Syndrome Mouse Model. Cell Rep 2015; 13:2297-311. [PMID: 26670047 DOI: 10.1016/j.celrep.2015.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/09/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022] Open
Abstract
Abnormal metabotropic glutamate receptor 5 (mGluR5) function, as a result of disrupted scaffolding with its binding partner Homer, contributes to the pathophysiology of fragile X syndrome, a common inherited form of intellectual disability and autism caused by mutations in Fmr1. How loss of Fmr1 disrupts mGluR5-Homer scaffolds is unknown, and little is known about the dynamic regulation of mGluR5-Homer scaffolds in wild-type neurons. Here, we demonstrate that brief (minutes-long) elevations in neural activity cause CaMKIIα-mediated phosphorylation of long Homer proteins and dissociation from mGluR5 at synapses. In Fmr1 knockout (KO) cortex, Homers are hyperphosphorylated as a result of elevated CaMKIIα protein. Genetic or pharmacological inhibition of CaMKIIα or replacement of Homers with dephosphomimetics restores mGluR5-Homer scaffolds and multiple Fmr1 KO phenotypes, including circuit hyperexcitability and/or seizures. This work links translational control of an FMRP target mRNA, CaMKIIα, to the molecular-, cellular-, and circuit-level brain dysfunction in a complex neurodevelopmental disorder.
Collapse
Affiliation(s)
- Weirui Guo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Ceolin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34000 Montpellier, France; INSERM, U1191, 34000 Montpellier, France; Universites de Montpellier 1 & 2, UMR-5203, 34000 Montpellier, France
| | - Katie A Collins
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julie Perroy
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34000 Montpellier, France; INSERM, U1191, 34000 Montpellier, France; Universites de Montpellier 1 & 2, UMR-5203, 34000 Montpellier, France
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
34
|
Sahin M, Sur M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science 2015; 350:aab3897. [PMID: 26472761 PMCID: PMC4739545 DOI: 10.1126/science.aab3897] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in the genetics of neurodevelopmental disorders such as autism suggests that several hundred genes are likely risk factors for these disorders. This heterogeneity presents a challenge and an opportunity at the same time. Although the exact identity of many of the genes remains to be discovered, genes identified to date encode proteins that play roles in certain conserved pathways: protein synthesis, transcriptional and epigenetic regulation, and synaptic signaling. The next generation of research in neurodevelopmental disorders must address the neural circuitry underlying the behavioral symptoms and comorbidities, the cell types playing critical roles in these circuits, and common intercellular signaling pathways that link diverse genes. Results from clinical trials have been mixed so far. Only when we can leverage the heterogeneity of neurodevelopmental disorders into precision medicine will the mechanism-based therapeutics for these disorders start to unlock success.
Collapse
Affiliation(s)
- Mustafa Sahin
- F. M. Kirby Center for Neurobiology, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Mriganka Sur
- Simons Center for the Social Brain, Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
35
|
Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci 2015; 16:595-605. [PMID: 26350240 DOI: 10.1038/nrn4001] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragile X syndrome (FXS), the most-frequently inherited form of intellectual disability and the most-prevalent single-gene cause of autism, results from a lack of fragile X mental retardation protein (FMRP), an RNA-binding protein that acts, in most cases, to repress translation. Multiple pharmacological and genetic manipulations that target receptors, scaffolding proteins, kinases and translational control proteins can rescue neuronal morphology, synaptic function and behavioural phenotypes in FXS model mice, presumably by reducing excessive neuronal translation to normal levels. Such rescue strategies might also be explored in the future to identify the mRNAs that are critical for FXS pathophysiology.
Collapse
Affiliation(s)
- Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01545, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York City, New York 10003, USA
| |
Collapse
|
36
|
Kumari D, Bhattacharya A, Nadel J, Moulton K, Zeak NM, Glicksman A, Dobkin C, Brick DJ, Schwartz PH, Smith CB, Klann E, Usdin K. Identification of fragile X syndrome specific molecular markers in human fibroblasts: a useful model to test the efficacy of therapeutic drugs. Hum Mutat 2015; 35:1485-94. [PMID: 25224527 DOI: 10.1002/humu.22699] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/04/2014] [Indexed: 11/06/2022]
Abstract
Fragile X syndrome (FXS) is the most frequent cause of inherited intellectual disability and autism. It is caused by the absence of the fragile X mental retardation 1 (FMR1) gene product, fragile X mental retardation protein (FMRP), an RNA-binding protein involved in the regulation of translation of a subset of brain mRNAs. In Fmr1 knockout mice, the absence of FMRP results in elevated protein synthesis in the brain as well as increased signaling of many translational regulators. Whether protein synthesis is also dysregulated in FXS patients is not firmly established. Here, we demonstrate that fibroblasts from FXS patients have significantly elevated rates of basal protein synthesis along with increased levels of phosphorylated mechanistic target of rapamycin (p-mTOR), phosphorylated extracellular signal regulated kinase 1/2, and phosphorylated p70 ribosomal S6 kinase 1 (p-S6K1). The treatment with small molecules that inhibit S6K1 and a known FMRP target, phosphoinositide 3-kinase (PI3K) catalytic subunit p110β, lowered the rates of protein synthesis in both control and patient fibroblasts. Our data thus demonstrate that fibroblasts from FXS patients may be a useful in vitro model to test the efficacy and toxicity of potential therapeutics prior to clinical trials, as well as for drug screening and designing personalized treatment approaches.
Collapse
Affiliation(s)
- Daman Kumari
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Qin M, Zeidler Z, Moulton K, Krych L, Xia Z, Smith CB. Endocannabinoid-mediated improvement on a test of aversive memory in a mouse model of fragile X syndrome. Behav Brain Res 2015; 291:164-171. [PMID: 25979787 DOI: 10.1016/j.bbr.2015.05.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/30/2022]
Abstract
Silencing the gene FMR1 in fragile X syndrome (FXS) with consequent loss of its protein product, FMRP, results in intellectual disability, hyperactivity, anxiety, seizure disorders, and autism-like behavior. In a mouse model (Fmr1 knockout (KO)) of FXS, a deficit in performance on the passive avoidance test of learning and memory is a robust phenotype. We report that drugs acting on the endocannabinoid (eCB) system can improve performance on this test. We present three lines of evidence: (1) Propofol (reported to inhibit fatty acid amide hydrolase (FAAH) activity) administered 30 min after training on the passive avoidance test improved performance in Fmr1 KO mice but had no effect on wild type (WT). FAAH catalyzes the metabolism of the eCB, anandamide, so its inhibition should result in increased anandamide levels. (2) The effect of propofol was blocked by prior administration of the cannabinoid receptor 1 antagonist AM-251. (3) Treatment with the FAAH inhibitor, URB-597, administered 30 min after training on the passive avoidance test also improved performance in Fmr1 KO mice but had no effect on WT. Our results indicate that the eCB system is involved in FXS and suggest that the eCB system is a promising target for treatment of FXS.
Collapse
Affiliation(s)
- Mei Qin
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Zachary Zeidler
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Kristen Moulton
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Leland Krych
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Zengyan Xia
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Carolyn B Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Lumaban JG, Nelson DL. The Fragile X proteins Fmrp and Fxr2p cooperate to regulate glucose metabolism in mice. Hum Mol Genet 2014; 24:2175-84. [PMID: 25552647 DOI: 10.1093/hmg/ddu737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome results from loss of FMR1 expression. Individuals with the disorder exhibit not only intellectual disability, but also an array of physical and behavioral abnormalities, including sleep difficulties. Studies in mice demonstrated that Fmr1, along with its paralog Fxr2, regulate circadian behavior, and that their absence disrupts expression and cycling of essential clock mRNAs in the liver. Recent reports have identified circadian genes to be essential for normal metabolism. Here we describe the metabolic defects that arise in mice mutated for both Fmr1 and Fxr2. These mice have reduced fat deposits compared with age- and weight-matched controls. Several metabolic markers show either low levels in plasma or abnormal circadian cycling (or both). Insulin levels are consistently low regardless of light exposure and feeding conditions, and the animals are extremely sensitive to injected insulin. Glucose production from introduced pyruvate and glucagon is impaired and the mice quickly clear injected glucose. These mice also have higher food intake and higher VO2 and VCO2 levels. We analyzed liver expression of genes involved in glucose homeostasis and found several that are expressed differentially in the mutant mice. These results point to the involvement of Fmr1 and Fxr2 in maintaining the normal metabolic state in mice.
Collapse
Affiliation(s)
- Jeannette G Lumaban
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, 1250 Moursund Street, Houston, TX 77030, USA
| | - David L Nelson
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, 1250 Moursund Street, Houston, TX 77030, USA
| |
Collapse
|
39
|
de Esch CE, Zeidler S, Willemsen R. Translational endpoints in fragile X syndrome. Neurosci Biobehav Rev 2014; 46 Pt 2:256-69. [DOI: 10.1016/j.neubiorev.2013.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 01/01/2023]
|
40
|
Colak D, Zaninovic N, Cohen MS, Rosenwaks Z, Yang WY, Gerhardt J, Disney MD, Jaffrey SR. Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science 2014; 343:1002-5. [PMID: 24578575 DOI: 10.1126/science.1245831] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic gene silencing is seen in several repeat-expansion diseases. In fragile X syndrome, the most common genetic form of mental retardation, a CGG trinucleotide-repeat expansion adjacent to the fragile X mental retardation 1 (FMR1) gene promoter results in its epigenetic silencing. Here, we show that FMR1 silencing is mediated by the FMR1 mRNA. The FMR1 mRNA contains the transcribed CGG-repeat tract as part of the 5' untranslated region, which hybridizes to the complementary CGG-repeat portion of the FMR1 gene to form an RNA·DNA duplex. Disrupting the interaction of the mRNA with the CGG-repeat portion of the FMR1 gene prevents promoter silencing. Thus, our data link trinucleotide-repeat expansion to a form of RNA-directed gene silencing mediated by direct interactions of the trinucleotide-repeat RNA and DNA.
Collapse
Affiliation(s)
- Dilek Colak
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Holland JP, Cumming P, Vasdev N. PET radiopharmaceuticals for probing enzymes in the brain. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2013; 3:194-216. [PMID: 23638333 PMCID: PMC3627518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 03/07/2013] [Indexed: 06/02/2023]
Abstract
Biologically important processes in normal brain function and brain disease involve the action of various protein-based receptors, ion channels, transporters and enzymes. The ability to interrogate the location, abundance and activity of these entities in vivo using non-invasive molecular imaging can provide unprecedented information about the spatio-temporal dynamics of brain function. Indeed, positron emission tomography (PET) imaging is transforming our understanding of the central nervous system and brain disease. Great emphasis has historically been placed on developing radioligands for the non-invasive detection of neuroreceptors. In contrast, relatively few enzymes have been amenable to examination by PET imaging procedures based upon trapping or accumulation of enzymatic products, because only a subset of enzymes have sufficient catalytic rate to produce measureable accumulation within the practical time-limit of PET recordings. However, high affinity inhibitors are now serving as tracers for enzymes, particularly for measuring the abundance of enzymes mediating intracellular signal transduction in the brain, which offer a rich diversity of potential targets for drug discovery. The purpose of this review is to summarize well-known radiotracers for brain enzymes, and draw attention to recent developments in PET radiotracers for imaging signal transduction pathways in the brain. The review is organized by target class and focuses on structural chemistry of the best-established radiotracers identified in each class.
Collapse
Affiliation(s)
- Jason P Holland
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School55 Fruit St., White 427, Boston, MA 02114, USA
| | - Paul Cumming
- Department of Nuclear Medicine, Universitätsklinikum ErlangenUlmenweg 18, Erlangen, Germany, 91054
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School55 Fruit St., White 427, Boston, MA 02114, USA
| |
Collapse
|