1
|
Liu S, Zhang Y, Li G, Liang S. P2 purinergic signaling and pruritus. Neuropharmacology 2025; 275:110497. [PMID: 40334932 DOI: 10.1016/j.neuropharm.2025.110497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/18/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Pruritus is a common sensation that triggers scratching. Extracellular nucleotides and nucleosides, along with their receptors, primarily compose the purinergic signaling. The purinergic signaling mechanism in itch remains incompletely understood. Keratinocytes, fibroblasts, Langerhans cells, primary sensory nerve endings in the skin, and neurons and satellite glial cells in primary sensory ganglia (dorsal root ganglia and trigeminal ganglia) have been confirmed to express multiple subtypes of P2X and P2Y receptors. Purinergic signaling in the skin and primary sensory ganglia is involved in the pathological changes of skin pruritus, including atopic dermatitis, psoriasis, systemic sclerosis, diabetes complicated with pruritus, or other pruritus disorders. The interaction between P2 purinergic signaling and histamine receptors, transient receptor potential (TRP) channel receptors, and Mas-related G protein-coupled receptor member A3 (MrgprA3) receptors, which mediate itch signaling, is involved in the pathological process of skin pruritus. P2 purinergic receptor agonists can induce itching behaviors in animals. Targeted antagonism or inhibition of P2 purinergic receptors in the skin and primary sensory ganglia can alleviate pathological changes in skin pruritus. This review summarizes studies concluding that P2 receptors are involved in the pathogenesis of pruritus, with several showing potential as novel therapeutic options for alleviating pruritus.
Collapse
Affiliation(s)
- Shipan Liu
- Neuropharmacology Laboratory of Physiology Department, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; Class 2103, First Clinical Medical College of Nanchang University, Nanchang, 330031, China
| | - Yuanyuan Zhang
- Neuropharmacology Laboratory of Physiology Department, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Guilin Li
- Neuropharmacology Laboratory of Physiology Department, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
2
|
Szwarc-Hofbauer D, Simböck E, Hromada C, Stoiber M, Tomasch J, Weitzer G, Teuschl-Woller A. Purinergic receptors play a key role in shock wave-induced proliferation. Sci Rep 2025; 15:19138. [PMID: 40450090 DOI: 10.1038/s41598-025-02955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 05/16/2025] [Indexed: 06/03/2025] Open
Abstract
Shock wave treatment (SWT) is a non-invasive therapy applied in musculoskeletal and urological disorders, as well as in chronic wound regeneration. As the use of medical SWT broadens, it is important to better understand the molecular mechanisms underlying its success. Here, we identified P2X4 and P2Y2 purinergic receptors to be primarily expressed in C3H/10T1/2 mouse mesenchymal stromal cells and investigated their role in the initiation of the signaling events following SWT using single- and double-receptor knock-out (KO) cell lines. We show that SWT induced the expression of c-Jun and c-Fos within 30 min after stimulation and that the SWT-induced Erk1/2 pathway activation and immediate early gene expression were decreased in P2Y2-, P2X4- and P2Y2/P2X4-deficient cells. Importantly, SWT did not promote proliferation in P2Y2/P2X4-deficient cells, while loss of either one of the receptors significantly reduced the proliferative effect, indicating a cumulative effect of their loss. Finally, our data suggests a more prominent role of the P2Y2 receptor in SWT-induced cellular effects, since primarily its loss contributed to the observed changes. With these findings, we further the understanding of the molecular mechanisms of SWT and propose that the varying expression of purinergic receptors in tissues should be considered when establishing treatment protocols.
Collapse
Affiliation(s)
- Dorota Szwarc-Hofbauer
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Elisabeth Simböck
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Carina Hromada
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Michaela Stoiber
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Janine Tomasch
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Georg Weitzer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Department of Molecular Biology, Medical University of Vienna, Vienna, Austria
| | - Andreas Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
3
|
Cheung ST, Do Y, Kim E, Rella A, Goyarts E, Pernodet N, Wong YH. G Protein-Coupled Receptors in Skin Aging. J Invest Dermatol 2025; 145:749-765.e8. [PMID: 39186022 DOI: 10.1016/j.jid.2024.06.1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024]
Abstract
Skin aging is a complex biological process affected by a plethora of intrinsic and extrinsic factors that alter cutaneous functions through the modulations of signaling pathways and responses. Expressed in various cell types and skin tissue layers, G protein-coupled receptors (GPCRs) play a vital role in regulating skin aging. We have cataloged 156 GPCRs expressed in the skin and reviewed their roles in skin aging, such as pigmentation, loss of elasticity, wrinkles, rough texture, and aging-associated skin disorders. By exploring the GPCRs found in the skin, it may be possible to develop new treatment regimens for aging-associated skin conditions using GPCR ligands.
Collapse
Affiliation(s)
- Suet Ting Cheung
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yelim Do
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Eunah Kim
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Antonella Rella
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Earl Goyarts
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Nadine Pernodet
- Research and Development, The Estée Lauder Companies, New York, New York, USA; Estée Lauder Research Laboratories, Melville, New York, USA
| | - Yung Hou Wong
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China; Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
4
|
Mammano F, Paller AS, White TW. Connexin Hemichannel Inhibition and Human Genodermatoses. J Invest Dermatol 2025; 145:790-799. [PMID: 39269388 DOI: 10.1016/j.jid.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Pathogenic variants in genes encoding connexins that cause skin diseases, such as keratitis-ichthyosis-deafness (KID) syndrome and hidrotic ectodermal dysplasia (HED) or Clouston syndrome, display increased hemichannel activity. Mechanistic insights derived from biophysical studies of the variant connexins support the hypothesis that inhibition of the acquired hemichannel activity could alleviate epidermal pathology. Use of pharmacological blockers and engineered mAbs in mouse models of HED and KID confirm that hemichannel inhibition is a promising target for new therapeutic approaches to KID and HED. Insights from this work could apply to other connexin-based genetic skin diseases in which hemichannel activity is elevated.
Collapse
Affiliation(s)
- Fabio Mammano
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, Padova, Italy
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, USA.
| |
Collapse
|
5
|
Fujita Y, Biswas KB, Kawai Y, Takayama S, Masutani T, Iddamalgoda A, Sakamoto K. Mentha piperita leaf extract suppresses the release of ATP from epidermal keratinocytes and reduces dermal thinning as well as wrinkle formation. Int J Cosmet Sci 2024; 46:972-981. [PMID: 39049707 DOI: 10.1111/ics.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES To achieve a more beautiful and younger appearance, reducing wrinkles is a key concern. The process of wrinkle formation is complex and the development of truly effective cosmetic ingredients to reduce wrinkles remains a challenge. Recent studies have revealed a close relationship between wrinkles and skin thinning, suggesting that preventing skin thinning could also prevent wrinkle formation. In this study, we examined the role of extracellular adenosine triphosphate (eATP) in the progression of thinning, as eATP reportedly increases skin ageing factors, such as senescence-associated secreted phenotype (SASP) factors in epidermal cells. We determined the effects of Mentha piperita leaf extract on suppressing eATP to reduce thinning and wrinkles. METHODS Adenosine triphosphate (ATP) levels were measured in normal human epidermal keratinocytes (NHEK) in the presence of M. piperita leaf extract. Dryness, high pH, and UVB radiation were used as extrinsic ageing factors. Intrinsic skin ageing was evaluated by comparing cells from adults (AD-NHEK) and newborns (NB-NHEK). A placebo-controlled in vivo study was carried out with a formulation containing 1% M. piperita leaf extract. RESULTS The eATP levels were significantly higher in AD-NHEK compared with that in NB-NHEK cells. M. piperita leaf extract significantly decreased eATP levels in adult cells. Extrinsic ageing factors increased eATP levels in NHEK, whereas M. piperita leaf extract significantly suppressed eATP under all conditions. The active components of M. piperita leaf extract, luteolin glucuronide and rosmarinic acid, also decreased eATP. Moreover, compared with placebo lotion, M. piperita leaf extract-formulated lotion markedly increased dermal thickness and reduced wrinkles associated with crow's feet and the neck area. CONCLUSION We demonstrated for the first time that M. piperita leaf extract containing rosmarinic acid and luteolin-7-O-glucuronide has the potential to reduce eATP release from epidermal keratinocytes. An increase in eATP was observed not only during inflammation but also during natural ageing. Furthermore, the in vivo experiment revealing that 1% M. piperita leaf extract-containing lotion improved dermal thinning and wrinkles across multiple areas is attributed to the amelioration of dermal thinning. Thus, our data suggest the possibility of a novel cosmetic approach for reducing skin ageing by reducing eATP-mediated dermal thinning.
Collapse
Affiliation(s)
- Yukiko Fujita
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Kazal Boron Biswas
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Yuka Kawai
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Satoru Takayama
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Teruaki Masutani
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | | | - Kotaro Sakamoto
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| |
Collapse
|
6
|
Giraulo C, De Palma G, Plaitano P, Cicala C, Morello S. Insight into adenosine pathway in psoriasis: Elucidating its role and the potential therapeutical applications. Life Sci 2024; 357:123071. [PMID: 39307180 DOI: 10.1016/j.lfs.2024.123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Psoriasis is an inflammatory skin disease, that can manifest as different phenotypes, however its most common form is psoriasis vulgaris (plaque psoriasis), characterized by abnormal keratinocyte proliferation, leading to characteristic histopathological signs of acanthosis, hyperkeratosis and parakeratosis. For many years, there has been a debate regarding whether keratinocyte dysfunction leads to immune system dysregulation in psoriasis or vice versa. It is now understood that epidermal hyperplasia results from immune system activation. Besides epidermal hyperplasia, psoriatic skin shows leukocyte infiltration, evident angiogenesis in the papillary dermis, characterized by tortuous, dilated capillaries, as well as oedema. There is substantial early evidence that adenosine is a key mediator of the immune response; it derives from ATP hydrolysis and accumulates into tissue in response to systemic and local stress conditions, hypoxia, metabolic stress, inflammation. Adenosine controls several cell functions by signalling through its 4 receptor subtypes, A1, A2A, A2B and A3. Evidence suggests that adenosine may play a role in psoriasis pathogenesis by controlling several immune cell functions, keratinocyte proliferation, neo-angiogenesis. Expression of adenosine receptor varies in psoriatic skin, and this can significantly impact on tissue homeostasis. Indeed, an altered adenosine receptor profile may contribute to the dysregulation observed in psoriasis, affecting immune responses and inflammatory pathways. Here, we discuss the role of adenosine in regulating the functions of the main cell populations implied in the pathogenesis of psoriasis. Furthermore, we give evidence for adenosine signalling pathway as target for therapeutic intervention in psoriasis.
Collapse
Affiliation(s)
- Caterina Giraulo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Giacomo De Palma
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy; PhD Program in Nutraceuticals, Functional Foods and Human Health, University of Naples "Federico II", Napoli, NA, Italy
| | - Paola Plaitano
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy
| | - Carla Cicala
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy.
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy.
| |
Collapse
|
7
|
Yin L, Zhang E, Mao T, Zhu Y, Ni S, Li Y, Liu C, Fang Y, Ni K, Lu Y, Li H, Zhou M, Hu Q. Macrophage P2Y 6R activation aggravates psoriatic inflammation through IL-27-mediated Th1 responses. Acta Pharm Sin B 2024; 14:4360-4377. [PMID: 39525587 PMCID: PMC11544167 DOI: 10.1016/j.apsb.2024.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 11/16/2024] Open
Abstract
Purinergic signaling plays a causal role in the modulation of immune inflammatory response in the course of psoriasis, but its regulatory mechanism remains unclear. As a member of purinoceptors, P2Y6R mainly distributed in macrophages was significantly up-expressed in skin lesions from patients with psoriasis in the present study. Here, the severity of psoriasis was alleviated in imiquimod-treated mice with macrophages conditional knockout of P2Y6R, while the cell-chat algorithm showed there was a correlation between macrophage P2Y6R and Th1 cells mediated by IL-27. Mechanistically, P2Y6R enhanced PLC β /p-PKC/MAPK activation to induce IL-27 release dependently, which subsequently regulated the differentiation of Th1 cells, leading to erythematous and scaly plaques of psoriasis. Interestingly, we developed a novel P2Y6R inhibitor FS-6, which bonds with the ARG266 side chain of P2Y6R, exhibited remarkable anti-psoriasis effects targeting P2Y6R. Our study provides insights into the role of P2Y6R in the pathogenesis of psoriasis and suggests its potential as a target for the development of therapeutic interventions. A novel P2Y6R inhibitor FS-6 could be developed as an anti-psoriasis drug candidate for the clinic.
Collapse
Affiliation(s)
- Li Yin
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Enming Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Shurui Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yehong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yafei Fang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kexin Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuhe Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
8
|
de Carvalho Braga G, Francisco GR, Bagatini MD. Current treatment of Psoriasis triggered by Cytokine Storm and future immunomodulation strategies. J Mol Med (Berl) 2024; 102:1187-1198. [PMID: 39212718 DOI: 10.1007/s00109-024-02481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Psoriasis is a chronic condition caused by an inflammation mediated mainly by cytokines and T cells. In COVID-19, the same type of imbalance is common, generating the Cytokine Storm and promoting a worsening in the skin conditions of patients with autoimmune disorders, such as Psoriasis. In this context, one of the main mediators of immune responses presented by SARS-CoV-2 infected patients is the Purinergic System. This immunological resource is capable of stimulating the hyperinflammatory state presented by infected individuals, mainly by the activity of the P2X7 receptor, culminating in the Cytokine Storm and consequently in the Psoriasis crisis. Currently, different drugs are used for patients with Psoriasis, such as immunosuppressants and small molecules; however, the safety of these drugs in infected patients has not been analyzed yet. In this context, studies are being developed to evaluate the possible administration of these traditional drugs to COVID-19 patients with Psoriasis crisis. Along with that, researchers must evaluate the potential of administrating P2X7 antagonists to these patients as well, improving both the systemic and the dermatological prognostics of patients, by reducing the Cytokine Storm and its general effects, but also avoiding the provocation of Psoriasis crisis.
Collapse
|
9
|
Chun H, Lee H, Kim J, Yeo H, Hyung K, Song D, Kim M, Jun SH, Kang NG. Efficacy of Vitamin B12 and Adenosine Triphosphate in Enhancing Skin Radiance: Unveiled with a Drug-Target Interaction Deep Learning-Based Model. Curr Issues Mol Biol 2024; 46:9082-9092. [PMID: 39194754 DOI: 10.3390/cimb46080537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Skin radiance is crucial for enhancing facial attractiveness and is negatively affected by factors like hyperpigmentation and aging-related changes. Current treatments often lack comprehensive solutions for improving skin radiance. This study aimed to develop a cosmetic formula that enhances skin radiance by reducing hyperpigmentation and improving skin regeneration by targeting specific receptors-the endothelin receptor type B (EDNRB) for hyperpigmentation and the adiponectin receptor 1 (ADIPOR1) for sagging and wrinkles. To achieve this, we used artificial intelligence technologies to screen and select ingredients with an affinity for EDNRB and ADIPOR1. Vitamin B12 (VitB12) was identified as a molecule that targets EDNRB, which is involved in melanogenesis. Adenosine triphosphate (ATP) targets ADIPOR1, which is associated with skin regeneration. VitB12 successfully inhibited intracellular calcium elevation and melanogenesis induced by endothelin-1. In contrast, ATP increased the mRNA expression of collagen and elastin and promoted wound healing. Moreover, the VitB12 and ATP complex significantly increased the expression of hyaluronan synthases, which are crucial for skin hydration. Furthermore, in human participants, the application of the VitB12 and ATP complex to one-half of the face significantly improved skin radiance, elasticity, and texture. Our findings provide valuable insights for the development of skincare formulations.
Collapse
Affiliation(s)
- Hyeyeon Chun
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Hyejin Lee
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Jongwook Kim
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Hyerin Yeo
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Kyongeun Hyung
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Dayoung Song
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Moonju Kim
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Seung-Hyun Jun
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Nae-Gyu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| |
Collapse
|
10
|
Pawlowska R, Radzikowska-Cieciura E, Jafari S, Fastyn J, Korkus E, Gendaszewska-Darmach E, Zhao G, Snaar-Jagalska E, Chworos A. Double-modified, thio and methylene ATP analogue facilitates wound healing in vitro and in vivo. Sci Rep 2024; 14:13148. [PMID: 38849425 PMCID: PMC11161507 DOI: 10.1038/s41598-024-63759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Recent data indicate that extracellular ATP affects wound healing efficacy via P2Y2-dependent signaling pathway. In the current work, we propose double-modified ATP analogue-alpha-thio-beta,gamma-methylene-ATP as a potential therapeutic agent for a skin regeneration. For the better understanding of structure-activity relationship, beside tested ATP analogues, the appropriate single-modified derivatives of target compound, such as alpha-thio-ATP and beta,gamma-methylene-ATP, were also tested in the context of their involvement in the activation of ATP-dependent purinergic signaling pathway via the P2Y2 receptor. The diastereomerically pure alpha-thio-modified-ATP derivatives were obtained using the oxathiaphospholane method as separate SP and RP diastereomers. Both the single- and double- modified ATP analogues were then tested for their impact on the viability and migration of human keratinocytes. The involvement of P2Y2-dependent purinergic signaling was analyzed in silico by molecular docking of the tested compounds to the P2Y2 receptor and experimentally by studying intracellular calcium mobilization in the human keratinocytes HaCaT. The effects obtained for ATP analogues were compared with the results for ATP as a natural P2Y2 agonist. To confirm the contribution of the P2Y2 receptor to the observed effects, the tests were also performed in the presence of the selective P2Y2 antagonist-AR-C118925XX. The ability of the alpha-thio-beta,gamma-methylene-ATP to influence cell migration was analyzed in vitro on the model HaCaT and MDA-MB-231 cells by wound healing assay and transwell migration test as well as in vivo using zebrafish system. The impact on tissue regeneration was estimated based on the regrowth rate of cut zebrafish tails. The in vitro and in vivo studies have shown that the SP-alpha-thio-beta,gamma-methylene-ATP analogue promotes regeneration-related processes, making it a suitable agent for enhance wound healing. Performed studies indicated its impact on the cell migration, induction of epithelial-mesenchymal transition and intracellular calcium mobilization. The enhanced regeneration of cut zebrafish tails confirmed the pro-regenerative activity of this ATP analogue. Based on the performed studies, the SP-alpha-thio-beta,gamma-methylene-ATP is proposed as a potential therapeutic agent for wound healing and skin regeneration treatment.
Collapse
Affiliation(s)
- Roza Pawlowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Ewa Radzikowska-Cieciura
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Sepideh Jafari
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
- BioMedChem Doctoral School of the University of Lodz and the Institutes of the Polish Academy of Sciences in Lodz, Lodz, Poland
| | - Julia Fastyn
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Eliza Korkus
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Gangyin Zhao
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Ewa Snaar-Jagalska
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
11
|
Chen L, Lei X, Mahnke K. Adenosine and Its Receptors in the Pathogenesis and Treatment of Inflammatory Skin Diseases. Int J Mol Sci 2024; 25:5810. [PMID: 38891997 PMCID: PMC11172165 DOI: 10.3390/ijms25115810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory skin diseases highlight inflammation as a central driver of skin pathologies, involving a multiplicity of mediators and cell types, including immune and non-immune cells. Adenosine, a ubiquitous endogenous immune modulator, generated from adenosine triphosphate (ATP), acts via four G protein-coupled receptors (A1, A2A, A2B, and A3). Given the widespread expression of those receptors and their regulatory effects on multiple immune signaling pathways, targeting adenosine receptors emerges as a compelling strategy for anti-inflammatory intervention. Animal models of psoriasis, contact hypersensitivity (CHS), and other dermatitis have elucidated the involvement of adenosine receptors in the pathogenesis of these conditions. Targeting adenosine receptors is effective in attenuating inflammation and remodeling the epidermal structure, potentially showing synergistic effects with fewer adverse effects when combined with conventional therapies. What is noteworthy are the promising outcomes observed with A2A agonists in animal models and ongoing clinical trials investigating A3 agonists, underscoring a potential therapeutic approach for the management of inflammatory skin disorders.
Collapse
Affiliation(s)
| | | | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany; (L.C.)
| |
Collapse
|
12
|
da Silva GB, de Carvalho Braga G, Simões JLB, Kempka AP, Bagatini MD. Cytokine storm in human monkeypox: A possible involvement of purinergic signaling. Cytokine 2024; 177:156560. [PMID: 38447385 DOI: 10.1016/j.cyto.2024.156560] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Some evidence has indicated that monkeypox can induce a cytokine storm. Purinergic signaling is a cell pathway related to the cytokine storm. However, the precise mechanisms that lead to cytokine storms in monkeypox infections and the possible involvement of purinergic signaling in the immune response to this virus remain unknown. In this review article, we aimed to highlight a body of scientific evidence that consolidates the role of the cytokine storm in monkeypox infection and proposes a new hypothesis regarding the roles of purinergic signaling in this immune-mediated mechanism. We further suggested some purinergic signaling modulators to mitigate the deleterious and aggravating effects of immune dysregulation in human monkeypox virus infection by inhibiting P2X3, P2X7, P2Y2, and P2Y12, reducing inflammation, and activating A1 and A2A receptors to promote an anti-inflammatory response.
Collapse
Affiliation(s)
- Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil.
| | | | | | - Aniela Pinto Kempka
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Margarete Dulce Bagatini
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil; Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
13
|
Marín-Castejón A, Marco-Bonilla M, Terencio MC, Arasa J, Carceller MC, Ferrandiz ML, Noguera MA, Andrés-Ejarque R, Montesinos MC. Adenosine A 2B receptor agonist improves epidermal barrier integrity in a murine model of epidermal hyperplasia. Biomed Pharmacother 2024; 173:116401. [PMID: 38460363 DOI: 10.1016/j.biopha.2024.116401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Adenosine regulates multiple physiological processes through the activation of four receptor subtypes, of which the A2B adenosine receptor (A2BAR) has the lowest affinity for adenosine. Being the adenosine receptor subtype most prominently expressed in epidermis, we recently described the antiproliferative and anti-inflammatory effect of the selective A2BAR agonist BAY60-6583 (BAY) in human keratinocytes stimulated with 12-O-tetradecanoylphorbol-13-acetate (TPA), so we sought to establish the effect of topical application of BAY in a model of murine epidermal hyperplasia. Topical application of BAY (1 or 10 μg/site) prevented the inflammatory reaction and skin lesions induced by TPA, minimizing hyperproliferation and acanthosis, as well as the expression of specific markers of proliferative keratinocytes. On the other hand, pre-treatment with the selective A2BAR antagonist, PSB-1115 (PSB, 5 or 50 μg/site) reversed these beneficial effects. Additionally, BAY application normalized the expression of epidermal barrier proteins, whose integrity is altered in inflammatory skin diseases, while treatment with the antagonist alone worsened it. Our results, besides confirming the anti-inflammatory and antiproliferative effects of the A2BAR agonist, further demonstrate a role of A2BAR activation to preserve the epidermal barrier. Therefore, the activation of A2BAR may constitute a possible new pharmacological target for the treatment of skin inflammatory diseases such as psoriasis.
Collapse
Affiliation(s)
- Asunción Marín-Castejón
- Department of Pharmacology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot 46100, Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Av. Vicent A. Estellés s/n, Burjassot 46100, Valencia, Spain
| | - Miguel Marco-Bonilla
- Department of Pharmacology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot 46100, Valencia, Spain
| | - M Carmen Terencio
- Department of Pharmacology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot 46100, Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Av. Vicent A. Estellés s/n, Burjassot 46100, Valencia, Spain
| | - Jorge Arasa
- Department of Pharmacology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot 46100, Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Av. Vicent A. Estellés s/n, Burjassot 46100, Valencia, Spain
| | - M Carmen Carceller
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Av. Vicent A. Estellés s/n, Burjassot 46100, Valencia, Spain; Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot 46100, Valencia, Spain
| | - M Luisa Ferrandiz
- Department of Pharmacology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot 46100, Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Av. Vicent A. Estellés s/n, Burjassot 46100, Valencia, Spain
| | - M Antonia Noguera
- Department of Pharmacology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot 46100, Valencia, Spain; Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED) Universitat de València, Av. Vicent A. Estellés s/n, Burjassot 46100, Valencia, Spain
| | - Rosa Andrés-Ejarque
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK
| | - M Carmen Montesinos
- Department of Pharmacology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot 46100, Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Av. Vicent A. Estellés s/n, Burjassot 46100, Valencia, Spain.
| |
Collapse
|
14
|
Kauffenstein G, Martin L, Le Saux O. The Purinergic Nature of Pseudoxanthoma Elasticum. BIOLOGY 2024; 13:74. [PMID: 38392293 PMCID: PMC10886499 DOI: 10.3390/biology13020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Pseudoxanthoma Elasticum (PXE) is an inherited disease characterized by elastic fiber calcification in the eyes, the skin and the cardiovascular system. PXE results from mutations in ABCC6 that encodes an ABC transporter primarily expressed in the liver and kidneys. It took nearly 15 years after identifying the gene to better understand the etiology of PXE. ABCC6 function facilitates the efflux of ATP, which is sequentially hydrolyzed by the ectonucleotidases ENPP1 and CD73 into pyrophosphate (PPi) and adenosine, both inhibitors of calcification. PXE, together with General Arterial Calcification of Infancy (GACI caused by ENPP1 mutations) as well as Calcification of Joints and Arteries (CALJA caused by NT5E/CD73 mutations), forms a disease continuum with overlapping phenotypes and shares steps of the same molecular pathway. The explanation of these phenotypes place ABCC6 as an upstream regulator of a purinergic pathway (ABCC6 → ENPP1 → CD73 → TNAP) that notably inhibits mineralization by maintaining a physiological Pi/PPi ratio in connective tissues. Based on a review of the literature and our recent experimental data, we suggest that PXE (and GACI/CALJA) be considered as an authentic "purinergic disease". In this article, we recapitulate the pathobiology of PXE and review molecular and physiological data showing that, beyond PPi deficiency and ectopic calcification, PXE is associated with wide and complex alterations of purinergic systems. Finally, we speculate on the future prospects regarding purinergic signaling and other aspects of this disease.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- UMR INSERM 1260, Regenerative Nanomedicine, University of Strasbourg, 67084 Strasbourg, France
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, 49000 Angers, France
- MITOVASC-UMR CNRS 6015 INSERM 1083, University of Angers, 49000 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
15
|
Midtbø HMD, Eichner C, Hamre LA, Dondrup M, Flesland L, Tysseland KH, Kongshaug H, Borchel A, Skoge RH, Nilsen F, Øvergård AC. Salmon louse labial gland enzymes: implications for host settlement and immune modulation. Front Genet 2024; 14:1303898. [PMID: 38299097 PMCID: PMC10828956 DOI: 10.3389/fgene.2023.1303898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
Salmon louse (Lepeophtheirus salmonis) is a skin- and blood-feeding ectoparasite, infesting salmonids. While feeding, labial gland proteins from the salmon louse may be deposited on the Atlantic salmon (Salmo salar) skin. Previously characterized labial gland proteins are involved in anti-coagulation and may contribute to inhibiting Atlantic salmon from mounting a sufficient immune response against the ectoparasite. As labial gland proteins seem to be important in the host-parasite interaction, we have, therefore, identified and characterized ten enzymes localized to the labial gland. They are a large group of astacins named L. salmonis labial gland astacin 1-8 (LsLGA 1-8), one serine protease named L. salmonis labial gland serine protease 1 (LsLGSP1), and one apyrase named L. salmonis labial gland apyrase 1 (LsLGAp1). Protein domain predictions showed that LsLGA proteins all have N-terminal ShK domains, which may bind to potassium channels targeting the astacins to its substrate. LsLGA1 and -4 are, in addition, expressed in another gland type, whose secrete also meets the host-parasite interface. This suggests that LsLGA proteins may have an anti-microbial function and may prevent secondary infections in the wounds. LsLGAp1 is predicted to hydrolyze ATP or AMP and is, thereby, suggested to have an immune dampening function. In a knockdown study targeting LsLGSP1, a significant increase in IL-8 and MMP13 at the skin infestation site was seen under LsLGSP1 knockdown salmon louse compared to the control, suggesting that LsLGSP1 may have an anti-inflammatory effect. Moreover, most of the identified labial gland proteins are expressed in mature copepodids prior to host settlement, are not regulated by starvation, and are expressed at similar or higher levels in lice infesting the salmon louse-resistant pink salmon (Oncorhynchus gorbuscha). This study, thereby, emphasizes the importance of labial gland proteins for host settlement and their immune dampening function. This work can further contribute to anti-salmon louse treatment such as vaccine development, functional feed, or gene-edited salmon louse-resistant Atlantic salmon.
Collapse
Affiliation(s)
| | - Christiane Eichner
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Lars Are Hamre
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Michael Dondrup
- Sea Lice Research Centre, Department of Informatics, University of Bergen, Bergen, Norway
| | - Linn Flesland
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Heidi Kongshaug
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Andreas Borchel
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Renate Hvidsten Skoge
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Peres C, Mammano F. A Protocol for the Automated Assessment of Cutaneous Pathology in a Mouse Model of Hemichannel Dysfunction. Methods Mol Biol 2024; 2801:177-187. [PMID: 38578421 DOI: 10.1007/978-1-0716-3842-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In this chapter, we provide detailed instructions to perform quantitative reflectance imaging in a mouse model of a rare epidermal disorder caused by hyperactive connexin 26 hemichannels. Reflectance imaging is a versatile and powerful tool in dermatology, offering noninvasive, high-resolution insights into skin pathology, which is essential for both clinical practice and research. This approach offers several advantages and applications. Unlike traditional biopsy, reflectance imaging is noninvasive, allowing for real-time, in vivo examination of the skin. This is particularly valuable for monitoring chronic conditions or assessing the efficacy of treatments over time, enabling the detailed examination of skin morphology. This is crucial for identifying features of skin diseases such as cancers, inflammatory conditions, and infections. In therapeutic applications, reflectance imaging can be used to monitor the response of skin lesions to treatments. It can help in identifying the most representative area of a lesion for biopsy, thereby increasing the diagnostic accuracy. Reflectance imaging can also be used to diagnose and monitor inflammatory skin diseases, like psoriasis and eczema, by visualizing changes in skin structure and cellular infiltration. As the technology becomes more accessible, it has potential in telemedicine, allowing for remote diagnosis and monitoring of skin conditions. In academic settings, reflectance imaging can be a powerful research tool, enabling the study of skin pathology and the effects of novel treatments, including the development of monoclonal antibodies for therapeutic applications.
Collapse
Affiliation(s)
- Chiara Peres
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
- , Bologna, Italy
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy.
- Department of Physics and Astronomy "G. Galilei", University of Padova, Padova, Italy.
| |
Collapse
|
17
|
Wee J, Tan XR, Gunther SH, Ihsan M, Leow MKS, Tan DSY, Eriksson JG, Lee JKW. Effects of Medications on Heat Loss Capacity in Chronic Disease Patients: Health Implications Amidst Global Warming. Pharmacol Rev 2023; 75:1140-1166. [PMID: 37328294 DOI: 10.1124/pharmrev.122.000782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/20/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
Pharmacological agents used to treat or manage diseases can modify the level of heat strain experienced by chronically ill and elderly patients via different mechanistic pathways. Human thermoregulation is a crucial homeostatic process that maintains body temperature within a narrow range during heat stress through dry (i.e., increasing skin blood flow) and evaporative (i.e., sweating) heat loss, as well as active inhibition of thermogenesis, which is crucial to avoid overheating. Medications can independently and synergistically interact with aging and chronic disease to alter homeostatic responses to rising body temperature during heat stress. This review focuses on the physiologic changes, with specific emphasis on thermolytic processes, associated with medication use during heat stress. The review begins by providing readers with a background of the global chronic disease burden. Human thermoregulation and aging effects are then summarized to give an understanding of the unique physiologic changes faced by older adults. The effects of common chronic diseases on temperature regulation are outlined in the main sections. Physiologic impacts of common medications used to treat these diseases are reviewed in detail, with emphasis on the mechanisms by which these medications alter thermolysis during heat stress. The review concludes by providing perspectives on the need to understand the effects of medication use in hot environments, as well as a summary table of all clinical considerations and research needs of the medications included in this review. SIGNIFICANCE STATEMENT: Long-term medications modulate thermoregulatory function, resulting in excess physiological strain and predisposing patients to adverse health outcomes during prolonged exposures to extreme heat during rest and physical work (e.g., exercise). Understanding the medication-specific mechanisms of altered thermoregulation has importance in both clinical and research settings, paving the way for work toward refining current medication prescription recommendations and formulating mitigation strategies for adverse drug effects in the heat in chronically ill patients.
Collapse
Affiliation(s)
- Jericho Wee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Xiang Ren Tan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Samuel H Gunther
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Mohammed Ihsan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Melvin Khee Shing Leow
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Doreen Su-Yin Tan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Johan G Eriksson
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| | - Jason Kai Wei Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine (J.K.W.L.), National University of Singapore, Singapore; Health and Social Sciences, Singapore Institute of Technology, Singapore (X.R.T.); Campus for Research Excellence and Technological Enterprise, Singapore (S.H.G., J.K.W.L.); Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (M.K.S.L.); Duke-National University of Singapore Medical School, Singapore (M.K.S.L.); Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore (M.K.S.L.); Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore (M.K.S.L., J.G.E.); Folkhalsan Research Center, Helsinki, Finland (J.G.E.); Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, University of Helsinki, Helsinki, Finland (J.G.E.); and Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (J.G.E.)
| |
Collapse
|
18
|
Deng QS, Gao Y, Rui BY, Li XR, Liu PL, Han ZY, Wei ZY, Zhang CR, Wang F, Dawes H, Zhu TH, Tao SC, Guo SC. Double-network hydrogel enhanced by SS31-loaded mesoporous polydopamine nanoparticles: Symphonic collaboration of near-infrared photothermal antibacterial effect and mitochondrial maintenance for full-thickness wound healing in diabetes mellitus. Bioact Mater 2023; 27:409-428. [PMID: 37152712 PMCID: PMC10160601 DOI: 10.1016/j.bioactmat.2023.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic wound healing has become a serious healthcare challenge. The high-glucose environment leads to persistent bacterial infection and mitochondrial dysfunction, resulting in chronic inflammation, abnormal vascular function, and tissue necrosis. To solve these issues, we developed a double-network hydrogel, constructed with pluronic F127 diacrylate (F127DA) and hyaluronic acid methacrylate (HAMA), and enhanced by SS31-loaded mesoporous polydopamine nanoparticles (MPDA NPs). As components, SS31, a mitochondria-targeted peptide, maintains mitochondrial function, reduces mitochondrial reactive oxygen species (ROS) and thus regulates macrophage polarization, as well as promoting cell proliferation and migration, while MPDA NPs not only scavenge ROS and exert an anti-bacterial effect by photothermal treatment under near-infrared light irradiation, but also control release of SS31 in response to ROS. This F127DA/HAMA-MPDA@SS31 (FH-M@S) hydrogel has characteristics of adhesion, superior biocompatibility and mechanical properties which can adapt to irregular wounds at different body sites and provide sustained release of MPDA@SS31 (M@S) NPs. In addition, in a diabetic rat full thickness skin defect model, the FH-M@S hydrogel promoted macrophage M2 polarization, collagen deposition, neovascularization and wound healing. Therefore, the FH-M@S hydrogel exhibits promising therapeutic potential for skin regeneration.
Collapse
Affiliation(s)
- Qing-Song Deng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Bi-Yu Rui
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
| | - Xu-Ran Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Po-Lin Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zi-Yin Han
- Department of Rheumatology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No.29, Xinglongxiang, Tianning District, Changzhou, 213000, China
| | - Zhan-Ying Wei
- Shanghai Clinical Research Centre of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chang-Ru Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Fei Wang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Helen Dawes
- Faculty of Health and Life Science, Oxford Brookes University, Headington Road, Oxford, OX3 0BP, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, OX3 7JX, UK
- College of Medicine and Health, St Lukes Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Tong-He Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Shi-Cong Tao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Corresponding author. Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Shang-Chun Guo
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Corresponding author. Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
19
|
Naasani LIS, Sévigny J, Moulin VJ, Wink MR. UTP increases wound healing in the self assembled skin substitute (SASS). J Cell Commun Signal 2023; 17:827-844. [PMID: 36723784 PMCID: PMC10409941 DOI: 10.1007/s12079-023-00725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
The therapeutic potential of purinergic signaling has been explored for a wide variety of diseases, including those related to the skin. In this study, we used the self-assembled skin substitutes (SASS), a highly functional reconstructed human skin model, which shares many properties with normal human skin, to study the impact of purinergic receptors agonists, such as ATP, UTP and a P2Y receptor antagonist, Reactive Blue 2 during wound healing. After treating the wounded skins, we evaluated the wound area, reepithelialization, length of migrating tongues toward the wound, quality of the skins through the cytokeratin 10 and laminin-5 expression, epidermal and dermal cell proliferation. In addition, the expression of the main ectoenzymes capable of hydrolyzing nucleotides were investigated through the wounded SASS regions: unwounded region, wound margin, intermediate region and migrating epidermal tongue. After 3 days, under the UTP treatment, the wounded SASS showed an increase in the reepithelialization and in the proliferation of keratinocytes and fibroblasts, without altering the quality of the skin. We also identified the presence of the ectoenzymes NTPDase1 and NPP1 in the reconstructed human skin model, suggesting their involvement in wound healing. Considering the need for new therapies capable of promoting healing in complex wounds, although these results are still preliminary, they suggest the involvement of extracellular nucleotides in human skin healing and the importance to understand their role in this mechanism. New experiments it will be necessary to determine the mechanisms by which the purinergic signaling is involved in the skin wound healing.
Collapse
Affiliation(s)
- Liliana I Sous Naasani
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, Porto Alegre, RS, CEP 90050-170, Brazil
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie Et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Véronique J Moulin
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, G1V 4G2, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
20
|
Byun KA, Kim HM, Oh S, Son KH, Byun K. Radiofrequency Irradiation Attenuated UVB-Induced Skin Pigmentation by Modulating ATP Release and CD39 Expression. Int J Mol Sci 2023; 24:ijms24065506. [PMID: 36982581 PMCID: PMC10052073 DOI: 10.3390/ijms24065506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Hyperpigmentation stimulated by ultraviolet (UV)-induced melanin overproduction causes various cosmetic problems. UV radiation’s activation of the cyclic adenosine monophosphate (cAMP)-mediated cAMP-dependent protein kinase (PKA)/cAMP response element-binding protein (CREB)/microphthalmia-associated transcription factor (MITF) pathway is the main pathway for melanogenesis. However, the secretion of adenosine triphosphate (ATP) from keratinocytes due to UV radiation also leads to melanogenesis. Adenosine, converted from ATP by CD39 and CD73, can activate adenylate cyclase (AC) activity and increase intracellular cAMP expression. cAMP-mediated PKA activation results in dynamic mitochondrial changes that affect melanogenesis via ERK. We evaluated whether radiofrequency (RF) irradiation could decrease ATP release from keratinocytes and suppress the expression of CD39, CD73, and A2A/A2B adenosine receptors (ARs) and the activity of AC and downregulate the PKA/CREB/MITF pathway, which would eventually decrease melanogenesis in vitro in UV-irradiated cells and animal skin. Our results indicate that RF decreased ATP release from UVB-irradiated keratinocytes. When conditioned media (CM) from UVB-irradiated keratinocytes (CM-UVB) were administered to melanocytes, the expressions of CD39, CD73, A2A/A2BARs, cAMP, and PKA increased. However, the expression of these factors decreased when CM from UVB and RF-irradiated keratinocytes (CM-UVB/RF) was administered to melanocytes. The phosphorylation of DRP1 at Ser637, which inhibits mitochondrial fission, increased in UVB-irradiated animal skin and was decreased by RF irradiation. The expression of ERK1/2, which can degrade MITF, was increased using RF treatment in UVB-irradiated animal skin. Tyrosinase activity and melanin levels in melanocytes increased following CM-UVB administration, and these increases were reversed after CD39 silencing. Tyrosinase activity and melanin levels in melanocytes were decreased by CM-UVB/RF irradiation. In conclusion, RF irradiation decreased ATP release from keratinocytes and the expressions of CD39, CD73, and A2A/A2BARs, which decreased AC activity in melanocytes. RF irradiation downregulated the cAMP-mediated PKA/CREB/MITF pathway and tyrosinase activity, and these inhibitory effects can be mediated via CD39 inhibition.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | | | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
- Correspondence: (K.H.S.); (K.B.); Tel.: +82-32-460-3666 (K.H.S.); +82-32-899-6511 (K.B.)
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Republic of Korea
- Correspondence: (K.H.S.); (K.B.); Tel.: +82-32-460-3666 (K.H.S.); +82-32-899-6511 (K.B.)
| |
Collapse
|
21
|
Peres C, Sellitto C, Nardin C, Putti S, Orsini T, Di Pietro C, Marazziti D, Vitiello A, Calistri A, Rigamonti M, Scavizzi F, Raspa M, Zonta F, Yang G, White TW, Mammano F. Antibody gene transfer treatment drastically improves epidermal pathology in a keratitis ichthyosis deafness syndrome model using male mice. EBioMedicine 2023; 89:104453. [PMID: 36736132 PMCID: PMC9926223 DOI: 10.1016/j.ebiom.2023.104453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Keratitis ichthyosis deafness (KID) syndrome is a rare disorder caused by hemichannel (HC) activating gain-of-function mutations in the GJB2 gene encoding connexin (Cx) 26, for which there is no cure, or current treatments based upon the mechanism of disease causation. METHODS We applied Adeno Associated Virus (AAV) mediated mAb gene transfer (AAVmAb) to treat the epidermal features of KID syndrome with a well-characterized HC blocking antibody using male mice of a murine model that replicates the skin pathology of the human disease. FINDINGS We demonstrate that in vivo AAVmAb treatment significantly reduced the size and thickness of KID lesions, in addition to blocking activity of mutant HCs in the epidermis in vivo. We also show that AAVmAb treatment eliminated abnormal keratinocyte proliferation and enlarged cell size, decreased apoptosis, and restored the normal distribution of keratin expression. INTERPRETATION Our findings reinforce the critical role played by increased HC activity in the skin pathology associated with KID syndrome. They also underscore the clinical potential of anti-HC mAbs coupled with genetic based delivery systems for treating the underlying mechanistic basis of this disorder. Inhibition of HC activity is an ideal therapeutic target in KID syndrome, and the genetic delivery of mAbs targeted against mutant HCs could form the basis of new therapeutic interventions to treat this incurable disease. FUNDING Fondazione Telethon grant GGP19148 and University of Padova grant Prot. BIRD187130 to FM; Foundation for Ichthyosis and Related Skin Types (FIRST) and National Institutes of Health grant EY 026911 to TWW.
Collapse
Affiliation(s)
- Chiara Peres
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Caterina Sellitto
- Department of Physiology and Biophysics, Stony Brook University, T5-147, Basic Science Tower; Stony Brook, NY, 11794-8661, USA
| | - Chiara Nardin
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Sabrina Putti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | | | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, T5-147, Basic Science Tower; Stony Brook, NY, 11794-8661, USA.
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131, Padova, Italy.
| |
Collapse
|
22
|
Silva-Vilches C, Bolduan V, Alabdullah M, Steinbrink K, Probst HC, Enk A, Mahnke K. Topical Application of Adenosine A 2-Type Receptor Agonists Prevents Contact Hypersensitivity Reactions in Mice by Affecting Skin Dendritic Cells. J Invest Dermatol 2023; 143:408-418.e6. [PMID: 36174716 DOI: 10.1016/j.jid.2022.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/18/2022] [Accepted: 07/19/2022] [Indexed: 10/14/2022]
Abstract
Adenosine (Ado) produced by skin and skin migratory CD73+ dendritic cells is critically involved in tolerance to haptens. We therefore investigated the use of Ado receptor agonists for the treatment of contact hypersensitivity reactions. A2A- 4-[2-[[6-Amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino] ethyl]benzenepropanoic acid hydrochloride (CGS) and A2B- 2-[[6-Amino-3,5-dicyano-4-[4-[cyclopropylmethoxy]phenyl]-2-pyridinyl]thio]-acetamide (BAY) specific Ado receptor agonists were epicutaneously applied to the skin before sensitization and challenge with DNFB. Both agonists reduced ear swelling compared with solvent controls. This was accompanied by fewer activated T cells in the skin after the challenge and by higher numbers of T cells expressing anergic markers such as LAG-3, CD137, PD-1, CD272, and TIM-3 in the lymph nodes of CGS-treated groups. In ear tissue, Ado receptor agonist treatment reduced the production of proinflammatory cytokines and chemokines as well as the infiltration by neutrophils after sensitization. Moreover, reduced numbers of skin migratory dendritic cells producing less IL-12 and exhibiting lower expression of CD86 were recorded in lymph nodes after sensitization. In cocultures of skin migratory dendritic cells from CGS-treated mice with T cells, reduced proliferation of T cells and decreased secretion of proinflammatory cytokines compared with that of solvent controls were apparent. In conclusion, topical application of Ado receptor agonists to the skin prevents sensitization of T cells against haptens by reducing the migration and activation of skin migratory dendritic cells.
Collapse
Affiliation(s)
- Cinthia Silva-Vilches
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Vanessa Bolduan
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Mohamad Alabdullah
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Hospital Münster, Westfälische Wilhelms-University Münster, Münster, Germany
| | | | - Alexander Enk
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Ruprecht Karls University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
23
|
Naasani LIS, Azevedo JG, Sévigny J, Franco de Oliveira T, Maria-Engler SS, Wink MR. Epidermal melanocytes metabolize extracellular nucleotides by purinergic enzymes. Biochem Cell Biol 2023. [PMID: 36657128 DOI: 10.1139/bcb-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The human epidermal melanocyte (hEM) are melanin-producing cells that provide skin pigmentation and protection against ultraviolet radiation. Although purinergic signaling is involved in skin biology and pathology, the presence of NTPDase members, as well as the rate of nucleotides degradation by melanocytes were not described yet. Therefore, in this study, we analyzed the expression of ectonucleotidases in hEM derived from discarded foreskin of male patients. The expression of purinergic enzymes was confirmed by mRNA and flow cytometry. Among the ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase1 (NTPDase1) and ecto-5´-nucleotidase were the ectoenzymes with higher expressions. The hydrolysis rate for ATP, ADP, and AMP was low in comparison to other primary cells already investigated. The amount of ATP in the culture medium was increased after a scratch wound and decreased to basal levels in 48 h, while the NTPDase1 and P2X7 expressions increased. Therefore, it is possible to suggest that after cell injury, the ATP released by hEM into the extracellular space will be hydrolyzed by ectonucleotidases as the NTPDase1 that will control the levels of nucleotides in the skin micro-environment.
Collapse
Affiliation(s)
- Liliana Ivet Sous Naasani
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brasil
| | - Jéssica Gonçalves Azevedo
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brasil
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec city, QC G1V 0A6, Canada.,Centre de recherche du CHU de Québec, Université Laval, Québec city, QC G1V 4G2, Canada
| | - Tiago Franco de Oliveira
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brasil
| | - Silvya Stuchi Maria-Engler
- Skin Biology and Melanoma Lab, Department of Clinical Chemistry & Toxicology, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, Brasil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brasil
| |
Collapse
|
24
|
Montelukast, an Antagonist of Cysteinyl Leukotriene Signaling, Impairs Burn Wound Healing. Plast Reconstr Surg 2022; 150:92e-104e. [PMID: 35536768 DOI: 10.1097/prs.0000000000009228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Burns are severe injuries often associated with impaired wound healing. Impaired healing is caused by multiple factors, including dysregulated inflammatory responses at the wound site. Interestingly, montelukast, an antagonist for cysteinyl leukotrienes and U.S. Food and Drug Administration approved for treatment of asthma and allergy, was previously shown to enhance healing in excision wounds and to modulate local inflammation. METHODS In this study, the authors examined the effect of montelukast on wound healing in a mouse model of scald burn injury. Burn wound tissues isolated from montelukast- and vehicle-treated mice at various times after burn injury were analyzed for wound areas ( n = 34 to 36), reepithelialization ( n = 14), inflammation ( n = 8 to 9), and immune cell infiltration ( n = 3 to 6) and proliferation ( n = 7 to 8). RESULTS In contrast to previously described beneficial effects in excision wounds, this study shows that montelukast delays burn wound healing by impairing the proliferation of keratinocytes and endothelial cells. This occurs largely independently of inflammatory responses at the wound site, suggesting that montelukast impairs specifically the proliferative phase of wound healing in burns. Wound healing rates in mice in which leukotrienes are not produced were not affected by montelukast. CONCLUSION Montelukast delays wound healing mainly by reducing the proliferation of local cells after burn injury. CLINICAL RELEVANCE STATEMENT Although additional and clinical studies are necessary, our study suggests that burn patients who are on montelukast may exhibit delayed healing, necessitating extra observation.
Collapse
|
25
|
Nadeali Z, Mohammad-Rezaei F, Aria H, Nikpour P. Possible role of pannexin 1 channels and purinergic receptors in the pathogenesis and mechanism of action of SARS-CoV-2 and therapeutic potential of targeting them in COVID-19. Life Sci 2022; 297:120482. [PMID: 35288174 PMCID: PMC8915746 DOI: 10.1016/j.lfs.2022.120482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023]
Abstract
Identifying signaling pathways and molecules involved in SARS-CoV-2 pathogenesis is pivotal for developing new effective therapeutic or preventive strategies for COVID-19. Pannexins (PANX) are ATP-release channels in the plasma membrane essential in many physiological and immune responses. Activation of pannexin channels and downstream purinergic receptors play dual roles in viral infection, either by facilitating viral replication and infection or inducing host antiviral defense. The current review provides a hypothesis demonstrating the possible contribution of the PANX1 channel and purinergic receptors in SARS-CoV-2 pathogenesis and mechanism of action. Moreover, we discuss whether targeting these signaling pathways may provide promising preventative therapies and treatments for patients with progressive COVID-19 resulting from excessive pro-inflammatory cytokines and chemokines production. Several inhibitors of this pathway have been developed for the treatment of other viral infections and pathological consequences. Specific PANX1 inhibitors could be potentially included as part of the COVID-19 treatment regimen if, in future, studies demonstrate the role of PANX1 in COVID-19 pathogenesis. Of note, any ATP therapeutic modulation for COVID-19 should be carefully designed and monitored because of the complex role of extracellular ATP in cellular physiology.
Collapse
Affiliation(s)
- Zakiye Nadeali
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Mohammad-Rezaei
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Aria
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
26
|
da Silva GB, Yamauchi MA, Zanini D, Bagatini MD. Novel possibility for cutaneous melanoma treatment by means of rosmarinic acid action on purinergic signaling. Purinergic Signal 2022; 18:61-81. [PMID: 34741236 PMCID: PMC8570242 DOI: 10.1007/s11302-021-09821-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer cases have increased significantly in Brazil and worldwide, with cutaneous melanoma (CM) being responsible for nearly 57,000 deaths in the world. Thus, this review article aims at exploring and proposed hypotheses with respect to the possibility that RA can be a promising and alternative compound to be used as an adjuvant in melanoma treatment, acting on purinergic signaling. The scarcity of articles evidencing the action of this compound in this signaling pathway requires further studies. Considering diverse evidence found in the literature, we hypothesize that RA can be an effective candidate for the treatment of CM acting as a modulating molecule of purinergic cellular pathway through P2X7 blocking, mitigating the Warburg effect, and as antagonic molecule of the P2Y12 receptor, reducing the formation of adhesive molecules that prevent adherence in tumor cells. In this way, our proposals for CM treatment based on targeting purinergic signaling permeate the integral practice, going from intracell to extracell. Undoubtedly, much is still to be discovered and elucidated about this promising compound, this paper being an interesting work baseline to support more research studies.
Collapse
Affiliation(s)
- Gilnei Bruno da Silva
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Milena Ayumi Yamauchi
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Daniela Zanini
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
27
|
Harcha PA, López-López T, Palacios AG, Sáez PJ. Pannexin Channel Regulation of Cell Migration: Focus on Immune Cells. Front Immunol 2022; 12:750480. [PMID: 34975840 PMCID: PMC8716617 DOI: 10.3389/fimmu.2021.750480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The role of Pannexin (PANX) channels during collective and single cell migration is increasingly recognized. Amongst many functions that are relevant to cell migration, here we focus on the role of PANX-mediated adenine nucleotide release and associated autocrine and paracrine signaling. We also summarize the contribution of PANXs with the cytoskeleton, which is also key regulator of cell migration. PANXs, as mechanosensitive ATP releasing channels, provide a unique link between cell migration and purinergic communication. The functional association with several purinergic receptors, together with a plethora of signals that modulate their opening, allows PANX channels to integrate physical and chemical cues during inflammation. Ubiquitously expressed in almost all immune cells, PANX1 opening has been reported in different immunological contexts. Immune activation is the epitome coordination between cell communication and migration, as leukocytes (i.e., T cells, dendritic cells) exchange information while migrating towards the injury site. In the current review, we summarized the contribution of PANX channels during immune cell migration and recruitment; although we also compile the available evidence for non-immune cells (including fibroblasts, keratinocytes, astrocytes, and cancer cells). Finally, we discuss the current evidence of PANX1 and PANX3 channels as a both positive and/or negative regulator in different inflammatory conditions, proposing a general mechanism of these channels contribution during cell migration.
Collapse
Affiliation(s)
- Paloma A Harcha
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tamara López-López
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrián G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Shindo Y, Fujita K, Tanaka M, Fujio H, Hotta K, Oka K. Mechanical stimulus-evoked signal transduction between keratinocytes and sensory neurons via extracellular ATP. Biochem Biophys Res Commun 2021; 582:131-136. [PMID: 34710828 DOI: 10.1016/j.bbrc.2021.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022]
Abstract
The skin is exposed to various external stimuli. Keratinocytes, which are the main cell type in the epidermis, interact with peripheral sensory neurons and modulate neuronal activity. Recent studies have revealed that keratinocytes play crucial roles in nociception, and that ATP is one of the main mediators of signal transduction from keratinocytes to sensory neurons. However, no quantitative cellular level analyses of ATP-mediated information flow from keratinocytes to sensory dorsal root ganglion (DRG) neurons have been conducted. In this study, we performed simultaneous imaging of cell surface ATP and intracellular Ca2+ signals using both iATPSnFR, a genetically encoded ATP probe localized to the outside of the cell membrane, and the Ca2+ probe, Fura-red. Upon mechanical stimulation of the keratinocyte with a glass needle, an increase in Ca2+ and ATP release were observed around the stimulated area, and these phenomena were positively correlated. In cultured DRG neurons and keratinocytes neighboring the stimulated keratinocyte, increased intracellular Ca2+ concentration and levels of cell surface ATP on the side closer to the stimulated cell were detected. The ratio of Ca2+ response to input ATP signal was significantly larger in DRG neurons than in keratinocytes. We found that DRG neurons were more sensitive to ATP than keratinocytes, and therefore, only DRG neurons responded to ATP at 1 μM or lower concentrations when in co-culture with keratinocytes. Moreover, signals caused by moderate mechanical stimulation of keratinocytes were transmitted predominantly to DRG neurons. These findings would be important in the further determination of the detailed mechanism of nociception in the epidermis.
Collapse
Affiliation(s)
- Yutaka Shindo
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Keigo Fujita
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Mari Tanaka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Hiroki Fujio
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan; Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo, 162-8480, Japan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.
| |
Collapse
|
29
|
Donati V, Peres C, Nardin C, Scavizzi F, Raspa M, Ciubotaru CD, Bortolozzi M, Pedersen MG, Mammano F. Calcium Signaling in the Photodamaged Skin: In Vivo Experiments and Mathematical Modeling. FUNCTION 2021; 3:zqab064. [PMID: 35330924 PMCID: PMC8788836 DOI: 10.1093/function/zqab064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/07/2023] Open
Abstract
The epidermis forms an essential barrier against a variety of insults. The overall goal of this study was to shed light not only on the effects of accidental epidermal injury, but also on the mechanisms that support laser skin resurfacing with intra-epidermal focal laser-induced photodamage, a widespread medical practice used to treat a range of skin conditions. To this end, we selectively photodamaged a single keratinocyte with intense, focused and pulsed laser radiation, triggering Ca2+ waves in the epidermis of live anesthetized mice with ubiquitous expression of a genetically encoded Ca2+ indicator. Waves expanded radially and rapidly, reaching up to eight orders of bystander cells that remained activated for tens of minutes, without displaying oscillations of the cytosolic free Ca2+ concentration ([Formula: see text]). By combining in vivo pharmacological dissection with mathematical modeling, we demonstrate that Ca2+ wave propagation depended primarily on the release of ATP, a prime damage-associated molecular patterns (DAMPs), from the hit cell. Increments of the [Formula: see text] in bystander cells were chiefly due to Ca2+ release from the endoplasmic reticulum (ER), downstream of ATP binding to P2Y purinoceptors. ATP-dependent ATP release though connexin hemichannels (HCs) affected wave propagation at larger distances, where the extracellular ATP concentration was reduced by the combined effect of passive diffusion and hydrolysis due to the action of ectonucleotidases, whereas pannexin channels had no role. Bifurcation analysis suggests basal keratinocytes have too few P2Y receptors (P2YRs) and/or phospholipase C (PLC) to transduce elevated extracellular ATP levels into inositol trisphosphate (IP3) production rates sufficiently large to sustain [Formula: see text] oscillations.
Collapse
Affiliation(s)
- Viola Donati
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | - Chiara Peres
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | - Chiara Nardin
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | | | - Mario Bortolozzi
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
- Foundation for Advanced Biomedical Research, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova (PD), Italy
| | - Morten Gram Pedersen
- Department of Information Engineering, University of Padova, 35131 Padova (PD), Italy
- Department of Mathematics “Tullio Levi-Civita”, University of Padova, 35121 Padova (PD), Italy
| | - Fabio Mammano
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| |
Collapse
|
30
|
Galeano M, Pallio G, Irrera N, Mannino F, Bitto A, Altavilla D, Vaccaro M, Squadrito G, Arcoraci V, Colonna MR, Lauro R, Squadrito F. Polydeoxyribonucleotide: A Promising Biological Platform to Accelerate Impaired Skin Wound Healing. Pharmaceuticals (Basel) 2021; 14:1103. [PMID: 34832885 PMCID: PMC8618295 DOI: 10.3390/ph14111103] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
The normal wound healing process is characterized by a complex, highly integrated cascade of events, requiring the interactions of many cell types, including inflammatory cells, fibroblasts, keratinocytes and endothelial cells, as well as the involvement of growth factors and enzymes. However, several diseases such as diabetes, thermal injury and ischemia could lead to an impaired wound healing process characterized by wound hypoxia, high levels of oxygen radicals, reduced angiogenesis, decreased collagen synthesis and organization. Polydeoxyribonucleotide (PDRN) has been used to improve wound healing through local and systemic administration thanks to its ability to promote cell migration and growth, angiogenesis, and to reduce inflammation on impaired wound healing models in vitro, in vivo and clinical studies. In light of all these observations, the aim of this review is to provide a full overview of PDRN applications on skin regeneration. We reviewed papers published in the last 25 years on PubMed, inserting "polydeoxyribonucleotide and wound healing" as the main search term. All data obtained proved the ability of PDRN in promoting physiological tissue repair through adenosine A2A receptor activation and salvage pathway suggesting that PDRN has proven encouraging results in terms of healing time, wound regeneration and absence of side effects.
Collapse
Affiliation(s)
- Mariarosaria Galeano
- Department of Human Pathology and Evolutive Age “Gaetano Barresi”, University of Messina, Via C. Valeria, 98125 Messina, Italy; (M.G.); (M.R.C.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (F.M.); (A.B.); (M.V.); (G.S.); (V.A.); (R.L.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (F.M.); (A.B.); (M.V.); (G.S.); (V.A.); (R.L.)
- SunNutraPharma, Academic Spin-Off Company of the University of Messina, Via C. Valeria, 98125 Messina, Italy;
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (F.M.); (A.B.); (M.V.); (G.S.); (V.A.); (R.L.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (F.M.); (A.B.); (M.V.); (G.S.); (V.A.); (R.L.)
- SunNutraPharma, Academic Spin-Off Company of the University of Messina, Via C. Valeria, 98125 Messina, Italy;
| | - Domenica Altavilla
- SunNutraPharma, Academic Spin-Off Company of the University of Messina, Via C. Valeria, 98125 Messina, Italy;
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (F.M.); (A.B.); (M.V.); (G.S.); (V.A.); (R.L.)
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (F.M.); (A.B.); (M.V.); (G.S.); (V.A.); (R.L.)
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (F.M.); (A.B.); (M.V.); (G.S.); (V.A.); (R.L.)
| | - Michele Rosario Colonna
- Department of Human Pathology and Evolutive Age “Gaetano Barresi”, University of Messina, Via C. Valeria, 98125 Messina, Italy; (M.G.); (M.R.C.)
| | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (F.M.); (A.B.); (M.V.); (G.S.); (V.A.); (R.L.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (G.P.); (N.I.); (F.M.); (A.B.); (M.V.); (G.S.); (V.A.); (R.L.)
- SunNutraPharma, Academic Spin-Off Company of the University of Messina, Via C. Valeria, 98125 Messina, Italy;
| |
Collapse
|
31
|
Ferrari D, Casciano F, Secchiero P, Reali E. Purinergic Signaling and Inflammasome Activation in Psoriasis Pathogenesis. Int J Mol Sci 2021; 22:ijms22179449. [PMID: 34502368 PMCID: PMC8430580 DOI: 10.3390/ijms22179449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory disease of the skin associated with systemic and joint manifestations and accompanied by comorbidities, such as metabolic syndrome and increased risk of cardiovascular disease. Psoriasis has a strong genetic basis, but exacerbation requires additional signals that are still largely unknown. The clinical manifestations involve the interplay between dendritic and T cells in the dermis to generate a self-sustaining inflammatory loop around the TNFα/IL-23/IL-17 axis that forms the psoriatic plaque. In addition, in recent years, a critical role of keratinocytes in establishing the interplay that leads to psoriatic plaques’ formation has re-emerged. In this review, we analyze the most recent evidence of the role of keratinocytes and danger associates molecular patterns, such as extracellular ATP in the generation of psoriatic skin lesions. Particular attention will be given to purinergic signaling in inflammasome activation and in the initiation of psoriasis. In this phase, keratinocytes’ inflammasome may trigger early inflammatory pathways involving IL-1β production, to elicit the subsequent cascade of events that leads to dendritic and T cell activation. Since psoriasis is likely triggered by skin-damaging events and trauma, we can envisage that intracellular ATP, released by damaged cells, may play a role in triggering the inflammatory response underlying the pathogenesis of the disease by activating the inflammasome. Therefore, purinergic signaling in the skin could represent a new and early step of psoriasis; thus, opening the possibility to target single molecular actors of the purinome to develop new psoriasis treatments.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (P.S.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (P.S.)
| | - Eva Reali
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
32
|
Young GH, Lin JT, Cheng YF, Ho CF, Kuok QY, Hsu RC, Liao WR, Chen CC, Chen HM. Modulation of adenine phosphoribosyltransferase-mediated salvage pathway to accelerate diabetic wound healing. FASEB J 2021; 35:e21296. [PMID: 33675115 DOI: 10.1096/fj.202001736rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023]
Abstract
Adenine phosphoribosyltransferase (APRT) is the key enzyme involved in purine salvage by the incorporation of adenine and phosphoribosyl pyrophosphate to provide adenylate nucleotides. To evaluate the role of APRT in the repair processes of cutaneous wounds in healthy skin and in diabetic patients, a diabetic mouse model (db/db) and age-matched wild-type mice were used. Moreover, the topical application of adenine was assessed. In vitro studies, analytical, histological, and immunohistochemical methods were used. Diabetic mice treated with adenine exhibited elevated ATP levels in organismic skin and accelerated wound healing. In vitro studies showed that APRT utilized adenine to rescue cellular ATP levels and proliferation from hydrogen peroxide-induced oxidative damage. HPLC-ESI-MS/MS-based analysis of total adenylate nucleotides in NIH-3T3 fibroblasts demonstrated that adenine addition enlarged the cellular adenylate pool, reduced the adenylate energy charge, and provided additional AMP for the further generation of ATP. These data indicate an upregulation of APRT in skin wounds, highlighting its role during the healing of diabetic wounds through regulation of the nucleotide pool after injury. Furthermore, topical adenine supplementation resulted in an enlargement of the adenylate pool needed for the generation of ATP, an important molecule for wound repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Ru-Chun Hsu
- Energenesis Biomedical Co. Ltd, Taipei, Taiwan
| | | | | | - Han-Min Chen
- Energenesis Biomedical Co. Ltd, Taipei, Taiwan.,Department of Life Science, Institute of Applied Science and Engineering, Catholic Fu-Jen University, New Taipei City, Taiwan
| |
Collapse
|
33
|
McEwan TBD, Sophocleous RA, Cuthbertson P, Mansfield KJ, Sanderson-Smith ML, Sluyter R. Autocrine regulation of wound healing by ATP release and P2Y 2 receptor activation. Life Sci 2021; 283:119850. [PMID: 34314735 DOI: 10.1016/j.lfs.2021.119850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022]
Abstract
AIMS Application of exogenous nucleotides can modulate wound healing via the activation of purinergic receptors. However, evidence for the release of endogenous nucleotides and the subsequent activation of purinergic receptors in this process has not been well defined. Therefore, the current study aimed to investigate wound-mediated nucleotide release and autocrine purinergic signalling during HaCaT keratinocyte wound closure following scratch injury. MAIN METHODS An in vitro scratch wound apparatus was employed to study wound healing over 24-h in the presence of modulators of ATP release, P2 receptors and pathways downstream of P2 receptor activation. KEY FINDINGS Adenosine 5'-triphosphate (ATP) was released from scratched cells. The ectonucleotidase apyrase and pharmacological inhibition of the nucleotide release hemichannel, pannexin-1, decreased wound closure over time. The non-selective P2Y receptor antagonist suramin and the selective P2Y2 receptor antagonist AR-C118925XX, but not other P2 antagonists, decreased wound closure. AR-C118925XX decreased wound closure in a concentration-dependent fashion. However, exogenous P2Y2 receptor agonists, ATP or uridine 5'-triphosphate, did not enhance wound closure. PCR and immunoblotting confirmed P2Y2 receptor expression in HaCaT cells. U73122, a phospholipase C antagonist, and 2-aminoethoxydiphenylborate, an inositol 1,4,5-trisphosphate receptor-sensitive Ca2+-release channel antagonist, decreased wound closure consistent with P2Y2 receptor activation. Absence of extracellular or intracellular Ca2+ or inhibition of intracellular Ca2+-release also impaired wound closure. SIGNIFICANCE These data describe a novel autocrine signalling mechanism in which wound-mediated release of endogenous ATP in response to mechanical scratching of HaCaT cells activates P2Y2 receptors to facilitate wound closure.
Collapse
Affiliation(s)
- T B-D McEwan
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - R A Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - P Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - K J Mansfield
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - M L Sanderson-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - R Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
34
|
Huang X, Khoong Y, Han C, Su D, Ma H, Gu S, Li Q, Zan T. Targeting Dermal Fibroblast Subtypes in Antifibrotic Therapy: Surface Marker as a Cellular Identity or a Functional Entity? Front Physiol 2021; 12:694605. [PMID: 34335301 PMCID: PMC8319956 DOI: 10.3389/fphys.2021.694605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 02/01/2023] Open
Abstract
Fibroblasts are the chief effector cells in fibrotic diseases and have been discovered to be highly heterogeneous. Recently, fibroblast heterogeneity in human skin has been studied extensively and several surface markers for dermal fibroblast subtypes have been identified, holding promise for future antifibrotic therapies. However, it has yet to be confirmed whether surface markers should be looked upon as merely lineage landmarks or as functional entities of fibroblast subtypes, which may further complicate the interpretation of cellular function of these fibroblast subtypes. This review aims to provide an update on current evidence on fibroblast surface markers in fibrotic disorders of skin as well as of other organ systems. Specifically, studies where surface markers were treated as lineage markers and manipulated as functional membrane proteins are both evaluated in parallel, hoping to reveal the underlying mechanism behind the pathogenesis of tissue fibrosis contributed by various fibroblast subtypes from multiple angles, shedding lights on future translational researches.
Collapse
Affiliation(s)
- Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengyao Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dai Su
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
O’Shaughnessy EM, Duffy W, Garcia-Vega L, Hussey K, Burden AD, Zamiri M, Martin PE. Dysregulation of Connexin Expression Plays a Pivotal Role in Psoriasis. Int J Mol Sci 2021; 22:ijms22116060. [PMID: 34199748 PMCID: PMC8200029 DOI: 10.3390/ijms22116060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Psoriasis, a chronic inflammatory disease affecting 2–3% of the population, is characterised by epidermal hyperplasia, a sustained pro-inflammatory immune response and is primarily a T-cell driven disease. Previous work determined that Connexin26 is upregulated in psoriatic tissue. This study extends these findings. Methods: Biopsies spanning psoriatic plaque (PP) and non-involved tissue (PN) were compared to normal controls (NN). RNA was isolated and subject to real-time PCR to determine gene expression profiles, including GJB2/CX26, GJB6/CX30 and GJA1/CX43. Protein expression was assessed by immunohistochemistry. Keratinocytes and fibroblasts were isolated and used in 3D organotypic models. The pro-inflammatory status of fibroblasts and 3D cultures was assessed via ELISA and RnD cytokine arrays in the presence or absence of the connexin channel blocker Gap27. Results: Connexin26 expression is dramatically enhanced at both transcriptional and translational level in PP and PN tissue compared to NN (>100x). In contrast, CX43 gene expression is not affected, but the protein is post-translationally modified and accumulates in psoriatic tissue. Fibroblasts isolated from psoriatic patients had a higher inflammatory index than normal fibroblasts and drove normal keratinocytes to adopt a “psoriatic phenotype” in a 3D-organotypic model. Exposure of normal fibroblasts to the pro-inflammatory mediator peptidoglycan, isolated from Staphylococcus aureus enhanced cytokine release, an event protected by Gap27. Conclusion: dysregulation of the connexin26:43 expression profile in psoriatic tissue contributes to an imbalance of cellular events. Inhibition of connexin signalling reduces pro-inflammatory events and may hold therapeutic benefit.
Collapse
Affiliation(s)
- Erin M. O’Shaughnessy
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (E.M.O.); (L.G.-V.)
| | - William Duffy
- Department of Dermatology, University Hospital Crosshouse, Kilmarnock KA2 0BE, UK; (W.D.); (M.Z.)
| | - Laura Garcia-Vega
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (E.M.O.); (L.G.-V.)
| | - Keith Hussey
- Department of Vascular Surgery, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK;
| | - A. David Burden
- Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK;
| | - Mozheh Zamiri
- Department of Dermatology, University Hospital Crosshouse, Kilmarnock KA2 0BE, UK; (W.D.); (M.Z.)
- Department of Dermatology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Patricia E. Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (E.M.O.); (L.G.-V.)
- Correspondence: ; Tel.: +44-141-331-3726
| |
Collapse
|
36
|
Borges PA, Waclawiak I, Georgii JL, Fraga-Junior VDS, Barros JF, Lemos FS, Russo-Abrahão T, Saraiva EM, Takiya CM, Coutinho-Silva R, Penido C, Mermelstein C, Meyer-Fernandes JR, Canto FB, Neves JS, Melo PA, Canetti C, Benjamim CF. Adenosine Diphosphate Improves Wound Healing in Diabetic Mice Through P2Y 12 Receptor Activation. Front Immunol 2021; 12:651740. [PMID: 33828561 PMCID: PMC8019717 DOI: 10.3389/fimmu.2021.651740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/01/2021] [Indexed: 01/13/2023] Open
Abstract
Chronic wounds are a public health problem worldwide, especially those related to diabetes. Besides being an enormous burden to patients, it challenges wound care professionals and causes a great financial cost to health system. Considering the absence of effective treatments for chronic wounds, our aim was to better understand the pathophysiology of tissue repair in diabetes in order to find alternative strategies to accelerate wound healing. Nucleotides have been described as extracellular signaling molecules in different inflammatory processes, including tissue repair. Adenosine-5'-diphosphate (ADP) plays important roles in vascular and cellular response and is immediately released after tissue injury, mainly from platelets. However, despite the well described effect on platelet aggregation during inflammation and injury, little is known about the role of ADP on the multiple steps of tissue repair, particularly in skin wounds. Therefore, we used the full-thickness excisional wound model to evaluate the effect of local ADP application in wounds of diabetic mice. ADP accelerated cutaneous wound healing, improved new tissue formation, and increased both collagen deposition and transforming growth factor-β (TGF-β) production in the wound. These effects were mediated by P2Y12 receptor activation since they were inhibited by Clopidogrel (Clop) treatment, a P2Y12 receptor antagonist. Furthermore, P2Y1 receptor antagonist also blocked ADP-induced wound closure until day 7, suggesting its involvement early in repair process. Interestingly, ADP treatment increased the expression of P2Y12 and P2Y1 receptors in the wound. In parallel, ADP reduced reactive oxygen species (ROS) formation and tumor necrosis factor-α (TNF-α) levels, while increased IL-13 levels in the skin. Also, ADP increased the counts of neutrophils, eosinophils, mast cells, and gamma delta (γδ) T cells (Vγ4+ and Vγ5+ cells subtypes of γδ+ T cells), although reduced regulatory T (Tregs) cells in the lesion. In accordance, ADP increased fibroblast proliferation and migration, myofibroblast differentiation, and keratinocyte proliferation. In conclusion, we provide strong evidence that ADP acts as a pro-resolution mediator in diabetes-associated skin wounds and is a promising intervention target for this worldwide problem.
Collapse
Affiliation(s)
- Paula Alvarenga Borges
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Fluminense Federal Institute (IFF), Rio de Janeiro, Brazil
| | - Ingrid Waclawiak
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Janaína Lima Georgii
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Janaína Figueiredo Barros
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Felipe Simões Lemos
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thaís Russo-Abrahão
- Institute of Medical Biochemistry Leopoldo de Meis, Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Elvira Maria Saraiva
- Institute of Microbiology Paulo de Góes, Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Christina M. Takiya
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Carmen Penido
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Applied Pharmacology, Institute of Drug Technology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Fábio B. Canto
- Department of Immunobiology, Institute of Biology, Fluminense Federal University (UFF), Niterói, Brazil
| | - Josiane Sabbadini Neves
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Paulo A. Melo
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudio Canetti
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Claudia Farias Benjamim
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Le Daré B, Ferron PJ, Gicquel T. The Purinergic P2X7 Receptor-NLRP3 Inflammasome Pathway: A New Target in Alcoholic Liver Disease? Int J Mol Sci 2021; 22:2139. [PMID: 33670021 PMCID: PMC7926651 DOI: 10.3390/ijms22042139] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
The World Health Organization has estimated that approximately 3 million deaths are attributable to alcohol consumption each year. Alcohol consumption is notably associated with the development and/or progression of many non-communicable inflammatory diseases-particularly in the liver. Although these alcoholic liver diseases were initially thought to be caused by the toxicity of ethanol on hepatocytes, the latest research indicates Kupffer cells (the liver macrophages) are at the heart of this "inflammatory shift". Purinergic signaling (notably through P2X7 receptors and the NLRP3 inflammasome) by Kupffer cells appears to be a decisive factor in the pathophysiology of alcoholic liver disease. Hence, the modulation of purinergic signaling might represent a new means of treating alcoholic liver disease. Here, we review current knowledge on the pathophysiology of alcoholic liver diseases and therapeutic perspectives for targeting these inflammatory pathways.
Collapse
Affiliation(s)
- Brendan Le Daré
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
- Forensic and Toxicology Laboratory, Rennes University Hospital, 2 rue Henri Le Guilloux, F-35033 Rennes, France
| | - Pierre-Jean Ferron
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
| | - Thomas Gicquel
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
- Forensic and Toxicology Laboratory, Rennes University Hospital, 2 rue Henri Le Guilloux, F-35033 Rennes, France
| |
Collapse
|
38
|
Flores-Muñoz C, Maripillán J, Vásquez-Navarrete J, Novoa-Molina J, Ceriani R, Sánchez HA, Abbott AC, Weinstein-Oppenheimer C, Brown DI, Cárdenas AM, García IE, Martínez AD. Restraint of Human Skin Fibroblast Motility, Migration, and Cell Surface Actin Dynamics, by Pannexin 1 and P2X7 Receptor Signaling. Int J Mol Sci 2021; 22:1069. [PMID: 33499026 PMCID: PMC7865282 DOI: 10.3390/ijms22031069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Wound healing is a dynamic process required to maintain skin integrity and which relies on the precise migration of different cell types. A key molecule that regulates this process is ATP. However, the mechanisms involved in extracellular ATP management are poorly understood, particularly in the human dermis. Here, we explore the role, in human fibroblast migration during wound healing, of Pannexin 1 channels and their relationship with purinergic signals and in vivo cell surface filamentous actin dynamics. Using siRNA against Panx isoforms and different Panx1 channel inhibitors, we demonstrate in cultured human dermal fibroblasts that the absence or inhibition of Panx1 channels accelerates cell migration, increases single-cell motility, and promotes actin redistribution. These changes occur through a mechanism that involves the release of ATP to the extracellular space through a Panx1-dependent mechanism and the activation of the purinergic receptor P2X7. Together, these findings point to a pivotal role of Panx1 channels in skin fibroblast migration and suggest that these channels could be a useful pharmacological target to promote damaged skin healing.
Collapse
Affiliation(s)
- Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Jacqueline Vásquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Joel Novoa-Molina
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Ricardo Ceriani
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Helmuth A. Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Ana C. Abbott
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Caroline Weinstein-Oppenheimer
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile;
- Centro de Investigación Farmacopea Chilena, Valparaíso 2360102, Chile
| | - Donald I. Brown
- Laboratorio de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Ana María Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Isaac E. García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| |
Collapse
|
39
|
Garcia-Vega L, O’Shaughnessy EM, Albuloushi A, Martin PE. Connexins and the Epithelial Tissue Barrier: A Focus on Connexin 26. BIOLOGY 2021; 10:biology10010059. [PMID: 33466954 PMCID: PMC7829877 DOI: 10.3390/biology10010059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Tissues that face the external environment are known as ‘epithelial tissue’ and form barriers between different body compartments. This includes the outer layer of the skin, linings of the intestine and airways that project into the lumen connecting with the external environment, and the cornea of the eye. These tissues do not have a direct blood supply and are dependent on exchange of regulatory molecules between cells to ensure co-ordination of tissue events. Proteins known as connexins form channels linking cells directly and permit exchange of small regulatory signals. A range of environmental stimuli can dysregulate the level of connexin proteins and or protein function within the epithelia, leading to pathologies including non-healing wounds. Mutations in these proteins are linked with hearing loss, skin and eye disorders of differing severity. As such, connexins emerge as prime therapeutic targets with several agents currently in clinical trials. This review outlines the role of connexins in epithelial tissue and how their dysregulation contributes to pathological pathways. Abstract Epithelial tissue responds rapidly to environmental triggers and is constantly renewed. This tissue is also highly accessible for therapeutic targeting. This review highlights the role of connexin mediated communication in avascular epithelial tissue. These proteins form communication conduits with the extracellular space (hemichannels) and between neighboring cells (gap junctions). Regulated exchange of small metabolites less than 1kDa aide the co-ordination of cellular activities and in spatial communication compartments segregating tissue networks. Dysregulation of connexin expression and function has profound impact on physiological processes in epithelial tissue including wound healing. Connexin 26, one of the smallest connexins, is expressed in diverse epithelial tissue and mutations in this protein are associated with hearing loss, skin and eye conditions of differing severity. The functional consequences of dysregulated connexin activity is discussed and the development of connexin targeted therapeutic strategies highlighted.
Collapse
|
40
|
Pedro MP, Lund K, Iglesias-Bartolome R. The landscape of GPCR signaling in the regulation of epidermal stem cell fate and skin homeostasis. Stem Cells 2020; 38:1520-1531. [PMID: 32896043 DOI: 10.1002/stem.3273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Continuous integration of signals from the micro and macro-environment is necessary for somatic stem cells to adapt to changing conditions, maintain tissue homeostasis and activate repair mechanisms. G-protein coupled receptors (GPCRs) facilitate this integration by binding to numerous hormones, metabolites and inflammatory mediators, influencing a diverse network of pathways that regulate stem cell fate. This adaptive mechanism is particularly relevant for tissues that are exposed to environmental assault, like skin. The skin is maintained by a set of basal keratinocyte stem and progenitor cells located in the hair follicle and interfollicular epidermis, and several GPCRs and their signaling partners serve as makers and regulators of epidermal stem cell activity. GPCRs utilize heterotrimeric G protein dependent and independent pathways to translate extracellular signals into intracellular molecular cascades that dictate the activation of keratinocyte proliferative and differentiation networks, including Hedgehog GLI, Hippo YAP1 and WNT/β-catenin, ultimately regulating stem cell identity. Dysregulation of GPCR signaling underlines numerous skin inflammatory diseases and cancer, with smoothened-driven basal cell carcinoma being a main example of a GPCR associated cancer. In this review, we discuss the impact of GPCRs and their signaling partners in skin keratinocyte biology, particularly in the regulation of the epidermal stem cell compartment.
Collapse
Affiliation(s)
- M Pilar Pedro
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine Lund
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Xu H, Gan C, Gao Z, Huang Y, Wu S, Zhang D, Wang X, Sheng J. Caffeine Targets SIRT3 to Enhance SOD2 Activity in Mitochondria. Front Cell Dev Biol 2020; 8:822. [PMID: 33015038 PMCID: PMC7493682 DOI: 10.3389/fcell.2020.00822] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Caffeine is chemically stable and not readily oxidized under normal physiological conditions but also has antioxidant effects, although the underlying molecular mechanism is not well understood. Superoxide dismutase (SOD) 2 is a manganese-containing enzyme located in mitochondria that protects cells against oxidative stress by scavenging reactive oxygen species (ROS). SOD2 activity is inhibited through acetylation under conditions of stress such as exposure to ultraviolet (UV) radiation. Sirtuin 3 (SIRT3) is the major mitochondrial nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, which deacetylates two critical lysine residues (lysine 68 and lysine 122) on SOD2 and promotes its antioxidative activity. In this study, we investigated whether the antioxidant effect of caffeine involves modulation of SOD2 by SIRT3 using in vitro and in vivo models. The results show that caffeine interacts with SIRT3 and promotes direct binding of SIRT3 with its substrate, thereby enhancing its enzymatic activity. Mechanistically, caffeine bound to SIRT3 with high affinity (KD = 6.858 × 10–7 M); the binding affinity between SIRT3 and its substrate acetylated p53 was also 9.03 (without NAD+) or 6.87 (with NAD+) times higher in the presence of caffeine. Caffeine effectively protected skin cells from UV irradiation-induced oxidative stress. More importantly, caffeine enhanced SIRT3 activity and reduced SOD2 acetylation, thereby leading to increased SOD2 activity, which could be reversed by treatment with the SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) in vitro and in vivo. Taken together, our results show that caffeine targets SIRT3 to enhance SOD2 activity and protect skin cells from UV irradiation-induced oxidative stress. Thus, caffeine, as a small-molecule SIRT3 activator, could be a potential agent to protect human skin against UV radiation.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Chunxia Gan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ziqi Gao
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yewei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Simin Wu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dongying Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
42
|
Colangelo MT, Galli C, Guizzardi S. The effects of polydeoxyribonucleotide on wound healing and tissue regeneration: a systematic review of the literature. Regen Med 2020; 15:1801-1821. [PMID: 32757710 DOI: 10.2217/rme-2019-0118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: The present study evaluated the effects of polydeoxyribonucleotide (PDRN) on tissue regeneration, paying special attention to the molecular mechanisms that underlie its tissue remodeling actions to better identify its effective therapeutic potential in wound healing. Materials & methods: Strategic searches were conducted through MEDLINE/PubMed, Google Scholar, Scopus, Web of Science and the Cochrane Central Register of Controlled Trials, from their earliest available dates to March 2020. The studies were included with the following eligibility criteria: studies evaluating tissue regeneration, and being an in vitro, in vivo and clinical study. Results: Out of more than 90 articles, 34 fulfilled the eligibility criteria. All data obtained proved the ability of PDRN in promoting a physiological tissue repair through salvage pathway and adenosine A2A receptor activation. Conclusion: Up to date PDRN has proved promising results in term of wound regeneration, healing time and absence of side effects.
Collapse
Affiliation(s)
- Maria T Colangelo
- Department of Medicine & Surgery, Histology & Embryology Lab, University of Parma, Parma, Italy
| | - Carlo Galli
- Department of Medicine & Surgery, University of Parma, Parma, Italy
| | - Stefano Guizzardi
- Department of Medicine & Surgery, Histology & Embryology Lab, University of Parma, Parma, Italy
| |
Collapse
|
43
|
Kuang Y, Zorzi V, Buratto D, Ziraldo G, Mazzarda F, Peres C, Nardin C, Salvatore AM, Chiani F, Scavizzi F, Raspa M, Qiang M, Chu Y, Shi X, Li Y, Liu L, Shi Y, Zonta F, Yang G, Lerner RA, Mammano F. A potent antagonist antibody targeting connexin hemichannels alleviates Clouston syndrome symptoms in mutant mice. EBioMedicine 2020; 57:102825. [PMID: 32553574 PMCID: PMC7378960 DOI: 10.1016/j.ebiom.2020.102825] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Numerous currently incurable human diseases have been causally linked to mutations in connexin (Cx) genes. In several instances, pathological mutations generate abnormally active Cx hemichannels, referred to also as "leaky" hemichannels. The goal of this study was to assay the in vivo efficacy of a potent antagonist antibody targeting Cx hemichannels. METHODS We employed the antibody to treat Cx30A88V/A88V adult mutant mice, the only available animal model of Clouston syndrome, a rare orphan disease caused by Cx30 p.A88V leaky hemichannels. To gain mechanistic insight into antibody action, we also performed patch clamp recordings, Ca2+ imaging and ATP release assay in vitro. FINDINGS Two weeks of antibody treatment sufficed to repress cell hyperproliferation in skin and reduce hypertrophic sebaceous glands (SGs) to wild type (wt) levels. These effects were obtained whether mutant mice were treated topically, by application of an antibody cream formulation, or systemically, by intraperitoneal antibody injection. Experiments with mouse primary keratinocytes and HaCaT cells revealed the antibody blocked Ca2+ influx and diminished ATP release through leaky Cx30 p.A88V hemichannels. INTERPRETATION Our results show anti-Cx antibody treatment was effective in vivo and sufficient to counteract the effects of pathological connexin expression in Cx30A88V/A88V mice. In vitro experiments suggest antibodies gained control over leaky hemichannels and contributed to restoring epidermal homeostasis. Therefore, regulating cell physiology by antibodies targeting the extracellular domain of Cxs may enforce an entirely new therapeutic strategy. These findings support the further development of antibodies as drugs to address unmet medical needs for Cx-related diseases. FUND: Fondazione Telethon, GGP19148; University of Padova, SID/BIRD187130; Consiglio Nazionale delle Ricerche, DSB.AD008.370.003\TERABIO-IBCN; National Science Foundation of China, 31770776; Science and Technology Commission of Shanghai Municipality, 16DZ1910200.
Collapse
Affiliation(s)
- Yuanyuan Kuang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Gaia Ziraldo
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Flavia Mazzarda
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Science, Roma3 University, 00146 Rome, Italy
| | - Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | | | - Francesco Chiani
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | | | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | - Min Qiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xiaojie Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yu Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yaru Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Richard A Lerner
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, U.S.A..
| | - Fabio Mammano
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy.
| |
Collapse
|
44
|
Fueling Melanocytes with ATP from Keratinocytes Accelerates Melanin Synthesis. J Invest Dermatol 2020; 139:1424-1426. [PMID: 31230638 DOI: 10.1016/j.jid.2019.03.1137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 11/20/2022]
Abstract
Melanocyte homoeostasis and their response to ultraviolet radiation (UVR) are mediated to a large extent by keratinocyte-derived factors, many of which have been well-characterized. Lee et al. describe novel effects of adenosine 5'-triphosphate (ATP), which is secreted by keratinocytes and can stimulate melanogenesis by melanocytes following UVA exposure. The investigators attribute the melanogenic effect of ATP to binding purinergic receptors type 2 X7 (P2X7), which are expressed on human melanocytes, leading to activation of the protein kinase C pathway. This report is the first to identify expression of specific purinergic receptors on human melanocytes, and it suggests ATP as a signaling molecule that stimulates pigmentation. Follow up on these results should clarify the physiological role of ATP in mediating the tanning response to solar UVR.
Collapse
|
45
|
Shakya AK, Naik RR, Almasri IM, Kaur A. Role and Function of Adenosine and its Receptors in Inflammation, Neuroinflammation, IBS, Autoimmune Inflammatory Disorders, Rheumatoid Arthritis and Psoriasis. Curr Pharm Des 2020; 25:2875-2891. [PMID: 31333103 DOI: 10.2174/1381612825666190716145206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
The physiological effects of endogenous adenosine on various organ systems are very complex and numerous which are elicited upon activation of any of the four G-protein-coupled receptors (GPCRs) denoted as A1, A2A, A2B and A3 adenosine receptors (ARs). Several fused heterocyclic and non-xanthine derivatives are reported as a possible target for these receptors due to physiological problems and lack of selectivity of xanthine derivatives. In the present review, we have discussed the development of various new chemical entities as a target for these receptors. In addition, compounds acting on adenosine receptors can be utilized in treating diseases like inflammation, neuroinflammation, autoimmune and related diseases.
Collapse
Affiliation(s)
- Ashok K Shakya
- Medicinal Chemistry, Drug Design and Drug Metabolism, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al- Ahliyya Amman University, PO Box 263, Amman 19328, Jordan
| | - Rajashri R Naik
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ihab M Almasri
- Medicinal Chemistry and Drug Design, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Al Azhar University Gaza, Gaza Strip, Palestinian Territory, Occupied
| | - Avneet Kaur
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Mehrauli-Badarpur Road, Pushp Vihar, Sector-3, New Delhi-110017, India
| |
Collapse
|
46
|
Stewart TA, Davis FM. A Primary Cell and Organoid Platform for Evaluating Pharmacological Responses in Mammary Epithelial Cells. ACS Pharmacol Transl Sci 2020; 3:63-75. [PMID: 32259089 PMCID: PMC7088941 DOI: 10.1021/acsptsci.9b00090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 12/31/2022]
Abstract
An essential process in predicting the in vivo pharmacological activity of a candidate molecule involves the evaluation of target responses using established model systems. While these models largely comprise immortalized cells, which are often serially passaged as monolayers on uniformly stiff substrates and are modified to overexpress one or more components of the pathway-of-interest, the importance of cell identity, heterogeneity, and three-dimensional (3D) context to target response is gaining increasing attention. Here, we assess intracellular calcium responses in mouse mammary epithelial cells in three distinct model systems: 3D primary organoids, 2D primary epithelial cells, and 2D immortalized cells. Specifically, we assess intracellular calcium responses to a number of extracellular signals implicated in the regulation of basal (or myoepithelial) cell function. These findings provide further insights into cell type and context-specific pharmacological responses in mammary epithelial cells and highlight the opportunities and challenges in the adoption of architecturally complex and heterogeneous in vitro assays in pharmacological research.
Collapse
Affiliation(s)
- Teneale A. Stewart
- Mater
Research-The University of Queensland, Faculty of Medicine, Brisbane, Queensland 4102, Australia
- Translational
Research Institute, Brisbane, Queensland 4102, Australia
| | - Felicity M. Davis
- Mater
Research-The University of Queensland, Faculty of Medicine, Brisbane, Queensland 4102, Australia
- Translational
Research Institute, Brisbane, Queensland 4102, Australia
| |
Collapse
|
47
|
Zyma M, Pawliczak R. Characteristics and the role of purinergic receptors in pathophysiology with focus on immune response. Int Rev Immunol 2020; 39:97-117. [PMID: 32037918 DOI: 10.1080/08830185.2020.1723582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nucleotide adenosine-5'-triphosphate (ATP) is mostly thought to be energy carrier, but evidence presented in multiple studies proves ATP involvement into variety of processes, due to its neuromodulatory capabilities. ATP and its metabolite-adenosine, bind to the purinergic receptors, which are divided into two types: adenosine binding P1 receptor and ADP/ATP binding P2 receptor. These receptors are expressed in different tissues and organs. Recent studies report their immunomodulatory characteristics, connected with varying immunological processes, such as immunological response or antigen presentation. Besides, they seem to play an important role in medical conditions such as bronchial asthma or variety of cancers. In this article, we would like to review recent discoveries on the field of purinergic receptors research focusing on their role in immunological system, and shed a new light upon the importance of these receptors in modern medicine development.
Collapse
Affiliation(s)
- Marharyta Zyma
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
48
|
Sandoval-Talamantes AK, Gómez-González BA, Uriarte-Mayorga DF, Martínez-Guzman MA, Wheber-Hidalgo KA, Alvarado-Navarro A. Neurotransmitters, neuropeptides and their receptors interact with immune response in healthy and psoriatic skin. Neuropeptides 2020; 79:102004. [PMID: 31902596 DOI: 10.1016/j.npep.2019.102004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 12/22/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Psoriasis is a chronic inflammatory disease with a multifactorial origin that affects the skin. It is characterized by keratinocyte hyperproliferation, which results in erythemato-squamous plaques. Just as the immune system plays a fundamental role in psoriasis physiopathology, the nervous system maintains the inflammatory process through the neuropeptides and neurotransmitters synthesis, as histamine, serotonin, calcitonin gene-related peptide, nerve growth factor, vasoactive intestinal peptide, substance P, adenosine, glucagon-like peptide, somatostatin and pituitary adenylate cyclase polypeptide. In patients with psoriasis, the systemic or in situ expression of these chemical mediators and their receptors are altered, which affects the clinical activity of patients due to its link to the immune system, provoking neurogenic inflammation. It is important to establish the role of the nervous system since it could represent a therapeutic alternative for psoriasis patients. The aim of this review is to offer a detailed review of the current literature about the neuropeptides and neurotransmitters involved in the physiopathology of psoriasis.
Collapse
Affiliation(s)
- Ana Karen Sandoval-Talamantes
- Centro de Reabilitación Infantil Teletón de Occidente, Copal 4575, Col. Arboledas del Sur, 44980 Guadalajara, Jalisco, México
| | - B A Gómez-González
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Av. Federalismo Norte 3102, Col. Atemajac del Valle, 45190 Zapopan, Jalisco, México
| | - D F Uriarte-Mayorga
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Av. Federalismo Norte 3102, Col. Atemajac del Valle, 45190 Zapopan, Jalisco, México
| | - M A Martínez-Guzman
- Unima Diagnósticos de México, Paseo de los Mosqueteros 4181, Col. Villa Universitaria, 45110 Zapopan, Jalisco, México
| | - Katia Alejandra Wheber-Hidalgo
- Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Av. Federalismo Norte 3102, Col. Atemajac del Valle, 45190 Zapopan, Jalisco, México
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y dermatología, Universidad de Guadalajara, México, Sierra Mojada 950, Col. Independencia, 44340, Guadalajara, Jalisco, México.
| |
Collapse
|
49
|
Lisztes E, Tóth BI, Bertolini M, Szabó IL, Zákány N, Oláh A, Szöllősi AG, Paus R, Bíró T. Adenosine Promotes Human Hair Growth and Inhibits Catagen Transition In Vitro: Role of the Outer Root Sheath Keratinocytes. J Invest Dermatol 2019; 140:1085-1088.e6. [PMID: 31730764 DOI: 10.1016/j.jid.2019.08.456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Erika Lisztes
- DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Marta Bertolini
- Department of Dermatology, University of Münster, Münster, Germany; Monasterium Laboratory - Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Imre Lőrinc Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nóra Zákány
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gábor Szöllősi
- DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida; Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom
| | - Tamás Bíró
- DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Hungarian Center of Excellence for Molecular Medicine, Szeged, Hungary.
| |
Collapse
|
50
|
Wang H, Stahl F, Scheper T, Steffens M, Warnecke A, Zeilinger C. Microarray-based screening system identifies temperature-controlled activity of Connexin 26 that is distorted by mutations. Sci Rep 2019; 9:13543. [PMID: 31537823 PMCID: PMC6753059 DOI: 10.1038/s41598-019-49423-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/24/2019] [Indexed: 11/09/2022] Open
Abstract
Here, we show that human Connexin 26 (hCx26 or Cx26WT) hemichannel opening rapidly enables the transport of small molecules when triggered by temperature and by compensation of the Ca2+ blockade with EDTA. Point mutations within Cx26 were analysed by a novel optical microarray-based Lucifer Yellow uptake assay or by two electrode voltage clamp (TEVC) on frog oocytes to monitor simultaneous activities of channel proteins. Point mutations L90P, F161S, R184P or K188N influenced the temperature-dependent activity drastically. Since several mutations blocked trafficking, the temperature-dependent activity of the recombinant synthesized and purified wild-type Cx26WT and Cx26K188N hemichannel was tested by liposome flux assay (LFA) and on a microarray-based Lucifer Yellow uptake assay under warm conditions (>30 °C). The data from TEVC measurements and dye flux experiments showed that the mutations gave no or only a weak activity at increased temperature (>30 °C). We conclude that the position K188 in the Cx26WT forms a temperature-sensitive salt bridge with E47 whereas the exchange to K188N destabilizes the network loop- gating filter, which was recently identified as a part of the flexible Ca2+ binding site. We assume that the temperature sensitivity of Cx26 is required to protect cells from uncontrolled release or uptake activities through Cx26 hemichannels.
Collapse
Affiliation(s)
- Hongling Wang
- Hannover Medical School, Department of Otorhinolaryngology, Head- and Neck-Surgery, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Schneiderberg 38, 30167, Hannover, Germany
| | - Frank Stahl
- Gottfried-Wilhelm-Leibniz University of Hannover, Institut für Technische Chemie/BMWZ (Zentrum für Biomolekulare Wirkstoffe), Callinstr. 5, 30167, Hannover, Germany.,Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Schneiderberg 38, 30167, Hannover, Germany
| | - Thomas Scheper
- Gottfried-Wilhelm-Leibniz University of Hannover, Institut für Technische Chemie/BMWZ (Zentrum für Biomolekulare Wirkstoffe), Callinstr. 5, 30167, Hannover, Germany.,Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Schneiderberg 38, 30167, Hannover, Germany
| | - Melanie Steffens
- Hannover Medical School, Department of Otorhinolaryngology, Head- and Neck-Surgery, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Athanasia Warnecke
- Hannover Medical School, Department of Otorhinolaryngology, Head- and Neck-Surgery, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence EXC1077 "Hearing4all", German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft"), Hannover, Germany
| | - Carsten Zeilinger
- Gottfried-Wilhelm-Leibniz University of Hannover, BMWZ (Zentrum für Biomolekulare Wirkstoffe), Schneiderberg 38, 30167, Hannover, Germany.
| |
Collapse
|