1
|
da Silva AM, de Amorim Ferreira M, Schran RG, Lückemeyer DD, Prudente AS, Ferreira J. Investigation of the participation of the TRPV1 receptor in the irritant effect of dithranol in mice. Eur J Pharmacol 2025; 994:177291. [PMID: 39870229 DOI: 10.1016/j.ejphar.2025.177291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/19/2024] [Accepted: 01/21/2025] [Indexed: 01/29/2025]
Abstract
Dithranol is one of the most effective topical medications for treating plaque psoriasis. However, its clinical use is limited by irritative adverse reactions to the skin, such as oedema, erythema, and pruritus, caused by poorly understood mechanisms. Because TRPV1 activation mediates skin irritation caused by several drugs, we conducted blind and randomised experiments in male and female C57BL/6 mice to elucidate the role of TRPV1 in dithranol-induced irritation. Dithranol (0.01%-0.5%) or vehicle was applied topically to the right ear of the animals. Oedema, erythema, and pruritus were monitored from 2 h to 6 days after application. Treatment with 0.5% dithranol caused oedema and erythema, but not pruritus, starting at 6 h, reaching its highest point at 1 day, and persisting up to 6 days after treatment, mainly in male mice. The 0.1% dose induced erythema but not oedema. Interestingly, topical application of 1% capsaicin was shown to defunctionalise TRPV1-positive fibres and did not influence early irritation caused by dithranol (2 h-2 days). However, it increased the late phase of irritation (5-6 days). Similarly, salicylate did not reduce the early irritation caused by dithranol but also increased the late phase. Antagonism by SB366791 and 4-tert-butylcyclohexanol did not alter skin irritation. Our results suggest that, contrary to our initial hypothesis, TRPV1 appears to act protectively against skin irritation caused by dithranol, particularly in the late stage.
Collapse
Affiliation(s)
- Ana Merian da Silva
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), 88037-000, Florianópolis, SC, Brazil
| | - Marcella de Amorim Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), 88037-000, Florianópolis, SC, Brazil
| | - Roberta Giusti Schran
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), 88037-000, Florianópolis, SC, Brazil
| | - Debora Denardin Lückemeyer
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), 88037-000, Florianópolis, SC, Brazil; Pain Research Center, Department of Anesthesiology, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Arthur Silveira Prudente
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), 88037-000, Florianópolis, SC, Brazil; Pain Research Center, Department of Anesthesiology, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Juliano Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), 88037-000, Florianópolis, SC, Brazil.
| |
Collapse
|
2
|
Pimentel J, García Bustos MF, Ragone P, Marco JD, Barroso P, Mesías AC, Basombrío M, Occhionero M, Ramos F, Laucella SA, Brandán CP, Parodi C. Memory T Cell Subsets Expressing Tissue Homing Receptors and Chemokine Levels in Human Tegumentary Leishmaniasis. Cells 2025; 14:604. [PMID: 40277930 PMCID: PMC12025617 DOI: 10.3390/cells14080604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Tegumentary leishmaniasis (TL) presents two main clinical forms: cutaneous (CL) and mucosal (ML) leishmaniasis affecting skin and nasopharyngeal mucosa. Due to parasite localization through disease stages, recruitment of T cells expressing chemokine receptors and their ligands will influence the generated host responses. The aim of this work was to characterize differential profiles of T cells expressing chemokine receptors and their plasma ligands by flow cytometry and ELISA. CL patients showed increased numbers of effector memory CD4+ T cells expressing skin homing receptors (CLA, CCR4), with the reversion of this effector phenotype observed after achieving clinical recovery. Meanwhile, ML patients showed higher frequencies of effector memory/terminal effector CD4+ and CD8+ T cells expressing chemokine receptors directed to skin (CLA, CCR4, CCR10) and mucosal (CCR6) tissues. Additionally, we reported that plasma amounts of ligands (CCL17, CCL20) vary according to the clinical form of TL. Finally, we demonstrated the ability of Leishmania spp. to modulate chemokine production (CCL17) in vitro. This work highlights the effector T cell response directed to skin and mucosal tissues in TL, emphasizing the role of cytotoxic functions in ML. The studied chemokine receptors could contribute to predicting disease progression and guiding future studies targeting relevant receptors to diminish pathogenic effector functions.
Collapse
Affiliation(s)
- Julia Pimentel
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - M. Fernanda García Bustos
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Paula Ragone
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Jorge D. Marco
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Paola Barroso
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Andrea Cecilia Mesías
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Mercedes Basombrío
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - María Occhionero
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Federico Ramos
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Susana Adriana Laucella
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben, Departamento de Investigación, Buenos Aires C1282AFF, Argentina;
| | - Cecilia Pérez Brandán
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Cecilia Parodi
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| |
Collapse
|
3
|
Ye J, Lai Y. Keratinocytes: new perspectives in inflammatory skin diseases. Trends Mol Med 2025:S1471-4914(25)00083-8. [PMID: 40246604 DOI: 10.1016/j.molmed.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/19/2025]
Abstract
Keratinocytes, the predominant cell type in the epidermis, are indispensable for maintaining skin barrier integrity, mediating host defense, and orchestrating immune responses. Beyond these well-established functions, emerging evidence reveals their dynamic interactions with the nervous system and their capacity to retain inflammatory memory. These discoveries position keratinocytes as key drivers of the onset, progression, and relapse of inflammatory skin diseases. In this review, we delve into the mechanisms underlying keratinocyte crosstalk with immune and neural cells, the metabolic reprogramming, including lactate and other metabolites, that may drive inflammatory memory, and the broader implications for disease pathogenesis and recurrence. Finally, we discuss the challenges to, and therapeutic potential of, targeting keratinocytes for the treatment of chronic inflammatory skin conditions.
Collapse
Affiliation(s)
- Jiafeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, PR China; Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Yuping Lai
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, PR China; Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, PR China; Liwa Institue of Skin Health, East China Normal University, Shanghai, PR China.
| |
Collapse
|
4
|
Wu Y, Yuan S, Wang Y, Zhang Y, Ye Z, Liu B, Yang H, You T. Exploring the mechanism of α-Bisabolol in the treatment of psoriasis based on network pharmacology and experimental validation. Eur J Pharmacol 2025; 999:177433. [PMID: 40089261 DOI: 10.1016/j.ejphar.2025.177433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
This study aims to evaluate the effects of α-Bisabolol in the treatment of psoriasis both in vivo and in vitro, and to elucidate its mechanism of action. We used network pharmacology to explore the potential active components and targets of α-Bisabolol in the treatment of psoriasis. Psoriasis-like models were induced in mice or keratinocytes using imiquimod (IMQ) or tumor necrosis factor-α (TNF-α). The results indicated that α-Bisabolol shares 133 potential genes with psoriasis, and pathway enrichment analysis showed that the PI3K/AKT and nuclear factor κB (NF-κB) signaling pathways are considered key pathways. In vivo experiments showed that α-Bisabolol reduced epidermal thickening, inflammatory cell infiltration, and histological psoriasis-like lesions in IMQ-induced mice (P < 0.05, P < 0.01). α-Bisabolol inhibited the elevation of inflammatory cytokines (including interleukin-6(IL-6), interleukin-1β(IL-1β), interleukin-17A(IL-17A), interleukin-23(IL-23) and tumor necrosis factor-α (TNF-α)) in skin lesions of mice and TNF-α-treated HaCat cells (P < 0.05, P < 0.01). Mechanistically, α-Bisabolol inhibited the phosphorylation of PI3K/AKT (PI3K and AKT) and NF-κB (IκB and p65) signaling pathways activated by IMQ (P < 0.05, P < 0.01). Similar changes were detected in TNF-α-treated HaCaT cells. This suggests that α-Bisabolol may inhibit inflammation in TNF-α-treated keratinocytes and psoriasis mice through the PI3K/AKT and NF-κB pathways, providing a new theoretical basis for clinical application in the treatment of psoriasis.
Collapse
Affiliation(s)
- Yixing Wu
- College of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shaoying Yuan
- College of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yan Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhiming Ye
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Bing Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huiwen Yang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Tianhui You
- College of Continuing Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Lin J, Cao Y, Ma L, Tao M, Yang X. Keratinocyte exosomal LOC285194 ameliorates psoriasis by inhibiting the differentiation of CD4 +T cells to Th17 cells through regulating miR-211-5p/SIRT1 axis. IUBMB Life 2025; 77:e2935. [PMID: 39736106 DOI: 10.1002/iub.2935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/12/2024] [Indexed: 01/01/2025]
Abstract
Keratinocytes exosome participates in the pathogenesis of psoriasis and exosomes always carry long non-coding RNAs (lncRNAs) into target cells to function as an essential immune regulator in psoriasis-related diseases. LncRNA LOC285194 is closely associated with the occurrence of psoriasis. However, whether keratinocyte exosomal LOC285194 participates in the process of psoriasis remains vague. Exosomes were authenticated by transmission electron microscope and nanoparticle tracking analysis (NTA). Relative gene expression was determined by reverse transcription-polymerase chain reaction (RT-PCR). Flow cytometry was used to monitor the proportion of immune cells. Fluorescence in situ hybridization was employed to determine the colocalization of lncRNA and miRNA. Keratinocyte exosomal LOC285194 was reduced in psoriasis patients and had a negative association with Th17 cell infiltration in psoriasis patients. LOC285194-downregulation contributed to the differentiation of CD4+T cells to Th17 cells. Cytokine cocktail treatment reduced LOC285194 expression in keratinocytes and keratinocyte exosome, subsequently promoted the differentiation of CD4+T cells to Th17 cells and Th17 cells-related molecular levels including IL-17A, IL-22 and TNF-α, which were notably abrogated by LOC285194-upregulation in keratinocytes. As a sponge of LOC285194, miR-211-5p inhibition induced the increase of Th17 cell proportion in CD4+T cells, while exosomes treatment isolated from cytokine cocktail-exposed keratinocytes further enhanced Th17 cell proportion, which were abolished by LOC285194 overexpressed-exosome treatment. Furthermore, silent information regulator 1 (SIRT1) mediated the regulation role of miR-211-5p on Th17 cell production. Combined with the imiquimod-induced psoriasis animal model, exosomes isolated from LOC285194-overexpressing keratinocytes relieved psoriasis symptom through regulating miR-211-5p/SIRT1 axis. LOC285194 upregulation in keratinocytes promoted the keratinocyte exosomal LOC285194, that could be absorbed by CD4+T cells, leading to the inhibition of Th17 cell differentiation through targeting miR-211-5p/SIRT1 axis. This study provides a novel molecular mechanism of Th17 cell accumulation-mediated psoriasis.
Collapse
Affiliation(s)
- Jin Lin
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People's Republic of China
| | - Yi Cao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People's Republic of China
| | - Lili Ma
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People's Republic of China
| | - Maocan Tao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People's Republic of China
| | - Xiaohong Yang
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People's Republic of China
| |
Collapse
|
6
|
Hur YH. Epidermal stem cells: Interplay with the skin microenvironment during wound healing. Mol Cells 2024; 47:100138. [PMID: 39442652 PMCID: PMC11625153 DOI: 10.1016/j.mocell.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Skin undergoes everyday turnover while often challenged by injuries. The wound healing process in the skin is a dynamic sequence of events that involves various cell types and signaling pathways. Epidermal stem cells (EpdSCs), the tissue-resident stem cells in the skin tissue, are at the center of this complicated process due to their special ability to self-renew and differentiate. During this process, EpdSCs interact actively with the tissue microenvironment, which is essential for proper re-epithelialization and skin barrier restoration. This review describes the intricate interplays between EpdSCs and various components of their surroundings, including extracellular matrix/fibroblasts, vasculature/endothelial cells, and immune cells, as well as their roles in tissue repair.
Collapse
Affiliation(s)
- Yun Ha Hur
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
7
|
Jeayeng S, Saelim M, Muanjumpon P, Buraphat P, Kanchanapiboon P, Sampattavanich S, Panich U. Protective Effects of Keratinocyte-Derived GCSF and CCL20 on UVB-Induced Melanocyte Damage. Cells 2024; 13:1661. [PMID: 39404423 PMCID: PMC11475719 DOI: 10.3390/cells13191661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
The skin microenvironment created by keratinocytes (KC) influences the stress responses of melanocytes (MC) to UVB insults. This study employed RNA sequencing analysis as well as in vitro and in vivo models to elucidate the underlying mechanisms. Our RNA-Seq analysis revealed a statistically significant upregulation of GCSF and CCL20 genes in UVB-irradiated KC, correlating with the protective effects of KC on MC responses to UVB exposure. Recombinant GCSF and CCL20 exhibited the most pronounced modulation of UVB-induced MC responses. These effects included the attenuation of apoptosis and reduction of ROS formation, along with the upregulation of tyrosinase and tyrosinase-related protein-1, which are involved in the melanogenic pathway. ELISA was also used to confirm that UVB could induce the secretion of GCSF and CCL20 from KC. A similar correlation between GCSF and CCL20 expression in KC and tyrosinase levels in MC was observed in UVB-irradiated mouse skin. Our study provides novel insights into the protective role of GCSF and CCL20 in the paracrine effects of KC on UVB-induced MC damage through the modulation of stress response pathways, the MITF-tyrosinase axis, and the regulation of p53. These findings have implications for the development of pharmacological strategies targeting KC-derived paracrine factors for the prevention of skin photodamage.
Collapse
Affiliation(s)
- Saowanee Jeayeng
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Malinee Saelim
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.S.); (P.M.)
| | - Phetthinee Muanjumpon
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.S.); (P.M.)
| | - Pongsakorn Buraphat
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Potjanee Kanchanapiboon
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Somponnat Sampattavanich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.S.); (P.M.)
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.S.); (P.M.)
| |
Collapse
|
8
|
Li D, Liu Z, Zhang L, Bian X, Wu J, Li L, Chen Y, Luo L, Pan L, Kong L, Xiao Y, Wang J, Zhang X, Wang W, Toma M, Piipponen M, Sommar P, Xu Landén N. The lncRNA SNHG26 drives the inflammatory-to-proliferative state transition of keratinocyte progenitor cells during wound healing. Nat Commun 2024; 15:8637. [PMID: 39366968 PMCID: PMC11452505 DOI: 10.1038/s41467-024-52783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The cell transition from an inflammatory phase to a subsequent proliferative phase is crucial for wound healing, yet the driving mechanism remains unclear. By profiling lncRNA expression changes during human skin wound healing and screening lncRNA functions, we identify SNHG26 as a pivotal regulator in keratinocyte progenitors underpinning this phase transition. Snhg26-deficient mice exhibit impaired wound repair characterized by delayed re-epithelization accompanied by exacerbated inflammation. Single-cell transcriptome analysis combined with gain-of-function and loss-of-function of SNHG26 in vitro and ex vivo reveals its specific role in facilitating inflammatory-to-proliferative state transition of keratinocyte progenitors. A mechanistic study unravels that SNHG26 interacts with and relocates the transcription factor ILF2 from inflammatory genomic loci, such as JUN, IL6, IL8, and CCL20, to the genomic locus of LAMB3. Collectively, our findings suggest that lncRNAs play cardinal roles in expediting tissue repair and regeneration and may constitute an invaluable reservoir of therapeutic targets in reparative medicine.
Collapse
Affiliation(s)
- Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China.
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Jianmin Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, Wenzhou Medical University, 325035, Wenzhou, China
| | - Li Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Ling Pan
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Lingzhuo Kong
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Yunting Xiao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Jiating Wang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Xiya Zhang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Wang Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Maria Toma
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Minna Piipponen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
9
|
Gujarathi PP, Korat RH, Gujarathi PS. Preclinical techniques for drug discovery in psoriasis. Int Immunopharmacol 2024; 137:112378. [PMID: 38852518 DOI: 10.1016/j.intimp.2024.112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Psoriasis is a chronic, inflammatory, papulosquamous, noncontagious disease characterized by scaly, demarcated erythematous plaque, affecting skin, nails, and scalp. The IL-23/Th17 axis is the main operator in the development of psoriasis. Psoriasis is affecting worldwide, and new treatment options are urgently needed. Various local and systemic treatments are available for psoriasis but they only provide symptomatic relief because of numerous unknown mechanisms. Clinical trials demand overwhelming resources; therefore, drug development predominantly depends on the in-vivo, in-vitro, and ex-vivo techniques. Immediate attention is required to develop experimental techniques that completely imitate human psoriasis to assist drug development. This review portrays the various in-vivo, in-vitro, and ex-vivo techniques used in psoriasis research. It describes these techniques' characteristics, pathological presentations, and mechanisms. The experimental techniques of psoriasis provide significant information on disease progression mechanisms and possible therapeutic targets. However, until now, it has been challenging to invent a timely, affordable model that precisely imitates a human disease. Only the xenotransplantation model is reckoned as the closer, that mimics the complete genetic, and immunopathogenic event. Imiquimod-induced psoriasis and HaCat cell lines are popular among researchers because of their convenience, ease of use, and cost-effectiveness. There need to further improve the experimental techniques to best serve the disease imitation and meet the research goal.
Collapse
Affiliation(s)
- Pranjal P Gujarathi
- Department of Pharmacology, Vidhyadeep Institute of Pharmacy, Vidhyadeep University, Anita, Surat, Gujarat, India; Bhagwan Mahavir Centre for Advance Research, Bhagwan Mahavir College of Pharmacy, Bhagwan Mahavir University, Vesu, Surat, Gujarat, India.
| | - Rashmi H Korat
- Department of Pharmacognosy, Bhagwan Mahavir College of Pharmacy, Bhagwan Mahavir Univeristy, Vesu, Surat, Gujarat, India
| | - Piyush S Gujarathi
- Department of Community Medicine, Vidhyadeep Homeopathic Medical College and Research Centre, Vidhyadeep University, Anita, Surat, Gujarat, India
| |
Collapse
|
10
|
Li X, An T, Yang Y, Xu Z, Chen S, Yi Z, Deng C, Zhou F, Man Y, Hu C. TLR9 activation in large wound induces tissue repair and hair follicle regeneration via γδT cells. Cell Death Dis 2024; 15:598. [PMID: 39153998 PMCID: PMC11330466 DOI: 10.1038/s41419-024-06994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
The mechanisms underlying tissue repair in response to damage have been one of main subjects of investigation. Here we leverage the wound-induced hair neogenesis (WIHN) models in adult mice to explore the correlation between degree of damage and the healing process and outcome. The multimodal analysis, in combination with single-cell RNA sequencing help to explore the difference in wounds of gentle and heavy damage degrees, identifying the potential role of toll-like receptor 9 (TLR9) in sensing the injury and regulating the immune reaction by promoting the migration of γδT cells. The TLR9 deficient mice or wounds injected with TLR9 antagonist have greatly impaired healing and lower WIHN levels. Inhibiting the migration of γδT cells or knockout of γδT cells also suppress the wound healing and regeneration, which can't be rescued by TLR9agonist. Finally, the amphiregulin (AREG) is shown as one of most important effectors secreted by γδT cells and keratinocytes both in silicon or in the laboratory, whose expression influences WIHN levels and the expression of stem cell markers. In total, our findings reveal a previously unrecognized role for TLR9 in sensing skin injury and influencing the tissue repair and regeneration by modulation of the migration of γδT cells, and identify the TLR9-γδT cells-areg axis as new potential targets for enhancing tissue regeneration.
Collapse
Affiliation(s)
- Xinhui Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tiantian An
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhaoyu Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shuaidong Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zumu Yi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chen Deng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chen Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Farhangniya M, Samadikuchaksaraei A, Mohamadi Farsani F. Exploring Co-expression Modules-Traits Correlation through Weighted Gene Co-expression Network Analysis: A Promising Approach in Wound Healing Research. Med J Islam Repub Iran 2024; 38:82. [PMID: 39678778 PMCID: PMC11644100 DOI: 10.47176/mjiri.38.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Indexed: 12/17/2024] Open
Abstract
Background The skin is the biggest organ in the body and has several important functions in protection and regulation. However, wound development can disrupt the natural healing process, leading to challenges such as chronic wounds, persistent infections, and impaired angiogenesis. These issues not only affect individuals' well-being but also pose significant economic burdens on healthcare systems. Despite advancements in wound care research, managing chronic wounds remains a pressing concern, with obstacles such as persistent infection and impaired angiogenesis hindering the healing process. Understanding the complex genetic pathways involved in wound healing is crucial for developing effective therapeutic strategies and reducing the socio-economic impact of chronic wounds. Weighted Gene Co-Expression Network Analysis (WGCNA) offers a promising approach to uncovering key genes and modules associated with different stages of wound healing, providing valuable insights for targeted interventions to enhance tissue repair and promote efficient wound healing. Methods Data collection involved retrieving microarray gene expression datasets from the Gene Expression Omnibus website, with 65 series selected according to inclusion and exclusion criteria. Preprocessing of raw data was performed using the Robust MultiArray Averaging approach for background correction, normalization, and gene expression calculation. Weighted Gene Co-Expression Network Analysis was employed to identify co-expression patterns among genes associated with wound healing processes. This involved steps such as network construction, topological analysis, module identification, and association with clinical traits. Functional analysis included enrichment analysis and identification of hub genes through gene-gene functional interaction network analysis using the GeneMANIA database. Results The analysis using WGCNA indicated significant correlations between wound healing and the black, brown, and light green modules. These modules were further examined for their relevance to wound healing traits and subjected to functional enrichment analysis. A total of 16 genes were singled out as potential hub genes critical for wound healing. These hub genes were then scrutinized, revealing a gene-gene functional interaction network within the module network based on the KEGG enrichment database. Noteworthy pathways such as MAPK, EGFR, and ErbB signaling pathways, as well as essential cellular processes including autophagy and mitophagy, emerged as the most notable significant pathways. Conclusion We identified consensus modules relating to wound healing across nine microarray datasets. Among these, 16 hub genes were uncovered within the brown and black modules. KEGG enrichment analysis identified co-expression genes within these modules and highlighted pathways most closely associated with the development of wound healing traits, including autophagy and mitophagy. The hub genes identified in this study represent potential candidates for future research endeavors. These findings serve as a stepping stone toward further exploration of the implications of these co-expressed modules on wound healing traits.
Collapse
Affiliation(s)
- Mansoureh Farhangniya
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Health Metrics Research Center, Iranian Institute for Health Sciences Research, ACECR, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
12
|
Jiao Q, Zhi L, You B, Wang G, Wu N, Jia Y. Skin homeostasis: Mechanism and influencing factors. J Cosmet Dermatol 2024; 23:1518-1526. [PMID: 38409936 DOI: 10.1111/jocd.16155] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND The skin is the largest organ in the human body, not only resisting the invasion of harmful substances, but also preventing the loss of moisture and nutrients. Maintaining skin homeostasis is a prerequisite for the proper functioning of the body. Any damage to the skin can lead to a decrease in local homeostasis, such as ultraviolet radiation, seasonal changes, and air pollution, which can damage the skin tissue and affect the function of the skin barrier. OBJECTIVE This article reviews the maintenance mechanism and influencing factors of skin homeostasis and the symptoms of homeostasis imbalance. METHODS We searched for articles published between 1990 and 2022 in English and Chinese using PubMed, Web of Science, CNKI, and other databases in the subject area of dermatology, using the following search terms in various combinations: "skin homeostasis," "skin barrier," and "unstable skin." Based on our results, we further refined our search criteria to include a series of common skin problems caused by the destruction of skin homeostasis and its treatments. Limitations include the lack of research on dermatological and cosmetic problems triggered by the disruption of skin homeostasis. RESULTS This study describes the neuroendocrine-immune system, skin barrier structure, and skin metabolic system that maintain skin homeostasis. In addition, we discuss several common symptoms that occur when skin homeostasis is out of balance, such as dryness, redness, acne, sensitivity, and aging, and explain the mechanism of these symptoms. CONCLUSION This article provides an update and review for students and practitioners, and provides a theoretical basis for the development of skin care products for the maintenance and repair of skin homeostasis.
Collapse
Affiliation(s)
- Qian Jiao
- Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Leilei Zhi
- R&D Center, PeiLai Group Co., Ltd, Shanghai, China
| | - Bing You
- R&D Center, PeiLai Group Co., Ltd, Shanghai, China
| | | | - Nan Wu
- R&D Center, PeiLai Group Co., Ltd, Shanghai, China
| | - Yan Jia
- Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
13
|
Niu X, Wu Z, Gao F, Hou S, Liu S, Zhao X, Wang L, Guo J, Zhang F. Resonating with Cellular Pathways: Transcriptome Insights into Nonthermal Bioeffects of Middle Infrared Light Stimulation and Vibrational Strong Coupling on Cell Proliferation and Migration. RESEARCH (WASHINGTON, D.C.) 2024; 7:0353. [PMID: 38694203 PMCID: PMC11062510 DOI: 10.34133/research.0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 05/04/2024]
Abstract
Middle infrared stimulation (MIRS) and vibrational strong coupling (VSC) have been separately applied to physically regulate biological systems but scarcely compared with each other, especially at identical vibrational frequencies, though they both involve resonant mechanism. Taking cell proliferation and migration as typical cell-level models, herein, we comparatively studied the nonthermal bioeffects of MIRS and VSC with selecting the identical frequency (53.5 THz) of the carbonyl vibration. We found that both MIRS and VSC can notably increase the proliferation rate and migration capacity of fibroblasts. Transcriptome sequencing results reflected the differential expression of genes related to the corresponding cellular pathways. This work not only sheds light on the synergistic nonthermal bioeffects from the molecular level to the cell level but also provides new evidence and insights for modifying bioreactions, further applying MIRS and VSC to the future medicine of frequencies.
Collapse
Affiliation(s)
- Xingkun Niu
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zhongyu Wu
- Department of Nuclear Medicine,
The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250013, China
- School of Radiology,
Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250024, China
| | - Feng Gao
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Shaojie Hou
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- The School of Biomedical Engineering,
Guangzhou Medical University, Panyu District, Guangzhou 511436, China
| | - Shihao Liu
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xinmin Zhao
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liping Wang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jun Guo
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Feng Zhang
- Quantum Biophotonic Lab, Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
14
|
Zhang Y, Lu Q. Immune cells in skin inflammation, wound healing, and skin cancer. J Leukoc Biol 2024; 115:852-865. [PMID: 37718697 DOI: 10.1093/jleuko/qiad107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Given the self-evident importance of cutaneous immunity in the maintenance of body-surface homeostasis, disturbance of the steady-state skin is inextricably intertwined with dysfunction in cutaneous immunity. It is often overlooked by people that skin, well-known as a solid physical barrier, is also a strong immunological barrier, considering the abundant presence of immune cells including lymphocytes, granulocytes, dendritic cells, and macrophages. What's more, humoral immune components including cytokines, immunoglobulins, and antimicrobial peptides are also rich in the skin. This review centers on skin inflammation (acute and chronic, infection and aseptic inflammation), wound healing, and skin cancer to elucidate the elaborate network of immune cells in skin diseases.
Collapse
Affiliation(s)
- Yuhan Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| |
Collapse
|
15
|
Wang D, Ruan Z, Wang R, Ma L, Tang S, Wang X, Ma A. Decoding the mechanism of earthworm extract against wounds: an integrated metabolomics and network pharmacology study. Mol Divers 2024; 28:631-647. [PMID: 36705857 DOI: 10.1007/s11030-023-10609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Earthworms are used to cure wounds in Chinese villages for thousands of years. Recently, scientists realized their extracts could promote wound healing and they have anti-inflammatory, antioxidant, anti-apoptosis, and anti-microbial properties, but its mechanism of promoting wound healing remains unclear. In the presented study, electronic literature databases and LC-MS/MS were used to determine earthworms' ingredients and differential metabolites. Swiss Target Prediction database was used for ingredients' target prediction and wound disease-relevant genes were found from GeneCards, OMIM, and DrugBank databases. Network pharmacology was conducted to demonstrate filtering hub targets, biological functions, and the signaling pathways of earthworms extract against wounds. Molecular docking and metabolism analysis were used to look for core target genes and key bioactive molecules from earthworms. Finally, the investigation shows 5 most important signal pathways, 5 core genes, and 6 bioactive ingredients-related cell-cell adhesion, cell proliferation, and cell migration processes could be affected by earthworms' extract. On 3rd day, the extract could regulate HIF1A and EGFR targets to make the differences of quantities of 4-pyridoxate, tetradecanoic acid, and L-kynurenine. While on 7th day, the regulation refers 6 earthworms' bioactive ingredients, 4 core genes (CTNNB1, EGFR, SRC, and CASP3), and 4 differential metabolites (4-hydoxy-2-quinolinecarboxylic acid, urocanate, deoxyinosine, creatine, and sn-glycerol-3-phosphocholine). on 14th day, 2 core genes (EGFR, SRC) are influenced in the biological processes. Briefly, we found that 6 ingredients from earthworms have most bioactive and 5 core genes play an important role in promoting wound-healing processes. These discovers indicates earthworms could against wound via AGE-RAGE, PI3K-Akt, HIF1A, MAPK, and Axon guidance pathways.
Collapse
Affiliation(s)
- Dong Wang
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China.
- Shaanxi Key Laboratory of Research on TCM Physical Constitution and Disease Prevention and Treatment, Xianyang, China.
| | - Zhen Ruan
- Xianyang Central Hospital, Xianyang, China
| | - Ruihui Wang
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Li Ma
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Saiqing Tang
- Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xuejing Wang
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Axue Ma
- Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
16
|
Inoue Y, Uchiyama A, Amalia SN, Ishikawa M, Kosaka K, Sekiguchi A, Ogino S, Yokoyama Y, Torii R, Hosoi M, Akai R, Iwawaki T, Morasso MI, Motegi SI. Keratinocyte-Specific SOX2 Overexpression Suppressed Pressure Ulcer Formation after Cutaneous Ischemia-Reperfusion Injury via Enhancement of Amphiregulin Production. J Invest Dermatol 2024; 144:142-151.e5. [PMID: 37516309 PMCID: PMC10822028 DOI: 10.1016/j.jid.2023.06.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/31/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a key player in the pathogeneses of pressure ulcer formation. Our previous work demonstrated that inducing the transcription factor SOX2 promotes cutaneous wound healing through EGFR signaling pathway enhancement. However, its protective effect on cutaneous I/R injury was not well-characterized. We aimed to assess the role of SOX2 in cutaneous I/R injury and the tissue-protective effect of SOX2 induction in keratinocytes (KCs) in cutaneous I/R injury. SOX2 was transiently expressed in KCs after cutaneous I/R injury. Ulcer formation was significantly suppressed in KC-specific SOX2-overexpressing mice. SOX2 in skin KCs significantly suppressed the infiltrating inflammatory cells, apoptotic cells, vascular damage, and hypoxic areas in cutaneous I/R injury. Oxidative stress-induced mRNA levels of inflammatory cytokine expression were suppressed, and antioxidant stress factors and amphiregulin were elevated by SOX2 induction in skin KCs. Recombinant amphiregulin administration suppressed pressure ulcer development after cutaneous I/R injury in mice and suppressed oxidative stress-induced ROS production and apoptosis in vitro. These findings support that SOX2 in KCs might regulate cutaneous I/R injury through amphiregulin production, resulting in oxidative stress suppression. Recombinant amphiregulin can be a potential therapeutic agent for cutaneous I/R injury.
Collapse
Affiliation(s)
- Yuta Inoue
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Syahla Nisaa Amalia
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mai Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Keiji Kosaka
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Torii
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mari Hosoi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Akai
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
17
|
Guo J, Zhang H, Lin W, Lu L, Su J, Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther 2023; 8:437. [PMID: 38008779 PMCID: PMC10679229 DOI: 10.1038/s41392-023-01655-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/28/2023] Open
Abstract
Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Collapse
Affiliation(s)
- Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Wenrui Lin
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| |
Collapse
|
18
|
Wu L, Lin Q, Chatla S, Amarachintha S, Wilson AF, Atale N, Gao ZJ, Joseph J, Wolff EV, Du W. LepR+ niche cell-derived AREG compromises hematopoietic stem cell maintenance under conditions of DNA repair deficiency and aging. Blood 2023; 142:1529-1542. [PMID: 37584437 PMCID: PMC10656728 DOI: 10.1182/blood.2022018212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
The cross talk between extrinsic niche-derived and intrinsic hematopoietic stem cell (HSC) factors controlling HSC maintenance remains elusive. Here, we demonstrated that amphiregulin (AREG) from bone marrow (BM) leptin receptor (LepR+) niche cells is an important factor that mediates the cross talk between the BM niche and HSCs in stem cell maintenance. Mice deficient of the DNA repair gene Brca2, specifically in LepR+ cells (LepR-Cre;Brca2fl/fl), exhibited increased frequencies of total and myeloid-biased HSCs. Furthermore, HSCs from LepR-Cre;Brca2fl/fl mice showed compromised repopulation, increased expansion of donor-derived, myeloid-biased HSCs, and increased myeloid output. Brca2-deficient BM LepR+ cells exhibited persistent DNA damage-inducible overproduction of AREG. Ex vivo treatment of wild-type HSCs or systemic treatment of C57BL/6 mice with recombinant AREG impaired repopulation, leading to HSC exhaustion. Conversely, inhibition of AREG by an anti-AREG-neutralizing antibody or deletion of the Areg gene in LepR-Cre;Brca2fl/fl mice rescued HSC defects caused by AREG. Mechanistically, AREG activated the phosphoinositide 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, promoted HSC cycling, and compromised HSC quiescence. Finally, we demonstrated that BM LepR+ niche cells from other DNA repair-deficient and aged mice also showed persistent DNA damage-associated overexpression of AREG, which exerts similar negative effects on HSC maintenance. Therefore, we identified an important factor that regulates HSCs function under conditions of DNA repair deficiency and aging.
Collapse
Affiliation(s)
- Limei Wu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Genome Stability Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Qiqi Lin
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Surya Amarachintha
- Department of Biology, Georgia Southwestern State University, Americus, GA
| | - Andrew F. Wilson
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Neha Atale
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Genome Stability Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Zhenxia J. Gao
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Genome Stability Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Jonathan Joseph
- University of Pittsburgh Medical Center Medical Education, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Emily V. Wolff
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Genome Stability Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Genome Stability Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| |
Collapse
|
19
|
Carmona-Rocha E, Puig L. The biological basis of disease recurrence in psoriasis. Ital J Dermatol Venerol 2023; 158:279-291. [PMID: 37404193 DOI: 10.23736/s2784-8671.23.07583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Despite the amazing advances produced in our understanding of the pathogenesis of psoriasis, which have led to a therapeutic revolution, our knowledge of the mechanisms of relapse and elicitation of lesions is just starting to unravel. This narrative review tours the different cell types and mechanisms involved in the priming, maintenance, and relapse of psoriasis vulgaris. Our discussion includes dendritic cells, T cells, tissue resident memory cells and mast cells, with a foray into the epigenetic mechanisms of inflammatory memory in keratinocytes. Increasing knowledge is providing a glimpse of a potential therapeutic window of opportunity in psoriasis, providing long term remission and eventual modification of the natural history of the disease.
Collapse
Affiliation(s)
- Elena Carmona-Rocha
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain -
| |
Collapse
|
20
|
Pontecorvi P, Ceccarelli S, Cece F, Camero S, Lotti LV, Niccolai E, Nannini G, Gerini G, Anastasiadou E, Scialis ES, Romano E, Venneri MA, Amedei A, Angeloni A, Megiorni F, Marchese C. Assessing the Impact of Polyethylene Nano/Microplastic Exposure on Human Vaginal Keratinocytes. Int J Mol Sci 2023; 24:11379. [PMID: 37511139 PMCID: PMC10380279 DOI: 10.3390/ijms241411379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The global rise of single-use throw-away plastic products has elicited a massive increase in the nano/microplastics (N/MPLs) exposure burden in humans. Recently, it has been demonstrated that disposable period products may release N/MPLs with usage, which represents a potential threat to women's health which has not been scientifically addressed yet. By using polyethyl ene (PE) particles (200 nm to 9 μm), we showed that acute exposure to a high concentration of N/MPLs induced cell toxicity in vaginal keratinocytes after effective cellular uptake, as viability and apoptosis data suggest, along with transmission electron microscopy (TEM) observations. The internalised N/MPLs altered the expression of junctional and adherence proteins and the organisation of the actin cortex, influencing the level of genes involved in oxidative stress signalling pathways and that of miRNAs related to epithelial barrier function. When the exposure to PE N/MPLs was discontinued or became chronic, cells were able to recover from the negative effects on viability and differentiation/proliferation gene expression in a few days. However, in all cases, PE N/MPL exposure prompted a sustained alteration of DNA methyltransferase and DNA demethylase expression, which might impact epigenetic regulation processes, leading to accelerated cell ageing and inflammation, or the occurrence of malignant transformation.
Collapse
Affiliation(s)
- Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Fabrizio Cece
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Simona Camero
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Lavinia Vittoria Lotti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (E.N.); (G.N.); (A.A.)
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (E.N.); (G.N.); (A.A.)
| | - Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Elena Sofia Scialis
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti—Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Enrico Romano
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (E.N.); (G.N.); (A.A.)
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (S.C.); (F.C.); (S.C.); (L.V.L.); (G.G.); (M.A.V.); (A.A.); (F.M.)
| |
Collapse
|
21
|
Jiang Q, Wei B, You M, Zhou X. d-mannose blocks the interaction between keratinocytes and Th17 cells to alleviate psoriasis by inhibiting HIF-1α/CCL20 in mice. Int Immunopharmacol 2023; 118:110087. [PMID: 37001381 DOI: 10.1016/j.intimp.2023.110087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Psoriasis is an autoimmune chronic inflammatory skin disease with an unclear pathogenesis that is difficult to cure, causing serious physical and mental burdens for patients. Previous research showed that a mutually reinforcing vicious cycle caused by keratinocytes (KC) and a variety of immune cells plays an important role in psoriatic inflammation. d-Mannose, a widely distributed metabolite in the body, has been found to treat several metabolic diseases, but its impact on psoriasis remains unknown. Our study aims to investigate the effects of d-mannose on psoriasis and its specific mechanism. Here, we found that d-mannose alleviates psoriasis in mice both as oral and topical agents. Specifically, d-mannose down-regulated the expression of hypoxia-inducible factor 1A(HIF-1α) and inhibited the expression of chemokine CCL20 in keratinocytes, thereby inhibiting the local infiltration of Th17 cells and breaking the cycle of keratinocytes-Th17 cells. Overall, our study indicates that d-mannose alleviates cutaneous inflammation in psoriasis by inhibiting the HIF-1α/CCL20/Th17 cells axis, and d-mannose has the potential to be used as an oral and topical agent in the treatment of psoriasis.
Collapse
|
22
|
Guo Y, Luo L, Zhu J, Li C. Multi-Omics Research Strategies for Psoriasis and Atopic Dermatitis. Int J Mol Sci 2023; 24:ijms24098018. [PMID: 37175722 PMCID: PMC10178671 DOI: 10.3390/ijms24098018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Psoriasis and atopic dermatitis (AD) are multifactorial and heterogeneous inflammatory skin diseases, while years of research have yielded no cure, and the costs associated with caring for people suffering from psoriasis and AD are a huge burden on society. Integrating several omics datasets will enable coordinate-based simultaneous analysis of hundreds of genes, RNAs, chromatins, proteins, and metabolites in particular cells, revealing networks of links between various molecular levels. In this review, we discuss the latest developments in the fields of genomes, transcriptomics, proteomics, and metabolomics and discuss how they were used to identify biomarkers and understand the main pathogenic mechanisms underlying these diseases. Finally, we outline strategies for achieving multi-omics integration and how integrative omics and systems biology can advance our knowledge of, and ability to treat, psoriasis and AD.
Collapse
Affiliation(s)
- Youming Guo
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| | - Lingling Luo
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| | - Jing Zhu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| | - Chengrang Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| |
Collapse
|
23
|
du Halgouet A, Darbois A, Alkobtawi M, Mestdagh M, Alphonse A, Premel V, Yvorra T, Colombeau L, Rodriguez R, Zaiss D, El Morr Y, Bugaut H, Legoux F, Perrin L, Aractingi S, Golub R, Lantz O, Salou M. Role of MR1-driven signals and amphiregulin on the recruitment and repair function of MAIT cells during skin wound healing. Immunity 2023; 56:78-92.e6. [PMID: 36630919 PMCID: PMC9839364 DOI: 10.1016/j.immuni.2022.12.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Tissue repair processes maintain proper organ function following mechanical or infection-related damage. In addition to antibacterial properties, mucosal associated invariant T (MAIT) cells express a tissue repair transcriptomic program and promote skin wound healing when expanded. Herein, we use a human-like mouse model of full-thickness skin excision to assess the underlying mechanisms of MAIT cell tissue repair function. Single-cell RNA sequencing analysis suggested that skin MAIT cells already express a repair program at steady state. Following skin excision, MAIT cells promoted keratinocyte proliferation, thereby accelerating healing. Using skin grafts, parabiosis, and adoptive transfer experiments, we show that MAIT cells migrated into the wound in a T cell receptor (TCR)-independent but CXCR6 chemokine receptor-dependent manner. Amphiregulin secreted by MAIT cells following excision promoted wound healing. Expression of the repair function was probably independent of sustained TCR stimulation. Overall, our study provides mechanistic insights into MAIT cell wound healing function in the skin.
Collapse
Affiliation(s)
| | - Aurélie Darbois
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Mansour Alkobtawi
- Cutaneous Biology, Institut Cochin, Inserm 1016, and Université de Paris Cité, 75014 Paris, France
| | - Martin Mestdagh
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Aurélia Alphonse
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Virginie Premel
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Thomas Yvorra
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005 Paris, France
| | - Ludovic Colombeau
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005 Paris, France
| | - Raphaël Rodriguez
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005 Paris, France
| | - Dietmar Zaiss
- Department of Immune Medicine, University of Regensburg, Regensburg, Germany,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany,Institute of Pathology, University Regensburg, Regensburg, Germany,Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Yara El Morr
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Hélène Bugaut
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - François Legoux
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Laetitia Perrin
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France
| | - Selim Aractingi
- Cutaneous Biology, Institut Cochin, Inserm 1016, and Université de Paris Cité, 75014 Paris, France
| | - Rachel Golub
- Institut Pasteur, Université Paris Cité, INSERM U1223, 75015 Paris, France
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, 75005 Paris, France; Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Institut Curie, 75005 Paris, France.
| | - Marion Salou
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France.
| |
Collapse
|
24
|
Ye C, Guo X, Wu J, Wang M, Ding H, Ren X. CCL20/CCR6 Mediated Macrophage Activation and Polarization Can Promote Adenoid Epithelial Inflammation in Adenoid Hypertrophy. J Inflamm Res 2022; 15:6843-6855. [PMID: 36583131 PMCID: PMC9793726 DOI: 10.2147/jir.s390210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Adenoid hypertrophy (AH) is a chronic or acute obstruction-related ailment of the upper respiratory tract that arises as an inflammatory response to exposure of bacteria, viruses or allergies. Activation and polarization of macrophages are key processes in inflammation-related disorders like AH and CCL20/CCR6 axis is a critical therapeutic target. Purpose To determine that CCL20/CCR6 mediated macrophage activation and polarization can promote adenoid epithelial inflammation in AH. Methods To support this claim, CCL20 and CCR6 expressions were studied in clinical AH samples. In addition, the expressions of cytokines such as TNF-α, IL-1β, IL-6, IL-17, IL-10 and TGF-β were analysed. In vitro, human adenoid epithelial cells were co-cultured with polarized THP-1 and T lymphocyte H9 cells to study the expressions of several inflammatory markers. Results The expressions of M1 macrophage markers CD86 and IL-17 were significantly increased, whereas the expressions of M2 macrophage markers CD206 and FOXP3 were significantly decreased. The THP-1 cells were successfully polarized to M0, M1 and M2 macrophages. The survival of macrophages improved after 24 hr of induction and enhanced TGF-β expression was observed. The expressions of the inflammatory cytokines IL-6, TNF-α, IL-1β and CCL20 increased significantly. Conclusion Collectively, these results suggest that the CCL20/CCR6 mediated macrophage activation and polarization into M1-type macrophages can promote adenoid epithelial inflammation in AH. Further studies are warranted to determine the roles of inflammatory markers in the pathophysiology of AH and identifying potential targets.
Collapse
Affiliation(s)
- Chenchen Ye
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, People’s Republic of China,Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Xinxue Guo
- Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Jiani Wu
- Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Minhua Wang
- Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Haiyan Ding
- Department of Pediatrics, Yixing Hospital of Traditional Chinese Medicine, Yixing, 214200, People’s Republic of China
| | - Xianzhi Ren
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, People’s Republic of China,Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, People’s Republic of China,Department of Pediatrics, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210046, People’s Republic of China,Correspondence: Xianzhi Ren, Department of Pediatrics, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210046, People’s Republic of China, Email
| |
Collapse
|
25
|
Shen Q, Liu R, Tan S, Xu X, Fang J, Li R. Advances in pathogenesis and nanoparticles (NPs)-mediated treatment of psoriasis. Front Immunol 2022; 13:1089262. [PMID: 36618400 PMCID: PMC9815006 DOI: 10.3389/fimmu.2022.1089262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Psoriasis is a chronic papulosquamous skin disease with an autoimmune pathogenic traits and strong genetic predisposition. In the past few decades, with the rapid development of molecular biology and cell biology, the inherent pathogenesis of psoriasis has been gradually elucidated, in which cytokine inflammatory loops, cell signaling pathways, and epigenetic factors such as miRNAs have been demonstrated to play important roles in regulating the development and progression of psoriasis. More importantly, understanding the pathogenesis of psoriasis has promoted the development of effective treatment for psoriasis. In this review, we systemically summarized the molecular mechanisms regulating the development and progression psoriasis, introduced various therapeutics used for clinical psoriasis therapy, and highlighted the recent advances in nanoparticles (NPs)-mediated drug delivery for psoriasis treatment.
Collapse
Affiliation(s)
- Qian Shen
- Department of Pharmacy & Pharmacology and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rong Liu
- Department of Pharmacy & Pharmacology and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shiyu Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoding Xu
- Department of Pharmacy & Pharmacology and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China,*Correspondence: Rong Li, ; Junyue Fang, ; Xiaoding Xu,
| | - Junyue Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China,Cellular and Molecular Diagnostics Center, Sun Yat-Sen University, Guangzhou, Guangdong, China,*Correspondence: Rong Li, ; Junyue Fang, ; Xiaoding Xu,
| | - Rong Li
- Department of Pharmacy & Pharmacology and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Rong Li, ; Junyue Fang, ; Xiaoding Xu,
| |
Collapse
|
26
|
Zhao Y, Xie Y, Li X, Song J, Guo M, Xian D, Zhong J. The protective effect of proanthocyanidins on the psoriasis-like cell models via PI3K/AKT and HO-1. Redox Rep 2022; 27:200-211. [PMID: 36178125 PMCID: PMC9542435 DOI: 10.1080/13510002.2022.2123841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Inflammation and oxidative stress (OS) are important contributors to psoriasis pathogenesis. Proanthocyanidins (PCs) have anti-inflammatory and anti-oxidative activities. Previously, we discovered that PCs alleviated psoriasis-like mice symptoms, likely via mitigating inflammation and OS damage. Objective To elucidate the protective mechanism underlying PCs against the damage of TNF-ɑ-induced psoriasis-like cell models. Methods Psoriasis-like cell models were established with 7.5 ng/mL TNF-ɑ and then subjected to different-concentrations PCs treatment. Finally, inflammatory and oxidative parameters were determined. Besides, LY294002 (PI3K inhibitor) and ZnPP (HO-1 inhibitor) were employed to investigate the roles of PI3K/AKT and HO-1 in PCs against psoriasis-like cell models. Results After TNF-α treatment, cells organized tightly and proliferated greatly (P<0.01); HO-1 expression dropped obviously, along with the increased OS/inflammatory indicators and the decreased antioxidants (P<0.05); consequently, psoriasis-like cell models were well established. In the presence of PCs, nevertheless, the proliferation rate and number of psoriasis-like cells evidently decreased (P<0.01), accompanied with enhanced HO-1 and antioxidants, and lowered OS/inflammatory indicators as well as phosphorylated JAK2/STAT3/PI3/AKT (P<0.01). Similar changes appeared after LY294002 pretreatment, regardless of PCs or not. But after ZnPP pretreatment with or without PCs, the opposite occurred. Conclusion The study reveals that PCs can suppress psoriasis-like cell proliferation and reduce inflammatory/OS damage through PI3K/AKT inhibition and HO-1 activation, thus promising a candidate for PCs in treating psoriasis.
Collapse
Affiliation(s)
- Yangmeng Zhao
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Yuxin Xie
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Xiaolong Li
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jing Song
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Menglu Guo
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Dehai Xian
- Department of Anatomy, Southwest Medical University, Luzhou, People's Republic of China
| | - Jianqiao Zhong
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
27
|
Xu J, Chen H, Qian H, Wang F, Xu Y. Advances in the modulation of ROS and transdermal administration for anti-psoriatic nanotherapies. J Nanobiotechnology 2022; 20:448. [PMID: 36242051 PMCID: PMC9569062 DOI: 10.1186/s12951-022-01651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS) at supraphysiological concentration have a determinate role in contributing to immuno-metabolic disorders in the epithelial immune microenvironment (EIME) of psoriatic lesions. With an exclusive focus on the gene-oxidative stress environment interaction in the EIME, a comprehensive strategy based on ROS-regulating nanomedicines is greatly anticipated to become the mainstay of anti-psoriasis treatment. This potential therapeutic modality could inhibit the acceleration of psoriasis via remodeling the redox equilibrium and reshaping the EIME. Herein, we present a marked overview of the current progress in the pathomechanisms of psoriasis, with particular concerns on the potential pathogenic role of ROS, which significantly dysregulates redox metabolism of keratinocytes (KCs) and skin-resident or -infiltrating cells. Meanwhile, the emergence of versatile nanomaterial-guided evolution for transdermal drug delivery has been attractive for the percutaneous administration of antipsoriatic therapies in recent years. We emphasize the underlying molecular mechanism of ROS-based nanoreactors for improved therapeutic outcomes against psoriasis and summarize up-to-date progress relating to the advantages and limitations of nanotherapeutic application for transdermal administration, as well as update an insight into potential future directions for nanotherapies in ROS-related skin diseases.
Collapse
Affiliation(s)
- Jiangmei Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.,Department of Dermatology and Rheumatology Immunology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Hao Chen
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Fei Wang
- Center for Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| | - Yunsheng Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
28
|
Morio KA, Sternowski RH, Zeng E, Brogden KA. Antimicrobial Peptides and Biomarkers Induced by Ultraviolet Irradiation Have the Potential to Reduce Endodontic Inflammation and Facilitate Tissue Healing. Pharmaceutics 2022; 14:pharmaceutics14091979. [PMID: 36145725 PMCID: PMC9503046 DOI: 10.3390/pharmaceutics14091979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Ultraviolet (UV) irradiation can modulate host immune responses and this approach is a novel application for treating endodontic infections and inflammation in root canals. Methods: A dataset of UV-induced molecules was compiled from a literature search. A subset of this dataset was used to calculate expression log2 ratios of endodontic tissue molecules from HEPM cells and gingival fibroblasts after 255, 405, and 255/405 nm UV irradiation. Both datasets were analyzed using ingenuity pathway analysis (IPA, Qiagen, Germantown, MD, USA). Statistical significance was calculated using Fisher’s exact test and z-scores were calculated for IPA comparison analysis. Results: The dataset of 32 UV-induced molecules contained 9 antimicrobial peptides, 10 cytokines, 6 growth factors, 3 enzymes, 2 transmembrane receptors, and 2 transcription regulators. These molecules were in the IPA canonical pathway annotations for the wound healing signaling pathway (9/32, p = 3.22 × 10−11) and communication between immune cells (6/32, p = 8.74 × 10−11). In the IPA disease and function annotations, the 32 molecules were associated with an antimicrobial response, cell-to-cell signaling and interaction, cellular movement, hematological system development and function, immune cell trafficking, and inflammatory response. In IPA comparison analysis of the 13 molecules, the predicted activation or inhibition of pathways depended upon the cell type exposed, the wavelength of the UV irradiation used, and the time after exposure. Conclusions: UV irradiation activates and inhibits cellular pathways and immune functions. These results suggested that UV irradiation can activate innate and adaptive immune responses, which may supplement endodontic procedures to reduce infection, inflammation, and pain and assist tissues to heal.
Collapse
Affiliation(s)
| | | | - Erliang Zeng
- Division of Biostatistics and Computational Biology, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Kim A. Brogden
- College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
29
|
Matus CE, Ehrenfeld P, Figueroa CD. The family of kallikrein-related peptidases and kinin peptides as modulators of epidermal homeostasis. Am J Physiol Cell Physiol 2022; 323:C1070-C1087. [PMID: 35993513 DOI: 10.1152/ajpcell.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epidermis is the outermost skin layer and is part of one of the largest organs in the body; it is supported by the dermis, a network of fibrils, blood vessels, pilosebaceous units, sweat glands, nerves, and cells. The skin as a whole is a protective shield against numerous noxious agents, including microorganisms and chemical and physical factors. These functions rely on the activity of multiple growth factors, peptide hormones, proteases, and specific signaling pathways that are triggered by the activation of distinct types of receptors sited in the cell membranes of the various cell types present in the skin. The human kallikrein family comprises a large group of 15 serine proteases synthesized and secreted by different types of epithelial cells throughout the body, including the skin. At this site, they initiate a proteolytic cascade that generates the active forms of the proteases, some of which regulate skin desquamation, activation of cytokines, and antimicrobial peptides. Kinin peptides are formed by the action of plasma and tissue kallikreins on kininogens, two plasma proteins produced in the liver and other organs. Although kinins are well known for their proinflammatory abilities, in the skin they are also considered important modulators of keratinocyte differentiation. In this review, we summarize the contributions of the kallikreins and kallikrein-related peptidases family and those of kinins and their receptors in skin homeostasis, with special emphasis on their pathophysiological role.
Collapse
Affiliation(s)
- Carola E Matus
- Departament of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Molecular Biology and Pharmacogenetics, Universidad de La Frontera, Temuco, Chile.,Center of Biomedical and Morphofunctional Sciences, Universidad de La Frontera, Temuco, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
30
|
Liu G, Li D, Zhang L, Xu Q, Zhuang D, Liu P, Hu L, Deng H, Sun J, Wang S, Zheng B, Guo J, Wu X. Phenformin Down-Regulates c-Myc Expression to Suppress the Expression of Pro-Inflammatory Cytokines in Keratinocytes. Cells 2022; 11:cells11152429. [PMID: 35954273 PMCID: PMC9368166 DOI: 10.3390/cells11152429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
The treatment of many skin inflammation diseases, such as psoriasis and atopic dermatitis, is still a challenge and inflammation plays important roles in multiple stages of skin tumor development, including initiation, promotion and metastasis. Phenformin, a biguanide drug, has been shown to play a more efficient anti-tumor function than another well-known biguanide drug, metformin, which has been reported to control the expression of pro-inflammatory cytokines; however, little is known about the effects of phenformin on skin inflammation. This study used a mouse acute inflammation model, ex vivo skin organ cultures and in vitro human primary keratinocyte cultures to demonstrate that phenformin can suppress acute skin inflammatory responses induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in vivo and significantly suppresses the pro-inflammatory cytokines IL-1β, IL-6 and IL-8 in human primary keratinocytes in vitro. The suppression of pro-inflammatory cytokine expression by phenformin was not directly through regulation of the MAPK or NF-κB pathways, but by controlling the expression of c-Myc in human keratinocytes. We demonstrated that the overexpression of c-Myc can induce pro-inflammatory cytokine expression and counteract the suppressive effect of phenformin on cytokine expression in keratinocytes. In contrast, the down-regulation of c-Myc produces effects similar to phenformin, both in cytokine expression by keratinocytes in vitro and in skin inflammation in vivo. Finally, we showed that phenformin, as an AMPK activator, down-regulates the expression of c-Myc through regulation of the AMPK/mTOR pathways. In summary, phenformin inhibits the expression of pro-inflammatory cytokines in keratinocytes through the down-regulation of c-Myc expression to play an anti-inflammation function in the skin.
Collapse
Affiliation(s)
- Guanyi Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Dingyang Li
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Liwei Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Qiuping Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Dexuan Zhuang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Panpan Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Pediatrics Dentistry, Department of Preventive Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Ling Hu
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Huiting Deng
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Jianfeng Sun
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
| | - Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Jing Guo
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
- Correspondence: (J.G.); (X.W.)
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan 250012, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo 315000, China
- Correspondence: (J.G.); (X.W.)
| |
Collapse
|
31
|
Bergandi L, Flutto T, Valentini S, Thedy L, Pramotton R, Zenato S, Silvagno F. Whey Derivatives and Galactooligosaccharides Stimulate the Wound Healing and the Function of Human Keratinocytes through the NF-kB and FOXO-1 Signaling Pathways. Nutrients 2022; 14:nu14142888. [PMID: 35889845 PMCID: PMC9319648 DOI: 10.3390/nu14142888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Skin repair requires the activation of keratinocytes and is mediated by controlled inflammation and cell migration and proliferation, ending with the regeneration of well-differentiated cell layers. Whey derivatives contain galactooligosaccharides (GOS), which have potential beneficial effects on wound healing due to their activity as toll-like receptor ligands, although their direct nonprebiotic effects in the skin have not yet been described. In this study, we investigated the effects of different whey-derived products and purified GOS on a human keratinocyte cell line. We found that the inflammatory cytokine interleukin-8 (IL-8) was upregulated by nuclear factor kappa B (NF-kB) signaling triggered by whey derivatives and GOS and that wound healing was accelerated by promoting cell migration and the loss of E-cadherin in the absence of epithelial–mesenchymal transition. Interestingly, the treatments enhanced the mitochondrial function in association with the translocation of the Forkhead Box O1 (FOXO-1) transcription factor. Finally, we detected the increased expression of the differentiation markers induced by GOS and whey derivatives. All together, our results show that GOS-containing products can promote wound closure and skin health by direct activity on keratinocyte functions. Among the preparations tested, the fermented compound produced by autochthonous microorganisms was the most active in modulating keratinocyte activity, supporting the biological value of whey derivatives for health.
Collapse
Affiliation(s)
| | - Tania Flutto
- Institut Agricole Régional, 11100 Aosta, Italy; (T.F.); (S.V.); (L.T.); (R.P.); (S.Z.)
| | - Sabina Valentini
- Institut Agricole Régional, 11100 Aosta, Italy; (T.F.); (S.V.); (L.T.); (R.P.); (S.Z.)
| | - Laura Thedy
- Institut Agricole Régional, 11100 Aosta, Italy; (T.F.); (S.V.); (L.T.); (R.P.); (S.Z.)
| | - Rita Pramotton
- Institut Agricole Régional, 11100 Aosta, Italy; (T.F.); (S.V.); (L.T.); (R.P.); (S.Z.)
| | - Simona Zenato
- Institut Agricole Régional, 11100 Aosta, Italy; (T.F.); (S.V.); (L.T.); (R.P.); (S.Z.)
| | - Francesca Silvagno
- Department of Oncology, University of Torino, 10126 Torino, Italy;
- Correspondence:
| |
Collapse
|
32
|
Ortiz-Lopez LI, Choudhary V, Bollag WB. Updated Perspectives on Keratinocytes and Psoriasis: Keratinocytes are More Than Innocent Bystanders. PSORIASIS (AUCKLAND, N.Z.) 2022; 12:73-87. [PMID: 35529056 PMCID: PMC9075909 DOI: 10.2147/ptt.s327310] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/08/2022] [Indexed: 02/02/2023]
Abstract
Psoriasis is a complex disease triggered by genetic, immunologic, and environmental stimuli. Many genes have been linked to psoriasis, like the psoriasis susceptibility genes, some of which are critical in keratinocyte biology and epidermal barrier function. Still, the exact pathogenesis of psoriasis is unknown. In the disease, the balance between the proliferative and differentiative processes of keratinocytes becomes altered. Multiple studies have highlighted the role of dysregulated immune cells in provoking the inflammatory responses seen in psoriasis. In addition to immune cells, accumulating evidence shows that keratinocytes are involved in psoriasis pathogenesis, as discussed in this review. Although certain immune cell-derived factors stimulate keratinocyte hyperproliferation, activated keratinocytes can also produce anti-microbial peptides, cytokines, and chemokines that can promote their proliferation, as well as recruit immune cells to help initiate and reinforce inflammatory feedback loops. Psoriatic keratinocytes also show intrinsic differences from normal keratinocytes even after removal from the in vivo inflammatory environment; thus, psoriatic keratinocytes have been found to exhibit abnormal calcium metabolism and possible epigenetic changes that contribute to psoriasis. The Koebner phenomenon, in which injury promotes the development of psoriatic lesions, also provides evidence for keratinocytes' contributions to disease pathogenesis. Furthermore, transgenic mouse studies have confirmed the importance of keratinocytes in the etiology of psoriasis. Finally, in addition to immune cells and keratinocytes, data in the literature support roles for other cell types, tissues, and systems in psoriasis development. These other contributors are all potential targets for therapies, suggesting the importance of a holistic approach when treating psoriasis.
Collapse
Affiliation(s)
- Laura I Ortiz-Lopez
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Wendy B Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
- Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
33
|
Singh M, Akkaya S, Preuß M, Rademacher F, Tohidnezhad M, Kubo Y, Behrendt P, Weitkamp JT, Wedel T, Lucius R, Gläser R, Harder J, Bayer A. Platelet-Released Growth Factors Influence Wound Healing-Associated Genes in Human Keratinocytes and Ex Vivo Skin Explants. Int J Mol Sci 2022; 23:ijms23052827. [PMID: 35269967 PMCID: PMC8911300 DOI: 10.3390/ijms23052827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Platelet-released growth factors (PRGFs) or other thrombocyte concentrate products, e.g., Platelet-Rich Fibrin (PRF), have become efficient tools of regenerative medicine in many medical disciplines. In the context of wound healing, it has been demonstrated that treatment of chronic or complicated wounds with PRGF or PRF improves wound healing in the majority of treated patients. Nevertheless, the underlying cellular and molecular mechanism are still poorly understood. Therefore, we aimed to analyze if PRGF-treatment of human keratinocytes caused the induction of genes encoding paracrine factors associated with successful wound healing. The investigated genes were Semaphorin 7A (SEMA7A), Angiopoietin-like 4 (ANGPLT4), Fibroblast Growth Factor-2 (FGF-2), Interleukin-32 (IL-32), the CC-chemokine-ligand 20 (CCL20), the matrix-metalloproteinase-2 (MMP-2), the chemokine C-X-C motif chemokine ligand 10 (CXCL10) and the subunit B of the Platelet-Derived Growth Factor (PDGFB). We observed a significant gene induction of SEMA7A, ANGPLT4, FGF-2, IL-32, MMP-2 and PDGFB in human keratinocytes after PRGF treatment. The CCL20- and CXCL10 gene expressions were significantly inhibited by PRGF therapy. Signal transduction analyses revealed that the PRGF-mediated gene induction of SEMA7A, ANGPLT4, IL-32 and MMP-2 in human keratinocytes was transduced via the IL-6 receptor pathway. In contrast, EGF receptor signaling was not involved in the PRGF-mediated gene expression of analyzed genes in human keratinocytes. Additionally, treatment of ex vivo skin explants with PRGF confirmed a significant gene induction of SEMA7A, ANGPLT4, MMP-2 and PDGFB. Taken together, these results describe a new mechanism that could be responsible for the beneficial wound healing properties of PRGF or related thrombocytes concentrate products such as PRF.
Collapse
Affiliation(s)
- Michael Singh
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Serhat Akkaya
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Mark Preuß
- Department for Vascular Medicine, Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Franziska Rademacher
- Department of Dermatology, Venerology and Allergology, Kiel University, 24105 Kiel, Germany; (F.R.); (R.G.); (J.H.)
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074 Aachen, Germany; (M.T.); (Y.K.)
| | - Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074 Aachen, Germany; (M.T.); (Y.K.)
| | - Peter Behrendt
- Department of Trauma Surgery, University Medical Center of Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany;
| | - Jan-Tobias Weitkamp
- Department of Oral and Maxillofacial Surgery, University Medical Center of Schleswig-Holstein, Campus Kiel, 24015 Kiel, Germany;
| | - Thilo Wedel
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Regine Gläser
- Department of Dermatology, Venerology and Allergology, Kiel University, 24105 Kiel, Germany; (F.R.); (R.G.); (J.H.)
| | - Jürgen Harder
- Department of Dermatology, Venerology and Allergology, Kiel University, 24105 Kiel, Germany; (F.R.); (R.G.); (J.H.)
| | - Andreas Bayer
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
- Correspondence:
| |
Collapse
|
34
|
Luo Y, Zhu Z, Li B, Bai X, Fang H, Qiao P, Chen J, Zhang C, Zhi D, Dang E, Wang G. Keratin 17 Promotes T Cell Response in Allergic Contact Dermatitis by Upregulating C-C Motif Chemokine Ligand 20. Front Immunol 2022; 13:764793. [PMID: 35178048 PMCID: PMC8845002 DOI: 10.3389/fimmu.2022.764793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Allergic contact dermatitis (ACD) is a delayed-type hypersensitivity response to skin contact allergens in which keratinocytes are critical in the initiation of early responses. Keratin 17 (K17) is a cytoskeletal protein inducible under stressful conditions and regulates multiple cellular processes, especially in skin inflammatory diseases; however, knowledge regarding its contribution to ACD pathogenesis remains ill defined. In the present study, we clarified the proinflammatory role of K17 in an oxazolone (OXA)-induced contact hypersensitivity (CHS) murine model and identified the underlying molecular mechanisms. Our results showed that K17 was highly expressed in the lesional skin of ACD patients and OXA-induced CHS mice. Mice lacking K17 exhibited alleviated OXA-induced skin inflammation, including milder ear swelling, a reduced frequency of T cell infiltration, and decreased inflammatory cytokine levels. In vitro, K17 stimulated and activated human keratinocytes to produce plenty of proinflammatory mediators, especially the chemokine CCL20, and promoted keratinocyte-mediated T cell trafficking. The neutralization of CCL20 with a CCL20-neutralizing monoclonal antibody significantly alleviated OXA-induced skin inflammation in vivo. Moreover, K17 could translocate into the nucleus of activated keratinocytes through a process dependent on the nuclear-localization signal (NLS) and nuclear-export signal (NES) sequences, thus facilitating the activation and nuclear translocation of signal transducer and activator of transcription 3 (STAT3), further promoting the production of CCL20 and T cell trafficking to the lesional skin. Taken together, these results highlight the novel roles of K17 in driving allergen-induced skin inflammation and suggest targeting K17 as a potential strategy for ACD.
Collapse
Affiliation(s)
- Yixin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaocui Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dalong Zhi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
35
|
Ha S, Vetrivel P, Kim S, Bhosale P, Kim H, Pak J, Heo J, Kim Y, Kim G. Inhibitory effect of membrane‑free stem cell components derived from adipose tissues on skin inflammation in keratinocytes. Mol Med Rep 2022; 25:125. [DOI: 10.3892/mmr.2022.12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/24/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sang Ha
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam‑do 52828, Republic of Korea
| | - Preethi Vetrivel
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam‑do 52828, Republic of Korea
| | - Seong Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam‑do 52828, Republic of Korea
| | - Pritam Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam‑do 52828, Republic of Korea
| | - Hun Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam‑do 52828, Republic of Korea
| | - Jung Pak
- T‑Stem Co., Ltd., Changwon, Gyeongsangnam‑do 51573, Republic of Korea
| | - Jeong Heo
- Biological Resources Research Group, Bioenvironmental Science and Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Gyeongsangnam‑do 52834, Republic of Korea
| | - Young Kim
- T‑Stem Co., Ltd., Changwon, Gyeongsangnam‑do 51573, Republic of Korea
| | - Gon Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam‑do 52828, Republic of Korea
| |
Collapse
|
36
|
Bocheńska K, Moskot M, Gabig-Cimińska M. Use of Cytokine Mix-, Imiquimod-, and Serum-Induced Monoculture and Lipopolysaccharide- and Interferon Gamma-Treated Co-Culture to Establish In Vitro Psoriasis-like Inflammation Models. Cells 2021; 10:2985. [PMID: 34831208 PMCID: PMC8616089 DOI: 10.3390/cells10112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Psoriasis (Ps), commonly perceived as a skin and joint disorder, has a complex basis and results from disturbances in the sophisticated network between skin and the immune system. This makes it difficult to properly depict the complete pathomechanism on an in vitro scale. Deciphering the complicated or even subtle modulation of intra- and intercellular factors, assisted by the implementation of in vitro human skin models, may provide the opportunity to dissect the disease background step by step. In addition to reconstructed artificial skin substitutes, which mimic the native physiological context, in vitro models are conducive to the broad "3 Rs" philosophy (reduce, refine, and replace) and represent important tools for basic and applied skin research. To meet the need for a more comprehensive in vitro Ps model, a set of various experimental conditions was applied in this study. The selection of in vitro treatment that mimicked the Ps phenotype was illustrated by analyses of discriminating biomarker genes involved in the pathogenesis of the disease, i.e., keratinocyte differentiation markers, antimicrobial peptides, chemokines, and proliferation markers. This resulted in a reproducible protocol for the use of the primary skin keratinocyte (pKC) monoculture treated with a cytokine cocktail (5MIX, i.e., interleukin (IL) 1 alpha (IL-1α), IL-17A, IL-22, oncostatin M (OSM), and tumour necrosis factor alpha (TNF-α)) at a calcium (Ca2+) concentration (i.e., 2 mM) in an applied medium, which best mirrored the in vitro Ps-like inflammatory model. In addition, based on waste skin material, the method has the potential for extensive experimentation, both in detailed molecular studies and preclinical tests.
Collapse
Affiliation(s)
- Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
- Laboratory of Molecular Biology of Human Skin Diseases, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
- Laboratory of Molecular Biology of Human Skin Diseases, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| |
Collapse
|
37
|
Sigurgrimsdottir H, Bjornsdottir EO, Eysteinsdottir JH, Olafsson JH, Sigurgeirsson B, Agnarsson BA, Einarsdottir HK, Freysdottir J, Ludviksson BR. Keratinocytes secrete multiple inflammatory and immune biomarkers, which are regulated by LL‐37, in a psoriasis mimicking microenvironment. Scand J Immunol 2021; 94:e13096. [DOI: 10.1111/sji.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Hildur Sigurgrimsdottir
- Faculty of Medicine University of Iceland Reykjavík Iceland
- Department of Immunology Landspitali—the National University Hospital of Iceland Reykjavík Iceland
| | - Eva Osp Bjornsdottir
- Faculty of Medicine University of Iceland Reykjavík Iceland
- Department of Immunology Landspitali—the National University Hospital of Iceland Reykjavík Iceland
| | - Jenna Huld Eysteinsdottir
- Faculty of Medicine University of Iceland Reykjavík Iceland
- Department of Immunology Landspitali—the National University Hospital of Iceland Reykjavík Iceland
| | | | | | - Bjarni A. Agnarsson
- Department of Pathology Landspitali—the National University Hospital of Iceland Reykjavík Iceland
| | | | - Jona Freysdottir
- Faculty of Medicine University of Iceland Reykjavík Iceland
- Department of Immunology Landspitali—the National University Hospital of Iceland Reykjavík Iceland
| | - Bjorn Runar Ludviksson
- Faculty of Medicine University of Iceland Reykjavík Iceland
- Department of Immunology Landspitali—the National University Hospital of Iceland Reykjavík Iceland
| |
Collapse
|
38
|
Extracellular Vesicles in Skin Wound Healing. Pharmaceuticals (Basel) 2021; 14:ph14080811. [PMID: 34451909 PMCID: PMC8400229 DOI: 10.3390/ph14080811] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Each year, millions of individuals suffer from a non-healing wound, abnormal scarring, or injuries accompanied by an infection. For these cases, scientists are searching for new therapeutic interventions, from which one of the most promising is the use of extracellular vesicles (EVs). Naturally, EV-based signaling takes part in all four wound healing phases: hemostasis, inflammation, proliferation, and remodeling. Such an extensive involvement of EVs suggests exploiting their action to modulate the impaired healing phase. Furthermore, next to their natural wound healing capacity, EVs can be engineered for better defined pharmaceutical purposes, such as carrying specific cargo or targeting specific destinations by labelling them with certain surface proteins. This review aims to promote scientific awareness in basic and translational research of EVs by summarizing the current knowledge about their natural role in each stage of skin repair and the most recent findings in application areas, such as wound healing, skin regeneration, and treatment of dermal diseases, including the stem cell-derived, plant-derived, and engineered EVs.
Collapse
|
39
|
Brandum EP, Jørgensen AS, Rosenkilde MM, Hjortø GM. Dendritic Cells and CCR7 Expression: An Important Factor for Autoimmune Diseases, Chronic Inflammation, and Cancer. Int J Mol Sci 2021; 22:ijms22158340. [PMID: 34361107 PMCID: PMC8348795 DOI: 10.3390/ijms22158340] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Chemotactic cytokines-chemokines-control immune cell migration in the process of initiation and resolution of inflammatory conditions as part of the body's defense system. Many chemokines also participate in pathological processes leading up to and exacerbating the inflammatory state characterizing chronic inflammatory diseases. In this review, we discuss the role of dendritic cells (DCs) and the central chemokine receptor CCR7 in the initiation and sustainment of selected chronic inflammatory diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), and psoriasis. We revisit the binary role that CCR7 plays in combatting and progressing cancer, and we discuss how CCR7 and DCs can be harnessed for the treatment of cancer. To provide the necessary background, we review the differential roles of the natural ligands of CCR7, CCL19, and CCL21 and how they direct the mobilization of activated DCs to lymphoid organs and control the formation of associated lymphoid tissues (ALTs). We provide an overview of DC subsets and, briefly, elaborate on the different T-cell effector types generated upon DC-T cell priming. In the conclusion, we promote CCR7 as a possible target of future drugs with an antagonistic effect to reduce inflammation in chronic inflammatory diseases and an agonistic effect for boosting the reactivation of the immune system against cancer in cell-based and/or immune checkpoint inhibitor (ICI)-based anti-cancer therapy.
Collapse
|
40
|
Wang L, Yang M, Wang X, Cheng B, Ju Q, Eichenfield DZ, Sun BK. Glucocorticoids Promote CCL20 Expression in Keratinocytes. Br J Dermatol 2021; 185:1200-1208. [PMID: 34157145 PMCID: PMC9290737 DOI: 10.1111/bjd.20594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
Glucocorticoids (GC) are generally envisioned as immunosuppressive, but in conditions such as rosacea and perioral dermatitis they can lead to increased skin inflammation. In lung epithelia, GC promote expression of the pro-inflammatory cytokine CCL20, which contributes to steroid-resistant asthma. In the skin, CCL20 stimulates inflammation by recruiting Th17 T-lymphocytes and dendritic cells and is elevated in papulopustular rosacea. The objective of this study was to understand if and how glucocorticoids affect CCL20 expression in human keratinocytes. CCL20 expression was assessed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and ELISA. Selective inhibition of candidate genes and signaling pathways was performed using RNA interference and chemical inhibitors. The binding of activated glucocorticoid receptor to genomic DNA was determined by chromatin immunoprecipitation, and enhancer activity of genomic sequences was measured with a reporter assay. We found that GC treatment increased CCL20 expression in human keratinocytes and murine skin, both in the undisturbed state and with tumor necrosis factor-α (TNFα) stimulation. GC repressed pro-inflammatory signaling pathways including NFκB and p38/MAPK, but these inhibitory effects were opposed by the direct binding of activated glucocorticoid receptor to the CCL20 enhancer, promoting CCL20 expression. Viewed together, these findings demonstrate a mechanism by which GC induce expression of CCL20 in keratinocytes, which may contribute to the inflammation seen in steroid-exacerbated skin conditions.
Collapse
Affiliation(s)
- L Wang
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.,Department of Dermatology, University of California San Diego, La Jolla, California, 92093, USA
| | - M Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - X Wang
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - B Cheng
- Department of Dermatology, University of California San Diego, La Jolla, California, 92093, USA
| | - Q Ju
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - D Z Eichenfield
- Department of Dermatology, University of California San Diego, La Jolla, California, 92093, USA
| | - B K Sun
- Department of Dermatology, University of California San Diego, La Jolla, California, 92093, USA
| |
Collapse
|
41
|
Benezeder T, Gehad A, Patra V, Clark R, Wolf P. Induction of IL-1β and antimicrobial peptides as a potential mechanism for topical dithranol. Exp Dermatol 2021; 30:841-846. [PMID: 33629779 PMCID: PMC8247942 DOI: 10.1111/exd.14310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/27/2021] [Accepted: 02/13/2021] [Indexed: 01/01/2023]
Abstract
Topical dithranol is effective in autoimmune conditions like alopecia areata, inducing hair regrowth in a high percentage of cases. Exact mechanisms of dithranol in alopecia areata, with seemingly healthy epidermis besides altered hair follicles, are not well understood. To better understand dithranol's mechanisms on healthy skin, we analysed its effect on normal murine as well as xenografted human skin. We found a strong increase in mRNA expression of anti-microbial peptides (AMPs) (eg Lcn2, Defb1, Defb3, S100a8, S100a9), keratinocyte differentiation markers (eg Serpinb3a, Flg, Krt16, Lce3e) and inflammatory cytokines (eg Il1b and Il17) in healthy murine skin. This effect was paralleled by inflammation and disturbed skin barrier, as well as an injury response resulting in epidermal hyperproliferation, as observed in murine and xenografted adult human skin. This contact response and disturbed barrier induced by dithranol might lead via a vicious loop between AMPs such as S100a8/a9 (that led to skin swelling itself after topical application) and cytokines such as IL-1β to an immune suppressive environment in the skin. A better understanding of the skin's physiologic response to dithranol may open up new avenues for the establishment of novel therapeutics (including AMP-related/interfering molecules) for certain skin conditions, such as alopecia areata.
Collapse
Affiliation(s)
- Theresa Benezeder
- Department of DermatologyMedical University of GrazGrazStyriaAustria
- Department of DermatologyBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Ahmed Gehad
- Department of DermatologyBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - VijayKumar Patra
- Department of DermatologyMedical University of GrazGrazStyriaAustria
- Centre International de Recherche en InfectiologieInstitut National de la Santé et de la Recherche Médicale, U1111LyonFrance
| | - Rachael Clark
- Department of DermatologyBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Peter Wolf
- Department of DermatologyMedical University of GrazGrazStyriaAustria
| |
Collapse
|
42
|
Meitei HT, Jadhav N, Lal G. CCR6-CCL20 axis as a therapeutic target for autoimmune diseases. Autoimmun Rev 2021; 20:102846. [PMID: 33971346 DOI: 10.1016/j.autrev.2021.102846] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Chemokine receptor CCR6 is expressed on various cells such as B cells, immature dendritic cells, innate lymphoid cells (ILCs), regulatory CD4 T cells, and Th17 cells. CCL20 is the only known high-affinity ligand that binds to CCR6 and drives CCR6+ cells' migration in tissues. CCL20 is mainly produced by epithelial cells, and its expression is increased by several folds under inflammatory conditions. Genome-wide association studies (GWAS) in patients with inflammatory bowel disease (IBD), psoriasis (PS), rheumatoid arthritis (RA), and multiple sclerosis (MS) showed a very strong correlation between the expression of CCR6 and disease severity. It has been shown that disruption of CCR6-CCL20 interaction by using antibodies or antagonists prevents the migration of CCR6 expressing immune cells at the site of inflammation and reduces the severity of the disease. This review discussed the importance of the CCR6-CCL20 axis in IBD, PS, RA, and MS, and recent advances in targeting the CCR6-CCL20 in controlling these autoimmune diseases.
Collapse
Affiliation(s)
| | - Nandadeep Jadhav
- National Centre for Cell Science, Ganeshkhind, Pune MH-411007, India
| | - Girdhari Lal
- National Centre for Cell Science, Ganeshkhind, Pune MH-411007, India.
| |
Collapse
|
43
|
Tohyama M, Matsumoto A, Tsuda T, Dai X, Shiraishi K, Sayama K. Suppression of IL-17A-induced CCL20 production by cytokine inducible SH2-containing protein 1 in epidermal keratinocytes. J Dermatol Sci 2021; 101:202-209. [PMID: 33509657 DOI: 10.1016/j.jdermsci.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Lesions of atopic dermatitis have fewer Th17 cells than those of psoriasis, resulting in frequent skin infections. Expression of CCL20, a chemokine that is important for recruiting Th17 cells, is suppressed in the lesions of atopic dermatitis. We previously reported that IL-4 induces the expression of cytokine-inducible SH2-containing protein 1 (CIS1), a member of the CIS/SOCS family, in epidermal keratinocytes. OBJECTIVE To investigate whether CIS1 influences CCL20 production in epidermal keratinocytes. METHODS Expression of CIS1 was examined in atopic dermatitis skin and in cultured keratinocytes. The effects of overexpression of CIS1 on CCL20 production by IL-17A, and on signaling pathways inhibited by CIS1, were assessed in vitro. RESULTS Expression of CIS1 was enhanced in the basal layer of the lesional epidermis of skin with atopic dermatitis. When CIS1 was expressed in keratinocytes using adenoviral vectors, IL-17A-induced CCL20 expression, but not HBD2 or S100A7 expression, was significantly suppressed. TNF-α/IL-1-induced CCL20 production was not altered by CIS1. Overexpression of CIS1 attenuated IL-17A-induced ERK phosphorylation. ERK phosphorylation was mediated by the Act1 and Src family kinase pathways. CIS1 overexpression suppressed Src phosphorylation. Among the Src family kinases, the Yes kinase may have an important role because knockdown of Yes in epidermal keratinocytes resulted in suppression of ERK phosphorylation and CCL20 mRNA expression by IL-17A. CONCLUSION CIS1 induced by Th2 cytokines has the ability to change the response of epidermal keratinocytes to IL-17A by suppression of Src family kinases.
Collapse
Affiliation(s)
- Mikiko Tohyama
- Department of Dermatology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime, Japan; Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan.
| | - Akira Matsumoto
- Department of Infection and Host Defenses, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Teruko Tsuda
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Xiuju Dai
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ken Shiraishi
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
44
|
Liu L, Sun XY, Lu Y, Song JK, Xing M, Chen X, Luo Y, Ru Y, Chen ST, Li HJ, Li B, Li X. Fire Needle Therapy for the Treatment of Psoriasis: A Quantitative Evidence Synthesis. J Altern Complement Med 2021; 27:24-37. [PMID: 32757941 DOI: 10.1089/acm.2019.0409] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-ying Sun
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-kun Song
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Xing
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si-ting Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-jin Li
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
45
|
Giganti G, Atif M, Mohseni Y, Mastronicola D, Grageda N, Povoleri GA, Miyara M, Scottà C. Treg cell therapy: How cell heterogeneity can make the difference. Eur J Immunol 2020; 51:39-55. [PMID: 33275279 DOI: 10.1002/eji.201948131] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
CD4+ CD25high CD127low/- FOXP3+ T regulatory cells are responsible for maintaining immune tolerance and controlling excessive immune responses. Treg cell use in pre-clinical animal models showed the huge therapeutic potential of these cells in immune-mediated diseases and laid the foundations for their applications in therapy in humans. Currently, there are several clinical trials utilizing the adoptive transfer of Treg cells to reduce the morbidity in autoimmune disorders, allogeneic HSC transplantation, and solid organ transplantation. However, a large part of them utilizes total Treg cells without distinction of their biological variability. Many studies on the heterogeneity of Treg cell population revealed distinct subsets with different functions in the control of the immune response and induction of peripheral tolerance. Some of these subsets also showed a role in controlling the general homeostasis of non-lymphoid tissues. All these Treg cell subsets and their peculiar properties can be therefore exploited to develop novel therapeutic approaches. This review describes these functionally distinct subsets, their phenotype, homing properties and functions in lymphoid and non-lymphoid tissues. In addition, we also discuss the limitations in using Treg cells as a cellular therapy and the strategies to enhance their efficacy.
Collapse
Affiliation(s)
- Giulio Giganti
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Muhammad Atif
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Yasmin Mohseni
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Daniela Mastronicola
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Nathali Grageda
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Giovanni Am Povoleri
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Makoto Miyara
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Cristiano Scottà
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| |
Collapse
|
46
|
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther 2020; 222:107784. [PMID: 33316286 DOI: 10.1016/j.pharmthera.2020.107784] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
47
|
The Immune Function of Keratinocytes in Anti-Pathogen Infection in the Skin. INTERNATIONAL JOURNAL OF DERMATOLOGY AND VENEREOLOGY 2020. [DOI: 10.1097/jd9.0000000000000094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Kim S, Lee SY, Bae S, Lee JK, Hwang K, Go H, Lee CW. Pellino1 promotes chronic inflammatory skin disease via keratinocyte hyperproliferation and induction of the T helper 17 response. Exp Mol Med 2020; 52:1537-1549. [PMID: 32873845 PMCID: PMC8080721 DOI: 10.1038/s12276-020-00489-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
Psoriasis is one of the most common immune-mediated chronic inflammatory skin diseases. However, little is known about the molecular mechanism underlying the immunological circuits that maintain innate and adaptive immune responses in established psoriasis. In this study, we found that the Pellino1 (Peli1) ubiquitin E3 ligase is activated by innate pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs), and is highly upregulated in human psoriatic skin lesions and murine psoriasis-like models. Increased Peli1 expression is strongly correlated with the immunopathogenesis of psoriasis by activating hyperproliferation of keratinocytes in the S and G2/M phases of the cell cycle and promoting chronic skin inflammation. Furthermore, Peli1-induced psoriasis-like lesions showed significant changes in the expression levels of several T helper 17 (Th17)-related cytokines, such as IL-17a, IL-21, IL-22, IL-23, and IL-24, indicating that overexpression of Peli1 resulted in the sequential engagement of the Th17 cell response. However, the overexpression of Peli1 in T cells was insufficient to trigger psoriasis, while T cells were indispensable for disease manifestation. In summary, our findings demonstrate that Peli1 is a critical cell cycle activator of innate immunity, which subsequently links Th17 cell immune responses to the psoriatic microenvironment. An immune-regulating protein that mediates chronic inflammation in the skin offers a new therapeutic target for the autoimmune disorder psoriasis. A research team from South Korea led by Chang-Woo Lee from Sungkyunkwan University School of Medicine in Suwon and Heounjeong Go from the University of Ulsan College of Medicine in Seoul have discovered that Pellino1, a protein known to modulate immune responses to pathogens, is also found in abundance in the skin lesions of people with psoriasis. Using mouse models, the researchers showed how Pellino1 induces the proliferation of certain skin cells and triggers an inflammatory state through the activation of small proteins and immune cells normally involved in defense against infection. Targeting strategy that inactivate Pellino1 could help blunt the inflammatory signaling in the skin that drives the development of psoriatic lesions.
Collapse
Affiliation(s)
- Suhyeon Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Si-Yeon Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Seoyoon Bae
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jin-Kwan Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Kyungrim Hwang
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Heounjeong Go
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
| |
Collapse
|
49
|
Abstract
Psoriasis is chronic, immune-mediated, inflammatory disease with a multifactorial etiology that affects the skin tissue and causes the appearance of dry and scaly lesions of anywhere on the body. The study of the pathophysiology of psoriasis reveals a network of immune cells that, together with their cytokines, initiates a chronic inflammatory response. Previously attributed to T helper (Th)1 cytokines, currently the Th17 cytokine family is the major effector in the pathogenesis of psoriatic disease and strongly influences the inflammatory pattern established during the disease activity. In addition, the vast network of cells that orchestrates the pathophysiology makes psoriasis complex to study. Along with this, variations in genes that code the cytokines make psoriasis more clinically heterogeneous and present a challenge for the development of drugs that can be used in the treatment of the patients with this disease. Therefore, it is important to clarify the mechanisms by which the cytokines are involved in the pathophysiology of psoriasis and how this knowledge is translated to the medical practice.
Collapse
Affiliation(s)
| | - Edna Maria Vissoci Reiche
- Research Laboratory in Applied Immunology, State University of Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Paraná, Brazil
| | - Andréa Name Colado Simão
- Research Laboratory in Applied Immunology, State University of Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Paraná, Brazil.
| |
Collapse
|
50
|
Cheng Y, Lu Q, Shi N, Zhou Q, Rong J, Li L, Wang L, Liu C. Aberrant expression of the UPF1 RNA surveillance gene disturbs keratinocyte homeostasis by stabilizing AREG. Int J Mol Med 2020; 45:1163-1175. [PMID: 32124941 PMCID: PMC7053862 DOI: 10.3892/ijmm.2020.4487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/22/2020] [Indexed: 11/23/2022] Open
Abstract
The up‑frameshift suppressor 1 homolog (UPF1) RNA surveillance gene is a core element in the nonsense‑mediated RNA decay (NMD) pathway, which impacts a broad spectrum of biological processes in a cell‑specific manner. In the present study, the contribution of the NMD pathway to psoriasis lesions and its moderating effects on the biological processes of keratinocytes was reported. Sanger sequencing for skin scales from two patients with psoriasis identified two mRNA mutations (c.2935_2936insA and c.2030‑2081del) in the UPF1 gene. The somatic mutants produced truncated UPF1 proteins and perturbed the NMD pathway in cells, leading to the upregulation of NMD substrates. As the most abundant epidermal growth factor receptor ligand in keratinocytes, it was concluded that amphiregulin (AREG) mRNA is a natural NMD substrate, that is dependent on its 3' untranslated region sequence. Perturbed NMD modulated keratinocyte homeostasis in an AREG‑dependent but nonidentical manner, which highlighted the unique characteristics of NMD in keratinocytes. By targeting AREG mRNA post‑transcriptionally, the UPF1‑NMD pathway contributed to an imbalance between proliferation on the one hand, and apoptosis and abnormal differentiation, migration and inflammatory response on the other, in keratinocytes, which indicated a role of the NMD pathway in the full development of keratinocyte‑related morbidity and skin diseases.
Collapse
Affiliation(s)
- Yaojia Cheng
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121
| | - Qiuping Lu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121
| | - Nannan Shi
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121
| | - Qiongyan Zhou
- Department of Dermatology, Affiliated Hospital, Ningbo University, Ningbo, Zhejiang 315211
| | - Jingjing Rong
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
| | - Liyun Li
- Information Centre, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Li Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121
| | - Chen Liu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121
| |
Collapse
|