1
|
Cognacq G, Attwood JE, DeLuca GC. Traumatic Brain Injury and Alzheimer's Disease: A Shared Neurovascular Hypothesis. Neurosci Insights 2025; 20:26331055251323292. [PMID: 40124421 PMCID: PMC11926848 DOI: 10.1177/26331055251323292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Traumatic brain injury (TBI) is a modifiable risk factor for Alzheimer's disease (AD). TBI and AD share several histopathological hallmarks: namely, beta-amyloid aggregation, tau hyperphosphorylation, and plasma protein infiltration. The relative contributions of these proteinopathies and their interplay in the pathogenesis of both conditions remains unclear although important differences are emerging. This review synthesises emerging evidence for the critical role of the neurovascular unit in mediating protein accumulation and neurotoxicity in both TBI and AD. We propose a shared pathogenic cascade centred on a neurovascular unit, in which increased blood-brain barrier permeability induces a series of noxious mechanisms leading to neuronal loss, synaptic dysfunction and ultimately cognitive dysfunction in both conditions. We explore the application of this hypothesis to outstanding research questions and potential treatments for TBI and AD, as well as other neurodegenerative and neuroinflammatory conditions. Limitations of this hypothesis, including the challenges of establishing a causal relationship between neurovascular damage and proteinopathies, are also discussed.
Collapse
Affiliation(s)
- Gabrielle Cognacq
- John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, Oxfordshire, UK
| | - Jonathan E Attwood
- Nuffield Department of Clinical Neurosciences, Level 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, Oxfordshire, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, Level 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, Oxfordshire, UK
| |
Collapse
|
2
|
Petersen SI, Okolicsanyi RK, Haupt LM. Exploring Heparan Sulfate Proteoglycans as Mediators of Human Mesenchymal Stem Cell Neurogenesis. Cell Mol Neurobiol 2024; 44:30. [PMID: 38546765 PMCID: PMC10978659 DOI: 10.1007/s10571-024-01463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 04/01/2024]
Abstract
Alzheimer's disease (AD) and traumatic brain injury (TBI) are major public health issues worldwide, with over 38 million people living with AD and approximately 48 million people (27-69 million) experiencing TBI annually. Neurodegenerative conditions are characterised by the accumulation of neurotoxic amyloid beta (Aβ) and microtubule-associated protein Tau (Tau) with current treatments focused on managing symptoms rather than addressing the underlying cause. Heparan sulfate proteoglycans (HSPGs) are a diverse family of macromolecules that interact with various proteins and ligands and promote neurogenesis, a process where new neural cells are formed from stem cells. The syndecan (SDC) and glypican (GPC) HSPGs have been implicated in AD pathogenesis, acting as drivers of disease, as well as potential therapeutic targets. Human mesenchymal stem cells (hMSCs) provide an attractive therapeutic option for studying and potentially treating neurodegenerative diseases due to their relative ease of isolation and subsequent extensive in vitro expansive potential. Understanding how HSPGs regulate protein aggregation, a key feature of neurodegenerative disorders, is essential to unravelling the underlying disease processes of AD and TBI, as well as any link between these two neurological disorders. Further research may validate HSPG, specifically SDCs or GPCs, use as neurodegenerative disease targets, either via driving hMSC stem cell therapy or direct targeting.
Collapse
Affiliation(s)
- Sofia I Petersen
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, Australia.
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia.
| |
Collapse
|
3
|
Di Martino E, Rayasam A, Vexler ZS. Brain Maturation as a Fundamental Factor in Immune-Neurovascular Interactions in Stroke. Transl Stroke Res 2024; 15:69-86. [PMID: 36705821 PMCID: PMC10796425 DOI: 10.1007/s12975-022-01111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 01/28/2023]
Abstract
Injuries in the developing brain cause significant long-term neurological deficits. Emerging clinical and preclinical data have demonstrated that the pathophysiology of neonatal and childhood stroke share similar mechanisms that regulate brain damage, but also have distinct molecular signatures and cellular pathways. The focus of this review is on two different diseases-neonatal and childhood stroke-with emphasis on similarities and distinctions identified thus far in rodent models of these diseases. This includes the susceptibility of distinct cell types to brain injury with particular emphasis on the role of resident and peripheral immune populations in modulating stroke outcome. Furthermore, we discuss some of the most recent and relevant findings in relation to the immune-neurovascular crosstalk and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we comment on the current state of treatments geared toward inducing neuroprotection and promoting brain repair after injury and highlight that future prophylactic and therapeutic strategies for stroke should be age-specific and consider gender differences in order to achieve optimal translational success.
Collapse
Affiliation(s)
- Elena Di Martino
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Aditya Rayasam
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Zinaida S Vexler
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA.
| |
Collapse
|
4
|
Mallard C, Ferriero DM, Vexler ZS. Immune-Neurovascular Interactions in Experimental Perinatal and Childhood Arterial Ischemic Stroke. Stroke 2024; 55:506-518. [PMID: 38252757 DOI: 10.1161/strokeaha.123.043399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Emerging clinical and preclinical data have demonstrated that the pathophysiology of arterial ischemic stroke in the adult, neonates, and children share similar mechanisms that regulate brain damage but also have distinct molecular signatures and involved cellular pathways due to the maturational stage of the central nervous system and the immune system at the time of the insult. In this review, we discuss similarities and differences identified thus far in rodent models of 2 different diseases-neonatal (perinatal) and childhood arterial ischemic stroke. In particular, we review acquired knowledge of the role of resident and peripheral immune populations in modulating outcomes in models of perinatal and childhood arterial ischemic stroke and the most recent and relevant findings in relation to the immune-neurovascular crosstalk, and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we discuss the current state of treatments geared toward age-appropriate therapies that signal via the immune-neurovascular interaction and consider sex differences to achieve successful translation.
Collapse
Affiliation(s)
- Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden (C.M.)
| | - Donna M Ferriero
- Department of Pediatrics, UCSF, San Francisco, CA (D.M.F.)
- Department of Neurology, UCSF, Weill Institute for Neurosciences, San Francisco, CA (D.M.F., Z.S.V.)
| | - Zinaida S Vexler
- Department of Neurology, UCSF, Weill Institute for Neurosciences, San Francisco, CA (D.M.F., Z.S.V.)
| |
Collapse
|
5
|
Litvinenko IV, Naumov KM, Lobzin VY, Emelin AY, Dynin PS, Kolmakova KA, Nikishin VO. [Traumatic brain injury as risk factor of Alzheimer's disease and possibilities of pathogenetic therapy]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:45-54. [PMID: 38261283 DOI: 10.17116/jnevro202412401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The article examines the potential role of brain mechanical damage as a trigger for the development of neurodegenerative changes. Attention is paid to dysfunction of the neurovascular unit, and disruption of the functional and compensatory capabilities of blood flow. The importance of microhemorrhages that occur in the acute period of injury and the formation of first focal and then diffuse neuroinflammation is emphasized. The importance of mitochondrial dysfunction was separately determined as a significant factor in increasing the risk of developing Alzheimer's disease (AD) in patients after traumatic brain injury (TBI). In TBI, there is a decrease in the expression of tight junction (TC) proteins of endothelial cells, such as occludin, claudin, JP, which leads to increased permeability of the blood-brain barrier. TBI, provoking endothelial dysfunction, contributes to the development of metabolic disorders of β-amyloid and tau protein, which in turn leads to worsening vascular damage, resulting in a vicious circle that can ultimately lead to the development of AD and dementia. Age-related changes in cerebral arteries, which impair perivascular transport of interstitial fluid, are currently considered as an important part of the «amyloid cascade», especially against the background of genetically mediated disorders of glial membranes associated with defective aquaporin-4 (encoded by the APOE4). Studies in animal models of TBI have revealed an increase in tau protein immunoreactivity and its phosphorylation, which correlates with the severity of injury. A comprehensive analysis of research results shows that the cascade of reactions triggered by TBI includes all the main elements of the pathogenesis of AD: disorders of energy metabolism, microcirculation and clearance of cerebral metabolic products. This leads to a disruption in the metabolism of amyloid protein and its accumulation in brain tissue with the subsequent development of tauopathy. Cerebrolysin, by modulating the permeability of the blood-brain barrier, blocks the development of neuroinflammation, reduces the accumulation of pathological forms of proteins and may be slow down the progression of neurodegeneration.
Collapse
Affiliation(s)
| | - K M Naumov
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - V Yu Lobzin
- Kirov Military Medical Academy, St. Petersburg, Russia
- Mechnikov North-Western State Medical University, St. Petersburg, Russia
| | - A Yu Emelin
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - P S Dynin
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - K A Kolmakova
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - V O Nikishin
- Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
6
|
Obenaus A, Rodriguez-Grande B, Lee JB, Dubois CJ, Fournier ML, Cador M, Caille S, Badaut J. A single mild juvenile TBI in male mice leads to regional brain tissue abnormalities at 12 months of age that correlate with cognitive impairment at the middle age. Acta Neuropathol Commun 2023; 11:32. [PMID: 36859364 PMCID: PMC9976423 DOI: 10.1186/s40478-023-01515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/12/2023] [Indexed: 03/03/2023] Open
Abstract
Traumatic brain injury (TBI) has the highest incidence amongst the pediatric population and its mild severity represents the most frequent cases. Moderate and severe injuries as well as repetitive mild TBI result in lasting morbidity. However, whether a single mild TBI sustained during childhood can produce long-lasting modifications within the brain is still debated. We aimed to assess the consequences of a single juvenile mild TBI (jmTBI) at 12 months post-injury in a mouse model. Non-invasive diffusion tensor imaging (DTI) revealed significant microstructural alterations in the hippocampus and the in the substantia innominata/nucleus basalis (SI/NB), structures known to be involved in spatial learning and memory. DTI changes paralled neuronal loss, increased astrocytic AQP4 and microglial activation in the hippocampus. In contrast, decreased astrocytic AQP4 expression and microglia activation were observed in SI/NB. Spatial learning and memory were impaired and correlated with alterations in DTI-derived derived fractional ansiotropy (FA) and axial diffusivity (AD). This study found that a single juvenile mild TBI leads to significant region-specific DTI microstructural alterations, distant from the site of impact, that correlated with cognitive discriminative novel object testing and spatial memory impairments at 12 months after a single concussive injury. Our findings suggest that exposure to jmTBI leads to a chronic abnormality, which confirms the need for continued monitoring of symptoms and the development of long-term treatment strategies to intervene in children with concussions.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | - Jeong Bin Lee
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Christophe J Dubois
- CNRS UMR 5536 RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | | | - Martine Cador
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France
| | - Stéphanie Caille
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France
| | - Jerome Badaut
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France.
- CNRS UMR 5536 RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
7
|
Luo P, Li L, Huang J, Mao D, Lou S, Ruan J, Chen J, Tang R, Shi Y, Zhou S, Yang H. The role of SUMOylation in the neurovascular dysfunction after acquired brain injury. Front Pharmacol 2023; 14:1125662. [PMID: 37033632 PMCID: PMC10073463 DOI: 10.3389/fphar.2023.1125662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Acquired brain injury (ABI) is the most common disease of the nervous system, involving complex pathological processes, which often leads to a series of nervous system disorders. The structural destruction and dysfunction of the Neurovascular Unit (NVU) are prominent features of ABI. Therefore, understanding the molecular mechanism underlying NVU destruction and its reconstruction is the key to the treatment of ABI. SUMOylation is a protein post-translational modification (PTM), which can degrade and stabilize the substrate dynamically, thus playing an important role in regulating protein expression and biological signal transduction. Understanding the regulatory mechanism of SUMOylation can clarify the molecular mechanism of the occurrence and development of neurovascular dysfunction after ABI and is expected to provide a theoretical basis for the development of potential treatment strategies. This article reviews the role of SUMOylation in vascular events related to ABI, including NVU dysfunction and vascular remodeling, and puts forward therapeutic prospects.
Collapse
Affiliation(s)
- Pengren Luo
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Lin Li
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiashang Huang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Deqiang Mao
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Silong Lou
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jian Ruan
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jie Chen
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ronghua Tang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - You Shi
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shuai Zhou
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- *Correspondence: Shuai Zhou, ; Haifeng Yang,
| | - Haifeng Yang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Shuai Zhou, ; Haifeng Yang,
| |
Collapse
|
8
|
Nwafor DC, Brichacek AL, Foster CH, Lucke-Wold BP, Ali A, Colantonio MA, Brown CM, Qaiser R. Pediatric Traumatic Brain Injury: An Update on Preclinical Models, Clinical Biomarkers, and the Implications of Cerebrovascular Dysfunction. J Cent Nerv Syst Dis 2022; 14:11795735221098125. [PMID: 35620529 PMCID: PMC9127876 DOI: 10.1177/11795735221098125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of pediatric morbidity and mortality. Recent studies suggest that children and adolescents have worse post-TBI outcomes and take longer to recover than adults. However, the pathophysiology and progression of TBI in the pediatric population are studied to a far lesser extent compared to the adult population. Common causes of TBI in children are falls, sports/recreation-related injuries, non-accidental trauma, and motor vehicle-related injuries. A fundamental understanding of TBI pathophysiology is crucial in preventing long-term brain injury sequelae. Animal models of TBI have played an essential role in addressing the knowledge gaps relating to pTBI pathophysiology. Moreover, a better understanding of clinical biomarkers is crucial to diagnose pTBI and accurately predict long-term outcomes. This review examines the current preclinical models of pTBI, the implications of pTBI on the brain's vasculature, and clinical pTBI biomarkers. Finally, we conclude the review by speculating on the emerging role of the gut-brain axis in pTBI pathophysiology.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia University School of Medicine, Morgantown, WV, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Allison L. Brichacek
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Chase H. Foster
- Department of Neurosurgery, George Washington University Hospital, Washington D.C., USA
| | | | - Ahsan Ali
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | - Candice M. Brown
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rabia Qaiser
- Department of Neurosurgery, Baylor Scott and White, Temple, TX, USA
| |
Collapse
|
9
|
Eng ME, Bloise E, Matthews SG. Fetal glucocorticoid exposure leads to sex-specific changes in drug-transporter function at the blood-brain barrier in juvenile guinea pigs. FASEB J 2022; 36:e22245. [PMID: 35262963 PMCID: PMC9311705 DOI: 10.1096/fj.202101552rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
Antenatal synthetic glucocorticoids (sGCs) are a life‐saving treatment in managing pre‐term birth. However, off‐target effects of sGCs can impact blood‐brain barrier (BBB) drug transporters essential for fetal brain protection, including P‐glycoprotein (P‐gp/Abcb1) and breast cancer resistance protein (BCRP/Abcg2). We hypothesized that maternal antenatal sGC treatment modifies BBB function in juvenile offspring in a sex‐dependent manner. Thus, the objective of this study was to determine the long‐term impact of a single or multiple courses of betamethasone on P‐gp/Abcb1 and BCRP/Abcg2 expression and function at the BBB. Pregnant guinea pigs (N = 42) received 3 courses (gestation days (GDs) 40, 50, and 60) or a single course (GD50) of betamethasone (1 mg/kg) or vehicle (saline). Cerebral microvessels and brain endothelial cells (BEC) were collected from the post‐natal day (PND) 14 offspring to measure protein, gene expression, and function of the drug transporters P‐gp/Abcb1 and BCRP/Abcg2. P‐gp protein expression was decreased (p < .05) in microvessels from male offspring that had been exposed to multiple courses and a single course of sGC, in utero. Multiple courses of sGC resulted in a significant decrease in P‐gp function in BECs from males (p < .05), but not females. There was a very strong trend for increased P‐gp function in males compared to females (p = .055). Reduced P‐gp expression and function at the BBB of young male offspring following multiple prenatal sGC exposures, is clinically relevant as many drugs administered postnatally are P‐gp substrates. These novel sex differences in drug transporter function may underlie potential sexual dimorphism in drug sensitivity and toxicity in the newborn and juvenile brain.
Collapse
Affiliation(s)
- Margaret Elizabeth Eng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Rayasam A, Fukuzaki Y, Vexler ZS. Microglia-leucocyte axis in cerebral ischaemia and inflammation in the developing brain. Acta Physiol (Oxf) 2021; 233:e13674. [PMID: 33991400 DOI: 10.1111/apha.13674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Development of the Central Nervous System (CNS) is reliant on the proper function of numerous intricately orchestrated mechanisms that mature independently, including constant communication between the CNS and the peripheral immune system. This review summarizes experimental knowledge of how cerebral ischaemia in infants and children alters physiological communication between leucocytes, brain immune cells, microglia and the neurovascular unit (NVU)-the "microglia-leucocyte axis"-and contributes to acute and long-term brain injury. We outline physiological development of CNS barriers in relation to microglial and leucocyte maturation and the plethora of mechanisms by which microglia and peripheral leucocytes communicate during postnatal period, including receptor-mediated and intracellular inflammatory signalling, lipids, soluble factors and extracellular vesicles. We focus on the "microglia-leucocyte axis" in rodent models of most common ischaemic brain diseases in the at-term infants, hypoxic-ischaemic encephalopathy (HIE) and focal arterial stroke and discuss commonalities and distinctions of immune-neurovascular mechanisms in neonatal and childhood stroke compared to stroke in adults. Given that hypoxic and ischaemic brain damage involve Toll-like receptor (TLR) activation, we discuss the modulatory role of viral and bacterial TLR2/3/4-mediated infection in HIE, perinatal and childhood stroke. Furthermore, we provide perspective of the dynamics and contribution of the axis in cerebral ischaemia depending on the CNS maturational stage at the time of insult, and modulation independently and in consort by individual axis components and in a sex dependent ways. Improved understanding on how to modify crosstalk between microglia and leucocytes will aid in developing age-appropriate therapies for infants and children who suffered cerebral ischaemia.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Yumi Fukuzaki
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Zinaida S. Vexler
- Department of Neurology University of California San Francisco San Francisco CA USA
| |
Collapse
|
11
|
Trivedi A, Tercovich KG, Casbon AJ, Raber J, Lowell C, Noble-Haeusslein LJ. Neutrophil-specific deletion of Syk results in recruitment-independent stabilization of the barrier and a long-term improvement in cognitive function after traumatic injury to the developing brain. Neurobiol Dis 2021; 157:105430. [PMID: 34153467 PMCID: PMC11302380 DOI: 10.1016/j.nbd.2021.105430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
While traumatic brain injury (TBI) is the leading cause of death and disability in children, we have yet to identify those pathogenic events that determine the extent of recovery. Neutrophils are best known as "first responders" to sites of infection and trauma where they become fully activated, killing pathogens via proteases that are released during degranulation. However, this activational state may generate substantial toxicity in the young brain after TBI that is partially due to developmentally regulated inadequate antioxidant reserves. Neutrophil degranulation is triggered via a downstream signaling pathway that is dependent on spleen tyrosine kinase (Syk). To test the hypothesis that the activational state of neutrophils is a determinant of early pathogenesis and long-term recovery, we compared young, brain-injured conditional knockouts of Syk (sykf/fMRP8-cre+) to congenic littermates (sykf/f). Based upon flow cytometry, there was an extended recruitment of distinct leukocyte subsets, including Ly6G+/Ly6C- and Ly6G+/Ly6Cint, over the first several weeks post-injury which was similar between genotypes. Subsequent assessment of the acutely injured brain revealed a reduction in blood-brain barrier disruption to both high and low molecular weight dextrans and reactive oxygen species in sykf/fMRP8-cre+ mice compared to congenic littermates, and this was associated with greater preservation of claudin 5 and neuronal integrity, as determined by Western blot analyses. At adulthood, motor learning was less affected in brain-injured sykf/fMRP8-cre+ mice as compared to sykf/f mice. Performance in the Morris Water Maze revealed a robust improvement in hippocampal-dependent acquisition and short and long-term spatial memory retention in sykf/fMRP8-cre+ mice. Subsequent analyses of swim path lengths during hidden platform training and probe trials showed greater thigmotaxis in brain-injured sykf/f mice than sham sykf/f mice and injured sykf/fMRP8-cre+ mice. Our results establish the first mechanistic link between the activation state of neutrophils and long-term functional recovery after traumatic injury to the developing brain. These results also highlight Syk kinase as a novel therapeutic target that could be further developed for the brain-injured child.
Collapse
Affiliation(s)
- Alpa Trivedi
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Kayleen G Tercovich
- Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Amy Jo Casbon
- Departments of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Clifford Lowell
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Linda J Noble-Haeusslein
- Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Departments of Neurology and Psychology, The Dell Medical School and the College of Liberal Arts, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
12
|
Progressive Neurodegeneration Across Chronic Stages of Severe Traumatic Brain Injury. J Head Trauma Rehabil 2021; 37:E144-E156. [PMID: 34145157 DOI: 10.1097/htr.0000000000000696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine the trajectory of structural gray matter changes across 2 chronic periods of recovery in individuals who have sustained severe traumatic brain injury (TBI), adding to the growing literature indicating that neurodegenerative processes occur in the months to years postinjury. PARTICIPANTS Patients who experienced posttraumatic amnesia of 1 hour or more, and/or scored 12 or less on the Glasgow Coma Scale at the emergency department or the scene of the accident, and/or had positive brain imaging findings were recruited while receiving inpatient care, resulting in 51 patients with severe TBI. METHODS Secondary analyses of gray matter changes across approximately 5 months, 1 year, and 2.5 years postinjury were undertaken, using an automated segmentation protocol with improved accuracy in populations with morphological anomalies. We compared patients and matched controls on regions implicated in poorer long-term clinical outcome (accumbens, amygdala, brainstem, hippocampus, thalamus). To model brain-wide patterns of change, we then conducted an exploratory principal component analysis (PCA) on the linear slopes of all regional volumes across the 3 time points. Finally, we assessed nonlinear trends across earlier (5 months-1 year) versus later (1-2.5 years) time-windows with PCA to compare degeneration rates across time. Chronic degeneration was predicted cortically and subcortically brain-wide, and within specific regions of interest. RESULTS (1) From 5 months to 1 year, patients showed significant degeneration in the accumbens, and marginal degeneration in the amygdala, brainstem, thalamus, and the left hippocampus when examined unilaterally, compared with controls. (2) PCA components representing subcortical and temporal regions, and regions from the basal ganglia, significantly differed from controls in the first time-window. (3) Progression occurred at the same rate across both time-windows, suggesting neither escalation nor attenuation of degeneration across time. CONCLUSION Localized yet progressive decline emphasizes the necessity of developing interventions to offset degeneration and improve long-term functioning.
Collapse
|
13
|
McKenna M, Shackelford D, Pontes C, Ball B, Nance E. Multiple Particle Tracking Detects Changes in Brain Extracellular Matrix and Predicts Neurodevelopmental Age. ACS NANO 2021; 15:8559-8573. [PMID: 33969999 PMCID: PMC8281364 DOI: 10.1021/acsnano.1c00394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brain extracellular matrix (ECM) structure mediates many aspects of neural development and function. Probing structural changes in brain ECM could thus provide insights into mechanisms of neurodevelopment, the loss of neural function in response to injury, and the detrimental effects of pathological aging and neurological disease. We demonstrate the ability to probe changes in brain ECM microstructure using multiple particle tracking (MPT). We performed MPT of colloidally stable polystyrene nanoparticles in organotypic rat brain slices collected from rats aged 14-70 days old. Our analysis revealed an inverse relationship between nanoparticle diffusive ability in the brain extracellular space and age. Additionally, the distribution of effective ECM pore sizes in the cortex shifted to smaller pores throughout development. We used the raw data and features extracted from nanoparticle trajectories to train a boosted decision tree capable of predicting chronological age with high accuracy. Collectively, this work demonstrates the utility of combining MPT with machine learning for measuring changes in brain ECM structure and predicting associated complex features such as chronological age. This will enable further understanding of the roles brain ECM play in development and aging and the specific mechanisms through which injuries cause aberrant neuronal function. Additionally, this approach has the potential to develop machine learning models capable of detecting the presence of injury or indicating the extent of injury based on changes in the brain microenvironment microstructure.
Collapse
Affiliation(s)
- Michael McKenna
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - David Shackelford
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ceza Pontes
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Brendan Ball
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Radiology, University of Washington, Seattle, Washington 98195, United States
- Center on Human Development and Disability, University of Washington, Seattle, Washington 98195, United States
- eScience Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Neuroinflammation and Hypothalamo-Pituitary Dysfunction: Focus of Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22052686. [PMID: 33799967 PMCID: PMC7961958 DOI: 10.3390/ijms22052686] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) has increased over the last years with an important impact on public health. Many preclinical and clinical studies identified multiple and heterogeneous TBI-related pathophysiological mechanisms that are responsible for functional, cognitive, and behavioral alterations. Recent evidence has suggested that post-TBI neuroinflammation is responsible for several long-term clinical consequences, including hypopituitarism. This review aims to summarize current evidence on TBI-induced neuroinflammation and its potential role in determining hypothalamic-pituitary dysfunctions.
Collapse
|
15
|
Ichkova A, Rodriguez-Grande B, Zub E, Saudi A, Fournier ML, Aussudre J, Sicard P, Obenaus A, Marchi N, Badaut J. Early cerebrovascular and long-term neurological modifications ensue following juvenile mild traumatic brain injury in male mice. Neurobiol Dis 2020; 141:104952. [PMID: 32442681 DOI: 10.1016/j.nbd.2020.104952] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical evidence suggests that a mild traumatic brain injury occurring at a juvenile age (jmTBI) may be sufficient to elicit pathophysiological modifications. However, clinical reports are not adequately integrated with experimental studies examining brain changes occurring post-jmTBI. We monitored the cerebrovascular modifications and assessed the long-term behavioral and electrographic changes resulting from experimental jmTBI. In vivo photoacoustic imaging demonstrated a decrease of cerebrovascular oxygen saturation levels in the impacted area hours post-jmTBI. Three days post-jmTBI oxygenation returned to pre-jmTBI levels, stabilizing at 7 and 30 days after the injury. At the functional level, cortical arterioles displayed no NMDA vasodilation response, while vasoconstriction induced by thromboxane receptor agonist was enhanced at 1 day post-jmTBI. Arterioles showed abnormal NMDA vasodilation at 3 days post-jmTBI, returning to normality at 7 days post injury. Histology showed changes in vessel diameters from 1 to 30 days post-jmTBI. Neurological evaluation indicated signs of anxiety-like behavior up to 30 days post-jmTBI. EEG recordings performed at the cortical site of impact 30 days post-jmTBI did not indicate seizures activity, although it revealed a reduction of gamma waves as compared to age matched sham. Histology showed decrease of neuronal filament staining. In conclusion, experimental jmTBI triggers an early cerebrovascular hypo‑oxygenation in vivo and faulty vascular reactivity. The exact topographical coherence and the direct casualty between early cerebrovascular changes and the observed long-term neurological modifications remain to be investigated. A potential translational value for cerebro-vascular oxygen monitoring in jmTBI is discussed.
Collapse
Affiliation(s)
| | | | - Emma Zub
- Cerebrovascular and Glia Research Laboratory, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France
| | - Amel Saudi
- Cerebrovascular and Glia Research Laboratory, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France
| | | | | | - Pierre Sicard
- INSERM, CNRS, Université de Montpellier, PhyMedExp, IPAM, Montpellier, France
| | - André Obenaus
- CNRS UMR5287, University of Bordeaux, Bordeaux, France; Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA; Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, UC Riverside, Riverside, CA, USA; Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Nicola Marchi
- Cerebrovascular and Glia Research Laboratory, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France.
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
16
|
Abrahamson EE, Ikonomovic MD. Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp Neurol 2020; 328:113257. [PMID: 32092298 DOI: 10.1016/j.expneurol.2020.113257] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic physiological interface between brain parenchyma and cerebral vasculature. It is composed of closely interacting cells and signaling molecules that regulate movement of solutes, ions, nutrients, macromolecules, and immune cells into the brain and removal of products of normal and abnormal brain cell metabolism. Dysfunction of multiple components of the BBB occurs in aging, inflammatory diseases, traumatic brain injury (TBI, severe or mild repetitive), and in chronic degenerative dementing disorders for which aging, inflammation, and TBI are considered risk factors. BBB permeability changes after TBI result in leakage of serum proteins, influx of immune cells, perivascular inflammation, as well as impairment of efflux transporter systems and accumulation of aggregation-prone molecules involved in hallmark pathologies of neurodegenerative diseases with dementia. In addition, cerebral vascular dysfunction with persistent alterations in cerebral blood flow and neurovascular coupling contribute to brain ischemia, neuronal degeneration, and synaptic dysfunction. While the idea of TBI as a risk factor for dementia is supported by many shared pathological features, it remains a hypothesis that needs further testing in experimental models and in human studies. The current review focusses on pathological mechanisms shared between TBI and neurodegenerative disorders characterized by accumulation of pathological protein aggregates, such as Alzheimer's disease and chronic traumatic encephalopathy. We discuss critical knowledge gaps in the field that need to be explored to clarify the relationship between TBI and risk for dementia and emphasize the need for longitudinal in vivo studies using imaging and biomarkers of BBB dysfunction in people with single or multiple TBI.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
17
|
Trout AL, Rutkai I, Biose IJ, Bix GJ. Review of Alterations in Perlecan-Associated Vascular Risk Factors in Dementia. Int J Mol Sci 2020; 21:E679. [PMID: 31968632 PMCID: PMC7013765 DOI: 10.3390/ijms21020679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/10/2023] Open
Abstract
Perlecan is a heparan sulfate proteoglycan protein in the extracellular matrix that structurally and biochemically supports the cerebrovasculature by dynamically responding to changes in cerebral blood flow. These changes in perlecan expression seem to be contradictory, ranging from neuroprotective and angiogenic to thrombotic and linked to lipid retention. This review investigates perlecan's influence on risk factors such as diabetes, hypertension, and amyloid that effect Vascular contributions to Cognitive Impairment and Dementia (VCID). VCID, a comorbidity with diverse etiology in sporadic Alzheimer's disease (AD), is thought to be a major factor that drives the overall clinical burden of dementia. Accordingly, changes in perlecan expression and distribution in response to VCID appears to be injury, risk factor, location, sex, age, and perlecan domain dependent. While great effort has been made to understand the role of perlecan in VCID, additional studies are needed to increase our understanding of perlecan's role in health and in cerebrovascular disease.
Collapse
Affiliation(s)
- Amanda L. Trout
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Ibolya Rutkai
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Ifechukwude J. Biose
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
| | - Gregory J. Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
18
|
Dinet V, Petry KG, Badaut J. Brain-Immune Interactions and Neuroinflammation After Traumatic Brain Injury. Front Neurosci 2019; 13:1178. [PMID: 31780883 PMCID: PMC6861304 DOI: 10.3389/fnins.2019.01178] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) is the principal cause of death and disability in children and young adults. Clinical and preclinical research efforts have been carried out to understand the acute, life-threatening pathophysiological events happening after TBI. In the past few years, however, it was recognized that TBI causes significant morbidity weeks, months, or years after the initial injury, thereby contributing substantially to the overall burden of TBI and the decrease of life expectancy in these patients. Long-lasting sequels of TBI include cognitive decline/dementia, sensory-motor dysfunction, and psychiatric disorders, and most important for patients is the need for socio-economic rehabilitation affecting their quality of life. Cerebrovascular alterations have been described during the first week after TBI for direct consequence development of neuroinflammatory process in relation to brain edema. Within the brain-immune interactions, the complement system, which is a family of blood and cell surface proteins, participates in the pathophysiology process. In fact, the complement system is part of the primary defense and clearance component of innate and adaptive immune response. In this review, the complement activation after TBI will be described in relation to the activation of the microglia and astrocytes as well as the blood-brain barrier dysfunction during the first week after the injury. Considering the neuroinflammatory activity as a causal element of neurological handicaps, some major parallel lines of complement activity in multiple sclerosis and Alzheimer pathologies with regard to cognitive impairment will be discussed for chronic TBI. A better understanding of the role of complement activation could facilitate the development of new therapeutic approaches for TBI.
Collapse
Affiliation(s)
- Virginie Dinet
- INSERM U1029, Angiogenesis and Neuroinflammation Group, University of Bordeaux, Bordeaux, France
| | - Klaus G. Petry
- INSERM U1029, Angiogenesis and Neuroinflammation Group, University of Bordeaux, Bordeaux, France
| | - Jerome Badaut
- CNRS UMR 5287, INCIA, Brain molecular Imaging Team, University of Bordeaux, Bordeaux, France
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
19
|
Faustino J, Chip S, Derugin N, Jullienne A, Hamer M, Haddad E, Butovsky O, Obenaus A, Vexler ZS. CX3CR1-CCR2-dependent monocyte-microglial signaling modulates neurovascular leakage and acute injury in a mouse model of childhood stroke. J Cereb Blood Flow Metab 2019; 39:1919-1935. [PMID: 30628839 PMCID: PMC6775594 DOI: 10.1177/0271678x18817663] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stroke is among the top 10 causes of death in children. The developmental stage of the brain is central to stroke pathophysiology. The incidence of childhood arterial ischemic stroke (CAIS) is lower than of perinatal arterial ischemic stroke but the rate of recurrence is strikingly high. Vascular inflammation is seen as major contributor to CAIS but the mechanisms that govern structural-functional basis of vascular abnormalities remain poorly understood. To identify the contribution of immune-neurovascular interactions to CAIS, we established stroke model in postnatal day 21 (P21) mice. We demonstrate acute functional deficits and histological injury and chronic MRI-identifiable injury, brain atrophy and marked derangements in the vascular network. In contrast to negligible albumin leakage and neutrophil infiltration following acute perinatal stroke, CAIS leads to significantly increased albumin leakage and neutrophil infiltration in injured regions of wild type mice and mice with functional CX3CR1-CCR2 receptors. In mice with dysfunctional CX3CR1-CCR2 signaling, extravascular albumin leakage is significantly attenuated, infiltration of injurious Ccr2+-monocytes essentially aborted, accumulation of Ly6G+ neutrophils reduced and acute injury attenuated. Unique identifiers of microglia and monocytes revealed phenotypic changes in each cell subtype of the monocyte lineage after CAIS. Taken together, CX3CR1-CCR2-dependent microglia-monocyte signaling contributes to cerebrovascular leakage, inflammation and CAIS injury.
Collapse
Affiliation(s)
- Joel Faustino
- Department of Neurology, University California San Francisco, CA, USA
| | - Sophorn Chip
- Department of Neurology, University California San Francisco, CA, USA
| | - Nikita Derugin
- Department of Neurology, University California San Francisco, CA, USA
| | | | - Mary Hamer
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Elizabeth Haddad
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andre Obenaus
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, USA.,Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Zinaida S Vexler
- Department of Neurology, University California San Francisco, CA, USA
| |
Collapse
|
20
|
Howe MD, Furr JW, Munshi Y, Roy-O’Reilly MA, Maniskas ME, Koellhoffer EC, d’Aigle J, Sansing LH, McCullough LD, Urayama A. Transforming growth factor-β promotes basement membrane fibrosis, alters perivascular cerebrospinal fluid distribution, and worsens neurological recovery in the aged brain after stroke. GeroScience 2019; 41:543-559. [PMID: 31721012 PMCID: PMC6885082 DOI: 10.1007/s11357-019-00118-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Aging and stroke alter the composition of the basement membrane and reduce the perivascular distribution of cerebrospinal fluid and solutes, which may contribute to poor functional recovery in elderly patients. Following stroke, TGF-β induces astrocyte activation and subsequent glial scar development. This is dysregulated with aging and could lead to chronic, detrimental changes within the basement membrane. We hypothesized that TGF-β induces basement membrane fibrosis after stroke, leading to impaired perivascular CSF distribution and poor functional recovery in aged animals. We found that CSF entered the aged brain along perivascular tracts; this process was reduced by experimental stroke and was rescued by TGF-β receptor inhibition. Brain fibronectin levels increased with experimental stroke, which was reversed with inhibitor treatment. Exogenous TGF-β stimulation increased fibronectin expression, both in vivo and in primary cultured astrocytes. Oxygen-glucose deprivation of cultured astrocytes induced multiple changes in genes related to astrocyte activation and extracellular matrix production. Finally, in stroke patients, we found that serum TGF-β levels correlated with poorer functional outcomes, suggesting that serum levels may act as a biomarker for functional recovery. These results support a potential new treatment strategy to enhance recovery in elderly stroke patients.
Collapse
Affiliation(s)
- Matthew D. Howe
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - J. Weldon Furr
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Yashasvee Munshi
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Meaghan A. Roy-O’Reilly
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Michael E. Maniskas
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Edward C. Koellhoffer
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - John d’Aigle
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, 1450 Chapel Street, New Haven, CT 06511 USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Akihiko Urayama
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| |
Collapse
|
21
|
Collins-Praino L, Corrigan F. Cerebrovascular contribution to dementia development after traumatic brain injury: promises and problems. ANNALS OF TRANSLATIONAL MEDICINE 2019; 6:S58. [PMID: 30613633 DOI: 10.21037/atm.2018.10.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lyndsey Collins-Praino
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia
| | - Frances Corrigan
- School of Health Sciences, University of South Australia, Adelaide, South Australia
| |
Collapse
|
22
|
Howe MD, Atadja LA, Furr JW, Maniskas ME, Zhu L, McCullough LD, Urayama A. Fibronectin induces the perivascular deposition of cerebrospinal fluid-derived amyloid-β in aging and after stroke. Neurobiol Aging 2018; 72:1-13. [PMID: 30172921 PMCID: PMC6219378 DOI: 10.1016/j.neurobiolaging.2018.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 11/21/2022]
Abstract
Cerebral amyloid angiopathy occurs after stroke, but the mechanism underlying the initial amyloid-β deposition is not fully understood. This study investigates whether overexpression of fibronectin and its receptor, integrin-α5, induces the perivascular deposition of cerebrospinal fluid-derived amyloid-β after stroke in young and aged animals. We found that stroke impaired the bulk flow of cerebrospinal fluid into the brain parenchyma and further showed that perivascular amyloid-β deposition was enhanced in aged animals with stroke, which colocalized with integrin-α5 in the basement membrane. Furthermore, we found that stroke dramatically increased the cortical levels of fibronectin and integrin-α5, with further increases in integrin-α5 in aged animals with stroke, fibronectin bound amyloid-β in vitro, and fibronectin administration increased amyloid-β deposition in vivo. Finally, aging and stroke impaired performance on the Barnes maze. These results indicate that fibronectin induces the perivascular deposition of amyloid-β and that increased integrin-α5 further "primes" the aged brain for amyloid-β binding. This provides a novel molecular and physiological mechanism for perivascular amyloid-β deposition after stroke, particularly in aged individuals.
Collapse
Affiliation(s)
- Matthew D Howe
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Louise A Atadja
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - J Weldon Furr
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Michael E Maniskas
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Liang Zhu
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
23
|
Snyder HM, Carare RO, DeKosky ST, de Leon MJ, Dykxhoorn D, Gan L, Gardner R, Hinds SR, Jaffee M, Lamb BT, Landau S, Manley G, McKee A, Perl D, Schneider JA, Weiner M, Wellington C, Yaffe K, Bain L, Pacifico AM, Carrillo MC. Military-related risk factors for dementia. Alzheimers Dement 2018; 14:1651-1662. [PMID: 30415806 PMCID: PMC6281800 DOI: 10.1016/j.jalz.2018.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In recent years, there has been growing discussion to better understand the pathophysiological mechanisms of traumatic brain injury and post-traumatic stress disorder and how they may be linked to an increased risk of neurodegenerative diseases including Alzheimer's disease in veterans. METHODS Building on that discussion, and subsequent to a special issue of Alzheimer's & Dementia published in June 2014, which focused on military risk factors, the Alzheimer's Association convened a continued discussion of the scientific community on December 1, 2016. RESULTS During this meeting, participants presented and evaluated progress made since 2012 and identified outstanding knowledge gaps regarding factors that may impact veterans' risk for later life dementia. DISCUSSION The following is a summary of the invited presentations and moderated discussions of both the review of scientific understanding and identification of gaps to inform further investigations.
Collapse
Affiliation(s)
- Heather M Snyder
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA.
| | - Roxana O Carare
- Clinical Neuroanatomy, Equality and Diversity Lead, University of Southampton, Southampton, United Kingdom
| | - Steven T DeKosky
- Department of Neurology and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Mony J de Leon
- Department of Psychiatry, New York University Medical Center, New York City, NY, USA
| | - Derek Dykxhoorn
- Department of Microbiology and Immunology, Miami University, Miami, FL, USA
| | - Li Gan
- Gladstone Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Raquel Gardner
- Department of Psychiatry, Neurology & Epidemiology, University of California, San Francisco, San Francisco, CA, USA
| | - Sidney R Hinds
- Blast Injury Research Program Coordinating Office, United States Army Medical Research and Material Command, Frederick, MD, USA
| | - Michael Jaffee
- Department of Neurology and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA
| | - Susan Landau
- Helen Willis Neuroscience Institute, University of California, Berkley, Berkley, CA, USA
| | - Geoff Manley
- Department of Psychiatry, Neurology & Epidemiology, University of California, San Francisco, San Francisco, CA, USA
| | - Ann McKee
- Department of Neurology and Pathology, Boston University, Boston, MA, USA
| | - Daniel Perl
- Department of Pathology, Uniformed Services University, Bethesda, MD, USA
| | - Julie A Schneider
- Neurology Department, Rush University Medical Center, Chicago, IL, USA
| | - Michael Weiner
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kristine Yaffe
- Department of Psychiatry, Neurology & Epidemiology, University of California, San Francisco, San Francisco, CA, USA
| | - Lisa Bain
- Independent Science Writer, Philadelphia, PA, USA
| | | | - Maria C Carrillo
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| |
Collapse
|
24
|
Giannoni P, Badaut J, Dargazanli C, Fayd'Herbe De Maudave A, Klement W, Costalat V, Marchi N. The pericyte-glia interface at the blood-brain barrier. Clin Sci (Lond) 2018; 132:361-374. [PMID: 29439117 DOI: 10.1042/cs20171634] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
The cerebrovasculature is a multicellular structure with varying rheological and permeability properties. The outer wall of the brain capillary endothelium is enclosed by pericytes and astrocyte end feet, anatomically assembled to guarantee barrier functions. We, here, focus on the pericyte modifications occurring in disease conditions, reviewing evidence supporting the interplay amongst pericytes, the endothelium, and glial cells in health and pathology. Deconstruction and reactivity of pericytes and glial cells around the capillary endothelium occur in response to traumatic brain injury, epilepsy, and neurodegenerative disorders, impacting vascular permeability and participating in neuroinflammation. As this represents a growing field of research, addressing the multicellular reorganization occurring at the outer wall of the blood-brain barrier (BBB) in response to an acute insult or a chronic disease could disclose novel disease mechanisms and therapeutic targets.
Collapse
Affiliation(s)
| | - Jerome Badaut
- Laboratory of Brain Molecular Imaging, CNRS UMR5287, University of Bordeaux, France
- Basic Science Departments, Loma Linda University School of Medicine, CA, U.S.A
| | - Cyril Dargazanli
- Neuroradiology, University Hospital, Montpellier, France
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Alexis Fayd'Herbe De Maudave
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Wendy Klement
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Vincent Costalat
- Neuroradiology, University Hospital, Montpellier, France
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Nicola Marchi
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| |
Collapse
|
25
|
Traumatic Brain Injury and Alzheimer's Disease: The Cerebrovascular Link. EBioMedicine 2018; 28:21-30. [PMID: 29396300 PMCID: PMC5835563 DOI: 10.1016/j.ebiom.2018.01.021] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) are devastating neurological disorders, whose complex relationship is not completely understood. Cerebrovascular pathology, a key element in both conditions, could represent a mechanistic link between Aβ/tau deposition after TBI and the development of post concussive syndrome, dementia and chronic traumatic encephalopathy (CTE). In addition to debilitating acute effects, TBI-induced neurovascular injuries accelerate amyloid β (Aβ) production and perivascular accumulation, arterial stiffness, tau hyperphosphorylation and tau/Aβ-induced blood brain barrier damage, giving rise to a deleterious feed-forward loop. We postulate that TBI can initiate cerebrovascular pathology, which is causally involved in the development of multiple forms of neurodegeneration including AD-like dementias. In this review, we will explore how novel biomarkers, animal and human studies with a focus on cerebrovascular dysfunction are contributing to the understanding of the consequences of TBI on the development of AD-like pathology. Cerebrovascular dysfunction (CVD) is emerging as a key element in the development of neurodegeneration after TBI. We propose that TBI initiates CVD, accelerating Aβ/tau deposition and leading to neurodegeneration and dementias. Clarifying this connection will support the development of novel biomarkers and therapeutic approaches for both TBI and AD.
Collapse
|
26
|
Adams SM, Conley YP, Ren D, Okonkwo DO, Puccio AM, Dixon CE, Clark RSB, Kochanek PM, Empey PE. ABCG2 c.421C>A Is Associated with Outcomes after Severe Traumatic Brain Injury. J Neurotrauma 2017; 35:48-53. [PMID: 28747144 DOI: 10.1089/neu.2017.5000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death with no pharmacological treatments that improve outcomes. Transporter proteins participate in TBI recovery by maintaining the central nervous system (CNS) biochemical milieu. Genetic variations in transporters that alter expression and/or function have been associated with TBI outcomes. The ATP-binding cassette transporter, ABCG2, is a uric acid (UA) transporter that effluxes UA from cells in the CNS and is responsible for systemic UA clearance. Uric acid is a CNS antioxidant and/or a biomarker that might support TBI recovery. Our objective was to investigate the impact of ABCG2 SNP: c.421C>A on TBI outcomes. Two cohorts (discovery [N = 270] and replication [N = 166]) were genotyped for ABCG2 c.421C>A. Glasgow Outcome Scale (GOS) scores were collected at 3, 6, 12, and 24 months post-injury and compared with mixed-effects multiple ordinal regression controlled for time post-injury, age, sex, time, post-injury imaging determined hemorrhage types, and Glasgow Coma Scale score. Variant alleles (genotype) were associated with better GOS scores (p = 0.01 [discovery] and p = 0.02 [replication]), whereas genotype*age interaction was associated with worse GOS scores (p = 0.03 [discovery] and p = 0.01 [replication]). Reversed coefficient directionality suggests variant allele(s) are protective up to approximately age 34 years. Overall, variant alleles at ABCG2 c.421C>A associate with better GOS scores post-injury in two independently sampled cohorts. This finding is mitigated by increasing subject age. This suggests that ABCG2 might have an age-dependent effect on TBI recovery and should be explored in future mechanistic studies.
Collapse
Affiliation(s)
- Solomon M Adams
- 1 Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Yvette P Conley
- 2 Health Promotion and Development, School of Nursing, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Human Genetics, Graduate School of Public Health, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Dianxu Ren
- 4 Health and Community Systems, School of Nursing, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - David O Okonkwo
- 5 Neurological Surgery, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Ava M Puccio
- 5 Neurological Surgery, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - C Edward Dixon
- 5 Neurological Surgery, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,6 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Robert S B Clark
- 6 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- 6 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Philip E Empey
- 6 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,7 Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Rodriguez-Grande B, Ichkova A, Lemarchant S, Badaut J. Early to Long-Term Alterations of CNS Barriers After Traumatic Brain Injury: Considerations for Drug Development. AAPS JOURNAL 2017; 19:1615-1625. [PMID: 28905273 DOI: 10.1208/s12248-017-0123-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability, particularly amongst the young and the elderly. The functions of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) are strongly impaired after TBI, thus affecting brain homeostasis. Following the primary mechanical injury that characterizes TBI, a secondary injury develops over time, including events such as edema formation, oxidative stress, neuroinflammation, and alterations in paracelullar and transcellular transport. To date, most therapeutic interventions for TBI have aimed at direct neuroprotection during the acute phase and have not been successful. Targeting the barriers of the central nervous system (CNS) could be a wider therapeutic approach, given that restoration of brain homeostasis would benefit all brain cells, including neurons. Importantly, BBB disregulation has been observed even years after TBI, concomitantly with neurological and psychosocial sequelae; however, treatments targeting the post-acute phase are scarce. Here, we review the mechanisms of primary and secondary injury of CNS barriers, the accumulating evidence showing long-term damage to these structures and some of the therapies that have targeted these mechanisms. Finally, we discuss how the injury characteristics (hemorrhagic vs non-hemorrhagic, involvement of head rotation, gray vs white matter), the sex, and the age of the patient need to be carefully considered to improve clinical trial design and outcome interpretation, and to improve future drug development.
Collapse
Affiliation(s)
| | - Aleksandra Ichkova
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Sighild Lemarchant
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France. .,Basic Science Departments, Loma Linda University School of Medicine, Loma Linda, California, USA.
| |
Collapse
|
28
|
Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab 2017; 37:2320-2339. [PMID: 28378621 PMCID: PMC5531360 DOI: 10.1177/0271678x17701460] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The critical role of the vasculature and its repair in neurological disease states is beginning to emerge particularly for stroke, dementia, epilepsy, Parkinson's disease, tumors and others. However, little attention has been focused on how the cerebral vasculature responds following traumatic brain injury (TBI). TBI often results in significant injury to the vasculature in the brain with subsequent cerebral hypoperfusion, ischemia, hypoxia, hemorrhage, blood-brain barrier disruption and edema. The sequalae that follow TBI result in neurological dysfunction across a host of physiological and psychological domains. Given the importance of restoring vascular function after injury, emerging research has focused on understanding the vascular response after TBI and the key cellular and molecular components of vascular repair. A more complete understanding of vascular repair mechanisms are needed and could lead to development of new vasculogenic therapies, not only for TBI but potentially vascular-related brain injuries. In this review, we delineate the vascular effects of TBI, its temporal response to injury and putative biomarkers for arterial and venous repair in TBI. We highlight several molecular pathways that may play a significant role in vascular repair after brain injury.
Collapse
Affiliation(s)
- Arjang Salehi
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- 3 Department of Physiology and Pharmacology Loma Linda University School of Medicine, CA, USA.,4 Department of Anesthesiology Loma Linda University School of Medicine, CA, USA.,5 Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Andre Obenaus
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA.,6 Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
29
|
Ichkova A, Rodriguez-Grande B, Bar C, Villega F, Konsman JP, Badaut J. Vascular impairment as a pathological mechanism underlying long-lasting cognitive dysfunction after pediatric traumatic brain injury. Neurochem Int 2017; 111:93-102. [PMID: 28377126 DOI: 10.1016/j.neuint.2017.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in children. Indeed, the acute mechanical injury often evolves to a chronic brain disorder with long-term cognitive, emotional and social dysfunction even in the case of mild TBI. Contrary to the commonly held idea that children show better recovery from injuries than adults, pediatric TBI patients actually have worse outcome than adults for the same injury severity. Acute trauma to the young brain likely interferes with the fine-tuned developmental processes and may give rise to long-lasting consequences on brain's function. This review will focus on cerebrovascular dysfunction as an important early event that may lead to long-term phenotypic changes in the brain after pediatric TBI. These, in turn may be associated with accelerated brain aging and cognitive dysfunction. Finally, since no effective treatments are currently available, understanding the unique pathophysiological mechanisms of pediatric TBI is crucial for the development of new therapeutic options.
Collapse
Affiliation(s)
| | | | - Claire Bar
- CNRS UMR 5287, INCIA, University of Bordeaux, France; Department of Pediatric Neurology, University Children's Hospital of Bordeaux, France
| | - Frederic Villega
- Department of Pediatric Neurology, University Children's Hospital of Bordeaux, France
| | | | - Jerome Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
30
|
Toth P, Szarka N, Farkas E, Ezer E, Czeiter E, Amrein K, Ungvari Z, Hartings JA, Buki A, Koller A. Traumatic brain injury-induced autoregulatory dysfunction and spreading depression-related neurovascular uncoupling: Pathomechanisms, perspectives, and therapeutic implications. Am J Physiol Heart Circ Physiol 2016; 311:H1118-H1131. [PMID: 27614225 PMCID: PMC5504422 DOI: 10.1152/ajpheart.00267.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/19/2016] [Indexed: 01/17/2023]
Abstract
Traumatic brain injury (TBI) is a major health problem worldwide. In addition to its high mortality (35-40%), survivors are left with cognitive, behavioral, and communicative disabilities. While little can be done to reverse initial primary brain damage caused by trauma, the secondary injury of cerebral tissue due to cerebromicrovascular alterations and dysregulation of cerebral blood flow (CBF) is potentially preventable. This review focuses on functional, cellular, and molecular changes of autoregulatory function of CBF (with special focus on cerebrovascular myogenic response) that occur in cerebral circulation after TBI and explores the links between autoregulatory dysfunction, impaired myogenic response, microvascular impairment, and the development of secondary brain damage. We further provide a synthesized translational view of molecular and cellular mechanisms involved in cortical spreading depolarization-related neurovascular dysfunction, which could be targeted for the prevention or amelioration of TBI-induced secondary brain damage.
Collapse
Affiliation(s)
- Peter Toth
- Department of Neurosurgery, University of Pecs, Pecs, Hungary;
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Nikolett Szarka
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
- Department of Translational Medicine, University of Pecs, Pecs, Hungary
| | - Eszter Farkas
- Faculty of Medicine and Faculty of Science and Informatics, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Erzsebet Ezer
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
| | - Endre Czeiter
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andras Buki
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | - Akos Koller
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Institute of Natural Sciences, University of Physical Education, Budapest, Hungary; and
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
31
|
Jullienne A, Obenaus A, Ichkova A, Savona-Baron C, Pearce WJ, Badaut J. Chronic cerebrovascular dysfunction after traumatic brain injury. J Neurosci Res 2016; 94:609-22. [PMID: 27117494 PMCID: PMC5415378 DOI: 10.1002/jnr.23732] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/11/2016] [Accepted: 02/28/2016] [Indexed: 12/12/2022]
Abstract
Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | | | | | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Jerome Badaut
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- CNRS UMR5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
32
|
Peterson TC, Hoane MR, McConomy KS, Farin FM, Bammler TK, MacDonald JW, Kantor ED, Anderson GD. A Combination Therapy of Nicotinamide and Progesterone Improves Functional Recovery following Traumatic Brain Injury. J Neurotrauma 2015; 32:765-79. [PMID: 25313690 DOI: 10.1089/neu.2014.3530] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuroprotection, recovery of function, and gene expression were evaluated in an animal model of traumatic brain injury (TBI) after a combination treatment of nicotinamide (NAM) and progesterone (Prog). Animals received a cortical contusion injury over the sensorimotor cortex, and were treated with either Vehicle, NAM, Prog, or a NAM/Prog combination for 72 h and compared with a craniotomy only (Sham) group. Animals were assessed in a battery of behavioral, sensory, and both fine and gross motor tasks, and given histological assessments at 24 h post-injury to determine lesion cavity size, degenerating neurons, and reactive astrocytes. Microarray-based transcriptional profiling was used to determine treatment-specific changes on gene expression. Our results confirm the beneficial effects of treatment with either NAM or Prog, demonstrating significant improvements in recovery of function and a reduction in lesion cavitation, degenerating neurons, and reactive astrocytes 24 h post-injury. The combination treatment of NAM and Prog led to a significant improvement in both neuroprotection at 24 h post-injury and recovery of function in sensorimotor related tasks when compared with individual treatments. The NAM/Prog-treated group was the only treatment group to show a significant reduction of cortical loss 24 h post-injury. The combination appears to affect inflammatory and immune processes, reducing expression of a significant number of genes in both pathways. Further preclinical trials using NAM and Prog as a combination treatment should be conducted to identify the window of opportunity, determine the optimal duration of treatment, and evaluate the combination in other pre-clinical models of TBI.
Collapse
Affiliation(s)
- Todd C Peterson
- 1Department of Psychology, Southern Illinois University, Carbondale, Illinois
| | - Michael R Hoane
- 1Department of Psychology, Southern Illinois University, Carbondale, Illinois
| | - Keith S McConomy
- 1Department of Psychology, Southern Illinois University, Carbondale, Illinois
| | - Fred M Farin
- 2Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Theo K Bammler
- 2Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - James W MacDonald
- 2Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Eric D Kantor
- 3Department of Pharmacy, University of Washington, Seattle, Washington
| | - Gail D Anderson
- 3Department of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|