1
|
Osborn MJ, Panda S, Reineke TM, Tolar J, Nyström A. Progress in skin gene therapy: From the inside and out. Mol Ther 2025; 33:2065-2081. [PMID: 40077969 DOI: 10.1016/j.ymthe.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
The skin is the largest organ of the body and forms and serves as the barrier for preventing external material from accessing and damaging internal organs. As the outward interface to the environment, it is accessible for the application of therapeutic agents and cellular and gene therapy represent attractive and promising options to treat severe genetic conditions for which palliation has long been the main stay. However, because of its barrier function, transit across and to the subdermal compartment can be challenging. This commentary examines the current approaches of cell and gene therapies for genetic skin disorders. We write this from a local and systemic "outside and inside." perspective. Delivery from the outside encompasses topical, intradermal, and transdermal strategies for cell and vector delivery and ex vivo cell expansion and grafting. The inside approach details systemic delivery via infusion of cells or agents toward providing benefit to the skin. We use recessive dystrophic epidermolysis bullosa (RDEB) as a representative and paradigmatic disease to showcase these approaches as a means to highlight potential broader applicability to other conditions.
Collapse
Affiliation(s)
- Mark J Osborn
- Medical School, Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular and Gene Therapy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Sidharth Panda
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Medical School, Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular and Gene Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
2
|
Lee SS, Martinez Peña EG, Willis AA, Wang CC, Haddad NR, Garza LA. Cell Therapy and the Skin: Great Potential but in Need of Optimization. J Invest Dermatol 2025; 145:1033-1038. [PMID: 39530953 PMCID: PMC12018158 DOI: 10.1016/j.jid.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
Cell therapy is rapidly growing owing to its therapeutic potential for diseases with currently poor outcomes. Cell therapy encompasses both nonengineered and engineered cells and possesses unique abilities such as sense-and-respond functions and long-term engraftment for persistent curative potential. Cell therapy capabilities have expanded to address a wide spectrum of diseases, and our review is focused on dermatological applications. The use of fibroblasts and keratinocytes as cell therapy has shown promise in skin disorders such as epidermolysis bullosa. Future efforts include testing the ability of fibroblasts to reprogram nonvolar to volar skin to reduce stump dermatoses in patients with limb loss using prosthetics.
Collapse
Affiliation(s)
- Sam S Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | - Aiden A Willis
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chen Chia Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nina Rossa Haddad
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
3
|
Kim JH, Kim JE, Kang SJ, Yoon JK. Exosomes and Exosome-Mimetics for Atopic Dermatitis Therapy. Tissue Eng Regen Med 2025:10.1007/s13770-024-00695-5. [PMID: 39832066 DOI: 10.1007/s13770-024-00695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Exosomes and exosome mimetics are used as alternatives to cell therapy. They have shown potential in treating skin disorders by fortifying the skin barrier, mediating angiogenesis, and regulating the immune response while minimizing side effects. Currently, numerous studies have applied exosome therapy to treat atopic dermatitis (AD) caused by a weakened skin barrier and chronic inflammation. Research on exosomes and exosome mimetics represents a promising avenue for tissue regeneration, potentially paving the way for new therapeutic options. However, the efficacy of the therapy remains poorly understood. Also, the potential of exosome mimetics as alternatives to exosomes in skin therapy remains underexplored. METHODS Here, we reviewed the pathological features and current therapies of AD. Next, we reviewed the application of exosomes and exosome mimetics in regenerative medicine. Finally, we highlighted the therapeutic effects of exosomes based on their cell source and assessed whether exosome mimetics are viable alternatives. RESULTS AND CONCLUSION Exosome therapy may treat AD due to its skin regenerative properties, and exosome mimetics may offer an equally effective yet more efficient alternative. Research on exosomes and exosome mimetics represents a promising avenue for tissue regeneration, potentially paving the way for new therapeutic options.
Collapse
Affiliation(s)
- Jae Hoon Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Ju-El Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Seong-Jun Kang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
4
|
Gila F, Alamdari-Palangi V, Rafiee M, Jokar A, Ehtiaty S, Dianatinasab A, Khatami SH, Taheri-Anganeh M, Movahedpour A, Fallahi J. Gene-edited cells: novel allogeneic gene/cell therapy for epidermolysis bullosa. J Appl Genet 2024; 65:705-726. [PMID: 38459407 DOI: 10.1007/s13353-024-00839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 03/10/2024]
Abstract
Epidermolysis bullosa (EB) is a group of rare genetic skin fragility disorders, which are hereditary. These disorders are associated with mutations in at least 16 genes that encode components of the epidermal adhesion complex. Currently, there are no effective treatments for this disorder. All current treatment approaches focus on topical treatments to prevent complications and infections. In recent years, significant progress has been achieved in the treatment of the severe genetic skin blistering condition known as EB through preclinical and clinical advancements. Promising developments have emerged in the areas of protein and cell therapies, such as allogeneic stem cell transplantation; in addition, RNA-based therapies and gene therapy approaches have also become a reality. Stem cells obtained from embryonic or adult tissues, including the skin, are undifferentiated cells with the ability to generate, maintain, and replace fully developed cells and tissues. Recent advancements in preclinical and clinical research have significantly enhanced stem cell therapy, presenting a promising treatment option for various diseases that are not effectively addressed by current medical treatments. Different types of stem cells such as primarily hematopoietic and mesenchymal, obtained from the patient or from a donor, have been utilized to treat severe forms of diseases, each with some beneficial effects. In addition, extensive research has shown that gene transfer methods targeting allogeneic and autologous epidermal stem cells to replace or correct the defective gene are promising. These methods can regenerate and restore the adhesion of primary keratinocytes in EB patients. The long-term treatment of skin lesions in a small number of patients has shown promising results through the transplantation of skin grafts produced from gene-corrected autologous epidermal stem cells. This article attempts to summarize the current situation, potential development prospects, and some of the challenges related to the cell therapy approach for EB treatment.
Collapse
Affiliation(s)
- Fatemeh Gila
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Arezoo Jokar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Ehtiaty
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Dianatinasab
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Koller U, Bauer JW. Emerging DNA & RNA editing strategies for the treatment of epidermolysis bullosa. J DERMATOL TREAT 2024; 35:2391452. [PMID: 39155053 DOI: 10.1080/09546634.2024.2391452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Background: Epidermolysis bullosa (EB) is a clinically-heterogeneous genodermatosis with severe manifestations in the skin and other organs. The significant burden this condition places on patients justifies the development of gene therapeutic strategies targeting the genetic cause of the disease. Methods: Emerging RNA and DNA editing tools have shown remarkable advances in efficiency and safety. Applicable both in ex vivo- and in vivo settings, these gene therapeutics based on gene replacement or editing are either at the pre-clinical or clinical stage. Results: The recent landmark FDA approvals for gene editing based on CRISPR/Cas9, along with the first FDA-approved redosable in vivo gene replacement therapy for EB, will invigorate ongoing research efforts, increasing the likelihood of achieving local cure via CRISPR-based technologies in the near future. Conclusions: This review discusses the status quo of current gene therapeutics that act at the level of RNA or DNA, all with the common aim of improving the quality of life for EB patients.
Collapse
Affiliation(s)
- Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Johann W Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
6
|
Zorina A, Zorin V, Isaev A, Kudlay D, Manturova N, Ustugov A, Kopnin P. Current Status of Biomedical Products for Gene and Cell Therapy of Recessive Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2024; 25:10270. [PMID: 39408598 PMCID: PMC11476579 DOI: 10.3390/ijms251910270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/20/2024] Open
Abstract
This detailed review describes innovative strategies and current products for gene and cell therapy at different stages of research and development to treat recessive dystrophic epidermolysis bullosa (RDEB) which is associated with the functional deficiency of collagen type VII alpha 1 (C7) caused by defects in the COL7A1 gene. The use of allogenic mesenchymal stem/stromal cells, which can be injected intradermally and intravenously, appears to be the most promising approach in the field of RDEB cell therapy. Injections of genetically modified autologous dermal fibroblasts are also worth mentioning under this framework. The most common methods of RDEB gene therapy are gene replacement using viral vectors and gene editing using programmable nucleases. Ex vivo epidermal transplants (ETs) based on autologous keratinocytes (Ks) have been developed using gene therapy methods; one such ET successively passed phase III clinical trials. Products based on the use of two-layer transplants have also been developed with both types of skin cells producing C7. Gene products have also been developed for local use. To date, significant progress has been achieved in the development of efficient biomedical products to treat RDEB, one of the most severe hereditary diseases.
Collapse
Affiliation(s)
- Alla Zorina
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
- Skincell LLC, Moscow 119333, Russia
| | - Vadim Zorin
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
- Skincell LLC, Moscow 119333, Russia
| | - Artur Isaev
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
| | - Dmitry Kudlay
- Department of Pharmacology, The I. M. Sechenov First Moscow State Medical University (The Sechenov University), Moscow 119991, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Natalia Manturova
- Department of Plastic and Reconstructive surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- JSC Plastic Surgery and Cosmetology Institute, Moscow 125047, Russia
| | - Andrei Ustugov
- Department of Plastic and Reconstructive surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- JSC Plastic Surgery and Cosmetology Institute, Moscow 125047, Russia
| | - Pavel Kopnin
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow 115522, Russia
| |
Collapse
|
7
|
Rahnama M, Ghasemzadeh N, Ebrahimi Y, Golchin A. A comprehensive evaluation of dermal fibroblast therapy in clinical trials for treating skin disorders and cosmetic applications: a scoping review. Stem Cell Res Ther 2024; 15:318. [PMID: 39304949 PMCID: PMC11416016 DOI: 10.1186/s13287-024-03892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Fibroblast cells have the ability to improve skin conditions through regenerative medicine and cell-based therapies. The purpose of this scoping review is to assess the contribution of fibroblast cells to skin homeostasis and extracellular matrix deposition in clinical trials involving skin disorders and cosmetic applications. METHODS Using targeted search terms, published publications from January 2000 to August 2023 that addressed fibroblast uses in clinical trials of skin conditions were obtained from bibliographic databases like PubMed, Scopus, and Web of Science (WoS). Precise inclusion and exclusion criteria were used during the screening process. The potential benefits of induction treatment with fibroblasts lead to the choosing of clinical trials for this kind of treatment. RESULTS Out of the 820 published ppapers initially identified, only 35 studies fulfilled our meticulous eligibility criteria after careful screening. To ensure clarity, we methodically eliminated any duplicate or irrelevant published papers, thereby offering a transparent account of our selection process. CONCLUSION This study highlights the advantages of fibroblast therapy in treating skin conditions such as diabetic foot, venous leg ulcers, and cosmetic reasons. Fibroblasts possess remarkable regenerating capabilities, making dermal fibroblast therapy crucial in cell-based and skin regenerative treatments. Nevertheless, additional research is required for more disorders and cosmetic applications.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Ghasemzadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Ebrahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
8
|
Dermitzakis I, Chatzi D, Kyriakoudi SA, Evangelidis N, Vakirlis E, Meditskou S, Theotokis P, Manthou ME. Skin Development and Disease: A Molecular Perspective. Curr Issues Mol Biol 2024; 46:8239-8267. [PMID: 39194704 DOI: 10.3390/cimb46080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Skin, the largest organ in the human body, is a crucial protective barrier that plays essential roles in thermoregulation, sensation, and immune defence. This complex organ undergoes intricate processes of development. Skin development initiates during the embryonic stage, orchestrated by molecular cues that control epidermal specification, commitment, stratification, terminal differentiation, and appendage growth. Key signalling pathways are integral in coordinating the development of the epidermis, hair follicles, and sweat glands. The complex interplay among these pathways is vital for the appropriate formation and functionality of the skin. Disruptions in multiple molecular pathways can give rise to a spectrum of skin diseases, from congenital skin disorders to cancers. By delving into the molecular mechanisms implicated in developmental processes, as well as in the pathogenesis of diseases, this narrative review aims to present a comprehensive understanding of these aspects. Such knowledge paves the way for developing innovative targeted therapies and personalised treatment approaches for various skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Evangelidis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
9
|
Matsuda A, Hasegawa T, Ikeda Y, Wada A, Ikeda S. Histological and molecular restoration of type VII collagen in Recessive dystrophic epidermolysis bullosa mouse skin by topical injection of keratinocyte-like cells differentiated from human adipose-derived mesenchymal stromal cells. J Dermatol Sci 2024; 115:42-50. [PMID: 38876908 DOI: 10.1016/j.jdermsci.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by mutations in the COL7A1 gene, which encodes type VII collagen (COL7), the main constituent of anchoring fibrils for attaching the epidermis to the dermis. Persistent skin erosions frequently result in intractable ulcers in RDEB patients. Adipose-derived mesenchymal stromal cells (AD-MSCs) are easily harvested in large quantities and have low immunogenicity. Therefore, they are suitable for clinical use, including applications involving allogeneic cell transplantation. Keratinocyte-like cells transdifferentiated from AD-MSCs (KC-AD-MSCs) express more COL7 than undifferentiated AD-MSCs and facilitate skin wound healing with less contracture. Therefore, these cells can be used for skin ulcer treatment in RDEB patients. OBJECTIVE We investigated whether KC-AD-MSCs transplantation ameliorated the RDEB phenotype severity in the grafted skin of a RDEB mouse model (col7a1-null) on the back of the immunodeficient mouse. METHODS KC-AD-MSCs were intradermally injected into the region surrounding the skin grafts, and this procedure was repeated after 7 days. After a further 7-day interval, the skin grafts were harvested. RESULTS Neodeposition of COL7 and generation of anchoring fibrils at the dermal-epidermal junction were observed, although experiments were based on qualitative. CONCLUSION KC-AD-MSCs may correct the COL7 insufficiency, repair defective/reduced anchoring fibrils, and improve skin integrity in RDEB patients.
Collapse
Affiliation(s)
- Akinori Matsuda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Toshio Hasegawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Yuri Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Akino Wada
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Japan.
| |
Collapse
|
10
|
Pabón-Carrasco M, Caceres-Matos R, Roche-Campos M, Hurtado-Guapo MA, Ortiz-Romero M, Gordillo-Fernández LM, Pabón-Carrasco D, Castro-Méndez A. Management of Skin Lesions in Patients with Epidermolysis Bullosa by Topical Treatment: Systematic Review and Meta-Analysis. Healthcare (Basel) 2024; 12:261. [PMID: 38275540 PMCID: PMC11154251 DOI: 10.3390/healthcare12020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Epidermolysis bullosa (EB) is the overarching term for a set of rare inherited skin fragility disorders that result from mutations in at least 20 different genes. Currently, there is no cure for any of the EB subtypes associated with various mutations. Existing therapies primarily focus on alleviating pain and promoting early wound healing to prevent potential complications. Consequently, there is an urgent need for innovative therapeutic approaches. The objective of this research was to assess the efficacy of various topical treatments in patients with EB with the goal of achieving wound healing. A secondary objective was to analyse the efficacy of topical treatments for symptom reduction. A literature search was conducted using scientific databases, including The Cochrane Library, Medline (Pubmed), Web of Science, CINHAL, Embase, and Scopus. The protocol review was registered in PROSPERO (ID: 418790), and inclusion and exclusion criteria were applied, resulting in the selection of 23 articles. Enhanced healing times were observed compared with the control group. No conclusive data have been observed on pain management, infection, pruritus episodes, and cure rates over time. Additionally, evidence indicates significant progress in gene therapies (B-VEC), as well as cell and protein therapies. The dressing group, Oleogel S-10, allantoin and diacerein 1%, were the most represented, followed by fibroblast utilisation. In addition, emerging treatments that improve the patient's innate immunity, such as calcipotriol, are gaining attention. However, more trials are needed to reduce the prevalence of blistering and improve the quality of life of individuals with epidermolysis bullosa.
Collapse
Affiliation(s)
- Manuel Pabón-Carrasco
- Research Group PAIDI-CTS-1054: “Interventions and Health Care, Red Cross (ICSCRE)”, Nursing Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 6 Avenzoar ST, 41009 Seville, Spain;
| | - Rocio Caceres-Matos
- Research Group PAIDI-CTS-1050: “Complex Care, Chronicity and Health Outcomes”, Nursing Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 6 Avenzoar ST, 41009 Seville, Spain
| | | | | | - Mercedes Ortiz-Romero
- Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41009 Seville, Spain; (M.O.-R.); (L.M.G.-F.); (A.C.-M.)
| | - Luis M. Gordillo-Fernández
- Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41009 Seville, Spain; (M.O.-R.); (L.M.G.-F.); (A.C.-M.)
| | | | - Aurora Castro-Méndez
- Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41009 Seville, Spain; (M.O.-R.); (L.M.G.-F.); (A.C.-M.)
| |
Collapse
|
11
|
Ghorbani R, Hosseinzadeh S, Azari A, Taghipour N, Soleimani M, Rahimpour A, Abbaszadeh HA. The Current Status and Future Direction of Extracellular Nano-vesicles in the Alleviation of Skin Disorders. Curr Stem Cell Res Ther 2024; 19:351-366. [PMID: 37073662 DOI: 10.2174/1574888x18666230418121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 04/20/2023]
Abstract
Exosomes are extracellular vesicles (EVs) that originate from endocytic membranes. The transfer of biomolecules and biological compounds such as enzymes, proteins, RNA, lipids, and cellular waste disposal through exosomes plays an essential function in cell-cell communication and regulation of pathological and physiological processes in skin disease. The skin is one of the vital organs that makes up about 8% of the total body mass. This organ consists of three layers, epidermis, dermis, and hypodermis that cover the outer surface of the body. Heterogeneity and endogeneity of exosomes is an advantage that distinguishes them from nanoparticles and liposomes and leads to their widespread usage in the remedy of dermal diseases. The biocompatible nature of these extracellular vesicles has attracted the attention of many health researchers. In this review article, we will first discuss the biogenesis of exosomes, their contents, separation methods, and the advantages and disadvantages of exosomes. Then we will highlight recent developments related to the therapeutic applications of exosomes in the treatment of common skin disorders like atopic dermatitis, alopecia, epidermolysis bullosa, keloid, melanoma, psoriasis, and systemic sclerosis.
Collapse
Affiliation(s)
- Raziyeh Ghorbani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezo Azari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Hou PC, del Agua N, Lwin SM, Hsu CK, McGrath JA. Innovations in the Treatment of Dystrophic Epidermolysis Bullosa (DEB): Current Landscape and Prospects. Ther Clin Risk Manag 2023; 19:455-473. [PMID: 37337559 PMCID: PMC10277004 DOI: 10.2147/tcrm.s386923] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Dystrophic epidermolysis bullosa (DEB) is one of the major types of EB, a rare hereditary group of trauma-induced blistering skin disorders. DEB is caused by inherited pathogenic variants in the COL7A1 gene, which encodes type VII collagen, the major component of anchoring fibrils which maintain adhesion between the outer epidermis and underlying dermis. DEB can be subclassified into dominant (DDEB) and recessive (RDEB) forms. Generally, DDEB has a milder phenotype, while RDEB patients often have more extensive blistering, chronic inflammation, skin fibrosis, and a propensity for squamous cell carcinoma development, collectively impacting on daily activities and life expectancy. At present, best practice treatments are mostly supportive, and thus there is a considerable burden of disease with unmet therapeutic need. Over the last 20 years, considerable translational research efforts have focused on either trying to cure DEB by direct correction of the COL7A1 gene pathology, or by modifying secondary inflammation to lessen phenotypic severity and improve patient symptoms such as poor wound healing, itch, and pain. In this review, we provide an overview and update on various therapeutic innovations for DEB, including gene therapy, cell-based therapy, protein therapy, and disease-modifying and symptomatic control agents. We outline the progress and challenges for each treatment modality and identify likely prospects for future clinical impact.
Collapse
Affiliation(s)
- Ping-Chen Hou
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nathalie del Agua
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Su M Lwin
- St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, UK
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - John A McGrath
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
- St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, UK
| |
Collapse
|
13
|
De Rosa L, Enzo E, Palamenghi M, Sercia L, De Luca M. Stairways to Advanced Therapies for Epidermolysis Bullosa. Cold Spring Harb Perspect Biol 2023; 15:a041229. [PMID: 36167646 PMCID: PMC10071437 DOI: 10.1101/cshperspect.a041229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epidermolysis bullosa (EB) is a devastating genetic skin disease typified by a plethora of different phenotypes and ranking from severe, early lethal, to mild localized forms. Although there is no cure for EB, recent progress in pharmacology and molecular and cellular biology is boosting the development of new advanced therapeutic strategies. Here we will focus on two main categories of such therapies: (1) those aimed at controlling inflammation and inducing reepithelialization of the wounds, and (2) those, perhaps more challenging and ambitious, that aim to permanently regenerate a fully functional epidermis, which requires targeting of epidermal stem cells. In both cases, the genetic variants underlying the different EB forms and factors, such as genetic background, modifier genes, comorbidities, and lifestyle, all of which impinge on EB genotype-phenotype correlation, need to be defined.
Collapse
Affiliation(s)
- Laura De Rosa
- Holostem Terapie Avanzate, S.r.l., 41125 Modena, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele Palamenghi
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Laura Sercia
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
14
|
Hosseini M, Dalley AJ, Shafiee A. Convergence of Biofabrication Technologies and Cell Therapies for Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14122749. [PMID: 36559242 PMCID: PMC9785239 DOI: 10.3390/pharmaceutics14122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cell therapy holds great promise for cutaneous wound treatment but presents practical and clinical challenges, mainly related to the lack of a supportive and inductive microenvironment for cells after transplantation. Main: This review delineates the challenges and opportunities in cell therapies for acute and chronic wounds and highlights the contribution of biofabricated matrices to skin reconstruction. The complexity of the wound healing process necessitates the development of matrices with properties comparable to the extracellular matrix in the skin for their structure and composition. Over recent years, emerging biofabrication technologies have shown a capacity for creating complex matrices. In cell therapy, multifunctional material-based matrices have benefits in enhancing cell retention and survival, reducing healing time, and preventing infection and cell transplant rejection. Additionally, they can improve the efficacy of cell therapy, owing to their potential to modulate cell behaviors and regulate spatiotemporal patterns of wound healing. CONCLUSION The ongoing development of biofabrication technologies promises to deliver material-based matrices that are rich in supportive, phenotype patterning cell niches and are robust enough to provide physical protection for the cells during implantation.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D), Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Andrew J. Dalley
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Frazer Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Correspondence: or
| |
Collapse
|
15
|
Dash BC, Korutla L, Vallabhajosyula P, Hsia HC. Unlocking the Potential of Induced Pluripotent Stem Cells for Wound Healing: The Next Frontier of Regenerative Medicine. Adv Wound Care (New Rochelle) 2022; 11:622-638. [PMID: 34155919 DOI: 10.1089/wound.2021.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Nonhealing wounds are a significant burden for the health care system all over the world. Existing treatment options are not enough to promote healing, highlighting the urgent need for improved therapies. In addition, the current advancements in tissue-engineered skin constructs and stem cell-based therapies are facing significant hurdles due to the absence of a renewable source of functional cells. Recent Advances: Induced pluripotent stem cell technology (iPSC) is emerging as a novel tool to develop the next generation of personalized medicine for the treatment of chronic wounds. The iPSC provides unlimited access to various skin cells to generate complex personalized three-dimensional skin constructs for disease modeling and autologous grafts. Furthermore, the iPSC-based therapies can target distinct wound healing phases and have shown accelerating wound closure by enhancing angiogenesis, cell migration, tissue regeneration, and modulating inflammation. Critical Issues: Since the last decade, iPSC has been revolutionizing the field of wound healing and skin tissue engineering. Despite the current progress, safety and heterogeneity among iPSC lines are still major hurdles in addition to the lack of large animal studies. These challenges need to be addressed before translating an iPSC-based therapy to the clinic. Future Directions: Future considerations should be given to performing large animal studies to check the safety and efficiency of iPSC-based therapy in a wound healing setup. Furthermore, strategies should be developed to overcome variation between hiPSC lines, develop an efficient manufacturing process for iPSC-derived products, and generate complex skin constructs with vasculature and skin appendages.
Collapse
Affiliation(s)
- Biraja C Dash
- Department of Surgery (Plastic), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Laxminarayana Korutla
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Prashanth Vallabhajosyula
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Henry C Hsia
- Department of Surgery (Plastic), Yale School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Widhiati S, Dewi ST, Yefta, Danarti R, Soebono H, Irmawati YE, Puspitasari M, Trisnowati N, Wibawa T, Purnomosari D, Wirohadidjojo YW. Modified Non-Cultured Cell Spray Induced Epithelization in LAMB3 Mutation Epidermolysis Bullosa. Clin Cosmet Investig Dermatol 2022; 15:2197-2202. [PMID: 36267689 PMCID: PMC9578357 DOI: 10.2147/ccid.s377753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022]
Abstract
Background Autologous non-cultured cell (ANCC) spray has been used to treat burns, chronic wounds, and vitiligo, but its use in junctional epidermolysis bullosa (JEB) has not been published previously. Chronic wounds in JEB are caused by mutations of laminin 332 (L322), whose function is to attach and act as a glue in the basal membrane. It is proposed that ANCC applications can provide keratinocytes and fibroblasts required to improve epithelization and spontaneously correct revertant keratinocytes in the wound area. Purpose To develop a modified procedure of ANCC spray and improve epithelization using silver sulfadiazine covered with plastic wrap to treat chronic wounds of JEB. Patients and Methods Shave excision of the donor site was performed on a 19-year-old girl with JEB. The ANCC spray was prepared and applied to the chronic wound, which was then covered with silver sulfadiazine occluded with plastic wrap. Results Following the ANCC spray application, epithelization was successfully initiated. Unfortunately, the wounds recurred after four months of follow-up. Conclusion The modified application method of ANCC spray provides a good alternative to treat chronic wounds in JEB.
Collapse
Affiliation(s)
- Suci Widhiati
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Shinta Trilaksmi Dewi
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yefta
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Retno Danarti
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hardyanto Soebono
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yulia Eka Irmawati
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Monika Puspitasari
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Niken Trisnowati
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dewajani Purnomosari
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yohanes Widodo Wirohadidjojo
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
17
|
RSDB: A rare skin disease database to link drugs with potential drug targets for rare skin diseases. Sci Data 2022; 9:521. [PMID: 36028515 PMCID: PMC9418253 DOI: 10.1038/s41597-022-01654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Rare skin diseases include more than 800 diseases affecting more than 6.8 million patients worldwide. However, only 100 drugs have been developed for treating rare skin diseases in the past 38 years. To investigate potential treatments through drug repurposing for rare skin diseases, it is necessary to have a well-organized database to link all known disease causes, mechanisms, and related information to accelerate the process. Drug repurposing provides less expensive and faster potential options to develop treatments for known diseases. In this work, we designed and constructed a rare skin disease database (RSDB) as a disease-centered information depository to facilitate repurposing drug candidates for rare skin diseases. We collected and integrated associated genes, chemicals, and phenotypes into a network connected by pairwise relationships between different components for rare skin diseases. The RSDB covers 891 rare skin diseases defined by the Orphanet and GARD databases. The organized network for each rare skin disease comprises associated genes, phenotypes, and chemicals with the corresponding connections. The RSDB is available at https://rsdb.cmdm.tw .
Collapse
|
18
|
Hong SA, Kim SE, Lee AY, Hwang GH, Kim JH, Iwata H, Kim SC, Bae S, Lee SE. Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa. Mol Ther 2022; 30:2664-2679. [PMID: 35690907 PMCID: PMC9372317 DOI: 10.1016/j.ymthe.2022.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/09/2022] [Accepted: 06/06/2022] [Indexed: 12/17/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by loss-of-function mutations in the COL7A1 gene, which encodes type VII collagen (C7), a protein that functions in skin adherence. From 36 Korean RDEB patients, we identified a total of 69 pathogenic mutations (40 variants without recurrence), including point mutations (72.5%) and insertion/deletion mutations (27.5%). For fibroblasts from two patients (Pat1 and Pat2), we applied adenine base editors (ABEs) to correct the pathogenic mutation of COL7A1 or to bypass a premature stop codon in Pat1-derived primary fibroblasts. To expand the targeting scope, we also utilized prime editors (PEs) to correct the COL7A1 mutations in Pat1- and Pat2-derived fibroblasts. Ultimately, we found that transfer of edited patient-derived skin equivalents (i.e., RDEB keratinocytes and PE-corrected RDEB fibroblasts from the RDEB patient) into the skin of immunodeficient mice led to C7 deposition and anchoring fibril formation within the dermal-epidermal junction, suggesting that base editing and prime editing could be feasible strategies for ex vivo gene editing to treat RDEB.
Collapse
Affiliation(s)
- Sung-Ah Hong
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Song-Ee Kim
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 06273, South Korea
| | - A-Young Lee
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 06273, South Korea
| | - Gue-Ho Hwang
- Department of Chemistry, Hanyang University, Seoul 04763, South Korea
| | - Jong Hoon Kim
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 06273, South Korea
| | - Hiroaki Iwata
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Soo-Chan Kim
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, South Korea
| | - Sangsu Bae
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea; Department of Biomedical Sciences, Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Sang Eun Lee
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 06273, South Korea.
| |
Collapse
|
19
|
Thompson EL, Pickett-Leonard M, Riddle MJ, Chen W, Albert FW, Tolar J. Genes and compounds that increase type VII collagen expression as potential treatments for dystrophic epidermolysis bullosa. Exp Dermatol 2022; 31:1065-1075. [PMID: 35243691 DOI: 10.1111/exd.14555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/07/2022] [Accepted: 02/27/2022] [Indexed: 11/28/2022]
Abstract
Dystrophic epidermolysis bullosa (DEB) is a skin-blistering disease caused by mutations in COL7A1, which encodes type VII collagen (C7). There is no cure for DEB, but previous work has shown potential therapeutic benefit of increased production of even partially functional C7. Genome-wide screens using CRISPR-Cas9 have enabled the identification of genes involved in cancer development, drug resistance, and other genetic diseases, suggesting that they could be used to identify drivers of C7 production. A keratinocyte C7 reporter cell line was created and used in a genome-wide CRISPR activation (CRISPRa) screen to identify genes and pathways that increase C7 expression. The CRISPRa screen results were used to develop a targeted drug screen to identify compounds that upregulate C7 expression. The C7_tdTomato cell line was validated as an effective reporter for detection of C7 upregulation. The CRISPRa screen identified DENND4B and TYROBP as top gene hits plus pathways related to calcium uptake and immune signaling in C7 regulation. The targeted drug screen identified several compounds that increase C7 expression in keratinocytes, of which kaempferol, a plant flavonoid, also significantly increased C7 mRNA and protein in DEB patient cells.
Collapse
Affiliation(s)
- Elizabeth L Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael Pickett-Leonard
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Megan J Riddle
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Weili Chen
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jakub Tolar
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.,Stem Cell Institute, University of Minnesota, MN, 55455, USA
| |
Collapse
|
20
|
Morren MA, Legius E, Giuliano F, Hadj-Rabia S, Hohl D, Bodemer C. Challenges in Treating Genodermatoses: New Therapies at the Horizon. Front Pharmacol 2022; 12:746664. [PMID: 35069188 PMCID: PMC8766835 DOI: 10.3389/fphar.2021.746664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/29/2021] [Indexed: 01/28/2023] Open
Abstract
Genodermatoses are rare inherited skin diseases that frequently affect other organs. They often have marked effects on wellbeing and may cause early death. Progress in molecular genetics and translational research has unravelled many underlying pathological mechanisms, and in several disorders with high unmet need, has opened the way for the introduction of innovative treatments. One approach is to intervene where cell-signaling pathways are dysregulated, in the case of overactive pathways by the use of selective inhibitors, or when the activity of an essential factor is decreased by augmenting a molecular component to correct disequilibrium in the pathway. Where inflammatory reactions have been induced by a genetically altered protein, another possible approach is to suppress the inflammation directly. Depending on the nature of the genodermatosis, the implicated protein or even on the particular mutation, to correct the consequences or the genetic defect, may require a highly personalised stratagem. Repurposed drugs, can be used to bring about a "read through" strategy especially where the genetic defect induces premature termination codons. Sometimes the defective protein can be replaced by a normal functioning one. Cell therapies with allogeneic normal keratinocytes or fibroblasts may restore the integrity of diseased skin and allogeneic bone marrow or mesenchymal cells may additionally rescue other affected organs. Genetic engineering is expanding rapidly. The insertion of a normal functioning gene into cells of the recipient is since long explored. More recently, genome editing, allows reframing, insertion or deletion of exons or disruption of aberrantly functioning genes. There are now several examples where these stratagems are being explored in the (pre)clinical phase of therapeutic trial programmes. Another stratagem, designed to reduce the severity of a given disease involves the use of RNAi to attenuate expression of a harmful protein by decreasing abundance of the cognate transcript. Most of these strategies are short-lasting and will thus require intermittent life-long administration. In contrast, insertion of healthy copies of the relevant gene or editing the disease locus in the genome to correct harmful mutations in stem cells is more likely to induce a permanent cure. Here we discuss the potential advantages and drawbacks of applying these technologies in patients with these genetic conditions. Given the severity of many genodermatoses, prevention of transmission to future generations remains an important goal including offering reproductive choices, such as preimplantation genetic testing, which can allow selection of an unaffected embryo for transfer to the uterus.
Collapse
Affiliation(s)
- Marie-Anne Morren
- Pediatric Dermatology Unit, Departments of Dermatology and Venereology and Pediatrics, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Eric Legius
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, ERN Genturis and ERN Skin, Leuven, Belgium
| | - Fabienne Giuliano
- Department of Medical Genetics, University Hospital Lausanne, Lausanne, Switzerland
| | - Smail Hadj-Rabia
- Department of Pediatric Dermatology and Dermatology, National Reference Centre for Genodermatosis and Rare Diseases of the Skin (MAGEC), Hôpital Necker-Enfants Malades, and Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, ERN Skin, Paris, France
| | - Daniel Hohl
- Department of Dermatology and Venereology, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Christine Bodemer
- Department of Pediatric Dermatology and Dermatology, National Reference Centre for Genodermatosis and Rare Diseases of the Skin (MAGEC), Hôpital Necker-Enfants Malades, and Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, ERN Skin, Paris, France
| |
Collapse
|
21
|
Natsuga K, Shinkuma S, Hsu CK, Fujita Y, Ishiko A, Tamai K, McGrath JA. Current topics in Epidermolysis bullosa: Pathophysiology and therapeutic challenges. J Dermatol Sci 2021; 104:164-176. [PMID: 34916041 DOI: 10.1016/j.jdermsci.2021.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Epidermolysis bullosa (EB) is a group of inherited skin and mucosal fragility disorders resulting from mutations in genes encoding basement membrane zone (BMZ) components or proteins that maintain the integrity of BMZ and adjacent keratinocytes. More than 30 years have passed since the first causative gene for EB was identified, and over 40 genes are now known to be responsible for the protean collection of mechanobullous diseases included under the umbrella term of EB. Through the elucidation of disease mechanisms using human skin samples, animal models, and cultured cells, we have now reached the stage of developing more effective therapeutics for EB. This review will initially focus on what is known about blister wound healing in EB, since recent and emerging basic science data are very relevant to clinical translation and therapeutic strategies for patients. We then place these studies in the context of the latest information on gene therapy, read-through therapy, and cell therapy that provide optimism for improved clinical management of people living with EB.
Collapse
Affiliation(s)
- Ken Natsuga
- Department of Dermatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Hokkaido, Japan.
| | - Satoru Shinkuma
- Department of Dermatology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Yasuyuki Fujita
- Department of Dermatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Hokkaido, Japan; Department of Dermatology, Sapporo City General Hospital, Sapporo, Japan
| | - Akira Ishiko
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - John A McGrath
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
22
|
Subramaniam KS, Antoniou MN, McGrath JA, Lwin SM. The potential of gene therapy for recessive dystrophic epidermolysis bullosa. Br J Dermatol 2021; 186:609-619. [PMID: 34862606 DOI: 10.1111/bjd.20910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022]
Abstract
Epidermolysis bullosa (EB) encompasses a heterogeneous group of inherited skin fragility disorders with mutations in genes encoding the basement membrane zone (BMZ) proteins that normally ensure dermal-epidermal integrity. Of the four main EB types, recessive dystrophic EB (RDEB), especially the severe variant, represents one of the most debilitating clinical entities with recurrent mucocutaneous blistering and ulceration leading to chronic wounds, infections, inflammation, scarring and ultimately cutaneous squamous cell carcinoma, which leads to premature death. Improved understanding of the molecular genetics of EB over the past three decades and advances in biotechnology has led to rapid progress in developing gene and cell-based regenerative therapies for EB. In particular, RDEB is at the vanguard of advances in human clinical trials of advanced therapeutics. Furthermore, the past decade has witnessed the emergence of a real collective, global effort involving academia and industry, supported by international EB patient organisations such as the Dystrophic Epidermolysis Bullosa Research Association (DEBRA), amongst others, to develop clinically relevant and marketable targeted therapeutics for EB. Thus, there is an increasing need for the practising dermatologist to become familiar with the concept of gene therapy, fundamental differences between various approaches and their human applications. This review explains the principles of different approaches of gene therapy; summarises its journey and discusses its current and future impact in RDEB.
Collapse
Affiliation(s)
- K S Subramaniam
- Genetic Skin Diseases Group, St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - M N Antoniou
- Gene Expression and Therapy Group, Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - J A McGrath
- Genetic Skin Diseases Group, St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - S M Lwin
- Genetic Skin Diseases Group, St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
23
|
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of rare inherited blistering skin disorders characterized by skin fragility following minor trauma, usually present since birth. EB can be categorized into four classical subtypes, EB simplex, junctional EB, dystrophic EB and Kindler EB, distinguished on clinical features, plane of blister formation in the skin, and molecular pathology. Treatment for EB is mostly supportive, focusing on wound care and patient symptoms such as itch or pain. However, therapeutic advances have also been made in targeting the primary genetic abnormalities as well as the secondary inflammatory footprint of EB. Pre-clinical or clinical testing of gene therapies (gene replacement, gene editing, RNA-based therapy, natural gene therapy), cell-based therapies (fibroblasts, bone marrow transplantation, mesenchymal stromal cells, induced pluripotential stem cells), recombinant protein therapies, and small molecule and drug repurposing approaches, have generated new hope for better patient care. In this article, we review advances in translational research that are impacting on the quality of life for people living with different forms of EB and which offer hope for improved clinical management.
Collapse
|
24
|
Treatment of burn contractures with allogeneic human dermal fibroblasts improves Vancouver scar scale: A phase I/II trial. J Plast Reconstr Aesthet Surg 2021; 74:3443-3476. [PMID: 34593339 DOI: 10.1016/j.bjps.2021.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 10/22/2020] [Accepted: 08/26/2021] [Indexed: 11/21/2022]
|
25
|
Welponer T, Prodinger C, Pinon-Hofbauer J, Hintersteininger A, Breitenbach-Koller H, Bauer JW, Laimer M. Clinical Perspectives of Gene-Targeted Therapies for Epidermolysis Bullosa. Dermatol Ther (Heidelb) 2021; 11:1175-1197. [PMID: 34110606 PMCID: PMC8322229 DOI: 10.1007/s13555-021-00561-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
New insights into molecular genetics and pathomechanisms in epidermolysis bullosa (EB), methodological and technological advances in molecular biology as well as designated funding initiatives and facilitated approval procedures for orphan drugs have boosted translational research perspectives for this devastating disease. This is echoed by the increasing number of clinical trials assessing innovative molecular therapies in the field of EB. Despite remarkable progress, gene-corrective modalities, aimed at sustained or permanent restoration of functional protein expression, still await broad clinical availability. This also reflects the methodological and technological shortcomings of current strategies, including the translatability of certain methodologies beyond preclinical models as well as the safe, specific, efficient, feasible, sustained and cost-effective delivery of therapeutic/corrective information to target cells. This review gives an updated overview on status, prospects, challenges and limitations of current gene-targeted therapies.
Collapse
Affiliation(s)
- Tobias Welponer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Christine Prodinger
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Josefina Pinon-Hofbauer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Arno Hintersteininger
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | | | - Johann W Bauer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Martin Laimer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
26
|
Shams F, Rahimpour A, Vahidnezhad H, Hosseinzadeh S, Moravvej H, Kazemi B, Rajabibazl M, Abdollahimajd F, Uitto J. The utility of dermal fibroblasts in treatment of skin disorders: A paradigm of recessive dystrophic epidermolysis bullosa. Dermatol Ther 2021; 34:e15028. [PMID: 34145697 DOI: 10.1111/dth.15028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/05/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023]
Abstract
Dermal fibroblasts are the most accessible cells in the skin that have gained significant attention in cell therapy. Applying dermal fibroblasts' regenerative capacity can introduce new patterns to develop cell-based therapies to treat skin disorders. Dermal fibroblasts originate from mesenchymal cells and are located within the dermis. These cells are mainly responsible for synthesizing glycosaminoglycans, collagens, and components of extracellular matrix supporting skin's structural integrity. Preclinical studies suggested that allogeneic and autologous dermal fibroblasts provide widespread and beneficial applications for wound healing, burn ulcers, and inherited skin disorders. In this regard, generating induced pluripotent stem cells (iPSCs) from fibroblasts and gene-edited fibroblasts are promising approaches for treating skin disorders. Here, we aimed to review literature about ongoing and completed clinical trials that applied fibroblasts and bioengineered fibroblasts as therapeutic agents for various skin disorders. This review explores cell therapy protocols from the earliest phase of allogeneic and autologous fibroblasts development in different benches to translating them into bedside-level treatment for skin disorders, particularly recessive dystrophic epidermolysis bullosa.
Collapse
Affiliation(s)
- Forough Shams
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Medical Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Simzar Hosseinzadeh
- Medical Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Moravvej
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Abdollahimajd
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Research Development Unit, Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Ryumina II, Goryunov KV, Silachev DN, Shevtsova YA, Babenko VA, Marycheva NM, Kotalevskaya YY, Zubkov VV, Zubkov GT. Pathogenetic Therapy of Epidermolysis Bullosa: Current State and Prospects. Bull Exp Biol Med 2021; 171:109-121. [PMID: 34050833 DOI: 10.1007/s10517-021-05182-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 11/27/2022]
Abstract
Epidermolysis bullosa is a severe hereditary disease caused by mutations in genes encoding cutaneous basement membrane proteins. These mutations lead to dermal-epidermal junction failure and, as a result, to disturbances in the morphological integrity of the skin. Clinically, it manifests in the formation of blisters on the skin or mucosa that in some cases can turn into non-healing chronic wounds, which not only impairs patient's quality of life, but also is a live-threatening condition. Now, the main approaches in the treatment of epidermolysis bullosa are symptomatic therapy and palliative care, though they are little effective and are aimed at reducing the pain, but not to complete recovery. In light of this, the development of new treatment approaches aimed at correction of genetic defects is in progress. Various methods based on genetic engineering technologies, transplantation of autologous skin cells, progenitor skin cells, as well as hematopoietic and mesenchymal stem cells are studied. This review analyzes the pathogenetic methods developed for epidermolysis bullosa treatment based on the latest achievements of molecular genetics and cellular technologies, and discusses the prospects for the use of these technologies for the therapy of epidermolysis bullosa.
Collapse
Affiliation(s)
- I I Ryumina
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - K V Goryunov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - D N Silachev
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia.
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.
| | - Yu A Shevtsova
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - V A Babenko
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - N M Marycheva
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - Yu Yu Kotalevskaya
- M. F. Vladimirskiy Moscow Regional Research Clinical Institute, Moscow, Russia
| | - V V Zubkov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - G T Zubkov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| |
Collapse
|
28
|
Lwin SM, Snowden JA, Griffiths CEM. The promise and challenges of cell therapy for psoriasis. Br J Dermatol 2021; 185:887-898. [PMID: 34036569 DOI: 10.1111/bjd.20517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
The management of moderate-to-severe psoriasis has been transformed by the introduction of biological therapies. These medicines, particularly those targeting interleukin (IL)-17 and IL-23p19, can offer clear or nearly clear skin for the majority of patients with psoriasis, with good long-term drug survival. However, as currently used, none of these therapies is curative and disconcertingly there is a small but increasing number of patients with severe psoriasis who have failed all currently available therapeutic modalities. A similar scenario has occurred in other immune-mediated inflammatory diseases (IMIDs) where treatment options are limited in severely affected patients. In these cases, cell therapy, including haematopoietic stem cell transplantation (HSCT) and mesenchymal stromal cells (MSC), has been utilized. This review discusses the various forms of cell therapy currently available, their utility in the management of IMIDs and emerging evidence for efficacy in severe psoriasis that is unresponsive to biological therapy. Balancing the risks and benefits of treatment vs. the underlying disease is key; cell therapy carries significant risks, costs, regulation and other complexities, which must be justified by outcomes. Although HSCT has anecdotally been reported to benefit severe psoriasis, sometimes with apparent cure, this has mainly been in the setting of other coincidental 'routine' indications. In psoriasis, cell therapies, such as MSC and regulatory T cells, with a lower risk of complications are likely to be more appropriate. Well-designed controlled trials coupled with mechanistic studies are warranted if advanced cell therapies are to be developed and delivered as a realistic option for severe psoriasis.
Collapse
Affiliation(s)
- S M Lwin
- St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - J A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.,Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - C E M Griffiths
- Dermatology Centre, Salford Royal Hospital, NIHR Manchester Biomedical Research Centre Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Leong WMS, Samuel M, Chandran NS, Choi CEE, Yiong Huak C, Marsden H, Tam WWS. Interventions for inherited forms of epidermolysis bullosa. Hippokratia 2021. [DOI: 10.1002/14651858.cd014223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wai Mun Sean Leong
- Department of Dermatology; National University Hospital; Singapore Singapore
| | - Miny Samuel
- Research Support Unit; NUS Yong Loo Lin School of Medicine; Singapore Singapore
| | | | - Ci En Ellie Choi
- Internal Medicine; National University Hospital Singapore; Singapore Singapore
| | - Chan Yiong Huak
- Biostatistics Unit; Yong Loo Lin School of Medicine; Singapore Singapore
| | - Harriet Marsden
- c/o Cochrane Skin Group; The University of Nottingham; Nottingham UK
| | - Wilson Wai San Tam
- Alice Lee Center for Nursing Studies, Yong Loo Lin School of Medicine; National University of Singapore, National University Health System; Singapore Singapore
| |
Collapse
|
30
|
Koller U, Bauer JW. Gene Replacement Therapies for Genodermatoses: A Status Quo. Front Genet 2021; 12:658295. [PMID: 33995490 PMCID: PMC8120236 DOI: 10.3389/fgene.2021.658295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Epidermolysis bullosa (EB) is a genodermatosis, characterized by the formation of extended blisters and lesions on the skin and mucous membranes upon minimal mechanical trauma. The disease is caused by mutations in genes encoding proteins that are essential for skin stability. Functional impairment, reduction, or absence of one of these proteins results in skin fragility due to reduced connectivity between dermis and epidermis. Currently, gene therapy represents the only treatment option with the potential to cure this severe blistering skin disease. Two promising forms of gene therapy are potentially feasible for EB: gene replacement and genome editing. While genome editing for genodermatoses remains at the preclinical stage, gene replacement approaches are clinically advanced and have been applied already to a small number of patients with junctional and dystrophic forms of EB. Here, the viral transduction of the “wild-type” transgene into skin stem cells, followed by autologous grafting of corrected epidermal sheets, led to the regeneration of stable skin. Recent developments regarding designer nuclease-based gene editing strategies enable the establishment of alternative options to restore the gene function in genodermatoses. This is particularly true in cases wherein genetic constellation hinders gene therapy-based gene replacement.
Collapse
Affiliation(s)
- Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Johann W Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
31
|
Kocher T, Koller U. Advances in gene editing strategies for epidermolysis bullosa. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:81-109. [PMID: 34175052 DOI: 10.1016/bs.pmbts.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epidermolysis bullosa represents a monogenetic disease comprising a variety of heterogeneous mutations in at least 16 genes encoding structural proteins crucial for skin integrity. Due to well-defined mutations but still lacking causal treatment options for the disease, epidermolysis bullosa represents an ideal candidate for gene therapeutic interventions. Recent developments and improvements in the genome editing field have paved the way for the translation of various gene repair strategies into the clinic. With the ability to accurately predict and monitor targeting events within the human genome, the translation might soon be possible. Here, we describe current advancements in the genome editing field for epidermolysis bullosa, along with a discussion of aspects and strategies for precise and personalized gene editing-based medicine, in order to develop efficient and safe ex vivo as well as in vivo genome editing therapies for epidermolysis bullosa patients in the future.
Collapse
Affiliation(s)
- Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria.
| |
Collapse
|
32
|
Rubanenko M, Manturova N, Ustiugov A, Porshina O, Petunina V, Zorin V, Zorina A, Palinkash A. Epidermolysis bullosa. Possible methods of treatment. KLINICHESKAYA DERMATOLOGIYA I VENEROLOGIYA 2021; 20:22. [DOI: 10.17116/klinderma20212004122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Naso G, Petrova A. Cellular therapy options for genetic skin disorders with a focus on recessive dystrophic epidermolysis bullosa. Br Med Bull 2020; 136:30-45. [PMID: 32888294 DOI: 10.1093/bmb/ldaa029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Combinatorial cell and gene therapies for life-threatening inherited skin disorders have shown tremendous potential for preclinical and clinical implementation with significant progress made for recessive dystrophic epidermolysis bullosa (RDEB). To date, various cell lineages including resident skin cells and adult stem cells have been investigated for gene and cell therapy for RDEB reaching the clinical trial stage. SOURCES OF DATA Sources of data are key recent literature, ClinicalTrials.gov, Clinicaltrialsregister.eu and pharma press releases. AREAS OF AGREEMENT Cell-based gene transfer using autologous patients' cells has demonstrated positive outcomes in preclinical and clinical trials and highlighted the importance of targeting resident skin stem cells to achieve a meaningful long-term effect. Additionally, adult stem cells, such as mesenchymal stromal cells, have the potential to ameliorate systemic manifestations of the disease. AREAS OF CONTROVERSY While proven safe, the clinical trials of localized treatment have reported only modest and transient improvements. On the other hand, the risks associated with systemic therapies remain high and should be carefully weighed against the potential benefits. It is unclear to what extent adult stem cells can contribute to skin regeneration/wound healing. GROWING POINTS Further research is warranted in order to fulfil the potential of cellular therapies for RDEB. The development of combinatorial gene and cell-based approaches is required to achieve long-term clinical benefits. AREAS TIMELY FOR DEVELOPING RESEARCH Induced pluripotent stem cells can potentially provide a valuable source of autologous patient material for cellular therapies. In addition, recent advances in the field of gene editing can overcome hurdles associated with conventional gene addition approaches. DATA AVAILABILITY STATEMENT No new data were generated or analysed in support of this review.
Collapse
Affiliation(s)
- Gaetano Naso
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford street, London WC1N 1EH, UK
| | - Anastasia Petrova
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford street, London WC1N 1EH, UK
| |
Collapse
|
34
|
Titeux M, Bonnet des Claustres M, Izmiryan A, Ragot H, Hovnanian A. Emerging drugs for the treatment of epidermolysis bullosa. Expert Opin Emerg Drugs 2020; 25:467-489. [DOI: 10.1080/14728214.2020.1839049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Matthias Titeux
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | | | - Araksya Izmiryan
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | - Helene Ragot
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | - Alain Hovnanian
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
- Départment de Génétique, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
35
|
Abstract
Epidermolysis bullosa (EB) is an inherited, heterogeneous group of rare genetic dermatoses characterized by mucocutaneous fragility and blister formation, inducible by often minimal trauma. A broad phenotypic spectrum has been described, with potentially severe extracutaneous manifestations, morbidity and mortality. Over 30 subtypes are recognized, grouped into four major categories, based predominantly on the plane of cleavage within the skin and reflecting the underlying molecular abnormality: EB simplex, junctional EB, dystrophic EB and Kindler EB. The study of EB has led to seminal advances in our understanding of cutaneous biology. To date, pathogenetic mutations in 16 distinct genes have been implicated in EB, encoding proteins influencing cellular integrity and adhesion. Precise diagnosis is reliant on correlating clinical, electron microscopic and immunohistological features with mutational analyses. In the absence of curative treatment, multidisciplinary care is targeted towards minimizing the risk of blister formation, wound care, symptom relief and specific complications, the most feared of which - and also the leading cause of mortality - is squamous cell carcinoma. Preclinical advances in cell-based, protein replacement and gene therapies are paving the way for clinical successes with gene correction, raising hopes amongst patients and clinicians worldwide.
Collapse
|
36
|
Wang W, Wang H, Zhao Z, Huang X, Xiong H, Mei Z. Thymol activates TRPM8-mediated Ca 2+ influx for its antipruritic effects and alleviates inflammatory response in Imiquimod-induced mice. Toxicol Appl Pharmacol 2020; 407:115247. [PMID: 32971067 DOI: 10.1016/j.taap.2020.115247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022]
Abstract
Psoriasis is a highly prevalent chronic dermatitis, characterized by widespread skin inflammation and spontaneous itch. Given the adverse reactions and drug dependence of current treatment, new drugs for psoriasis therapy are urgently needed. This study aims to explore the anti-psoriatic effects of thymol in imiquimod (IMQ) induced mice, and elucidate the potential mechanisms for its therapeutic activities. Thymol reduced the scratching behavior in IMQ mice, and activated Ca2+ response in cervical DRG neurons via TRPM8 channel. Also, thymol alleviated psoriasis-like skin lesions, and attenuated the enhanced infiltration of dermal neutrophils, dendritic cells (DCs) and Th17 cells. In addition, it reversed the upregulated expression of pro-inflammatory cytokines in the skin (TNF-α, IL-22, IL-23, IL-17A, IL-17F, IL-17C, IL-6, IL-1β and IFN-γ) and serum (TNF-α, IL-6, IL-1β, IL-17A and IFN-γ). Our results indicated that thymol can effectively ameliorate pruritus and the symptoms of psoriasis-like inflammation induced by IMQ, which makes it a promising drug for the treatment of psoriasis.
Collapse
Affiliation(s)
- Wen Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Hua Wang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Zhongqiu Zhao
- Washington University School of Medicine, St. Louis, MO 63110, United States; Barnes-Jewish Hospital, St. Louis, MO 63110, United States
| | - Xiaoqing Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Hairong Xiong
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
37
|
Sun H, Pulakat L, Anderson DW. Challenges and New Therapeutic Approaches in the Management of Chronic Wounds. Curr Drug Targets 2020; 21:1264-1275. [PMID: 32576127 DOI: 10.2174/1389450121666200623131200] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Chronic non-healing wounds are estimated to cost the US healthcare $28-$31 billion per year. Diabetic ulcers, arterial and venous ulcers, and pressure ulcers are some of the most common types of chronic wounds. The burden of chronic wounds continues to rise due to the current epidemic of obesity and diabetes and the increase in elderly adults in the population who are more vulnerable to chronic wounds than younger individuals. This patient population is also highly vulnerable to debilitating infections caused by opportunistic and multi-drug resistant pathogens. Reduced microcirculation, decreased availability of cytokines and growth factors that promote wound closure and healing, and infections by multi-drug resistant and biofilm forming microbes are some of the critical factors that contribute to the development of chronic non-healing wounds. This review discusses novel approaches to understand chronic wound pathology and methods to improve chronic wound care, particularly when chronic wounds are infected by multi-drug resistant, biofilm forming microbes.
Collapse
Affiliation(s)
- Hongmin Sun
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri 65212, United States
| | - Lakshmi Pulakat
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri 65212, United States
| | | |
Collapse
|
38
|
Allen A, Vaninov N, Li M, Nguyen S, Singh M, Igo P, Tilles AW, O'Rourke B, Miller BLK, Parekkadan B, Barcia RN. Mesenchymal Stromal Cell Bioreactor for Ex Vivo Reprogramming of Human Immune Cells. Sci Rep 2020; 10:10142. [PMID: 32576889 PMCID: PMC7311545 DOI: 10.1038/s41598-020-67039-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/22/2020] [Indexed: 11/20/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (MSCs) have been studied for decades as potent immunomodulators. Clinically, they have shown some promise but with limited success. Here, we report the ability of a scalable hollow fiber bioreactor to effectively maintain ideal MSC function as a single population while also being able to impart an immunoregulatory effect when cultured in tandem with an inflamed lymphocyte population. MSCs were seeded on the extraluminal side of hollow fibers within a bioreactor where they indirectly interact with immune cells flowing within the lumen of the fibers. MSCs showed a stable and predictable metabolite and secreted factor profile during several days of perfusion culture. Exposure of bioreactor-seeded MSCs to inflammatory stimuli reproducibly switched MSC secreted factor profiles and altered microvesicle composition. Furthermore, circulating, activated human peripheral blood mononuclear cells (PBMCs) were suppressed by MSC bioreactor culture confirmed by a durable change in their immunophenotype and function. This platform was useful to study a model of immobilized MSCs and circulating immune cells and showed that monocytes play an important role in MSC driven immunomodulation. This coculture technology can have broad implications for use in studying MSC-immune interactions under flow conditions as well as in the generation of ex vivo derived immune cellular therapeutics.
Collapse
Affiliation(s)
- Ashley Allen
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA
| | | | - Matthew Li
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, 02114, USA
| | - Sunny Nguyen
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA
| | - Maneet Singh
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA
| | - Peter Igo
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA
| | - Arno W Tilles
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA
| | - Brian O'Rourke
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA
| | | | - Biju Parekkadan
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, 02114, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, 02138, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Rita N Barcia
- Sentien Biotechnologies, Inc., Lexington, MA, 02421, USA.
| |
Collapse
|
39
|
De Rosa L, Latella MC, Secone Seconetti A, Cattelani C, Bauer JW, Bondanza S, De Luca M. Toward Combined Cell and Gene Therapy for Genodermatoses. Cold Spring Harb Perspect Biol 2020; 12:a035667. [PMID: 31653644 PMCID: PMC7197428 DOI: 10.1101/cshperspect.a035667] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 200 monogenic, often devastating, skin diseases have been described. Because of unmet medical needs, development of long-lasting and curative therapies has been consistently attempted, with the aim of correcting the underlying molecular defect. In this review, we will specifically address the few combined cell and gene therapy strategies that made it to the clinics. Based on these studies, what can be envisioned for the future is a patient-oriented strategy, built on the specific features of the individual in need. Most likely, a combination of different strategies, approaches, and advanced therapies will be required to reach the finish line at the end of the long and winding road hampering the achievement of definitive treatments for genodermatoses.
Collapse
Affiliation(s)
- Laura De Rosa
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Maria Carmela Latella
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Alessia Secone Seconetti
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Cecilia Cattelani
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johann W Bauer
- EB House Austria and Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sergio Bondanza
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
40
|
Itoh M, Kawagoe S, Tamai K, Nakagawa H, Asahina A, Okano HJ. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system. J Dermatol Sci 2020; 98:163-172. [PMID: 32376152 DOI: 10.1016/j.jdermsci.2020.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a monogenic skin blistering disorder caused by mutations in the type VII collagen gene. A combination of biological technologies, including induced pluripotent stem cells (iPSCs) and several gene-editing tools, allows us to develop gene and cell therapies for such inherited diseases. However, the methodologies for gene and cell therapies must be continuously innovated for safe clinical use. OBJECTIVE In this study, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology to correct the pathogenic mutation in RDEB-specific iPSCs, and the piggyBac transposon system so that no residual gene fragments remained in the genome of iPSCs after correcting the mutation. METHODS For homologous recombination (HR)-based gene editing using CRISPR/Cas9, we designed guide RNA and template DNA including homologous sequences with drug-mediated selection cassette flanked by inverted repeat sequences of the transposon. HR reaction using CRISPR/Cas9 was induced in RDEB-specific iPSCs, and mutation-corrected iPSCs (MC-iPSCs) was obtained. Consequently, the selection cassette in the genome of MC-iPSCs was removed by transposase expression. RESULTS After CRISPR/Cas9-induced gene editing, we confirmed that the pathogenic mutation in RDEB-specific iPSCs was properly corrected. In addition, MC-iPSCs had no genetic footprint after removing the selection cassette by transposon system, and maintained their "stemness". When differentiating MC-iPSCs into keratinocytes, the expression of type VII collagen was restored. CONCLUSIONS Our study demonstrated one of the safer approaches to establish gene and cell therapies for skin hereditary disorders for future clinical use.
Collapse
Affiliation(s)
- Munenari Itoh
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Shiho Kawagoe
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidemi Nakagawa
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Akihiko Asahina
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Epidermolysis Bullosa-Associated Squamous Cell Carcinoma: From Pathogenesis to Therapeutic Perspectives. Int J Mol Sci 2019; 20:ijms20225707. [PMID: 31739489 PMCID: PMC6888002 DOI: 10.3390/ijms20225707] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of inherited skin disorders determined by mutations in genes encoding for structural components of the cutaneous basement membrane zone. Disease hallmarks are skin fragility and unremitting blistering. The most disabling EB (sub)types show defective wound healing, fibrosis and inflammation at lesional skin. These features expose patients to serious disease complications, including the development of cutaneous squamous cell carcinomas (SCCs). Almost all subjects affected with the severe recessive dystrophic EB (RDEB) subtype suffer from early and extremely aggressive SCCs (RDEB-SCC), which represent the first cause of death in these patients. The genetic determinants of RDEB-SCC do not exhaustively explain its unique behavior as compared to low-risk, ultraviolet-induced SCCs in the general population. On the other hand, a growing body of evidence points to the key role of tumor microenvironment in initiation, progression and spreading of RDEB-SCC, as well as of other, less-investigated, EB-related SCCs (EB-SCCs). Here, we discuss the recent advances in understanding the complex series of molecular events (i.e., fibrotic, inflammatory, and immune processes) contributing to SCC development in EB patients, cross-compare tumor features in the different EB subtypes and report the most promising therapeutic approaches to counteract or delay EB-SCCs.
Collapse
|
42
|
Prodinger C, Reichelt J, Bauer JW, Laimer M. Epidermolysis bullosa: Advances in research and treatment. Exp Dermatol 2019; 28:1176-1189. [PMID: 31140655 PMCID: PMC6900197 DOI: 10.1111/exd.13979] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
Epidermolysis bullosa (EB) is the umbrella term for a group of rare inherited skin fragility disorders caused by mutations in at least 20 different genes. There is no cure for any of the subtypes of EB resulting from different mutations, and current therapy only focuses on the management of wounds and pain. Novel effective therapeutic approaches are therefore urgently required. Strategies include gene-, protein- and cell-based therapies. This review discusses molecular procedures currently under investigation at the EB House Austria, a designated Centre of Expertise implemented in the European Reference Network for Rare and Undiagnosed Skin Diseases. Current clinical research activities at the EB House Austria include newly developed candidate substances that have emerged out of our translational research initiatives as well as already commercially available medications that are applied in off-licensed indications. Squamous cell carcinoma is the major cause of death in severe forms of EB. We are evaluating immunotherapy using an anti-PD1 monoclonal antibody as a palliative treatment option for locally advanced or metastatic squamous cell carcinoma of the skin unresponsive to previous systemic therapy. In addition, we are evaluating topical calcipotriol and topical diacerein as potential agents to improve the healing of skin wounds in EBS patients. Finally, the review will highlight the recent advancements of gene therapy development for EB.
Collapse
Affiliation(s)
- Christine Prodinger
- EB House AustriaResearch Program for Molecular Therapy of GenodermatosesDepartment of DermatologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
- Department of DermatologyUniversity Hospital of the Paracelsus Medical UniversitySalzburgAustria
| | - Julia Reichelt
- Department of DermatologyVenereology and Allergology, Medical University of InnsbruckInnsbruckAustria
| | - Johann W. Bauer
- EB House AustriaResearch Program for Molecular Therapy of GenodermatosesDepartment of DermatologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
- Department of DermatologyUniversity Hospital of the Paracelsus Medical UniversitySalzburgAustria
| | - Martin Laimer
- EB House AustriaResearch Program for Molecular Therapy of GenodermatosesDepartment of DermatologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
- Department of DermatologyUniversity Hospital of the Paracelsus Medical UniversitySalzburgAustria
| |
Collapse
|
43
|
Base Editor Correction of COL7A1 in Recessive Dystrophic Epidermolysis Bullosa Patient-Derived Fibroblasts and iPSCs. THE JOURNAL OF INVESTIGATIVE DERMATOLOGY 2019. [PMID: 31437443 DOI: 10.1016/j.jid.2019.07.701.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genome editing represents a promising strategy for the therapeutic correction of COL7A1 mutations that cause recessive dystrophic epidermolysis bullosa (RDEB). DNA cleavage followed by homology-directed repair (HDR) using an exogenous template has previously been used to correct COL7A1 mutations. HDR rates can be modest, and the double-strand DNA breaks that initiate HDR commonly result in accompanying undesired insertions and deletions (indels). To overcome these limitations, we applied an A•T→G•C adenine base editor (ABE) to correct two different COL7A1 mutations in primary fibroblasts derived from RDEB patients. ABE enabled higher COL7A1 correction efficiencies than previously reported HDR efforts. Moreover, ABE obviated the need for a repair template, and minimal indels or editing at off-target sites was detected. Base editing restored the endogenous type VII collagen expression and function in vitro. We also treated induced pluripotent stem cells (iPSCs) derived from RDEB fibroblasts with ABE. The edited iPSCs were differentiated into mesenchymal stromal cells, a cell population with therapeutic potential for RDEB. In a mouse teratoma model, the skin derived from ABE-treated iPSCs showed the proper deposition of C7 at the dermal-epidermal junction in vivo. These demonstrate that base editing provides an efficient and precise genome editing method for autologous cell engineering for RDEB.
Collapse
|
44
|
Base Editor Correction of COL7A1 in Recessive Dystrophic Epidermolysis Bullosa Patient-Derived Fibroblasts and iPSCs. J Invest Dermatol 2019; 140:338-347.e5. [PMID: 31437443 DOI: 10.1016/j.jid.2019.07.701] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022]
Abstract
Genome editing represents a promising strategy for the therapeutic correction of COL7A1 mutations that cause recessive dystrophic epidermolysis bullosa (RDEB). DNA cleavage followed by homology-directed repair (HDR) using an exogenous template has previously been used to correct COL7A1 mutations. HDR rates can be modest, and the double-strand DNA breaks that initiate HDR commonly result in accompanying undesired insertions and deletions (indels). To overcome these limitations, we applied an A•T→G•C adenine base editor (ABE) to correct two different COL7A1 mutations in primary fibroblasts derived from RDEB patients. ABE enabled higher COL7A1 correction efficiencies than previously reported HDR efforts. Moreover, ABE obviated the need for a repair template, and minimal indels or editing at off-target sites was detected. Base editing restored the endogenous type VII collagen expression and function in vitro. We also treated induced pluripotent stem cells (iPSCs) derived from RDEB fibroblasts with ABE. The edited iPSCs were differentiated into mesenchymal stromal cells, a cell population with therapeutic potential for RDEB. In a mouse teratoma model, the skin derived from ABE-treated iPSCs showed the proper deposition of C7 at the dermal-epidermal junction in vivo. These demonstrate that base editing provides an efficient and precise genome editing method for autologous cell engineering for RDEB.
Collapse
|
45
|
Vahidnezhad H, Youssefian L, Saeidian AH, Touati A, Pajouhanfar S, Baghdadi T, Shadmehri AA, Giunta C, Kraenzlin M, Syx D, Malfait F, Has C, Lwin SM, Karamzadeh R, Liu L, Guy A, Hamid M, Kariminejad A, Zeinali S, McGrath JA, Uitto J. Mutations in PLOD3, encoding lysyl hydroxylase 3, cause a complex connective tissue disorder including recessive dystrophic epidermolysis bullosa-like blistering phenotype with abnormal anchoring fibrils and type VII collagen deficiency. Matrix Biol 2019; 81:91-106. [DOI: 10.1016/j.matbio.2018.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/28/2023]
|
46
|
Lwin SM, Syed F, Di WL, Kadiyirire T, Liu L, Guy A, Petrova A, Abdul-Wahab A, Reid F, Phillips R, Elstad M, Georgiadis C, Aristodemou S, Lovell PA, McMillan JR, Mee J, Miskinyte S, Titeux M, Ozoemena L, Pramanik R, Serrano S, Rowles R, Maurin C, Orrin E, Martinez-Queipo M, Rashidghamat E, Tziotzios C, Onoufriadis A, Chen M, Chan L, Farzaneh F, Del Rio M, Tolar J, Bauer JW, Larcher F, Antoniou MN, Hovnanian A, Thrasher AJ, Mellerio JE, Qasim W, McGrath JA. Safety and early efficacy outcomes for lentiviral fibroblast gene therapy in recessive dystrophic epidermolysis bullosa. JCI Insight 2019; 4:126243. [PMID: 31167965 DOI: 10.1172/jci.insight.126243] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDRecessive dystrophic epidermolysis bullosa (RDEB) is a severe form of skin fragility disorder due to mutations in COL7A1 encoding basement membrane type VII collagen (C7), the main constituent of anchoring fibrils (AFs) in skin. We developed a self-inactivating lentiviral platform encoding a codon-optimized COL7A1 cDNA under the control of a human phosphoglycerate kinase promoter for phase I evaluation.METHODSIn this single-center, open-label phase I trial, 4 adults with RDEB each received 3 intradermal injections (~1 × 106 cells/cm2 of intact skin) of COL7A1-modified autologous fibroblasts and were followed up for 12 months. The primary outcome was safety, including autoimmune reactions against recombinant C7. Secondary outcomes included C7 expression, AF morphology, and presence of transgene in the injected skin.RESULTSGene-modified fibroblasts were well tolerated, without serious adverse reactions or autoimmune reactions against recombinant C7. Regarding efficacy, there was a significant (P < 0.05) 1.26-fold to 26.10-fold increase in C7 mean fluorescence intensity in the injected skin compared with noninjected skin in 3 of 4 subjects, with a sustained increase up to 12 months in 2 of 4 subjects. The presence of transgene (codon-optimized COL7A1 cDNA) was demonstrated in the injected skin at month 12 in 1 subject, but no new mature AFs were detected.CONCLUSIONTo our knowledge, this is the first human study demonstrating safety and potential efficacy of lentiviral fibroblast gene therapy with the presence of COL7A1 transgene and subsequent C7 restoration in vivo in treated skin at 1 year after gene therapy. These data provide a rationale for phase II studies for further clinical evaluation.TRIAL REGISTRATIONClincalTrials.gov NCT02493816.FUNDINGCure EB, Dystrophic Epidermolysis Bullosa Research Association (UK), UK NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, and Fondation René Touraine Short-Exchange Award.
Collapse
Affiliation(s)
- Su M Lwin
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Farhatullah Syed
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Wei-Li Di
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Tendai Kadiyirire
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Lu Liu
- The Robin Eady National Diagnostic Epidermolysis Bullosa Laboratory, Viapath, St Thomas' Hospital, London, United Kingdom
| | - Alyson Guy
- The Robin Eady National Diagnostic Epidermolysis Bullosa Laboratory, Viapath, St Thomas' Hospital, London, United Kingdom
| | - Anastasia Petrova
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alya Abdul-Wahab
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Fiona Reid
- School of Population Health and Environmental Sciences, King's College London, London, United Kingdom
| | - Rachel Phillips
- School of Population Health and Environmental Sciences, King's College London, London, United Kingdom
| | - Maria Elstad
- School of Population Health and Environmental Sciences, King's College London, London, United Kingdom
| | - Christos Georgiadis
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sophia Aristodemou
- The Robin Eady National Diagnostic Epidermolysis Bullosa Laboratory, Viapath, St Thomas' Hospital, London, United Kingdom
| | - Patricia A Lovell
- The Robin Eady National Diagnostic Epidermolysis Bullosa Laboratory, Viapath, St Thomas' Hospital, London, United Kingdom
| | - James R McMillan
- The Robin Eady National Diagnostic Epidermolysis Bullosa Laboratory, Viapath, St Thomas' Hospital, London, United Kingdom
| | - John Mee
- Immunodermatology Laboratory, Viapath, St Thomas' Hospital, London, United Kingdom
| | - Snaigune Miskinyte
- INSERM UMR 1163, Imagine Institute, Université Paris Descartes Sorbonne Cite, Paris, France
| | - Matthias Titeux
- INSERM UMR 1163, Imagine Institute, Université Paris Descartes Sorbonne Cite, Paris, France
| | - Linda Ozoemena
- The Robin Eady National Diagnostic Epidermolysis Bullosa Laboratory, Viapath, St Thomas' Hospital, London, United Kingdom
| | - Rashida Pramanik
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Sonia Serrano
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas' Hospitals, London, United Kingdom
| | - Racheal Rowles
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas' Hospitals, London, United Kingdom
| | - Clarisse Maurin
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas' Hospitals, London, United Kingdom
| | - Elizabeth Orrin
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Magdalena Martinez-Queipo
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom.,National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas' Hospitals, London, United Kingdom
| | - Ellie Rashidghamat
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Christos Tziotzios
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Mei Chen
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Lucas Chan
- Department of Haematological Medicine, King's College London, The Rayne Institute, London, United Kingdom
| | - Farzin Farzaneh
- Department of Haematological Medicine, King's College London, The Rayne Institute, London, United Kingdom
| | - Marcela Del Rio
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT); Department of Biomedical Engineering, Carlos III University (UC3M); Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain
| | - Jakub Tolar
- Department of Pediatric Oncology, Hematology and Bone Marrow Transplant, University of Minnesota, Minneapolis, Minnesota, USA
| | - Johann W Bauer
- Department of Dermatology and EB House Austria, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Fernando Larcher
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT); Department of Biomedical Engineering, Carlos III University (UC3M); Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain
| | - Michael N Antoniou
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Alain Hovnanian
- INSERM UMR 1163, Imagine Institute, Université Paris Descartes Sorbonne Cite, Paris, France
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jemima E Mellerio
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Waseem Qasim
- Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
47
|
Matsumura W, Fujita Y, Shinkuma S, Suzuki S, Yokoshiki S, Goto H, Hayashi H, Ono K, Inoie M, Takashima S, Nakayama C, Nomura T, Nakamura H, Abe R, Sato N, Shimizu H. Cultured Epidermal Autografts from Clinically Revertant Skin as a Potential Wound Treatment for Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2019; 139:2115-2124.e11. [PMID: 31054844 DOI: 10.1016/j.jid.2019.03.1155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 01/19/2023]
Abstract
Inherited skin disorders have been reported recently to have sporadic normal-looking areas, where a portion of the keratinocytes have recovered from causative gene mutations (revertant mosaicism). We observed a case of recessive dystrophic epidermolysis bullosa treated with cultured epidermal autografts (CEAs), whose CEA-grafted site remained epithelized for 16 years. We proved that the CEA product and the grafted area included cells with revertant mosaicism. Based on these findings, we conducted an investigator-initiated clinical trial of CEAs from clinically revertant skin for recessive dystrophic epidermolysis bullosa. The donor sites were analyzed by genetic analysis, immunofluorescence, electron microscopy, and quantification of the reverted mRNA with deep sequencing. The primary endpoint was the ulcer epithelization rate per patient at 4 weeks after the last CEA application. Three patients with recessive dystrophic epidermolysis bullosa with 8 ulcers were enrolled, and the epithelization rate for each patient at the primary endpoint was 87.7%, 100%, and 57.0%, respectively. The clinical effects were found to persist for at least 76 weeks after CEA transplantation. One of the three patients had apparent revertant mosaicism in the donor skin and in the post-transplanted area. CEAs from clinically normal skin are a potentially well-tolerated treatment for recessive dystrophic epidermolysis bullosa.
Collapse
Affiliation(s)
- Wakana Matsumura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuyuki Fujita
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Satoru Shinkuma
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Department of Dermatology, Niigata University, Niigata, Japan
| | - Shotaro Suzuki
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Saki Yokoshiki
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Hideki Goto
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan; Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hiroshi Hayashi
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Kota Ono
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | | | - Shota Takashima
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Chihiro Nakayama
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshifumi Nomura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideki Nakamura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Riichiro Abe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Department of Dermatology, Niigata University, Niigata, Japan
| | - Norihiro Sato
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
48
|
Dourado Alcorte M, Sogayar MC, Demasi MA. Patent landscape of molecular and cellular targeted therapies for recessive dystrophic epidermolysis bullosa. Expert Opin Ther Pat 2019; 29:327-337. [PMID: 31017019 DOI: 10.1080/13543776.2019.1608181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a monogenetic inherited genodermatosis associated with deleterious mutations in the gene encoding type VII collagen (COL7A1). COL7A1 is essential for promoting attachment of the epidermis to the dermis, and its dysfunction may lead to generalized mucosal and cutaneous blistering associated to severe deformities. Currently, management of RDEB patients is limited to supportive care, being aimed at treating and preventing common complications associated with this condition. There is a great demand to develop targeted therapies for this devastating disease and RDEB research advances are currently being translated into clinical trials. AREAS COVERED Based on the literature and patent search, the authors have grouped the RDEB targeted therapies into five categories: a) cell-based therapies; b) gene therapy; c) protein replacement therapy; d) molecular therapy based on exon skipping; and e) drug-mediated premature termination codon read-through. The patent searching strategy involved inquiring Google and USPTO patent databases to reveal companies and institutions that are active in the area of RDEB targeted therapies. EXPERT OPINION The patent landscape related to targeted therapies for RDEB is quite heterogeneous, with each targeted therapeutic approach being associated with its own challenges in achieving robust patent protection and identifying opportunities for future development.
Collapse
Affiliation(s)
| | - Mari Cleide Sogayar
- a NUCEL - School of Medicine , University of Sao Paulo , São Paulo , SP , Brazil
| | - Marcos Angelo Demasi
- a NUCEL - School of Medicine , University of Sao Paulo , São Paulo , SP , Brazil
| |
Collapse
|
49
|
Lykova SG, Maksimova YV, Nemchaninova OB, Guseva SN, Omigov VV, Aidagulova SV. [Inherited epidermolysis bullosa]. Arkh Patol 2019; 80:54-60. [PMID: 30059072 DOI: 10.17116/patol201880454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To summarize an update on epidermolysis bullosa as a polymorphic group of inherited diseases with a failure of epidermal-dermal integrity. Emphasis is placed on the role of transmission electron microscopy in diagnosis and search directions for new types of the abnormality and its molecular markers. Despite numerous mutations in the genes encoding the components of desmosomes and epithelial basement membrane, the stereotyped manifestations of pathological processes in the group of epidermolysis bullosa have been identified. The paper gives a positive result of cell and gene therapies used by European scientists in the treatment of a 7-year-old child with borderline epidermolysis bullosa, which opens up new prospects for patients with butterfly disease that has long been considered fatal.
Collapse
Affiliation(s)
- S G Lykova
- Novosibirsk State Medical University, Ministry of Health of Russia, Novosibirsk, Russia
| | - Yu V Maksimova
- Novosibirsk State Medical University, Ministry of Health of Russia, Novosibirsk, Russia
| | - O B Nemchaninova
- Novosibirsk State Medical University, Ministry of Health of Russia, Novosibirsk, Russia
| | - S N Guseva
- Novosibirsk State Medical University, Ministry of Health of Russia, Novosibirsk, Russia
| | - V V Omigov
- Novosibirsk State Medical University, Ministry of Health of Russia, Novosibirsk, Russia
| | - S V Aidagulova
- Novosibirsk State Medical University, Ministry of Health of Russia, Novosibirsk, Russia
| |
Collapse
|
50
|
Zeng M, Zhou D, Alshehri F, Lara-Sáez I, Lyu Y, Creagh-Flynn J, Xu Q, A S, Zhang J, Wang W. Manipulation of Transgene Expression in Fibroblast Cells by a Multifunctional Linear-Branched Hybrid Poly(β-Amino Ester) Synthesized through an Oligomer Combination Approach. NANO LETTERS 2019; 19:381-391. [PMID: 30565945 DOI: 10.1021/acs.nanolett.8b04098] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Delivery of functional genetic materials into fibroblast cells to manipulate the transgene expression is of great significance in skin gene therapy. Despite numerous polymeric gene delivery systems having been developed, highly safe and efficient fibroblast gene transfection has not yet been achieved. Here, through a new linear oligomer combination strategy, linear poly(β-amino ester) oligomers are connected by the branching units, forming a new type of poly(β-amino ester). This new multifunctional linear-branched hybrid poly(β-amino ester) (LBPAE) shows high-performance fibroblast gene transfection. In human primary dermal fibroblasts (HPDFs) and mouse embryo fibroblasts (3T3s), ultrahigh transgene expression is achieved by LBPAE: up to 3292-fold enhancement in Gaussia luciferase (Gluc) expression and nearly 100% of green fluorescence protein expression are detected. Concurrently, LBPAE is of high in vitro biocompatibility. In depth mechanistic studies reveal that versatile LBPAE can navigate multiple extra- and intracellular barriers involved in the fibroblast gene transfection. More importantly, LBPAE can effectively deliver minicircle DNA encoding COL7A1 gene (a large and functional gene construct) to substantially upregulate the expression of type VII collagen (C7) in HPDFs, demonstrating its great potential in the treatment of C7-deficiency related genodermatoses such as recessive dystrophic epidermolysis bullosa.
Collapse
Affiliation(s)
- Ming Zeng
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
- Department of Dermatology , the First Affiliated Hospital of Anhui Medical University , Hefei 230022 , China
| | - Dezhong Zhou
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
- School of Chemical Engineering and Technology (SCET) , Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Fatma Alshehri
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| | - Yuanning Lyu
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| | - Jack Creagh-Flynn
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| | - Jing Zhang
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Dublin 4 , Ireland
| |
Collapse
|