1
|
Shen CH, Wu JY, Wang SC, Liu HT, Wu PX, Chan KW, Huang SW, Lee MY, Liu YW. Enhanced tumor suppressive effect of a new HDAC inhibitor in bladder cancer in vitro and in vivo. Biomed Pharmacother 2025; 187:118108. [PMID: 40300392 DOI: 10.1016/j.biopha.2025.118108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/30/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025] Open
Abstract
Bladder cancer has a high recurrence rate, which indicates that the therapeutic effects of advanced bladder cancers are still limited. In this study, we combined vorinostat and cyproheptadine as a new treatment for bladder cancer. When combining the two drugs, an additive to synergistic effect is discovered. Furthermore, we modified the structure of vorinostat using cyproheptadine tricyclic ring to get compounds 8 C and O8C, which keep HDAC inhibitory activity and have IC50 lower than 10 μM in 5637, BFTC 905, and MB49 cells. In in vitro assay, vorinostat, 8 C and O8C increased the percentage of cell cycle in G2/M in 5637, while G0/G1 arrest in BFTC 905. Apoptosis was seen in 5637 and slightly in BFTC 905 by the Annexin V-PI staining assay, and a minor rescued cell viability after Z-VAD-FMK pretreatment in 5637. 8 C and O8C slightly decreased MMP, and increased ROS levels. Among different ROS scavenger treatments, only N-acetyl-L-cysteine shows a minor viability rescue, indicating ROS may not take an important role in 8C- and O8C-induced cell death. In the in vivo assay, mice underwent intraperitoneal injection of 8 C, delaying tumor growth compared to cyproheptadine, vorinostat, and O8C individually. Because the water solubility of 8 C is not good, we use its salt form 8C-HCl for further in vivo study. Mice underwent gavage of 8C-HCl, which resulted in delaying tumor growth. In conclusion, 8 C and 8C-HCl, from structure modification of vorinostat by cyproheptadine tricyclic ring, enhance tumor suppressive effect in vitro and in vivo.
Collapse
Affiliation(s)
- Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan; SKBIO Technology Corporation, Taipei 114065, Taiwan
| | - Jin-Yi Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City 600, Taiwan
| | - Shou-Chieh Wang
- Division of Nephrology, Department of Internal Medicine, Kuang Tien General Hospital, Taichung 437, Taiwan
| | - Hsin-Ting Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City 600, Taiwan
| | - Pei-Xuan Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City 600, Taiwan
| | - Kun-Wei Chan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi City 600, Taiwan
| | - Say-Wei Huang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi City 600, Taiwan
| | - Ming-Yang Lee
- Division of Hemato-oncology, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan; Min-Hwei Junior College of Health Care Management, Tainan 73658, Taiwan
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City 600, Taiwan.
| |
Collapse
|
2
|
Guo R, Wei Y, Du Y, Liu L, Zhang H, Ren R, Sun R, Zhang T, Xiong X, Zhao L, Wang H, Guo X, Zhu X. EX527, a sirtuins 1 inhibitor, sensitizes T-cell leukemia to death receptor-mediated apoptosis by downregulating cellular FLICE inhibitory protein. Cancer Biol Ther 2024; 25:2402588. [PMID: 39286953 PMCID: PMC11409494 DOI: 10.1080/15384047.2024.2402588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Death receptor-mediated extrinsic apoptosis system had been developed as a promising therapeutic strategy in clinical oncology, such as TRAIL therapy. However, multiple studies have demonstrated that TRAIL resistance is the biggest problem for disappointing clinical trials despite preclinical success. Targeting cellular FLICE inhibitory protein (cFLIP) is one strategy of combinatorial therapies to overcome resistance to DR-mediated apoptosis due to its negative regulator of extrinsic apoptosis. E × 527 (Selisistat) is a specific inhibitor of SIRT1 activity with safe and well tolerance in clinical trials. Here, we show that E × 527 could strengthen significantly activation of rhFasL-mediated apoptotic signaling pathway and increased apoptotic rate of T leukemia cells with high expression of cFLIP. Mechanically, Inhibition of SIRT1 by E × 527 increased polyubiquitination level of cFLIP via increasing acetylation of Ku70, which could promote proteosomal degradation of cFLIP protein. It implied that combinatorial therapies of E × 527 plus TRAIL may have a potential as a novel clinical application for TRAIL-resistant hematologic malignancies.
Collapse
Affiliation(s)
- Rongqi Guo
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Yihui Wei
- Henan Red Cross Blood Center, Xinxiang, China
| | - Yating Du
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Luyue Liu
- Departments of Laboratory Medicine, Zhoukou Central Hospital, Zhoukou, China
| | - Haoqi Zhang
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang
Medical University, Xinxiang, China
| | - Ruiying Ren
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Ruili Sun
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Tingting Zhang
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang
Medical University, Xinxiang, China
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lijun Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Hongfei Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Xiaofang Guo
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang
Medical University, Xinxiang, China
| | - Xiaofei Zhu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
3
|
Kim SL, Shin M, Jin BC, Seo S, Ha GW, Kim SW. Acquired Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Resistance of Human Colorectal Cancer Cells Is Linked to Histone Acetylation and Is Synergistically Ameliorated by Combination with HDAC Inhibitors. Dig Dis Sci 2024; 69:3305-3317. [PMID: 39090444 DOI: 10.1007/s10620-024-08569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive target for the treatment of various malignancies; however, its therapeutic potential is limited because of the frequent occurrence of tumor cell resistance. In this study, we determined whether TRAIL resistance acquired by repeated administration could be overcome by HDAC inhibition in human colorectal cancer cells. METHODS TRAIL-resistant HCT116 human colorectal cancer cells (HCT116-TR) were generated by repeated treatment with 10 and 25 ng/mL TRAIL twice weekly for 28 days. RESULTS The resulting TRAIL-resistant cells were noncross-resistant to other chemotherapeutic agents. The levels of histone acetylation-related proteins, such as ac-histone H4 and HDAC1, were altered in HCT116-TR cells compared with the parental HCT116 cell line. The combined treatment with TRAIL and HDAC inhibitors significantly increased apoptosis in HCT116-TR cells and indicated a synergistic effect. The mechanism by which HDAC inhibition sensitizes HCT116-TR cells to TRAIL is dependent on the intrinsic pathway. In addition, we found that HDAC inhibition enhanced the sensitivity of cells to TRAIL through mitogen-activated protein kinases/CCAAT/enhancer-binding protein homologs of protein-dependent upregulation of death receptor 5. CONCLUSION These results suggest that histone acetylation is responsible for acquired TRAIL resistance after repeated exposure and acquired resistance to TRAIL may be overcome by combination therapies with HDAC inhibitors.
Collapse
Affiliation(s)
- Se Lim Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - MinWoo Shin
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Byung Chul Jin
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - SeungYoung Seo
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Gi Won Ha
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
- Department of Surgery, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea
| | - Sang Wook Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea.
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
4
|
Prestegui Martel B, Chávez-Blanco AD, Domínguez-Gómez G, Dueñas González A, Gaona-Aguas P, Flores-Mejía R, Somilleda-Ventura SA, Rodríguez-Cortes O, Morales-Bárcena R, Martínez Muñoz A, Mejia Barradas CM, Mendieta Wejebe JE, Correa Basurto J. N-(2-Hydroxyphenyl)-2-Propylpentanamide (HO-AAVPA) Induces Apoptosis and Cell Cycle Arrest in Breast Cancer Cells, Decreasing GPER Expression. Molecules 2024; 29:3509. [PMID: 39124913 PMCID: PMC11314247 DOI: 10.3390/molecules29153509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we performed anti-proliferative assays for the compound N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) on breast cancer (BC) cells (MCF-7, SKBR3, and triple-negative BC (TNBC) MDA-MB-231 cells) to explore its pharmacological mechanism regarding the type of cell death associated with G protein-coupled estrogen receptor (GPER) expression. The results show that HO-AAVPA induces cell apoptosis at 5 h or 48 h in either estrogen-dependent (MCF-7) or -independent BC cells (SKBR3 and MDA-MB-231). At 5 h, the apoptosis rate for MCF-7 cells was 68.4% and that for MDA-MB-231 cells was 56.1%; at 48 h, that for SKBR3 was 61.6%, that for MCF-7 cells was 54.9%, and that for MDA-MB-231 (TNBC) was 43.1%. HO-AAVPA increased the S phase in MCF-7 cells and reduced the G2/M phase in MCF-7 and MDA-MB-231 cells. GPER expression decreased more than VPA in the presence of HO-AAVPA. In conclusion, the effects of HO-AAVPA on cell apoptosis could be modulated by epigenetic effects through a decrease in GPER expression.
Collapse
Affiliation(s)
- Berenice Prestegui Martel
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (B.P.M.); (A.M.M.); (C.M.M.B.)
| | - Alma Delia Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, México; (A.D.C.-B.); (G.D.-G.); (A.D.G.); (R.M.-B.)
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, México; (A.D.C.-B.); (G.D.-G.); (A.D.G.); (R.M.-B.)
| | - Alfonso Dueñas González
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, México; (A.D.C.-B.); (G.D.-G.); (A.D.G.); (R.M.-B.)
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Cancerología, Ciudad de México 04510, México
| | - Patricia Gaona-Aguas
- Laboratorio de Inflamación y Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (P.G.-A.); (R.F.-M.); (O.R.-C.)
| | - Raúl Flores-Mejía
- Laboratorio de Inflamación y Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (P.G.-A.); (R.F.-M.); (O.R.-C.)
| | - Selma Alin Somilleda-Ventura
- Centro de Investigación Biomédica, Fundación Hospital Nuestra Señora de la Luz I.A.P., Ezequiel Montes 135, Tabacalera, Ciudad de México 06030, México;
- Centro Interdisciplinario de Ciencias de la Salud-Instituto Politécnico Nacional (CICS-IPN), Ciudad de México 11340, México
| | - Octavio Rodríguez-Cortes
- Laboratorio de Inflamación y Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (P.G.-A.); (R.F.-M.); (O.R.-C.)
| | - Rocío Morales-Bárcena
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, México; (A.D.C.-B.); (G.D.-G.); (A.D.G.); (R.M.-B.)
| | - Alberto Martínez Muñoz
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (B.P.M.); (A.M.M.); (C.M.M.B.)
| | - Cesar Miguel Mejia Barradas
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (B.P.M.); (A.M.M.); (C.M.M.B.)
| | - Jessica Elena Mendieta Wejebe
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (B.P.M.); (A.M.M.); (C.M.M.B.)
| | - José Correa Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (B.P.M.); (A.M.M.); (C.M.M.B.)
| |
Collapse
|
5
|
Abdulrahman N, Leo R, Boumenar HA, Ahmad F, Mateo JM, Jochebeth A, Al-Sowaidi NK, Sher G, Ansari AW, Alam M, Uddin S, Ahmad A, Steinhoff M, Buddenkotte J. Embelin inhibits viability of cutaneous T cell lymphoma cell lines HuT78 and H9 by targeting inhibitors of apoptosis. Leuk Lymphoma 2023; 64:2236-2248. [PMID: 37708450 DOI: 10.1080/10428194.2023.2256909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/15/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Cutaneous T cell lymphoma (CTCL) is a varied group of neoplasms that affects the skin. Acquired resistance against chemotherapeutic drugs and associated toxic side effects are limitations that warrant search for novel drugs against CTCL. Embelin (EMB) is a naturally occurring benzoquinone derivative that has gained attention owing to its anticancer pharmacological actions and nontoxic nature. We assessed the anticancer activity of EMB against CTCL cell lines, HuT78, and H9. EMB inhibited viability of CTCL cells in a dose-dependent manner. EMB activated extrinsic and intrinsic pathways of apoptosis as shown by the activation of initiator and executioner caspases. EMB-induced apoptosis also involved suppression of inhibitors of apoptosis, XIAP, cIAP1, and cIAP2. PARP cleavage and upregulation of pH2AX indicated DNA damage induced by EMB. In conclusion, we characterized a novel apoptosis-inducing activity of EMB against CTCL cells, implicating EMB as a potential therapeutic agent against CTCL.
Collapse
Affiliation(s)
- Nabeel Abdulrahman
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Rari Leo
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Hasna Amal Boumenar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Jericha M Mateo
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Anh Jochebeth
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Gulab Sher
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Abdul W Ansari
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Majid Alam
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Weill Cornell Medicine, School of Medicine, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Joerg Buddenkotte
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
6
|
Bordeaux ZA, Reddy SV, Lee K, Lu W, Choi J, Miller M, Roberts C, Pollizzi A, Kwatra SG, Kwatra MM. Differential Response of Mycosis Fungoides Cells to Vorinostat. Int J Mol Sci 2023; 24:ijms24098075. [PMID: 37175780 PMCID: PMC10179468 DOI: 10.3390/ijms24098075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma (CTCL) and is characterized by epidermotrophism of malignant CD4+ T-lymphocytes. When MF advances to a recurrent stage, patients require treatment with systemic therapies such as vorinostat, a histone deacetylase inhibitor. While vorinostat has been shown to exhibit anti-tumor activity in MF, its exact molecular mechanism has yet to be fully discerned. In the present study, we examined the transcriptomic and proteomic profiles of vorinostat treatment in two MF cell lines, Myla 2059 and HH. We find that vorinostat downregulates CTLA-4, CXCR4, and CCR7 in both cell lines, but its effect on several key pathways differs between the two MF cell lines. For example, vorinostat upregulates CCL5, CCR5, and CXCL10 expression in Myla cells but downregulates CCL5 and CXCL10 expression in HH cells. Furthermore, vorinostat upregulates IFN-γ and IL-23 signaling and downregulates IL-6, IL-7, and IL-15 signaling in Myla cells but does not affect these pathways in HH cells. Although Myla and HH represent established MF cell lines, their distinct tumor origin from separate patients demonstrates that inherent phenotypic variations within the disease persist, underscoring the importance of using a variety of MF cells in the preclinical development of MF therapeutics.
Collapse
Affiliation(s)
- Zachary A Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sriya V Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weiying Lu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Meghan Miller
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Callie Roberts
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anthony Pollizzi
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
7
|
Pun MD, Wu HH, Olatunji FP, Kesic BN, Peters JW, Berkman CE. Phosphorus containing analogues of SAHA as inhibitors of HDACs. J Enzyme Inhib Med Chem 2022; 37:1315-1319. [PMID: 35514164 PMCID: PMC9090410 DOI: 10.1080/14756366.2022.2063281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/11/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Abstract
Histone deacetylases (HDACs) are a family of enzymes responsible for regulating DNA transcription by modulating its binding to histone proteins. HDACs are overexpressed in several types of cancers and are recognised as drug targets. Vorinostat, or suberanilohydroxamic acid (SAHA), is an histone deacetylase (HDAC) inhibitor with a hydroxamic acid as a zinc-binding group (ZBG), and it has been FDA approved for the treatment of T-cell lymphoma. In this work, phosphorus-based SAHA analogues were synthesised to assess their zinc-binding effectiveness compared to the hydroxamic acid of SAHA. Specifically, we examined phosphate, phosphoramidate and phosphorothiolate groups as isosteres of the canonical hydroxamic acid motif of conventional HDAC inhibitors. The compounds were screened for binding to HDAC enzymes from HeLa cell lysate. The most potent derivatives were then screened against HDAC3 and HDAC8 isoforms. HDAC inhibition assays demonstrated that these phosphorus-based SAHA analogs exhibited slow binding to HDACs but with greater potency than phosphonate SAHA analogs examined previously. All compounds inhibited HDACs, the most potent having an IC50 of 50 µM.
Collapse
Affiliation(s)
- Michael D. Pun
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - Hsin-Hua Wu
- Department of Chemistry, Washington State University, Pullman, WA, USA
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | | | - Britany N. Kesic
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - John W. Peters
- Department of Chemistry, Washington State University, Pullman, WA, USA
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
8
|
Gkoutsias A, Makis A. The role of epigenetics in childhood autoimmune diseases with hematological manifestations. Pediatr Investig 2022; 6:36-46. [PMID: 35382418 PMCID: PMC8960932 DOI: 10.1002/ped4.12309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
Autoimmune diseases with hematological manifestations are often characterized by chronicity and relapses despite treatment, and the underlying pathogenetic mechanisms remain unknown. Epigenetic alterations play a vital role in the deregulation of immune tolerance and the development of autoimmune diseases. In recent years, study of epigenetic mechanisms in both adult and childhood autoimmune disorders has been seeking to explain the pathophysiology of these heterogeneous diseases and to elucidate the interaction between genetic and environmental factors. Various mechanisms, including DNA methylation, histone modifications (chromatin remodeling), and noncoding RNAs (ncRNAs), have been studied extensively in the context of autoimmune diseases. This paper summarizes the epigenetic patterns in some of the most common childhood autoimmune disorders with hematological manifestations, based on epigenetic studies in children with primary immune thrombocytopenia (ITP), systemic lupus erythematosus (SLE), and juvenile idiopathic arthritis (JIA). Research findings indicate that methylation changes in genes expressed on T cells, modifications at a variety of histone sites, and alterations in the expression of several ncRNAs are involved in the pathogenesis of these diseases. These mechanisms not only determine the development of these diseases but also affect the severity of the clinical presentation and biochemical markers. Further studies will provide new tools for the prevention and diagnosis of childhood autoimmune disorders, and possible novel treatment options.
Collapse
Affiliation(s)
- Athanasios Gkoutsias
- Department of PediatricsFaculty of MedicineSchool of Health SciencesUniversity of IoanninaIoanninaGreece
| | - Alexandros Makis
- Department of PediatricsFaculty of MedicineSchool of Health SciencesUniversity of IoanninaIoanninaGreece
| |
Collapse
|
9
|
Ivanisenko NV, Seyrek K, Hillert-Richter LK, König C, Espe J, Bose K, Lavrik IN. Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks. Trends Cancer 2021; 8:190-209. [PMID: 34973957 DOI: 10.1016/j.trecan.2021.12.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
The extrinsic pathway is mediated by death receptors (DRs), including CD95 (APO-1/Fas) or TRAILR-1/2. Defects in apoptosis regulation lead to cancer and other malignancies. The master regulator of the DR networks is the cellular FLICE inhibitory protein (c-FLIP). In addition to its key role in apoptosis, c-FLIP may exert other cellular functions, including control of necroptosis, pyroptosis, nuclear factor κB (NF-κB) activation, and tumorigenesis. To gain further insight into the molecular mechanisms of c-FLIP action in cancer networks, we focus on the structure, isoforms, interactions, and post-translational modifications of c-FLIP. We also discuss various avenues to target c-FLIP in cancer cells for therapeutic benefit.
Collapse
Affiliation(s)
- Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| | - Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Laura K Hillert-Richter
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Kakoli Bose
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Inna N Lavrik
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
| |
Collapse
|
10
|
Tieu JH, Sahasrabudhe SA, Orchard PJ, Cloyd JC, Kartha RV. Translational and clinical pharmacology considerations in drug repurposing for X-linked adrenoleukodystrophy-A rare peroxisomal disorder. Br J Clin Pharmacol 2021; 88:2552-2563. [PMID: 34558098 DOI: 10.1111/bcp.15090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/28/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is an inherited, neurodegenerative rare disease that can result in devastating symptoms of blindness, gait disturbances and spastic quadriparesis due to progressive demyelination. Typically, the disease progresses rapidly, causing death within the first decade of life. With limited treatments available, efforts to determine an effective therapy that can alter disease progression or mitigate symptoms have been undertaken for many years, particularly through drug repurposing. Repurposing has generally been guided through clinical experience and small trials. At this time, none of the drug candidates have been approved for use, which may be due, in part, to the lack of pharmacokinetic/pharmacodynamic information on the repurposed medications in the target patient population. Greater consideration for the disease pathophysiology, drug pharmacology and potential drug-target interactions, specifically at the site of action, would improve drug repurposing and facilitate drug development. Incorporating advanced translational and clinical pharmacological approaches in preclinical studies and early-stage clinical trials will improve the success of repurposed drugs for X-ALD as well as other rare diseases.
Collapse
Affiliation(s)
- Julianne H Tieu
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Siddhee A Sahasrabudhe
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul J Orchard
- Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - James C Cloyd
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Moku G, Vangala S, Yakati V, Gali CC, Saha S, Madamsetty VS, Vyas A. Novel Suberoylanilide Hydroxamic Acid Analogs Inhibit Angiogenesis and Induce Apoptosis in Breast Cancer Cells. Anticancer Agents Med Chem 2021; 22:914-925. [PMID: 34488592 DOI: 10.2174/1871520621666210901102425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Histone deacetylases (HDACs) are the enzymes that catalyze the removal of the acetyl group from lysine residues and regulate several biological processes. Suberoylanilide hydroxamic acid (SAHA) is a notable HDAC inhibitor that exhibited remarkable anti-proliferative efficiency by alleviating gene regulation against solid and hematologic cancers. AIM The aim of this study was to develop new chemotherapeutic agents for breast cancer treatment, therefore, a novel series of Suberoylanilide hydroxamic acid (SAHA) analogs were investigated as anticancer agents. METHODS We designed and synthesized a novel series of analogs derived from SAHA by substituting alkyl, alkoxy, halo, and benzyl groups at different positions of the phenyl ring. The newly synthesized analogs were assessed for their cytotoxic potential against four human cancer cell lines in comparison with healthy cell lines, using several biological assays. RESULTS SAHA analogs displayed significant cytotoxic potential with IC50 values ranging from 1.6 to 19.2 µM in various tumor cell lines. Among these analogs, 2d (containing 3-chloro, 4-floro substitutions on phenyl moiety), 2h (containing 3,4-di chloro substitutions on phenyl moiety), and 2j (containing 4-chloro, 3-methyl substitutions on phenyl moiety) showed significant cytotoxic potential with IC50 values ranging from 1.6 to 1.8 µM in MCF-7 (breast carcinoma) cell line. More importantly, these analogs were found to be non-toxic towards healthy primary human hepatocytes (PHH) and mouse fibroblast cells (NIH3T3), which represent their tumor selectivity. These analogs were further analyzed for their effect on cell migration, BrdU incorporation, Annexin V-FITC and cell cycle arrest (Sub-G1 phase). Remarkably, analogs 2d, 2h, and 2j displayed significant HDAC inhibition than the parent SAHA molecule. Further studies also confirmed that these SAHA analogs are efficient in inducing apoptosis, as they regulated the expression of several proteins involved in mitochondrial or intrinsic apoptosis pathways. Findings in the Chick Chorioallantoic Membrane (CAM) assay studies revealed anti-angiogenic properties of the currently described SAHA analogs. CONCLUSION From anti-proliferative study results, it is clearly evident that 3,4-substitution at the SAHA phenyl ring improves the anti-proliferative activity of SAHA. Based on these findings, we presume that the synthesized novel SAHA analogs could be potential therapeutic agents in treating breast cancer.
Collapse
Affiliation(s)
- Gopikrishna Moku
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Uppal Road, Hyderabad 500 007. India
| | - Swathi Vangala
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Uppal Road, Hyderabad 500 007. India
| | - Venu Yakati
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Uppal Road, Hyderabad 500 007. India
| | - Chaitanya Chakravarthi Gali
- Institute of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz 8032. Austria
| | - Soumen Saha
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Uppal Road, Hyderabad 500 007. India
| | - Vijay Sagar Madamsetty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Uppal Road, Hyderabad 500 007. India
| | - Amber Vyas
- Department of Pharmaceutics, University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010. India
| |
Collapse
|
12
|
Adhikari N, Jha T, Ghosh B. Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy. J Med Chem 2021; 64:8827-8869. [PMID: 34161101 DOI: 10.1021/acs.jmedchem.0c01676] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The acetylation of histone and non-histone proteins has been implicated in several disease states. Modulation of such epigenetic modifications has therefore made histone deacetylases (HDACs) important drug targets. HDAC3, among various class I HDACs, has been signified as a potentially validated target in multiple diseases, namely, cancer, neurodegenerative diseases, diabetes, obesity, cardiovascular disorders, autoimmune diseases, inflammatory diseases, parasitic infections, and HIV. However, only a handful of HDAC3-selective inhibitors have been reported in spite of continuous efforts in design and development of HDAC3-selective inhibitors. In this Perspective, the roles of HDAC3 in various diseases as well as numerous potent and HDAC3-selective inhibitors have been discussed in detail. It will surely open up a new vista in the discovery of newer, more effective, and more selective HDAC3 inhibitors.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
13
|
Hu P, Sun M, Lu F, Wang S, Hou L, Yu Y, Zhang Y, Sun L, Yao J, Yang F, Wang C, Ma Z. Polymerized vorinostat mediated photodynamic therapy using lysosomal spatiotemporal synchronized drug release complex. Colloids Surf B Biointerfaces 2021; 205:111903. [PMID: 34144323 DOI: 10.1016/j.colsurfb.2021.111903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/16/2023]
Abstract
A combination of photodynamic therapy (PDT) and histone deacetylase inhibitor (HDACis) could potentiate single-mode anti-tumor activity of HDACis or PDT to inhibit tumor relapse and metastasis. However, poor solubility and heterogeneity in cellular uptake and tissue distribution hamper the dual mode antitumor effect. For a controlled drug release of photosensitizers and HDACis in cytoplasm, photosensitizer pyropheophorbide-a (Pyro) encapsulated in polymer polyethylene glycol-b-poly (asparaginyl-vorinostat) (simplified as Pyro@FPPS) are fabricated to achieve their lysosomal spatiotemporal synchronized release. With HDACis modeling PDT in vitro and in vivo, it seems that polymerized Vorinostat encapsulated photosensitizers significantly inhibited the tumor proliferation and metastasis by spatiotemporal synchronized drugs release, and Pyro@FPPS reported here reveals a promising prospect to exert drugs' synergistic effect in a spatiotemporal synchronized manner and can be an effective strategy to inhibit tumor growth, recurrence and metastasis in clinic.
Collapse
Affiliation(s)
- Pengwei Hu
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China; Harbin Institute of Technology (Shenzhen), School of Science, Shenzhen, People's Republic of China; Department of Pharmacy, Hebei North University, Zhangjiakou, People's Republic of China
| | - Miao Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Fengkun Lu
- Department of Pharmacy, Hebei North University, Zhangjiakou, People's Republic of China
| | - Sizhen Wang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Lei Hou
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China; Department of Pharmacy, Hebei North University, Zhangjiakou, People's Republic of China
| | - Yingjie Yu
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Yunchang Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Linhong Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Jianzhong Yao
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Feng Yang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.
| | - Chen Wang
- Department of Oncology, Ruijin North Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Zhiqiang Ma
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
14
|
Sumarni U, Reidel U, Eberle J. Targeting Cutaneous T-Cell Lymphoma Cells by Ingenol Mebutate (PEP005) Correlates with PKCδ Activation, ROS Induction as Well as Downregulation of XIAP and c-FLIP. Cells 2021; 10:987. [PMID: 33922439 PMCID: PMC8146015 DOI: 10.3390/cells10050987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/25/2023] Open
Abstract
New therapeutic strategies are needed for cutaneous T-cell lymphoma (CTCL), and the plant extract ingenol mebutate (PEP005) may be considered. PEP005 has been approved for actinic keratosis, and proapoptotic activities were described in different cancer cells. Here, we aimed to investigate its efficacy in four CTCL cell lines and its mode of action. While HuT-78 and HH responded with induced apoptosis as well as with loss of cell viability and cell proliferation, MyLa and SeAx remained resistant. Interestingly, both sensitive and resistant cells showed caspase-8 activation and enhanced levels of reactive oxygen species (ROS), while final caspase-3 activation was restricted to sensitive cells. Apoptosis induction was prevented by the caspase inhibitor QVD-Oph as well as by the antioxidant vitamin E. Caspase activation by PEP005 may be explained to some extent by the downregulation of the caspase antagonistic proteins c-FLIP and XIAP in sensitive cells, whereas both proteins were strongly expressed in resistant cells. Finally, PEP005 resulted in the activation of proapoptotic PKCδ, and the PKC inhibitor bisindolylmaleimide I reduced apoptosis, caspase-3 processing and ROS production, as well as restored cell viability. In conclusion, PKCδ appeared as a central player in apoptosis regulation in CTCL cells, also suggesting its therapeutic targeting.
Collapse
MESH Headings
- Apoptosis
- CASP8 and FADD-Like Apoptosis Regulating Protein/antagonists & inhibitors
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Diterpenes/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/pathology
- Protein Kinase C-delta/genetics
- Protein Kinase C-delta/metabolism
- Reactive Oxygen Species/metabolism
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Tumor Cells, Cultured
- X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors
Collapse
Affiliation(s)
| | | | - Jürgen Eberle
- Apoptosis Regulation in Skin Cancer, Skin Cancer Center Charité, Department of Dermatology Venerology und Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (U.S.); (U.R.)
| |
Collapse
|
15
|
García S, Mercado-Sánchez I, Bahena L, Alcaraz Y, García-Revilla MA, Robles J, Santos-Martínez N, Ordaz-Rosado D, García-Becerra R, Vazquez MA. Design of Fluorescent Coumarin-Hydroxamic Acid Derivatives as Inhibitors of HDACs: Synthesis, Anti-Proliferative Evaluation and Docking Studies. Molecules 2020; 25:molecules25215134. [PMID: 33158250 PMCID: PMC7662212 DOI: 10.3390/molecules25215134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 01/02/2023] Open
Abstract
Coumarin-hydroxamic acid derivatives 7a-k were herein designed with a dual purpose: as antiproliferative agents and fluorescent probes. The compounds were synthesized in moderate yields (30-87%) through a simple methodology, biological evaluation was carried out on prostate (PC3) and breast cancer (BT-474 and MDA-MB-231) cell lines to determine the effects on cell proliferation and gene expression. For compounds 7c, 7e, 7f, 7i and 7j the inhibition of cancer cell proliferation was similar to that found with the reference compound at a comparable concentration (10 μM), in addition, their molecular docking studies performed on histone deacetylases 1, 6 and 8 showed strong binding to the respective active sites. In most cases, antiproliferative activity was accompanied by greater levels of cyclin-dependent kinase inhibitor p21, downregulation of the p53 tumor suppressor gene, and regulation of cyclin D1 gene expression. We conclude that compounds 7c, 7e, 7f, 7i and 7j may be considered as potential anticancer agents, considering their antiproliferative properties, their effect on the regulation of the genes, as well as their capacity to dock to the active sites. The fluorescent properties of compound 7j and 7k suggest that they can provide further insight into the mechanism of action.
Collapse
Affiliation(s)
- Santiago García
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
| | - Itzel Mercado-Sánchez
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
| | - Luis Bahena
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
| | - Yolanda Alcaraz
- Departamento de Farmacia, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (Y.A.); (J.R.)
| | - Marco A. García-Revilla
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
| | - Juvencio Robles
- Departamento de Farmacia, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (Y.A.); (J.R.)
| | - Nancy Santos-Martínez
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (N.S.-M.); (D.O.-R.)
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (N.S.-M.); (D.O.-R.)
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Miguel A. Vazquez
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
- Correspondence: ; Tel.: +52-473-732-0006 (ext. 1419)
| |
Collapse
|
16
|
Liu TI, Lu TY, Yang YC, Chang SH, Chen HH, Lu IL, Sabu A, Chiu HC. New combination treatment from ROS-Induced sensitized radiotherapy with nanophototherapeutics to fully eradicate orthotopic breast cancer and inhibit metastasis. Biomaterials 2020; 257:120229. [DOI: 10.1016/j.biomaterials.2020.120229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
|
17
|
Kottaiswamy A, Kizhakeyil A, Padmanaban AM, Mirza FB, Vijay VR, Lee PS, Verma NK, Kalaiselvan P, Samuel S. The Citrus Flavanone Hesperetin Induces Apoptosis in CTCL Cells via STAT3/Notch1/NFκB-Mediated Signaling Axis. Anticancer Agents Med Chem 2020; 20:1459-1468. [DOI: 10.2174/1871521409666200324110031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 12/31/2022]
Abstract
Background:
Hesperetin is a natural compound known for its cholesterol-lowering effect and a wide
range of pharmacological activities.
Objectives:
Investigating the potential anticancer activities of Hesperetin in malignant hematolymphoid cell
lines HuT78 and MJ, derived from patients with Cutaneous T-Cell Lymphomas (CTCL).
Methods:
The cytotoxic effect of Hesperetin on two different CTCL cell lines, HuT78 and MJ, was assessed by
MTS-based colorimetric assay. Apoptosis, cell cycle, ROS (Reactive Oxygen Species) and molecular analysis
were performed using flow-cytometry and immunoblotting.
Results:
Hesperetin-treated CTCL cells were arrested at the sub-G1 phase of cell cycle with the concomitant
decrease in the expression of the cell cycle regulator protein cyclin B. In addition, the study found that the cellular
treatment with Hesperetin caused an induction of apoptosis, which was independent of ROS generation. Hesperetin
caused a significant decrease in the expression level of anti-apoptotic protein Bcl-xL and an increase in cleaved
caspase-3 and PARP proteins in CTCL cells. Furthermore, Hesperetin treatment in CTCL cells down-regulated
the expression of Notch1 and phosphorylation of STAT3 (Tyr705) and inhibited NFκBp65.
Conclusion:
This study highlights the anticancer properties of Hesperetin. Which induces apoptosis in CTCL
cells via STAT3/Notch1/NFκB mediated signaling pathway, suggesting that further development of this novel
class of flavonoid may contribute to new drug discovery for certain hematolymphoid malignancies.
Collapse
Affiliation(s)
| | - Atish Kizhakeyil
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Nanyang Ave, Singapore
| | | | - Fathima B. Mirza
- VRR Institute of Biomedical Science, University of Madras, Chennai, India
| | - Venkatesh R. Vijay
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Nanyang Ave, Singapore
| | - Pin S. Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Nanyang Ave, Singapore
| | - Navin K. Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Nanyang Ave, Singapore
| | | | - Shila Samuel
- VRR Institute of Biomedical Science, University of Madras, Chennai, India
| |
Collapse
|
18
|
Guo C, Wang Q, Zhang X, Lu F, Sun M, Zeng P, Sun L, She L, Wang B, Zhang Y, Wang C, Ma Z, Yang F. Gelated Vorinostat with inner-lysosome triggered release for tumor-targeting chemotherapy. Colloids Surf B Biointerfaces 2020; 194:111144. [PMID: 32535244 DOI: 10.1016/j.colsurfb.2020.111144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/16/2022]
Abstract
Histonedeacetylase inhibitor (HDACi) has great potential in targeted antitumor therapy by inhibiting tumor migration, invasion, and metastasis. As one of the typical HDACis, vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) was approved as a therapeutic agent for cancer therapy, however, challenges remain due to their poor solubility, short half-life and low efficiency in cellular penetration. Considering the disadvantages of usual drug carriers, folate and vorinostat bound BSA nanogel (FVBN)was fabricated to implement higher solubility, stability, cellular uptake, and lipase-responsive release. With good dispersion and stability, FVBN significantly increased the cellular uptake of vorinostat through folate-mediated endocytosis. FVBN exhibited comparable cytotoxicity with free SAHA, and the growth of tumor cells was blocked in G1/G0 phase just like SAHA performed in cell cycle arrest tests. Moreover, FVBN not only effectively inhibited the growth of melanoma but also observably prevented pulmonary metastasis of melanoma. In the experiment against nude mice bearing solid ovarian cancer, FVBN showed excellent antitumor effect without liver damage, demonstrating the superiority of gelated and inner-lysosome triggered release strategies to the free SAHA, and it is promising to expand the scope of application of HDACi in clinical cancer therapy.
Collapse
Affiliation(s)
- Changyong Guo
- Department of Pharmacy, Hebei North University Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, People's Republic of China
| | - Qirong Wang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Xingjie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Fengkun Lu
- Department of Pharmacy, Hebei North University Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, People's Republic of China; School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Miao Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Peiyu Zeng
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Linhong Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Lan She
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Bingkai Wang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Yunchang Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Chen Wang
- Department of Oncology, Ruijin North Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Zhiqiang Ma
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.
| | - Feng Yang
- Department of Pharmacy, Hebei North University Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, People's Republic of China; School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
19
|
Gluud M, Fredholm S, Blümel E, Willerslev-Olsen A, Buus TB, Nastasi C, Krejsgaard T, Bonefeld CM, Woetmann A, Iversen L, Litman T, Geisler C, Ødum N, Lindahl LM. MicroRNA-93 Targets p21 and Promotes Proliferation in Mycosis Fungoides T Cells. Dermatology 2020; 237:277-282. [PMID: 32335549 DOI: 10.1159/000505743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/04/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL), is a lymphoproliferative disorder characterized by proliferation of malignant T cells in a chronic inflammatory environment in the skin. The nature of MF is still not fully understood, but aberrant microRNA (miR) expression and function seem to play an important role in the pathogenesis and disease progression and have been proposed as a putative disease marker. Recent studies have reported aberrant expression of miR-93 in situin MF lesions and linked dysregulated miR-93 expression to advanced stages of MF. However, the pathophysiological role of miR-93 in MF is unknown. OBJECTIVE Here, we provide the first evidence that miR-93 targets the cell cycle regulator cyclin-dependent kinase inhibitor p21 and promotes growth of malignant T cells in MF. METHODS/RESULTS Thus, inhibition of miR-93 in MF patient-derived malignant T-cell lines increases expression of p21 and inhibition of malignant proliferation. Notably, treatment with the histone deacetylase inhibitor Vorinostat (SAHA) reduces miR-93 expression and enhances p21 expression in the malignant T cells. Importantly, transfection with an miR-93 mimic partly blocks SAHA-induced p21 expression. CONCLUSIONS we provide evidence that enhanced expression of the putative oncogenic miR, miR-93, represses the cell cycle inhibitor p21 and promotes proliferation of malignant T cells. Moreover, we demonstrate that SAHA triggers p21 expression - at least partly - through an inhibition of miR-93.
Collapse
Affiliation(s)
- Maria Gluud
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Simon Fredholm
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Edda Blümel
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild Brink Buus
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menné Bonefeld
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Thomas Litman
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Leo Foundation Skin Immunology Research Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark,
| | - Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| |
Collapse
|
20
|
Ghanbari M, Safaralizadeh R, Mohammadi K. A Review on Important Histone Acetyltransferase (HAT) Enzymes as Targets for Cancer Therapy. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666180720152100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At the present time, cancer is one of the most lethal diseases worldwide. There are various factors involved in the development of cancer, including genetic factors, lifestyle, nutrition, and so on. Recent studies have shown that epigenetic factors have a critical role in the initiation and development of tumors. The histone post-translational modifications (PTMs) such as acetylation, methylation, phosphorylation, and other PTMs are important mechanisms that regulate the status of chromatin structure and this regulation leads to the control of gene expression. The histone acetylation is conducted by histone acetyltransferase enzymes (HATs), which are involved in transferring an acetyl group to conserved lysine amino acids of histones and consequently increase gene expression. On the basis of similarity in catalytic domains of HATs, these enzymes are divided into different groups such as families of GNAT, MYST, P300/CBP, SRC/P160, and so on. These enzymes have effective roles in apoptosis, signaling pathways, metastasis, cell cycle, DNA repair and other related mechanisms deregulated in cancer. Abnormal activation of HATs leads to uncontrolled amplification of cells and incidence of malignancy signs. This indicates that HAT might be an important target for effective cancer treatments, and hence there would be a need for further studies and designing of therapeutic drugs on this basis. In this study, we have reviewed the important roles of HATs in different human malignancies.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Kiyanoush Mohammadi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
21
|
Glucocorticoid modulatory element-binding protein 1 (GMEB1) interacts with the de-ubiquitinase USP40 to stabilize CFLAR L and inhibit apoptosis in human non-small cell lung cancer cells. J Exp Clin Cancer Res 2019; 38:181. [PMID: 31046799 PMCID: PMC6498657 DOI: 10.1186/s13046-019-1182-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/17/2019] [Indexed: 02/05/2023] Open
Abstract
Background GMEB1 was originally identified via its interaction with GMEB2, which binds to the promoter region of the tyrosine aminotransferase (TAT) gene and modulates transactivation of the glucocorticoid receptor gene. In the cytosol, GMEB1 interacts with and inhibits CASP8, but the molecular mechanism is currently unknown. Methods Human non-small cell lung cancer cells and 293FT cells were used to investigate the function of GMEB1/USP40/CFLARL complex by WB, GST Pull-Down Assay, Immunoprecipitation, Immunofluorescence and Flow cytometry analysis. A549 cells overexpressing green fluorescent protein and GMEB1 shRNA were used for tumor xenograft using female athymic nu/nu 4-week-old mice. Results We found GMEB1 interacted with CFLARL (also known as c-FLIPL) in the cytosol and promoted its stability. USP40 targeted CFLARL for K48-linked de-ubiquitination. GMEB1 promoted the binding of USP40 to CFLARL. USP40 knockdown did not increase CFLARL protein level despite GMEB1 overexpression, suggesting GMEB1 promotes CFLARL stability via USP40. Additionally, GMEB1 inhibited the activation of pro-caspase 8 and apoptosis in non-small cell lung cancer (NSCLC) cell via CFLARL stabilization. Also, GMEB1 inhibited the formation of DISC upon TRAIL activation. CFLARL enhanced the binding of GMEB1 and CASP8. Downregulation of GMEB1 inhibited A549 xenograft tumor growth in vivo. Conclusions Our findings show the de-ubiquitinase USP40 regulates the ubiquitination and degradation of CFLARL; and GMEB1 acts as a bridge protein for USP40 and CFLARL. Mechanistically, we found GMEB1 inhibits the activation of CASP8 by modulating ubiquitination and degradation of CFLARL. These findings suggest a novel strategy to induce apoptosis through CFLARL targeting in human NSCLC cells. Electronic supplementary material The online version of this article (10.1186/s13046-019-1182-3) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Soltan MY, Sumarni U, Assaf C, Langer P, Reidel U, Eberle J. Key Role of Reactive Oxygen Species (ROS) in Indirubin Derivative-Induced Cell Death in Cutaneous T-Cell Lymphoma Cells. Int J Mol Sci 2019; 20:ijms20051158. [PMID: 30866411 PMCID: PMC6429192 DOI: 10.3390/ijms20051158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 01/05/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) may develop a highly malignant phenotype in its late phase, and patients may profit from innovative therapies. The plant extract indirubin and its chemical derivatives represent new and promising antitumor strategies. This first report on the effects of an indirubin derivative in CTCL cells shows a strong decrease of cell proliferation and cell viability as well as an induction of apoptosis, suggesting indirubin derivatives for therapy of CTCL. As concerning the mode of activity, the indirubin derivative DKP-071 activated the extrinsic apoptosis cascade via caspase-8 and caspase-3 through downregulation of the caspase antagonistic proteins c-FLIP and XIAP. Importantly, a strong increase of reactive oxygen species (ROS) was observed as an immediate early effect in response to DKP-071 treatment. The use of antioxidative pre-treatment proved the decisive role of ROS, which turned out upstream of all other proapoptotic effects monitored. Thus, reactive oxygen species appear as a highly active proapoptotic pathway in CTCL, which may be promising for therapeutic intervention. This pathway can be efficiently activated by an indirubin derivative.
Collapse
Affiliation(s)
- Marwa Y Soltan
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
- Department of Dermatology and Venereology, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt.
| | - Uly Sumarni
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Chalid Assaf
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
- Clinic for Dermatology and Venereology, Helios Klinikum Krefeld, Lutherplatz 40, 47805 Krefeld, Germany.
| | - Peter Langer
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
- Leibniz Institute of Catalysis at the University of Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Ulrich Reidel
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Jürgen Eberle
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
23
|
Kyaw MTH, Yamaguchi Y, Choijookhuu N, Yano K, Takagi H, Takahashi N, Synn Oo P, Sato K, Hishikawa Y. The HDAC Inhibitor, SAHA, Combined with Cisplatin Synergistically Induces Apoptosis in Alpha-fetoprotein-producing Hepatoid Adenocarcinoma Cells. Acta Histochem Cytochem 2019; 52:1-8. [PMID: 30923410 PMCID: PMC6434315 DOI: 10.1267/ahc.18044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatoid adenocarcinoma (HAC) is a rare and aggressive gastrointestinal tract cancer that is characterized by hepatic differentiation and production of alpha-fetoprotein (AFP). Cisplatin is mainly used to treat HAC, but the efficacy is poor. Recently, the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), was approved as an anticancer agent. In this study, we investigated the anticancer effect of SAHA in combination with cisplatin in VAT-39 cells, a newly established HAC cell line. Cell viability and apoptosis were examined by MTT assay, flow cytometry and TUNEL assay. Expression of H3S10, cleaved caspase-3, Bax, and Bcl-2 were evaluated by immunohistochemistry and western blotting. AFP levels were examined in VAT-39 cells and culture medium. Combined treatment with cisplatin and SAHA efficiently inhibited cell proliferation and decreased cell viability. Apoptotic cells, but not necrotic cells, were significantly increased following the combined treatment, and an increase in the Bax/Bcl-2 ratio indicated that the combination of cisplatin and SAHA induced apoptosis through the mitochondrial pathway. VAT-39 cells treated with cisplatin and SAHA also partially lost their main characteristic of AFP production. We conclude that cisplatin and SAHA have a synergistic anticancer effect of inducing apoptosis, and that this combination treatment may be effective for HAC.
Collapse
Affiliation(s)
- Myat Tin Htwe Kyaw
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Yuya Yamaguchi
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Koichi Yano
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
- Department of Surgery, Faculty of Medicine, University of Miyazaki
| | - Hideaki Takagi
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki
| | - Nobuyasu Takahashi
- Department of Anatomy, Ultrastructural Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Phyu Synn Oo
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
- Department of Pathology, University of Medicine 1
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
24
|
Abstract
Since the identification and cloning of human histone deacetylases (HDACs) and the rapid approval of vorinostat (Zolinza®) for the treatment of cutaneous T-cell lymphoma, the field of HDAC biology has met many initial successes. However, many challenges remain due to the complexity involved in the lysine posttranslational modifications, epigenetic transcription regulation, and nonepigenetic cellular signaling cascades. In this chapter, we will: review the discovery of the first HDAC inhibitor and present discussion regarding the future of next-generation HDAC inhibitors, give an overview of different classes of HDACs and their differences in lysine deacylation activity, discuss different classes of HDAC inhibitors and their HDAC isozyme preferences, and review HDAC inhibitors' preclinical studies, their clinical trials, their pharmacokinetic challenges, and future direction. We will also discuss the likely reason for the failure of multiple HDAC inhibitor clinical trials in malignancies other than lymphoma and multiple myeloma. In addition, the potential molecular mechanism(s) that may play a key role in the efficacy and therapeutic response rate in the clinic and the likely patient population for HDAC therapy will be discussed.
Collapse
Affiliation(s)
- Jesse J McClure
- Medical University of South Carolina, College of Pharmacy, Charleston, SC, United States
| | - Xiaoyang Li
- Medical University of South Carolina, College of Pharmacy, Charleston, SC, United States
| | - C James Chou
- Medical University of South Carolina, College of Pharmacy, Charleston, SC, United States.
| |
Collapse
|
25
|
Naimi A, Movassaghpour AA, Hagh MF, Talebi M, Entezari A, Jadidi-Niaragh F, Solali S. TNF-related apoptosis-inducing ligand (TRAIL) as the potential therapeutic target in hematological malignancies. Biomed Pharmacother 2018; 98:566-576. [DOI: 10.1016/j.biopha.2017.12.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 02/08/2023] Open
|
26
|
Rezk Hassan GF, Marey K. Immunohistopathological Study of c-FLIP Protein in Mycosis Fungoides. Asian Pac J Cancer Prev 2017; 18:2493-2499. [PMID: 28952283 PMCID: PMC5720656 DOI: 10.22034/apjcp.2017.18.9.2493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Mycosis fungoides (MF) is the commonest variant of primary cutaneous T cell lymphoma with several clinicopathologic variants. Defective apoptotic mechanism may be important in the pathogenesis and progression of MF. c-FLIP protein is an important anti-apoptotic marker and chemotherapeutic resistant factor. This study aimed to evaluate the c-FLIP expression in MF and its role in the pathogenesis of MF. Methods: Twenty patients of MF and ten normal persons were included in this study. Skin biopsies were obtained from both patients and controls. They were studied and examined immunohistochemically for the expression of CD4 and c-FLIP. Results: c-FLIP expression was significantly increased in patients when compared to controls in both epidermis and dermis. There were positive correlations between c-FLIP expression and CD4+ expression in both epidermal and dermal lesions of patients group. There were statistically significant positive correlations between c-FLIP expression (in both dermal and epidermal lesions) and the age of patients. c-FLIP expression increased with the tumor progression but with no statistical significance. Conclusion: Defective regulation of apoptosis has been considered as a main cause for accumulation of clonal T cells, and it was related to an increased expression of c-FLIP which may have a role in the pathogenesis of MF. Also, c-FLIP may have prognostic information in MF as its level increased with both age of the patients and tumor progression.
Collapse
Affiliation(s)
- Ghada Fawzy Rezk Hassan
- Lecturer of Dermatology and Venereology, Faculty of medicine, Tanta University, 31111, Tanta, Egypt.
| | | |
Collapse
|
27
|
Arhoma A, Chantry AD, Haywood-Small SL, Cross NA. SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 3D cell culture. Exp Cell Res 2017; 360:226-235. [PMID: 28890292 DOI: 10.1016/j.yexcr.2017.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Multiple Myeloma (MM) is currently incurable despite many novel therapies. Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) is a potential anti-tumour agent although effects as a single agent are limited. In this study, we investigated whether the Histone Deacetylase (HDAC) inhibitor SAHA can enhance TRAIL-induced apoptosis and target TRAIL resistance in both suspension culture, and 3D cell culture as a model of disseminated MM lesions that form in bone. METHODS The effects of SAHA and/or TRAIL in 6 Multiple Myeloma cell lines were assessed in both suspension cultures and in an Alginate-based 3D cell culture model. The effect of SAHA and/or TRAIL was assessed on apoptosis by assessment of nuclear morphology using Hoechst 33342/Propidium Iodide staining. Viable cell number was assessed by CellTiter-Glo luminescence assay, Caspase-8 and -9 activities were measured by Caspase-Glo™ assay kit. TRAIL-resistant cells were generated by culture of RPMI 8226 and NCI-H929 by acute exposure to TRAIL followed by selection of TRAIL-resistant cells. RESULTS TRAIL significantly induced apoptosis in a dose-dependent manner in OPM-2, RPMI 8226, NCI-H929, U266, JJN-3 MM cell lines and ADC-1 plasma cell leukaemia cells. SAHA amplified TRAIL responses in all lines except OPM-2, and enhanced TRAIL responses were both via Caspase-8 and -9. SAHA treatment induced growth inhibition that further increased in the combination treatment with TRAIL in MM cells. The co-treatment of TRAIL and SAHA reduced viable cell numbers all cell lines. TRAIL responses were further potentiated by SAHA in 3D cell culture in NCI-H929, RPMI 8226 and U266 at lower TRAIL + SAHA doses than in suspension culture. However TRAIL responses in cells that had been selected for TRAIL resistance were not further enhanced by SAHA treatment. CONCLUSIONS SAHA is a potent sensitizer of TRAIL responses in both TRAIL sensitive and resistant cell lines, in both suspension and 3D culture, however SAHA did not sensitise TRAIL-sensitive cell populations that had been selected for TRAIL-resistance from initially TRAIL-sensitive populations. SAHA may increase TRAIL sensitivity in insensitive cells, but not in cells that have specifically been selected for acquired TRAIL-resistance.
Collapse
Affiliation(s)
- A Arhoma
- Biomolecular Sciences Research Centre, Sheffield Hallam University, United Kingdom
| | - A D Chantry
- Biomolecular Sciences Research Centre, Sheffield Hallam University, United Kingdom; Mellanby Centre for Bone Research, University of Sheffield, United Kingdom
| | - S L Haywood-Small
- Biomolecular Sciences Research Centre, Sheffield Hallam University, United Kingdom
| | - N A Cross
- Biomolecular Sciences Research Centre, Sheffield Hallam University, United Kingdom
| |
Collapse
|
28
|
Fu W, Yi S, Qiu L, Sun J, Tu P, Wang Y. BCL11B-Mediated Epigenetic Repression Is a Crucial Target for Histone Deacetylase Inhibitors in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2017; 137:1523-1532. [PMID: 28288848 DOI: 10.1016/j.jid.2017.02.980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/13/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
The treatment options for advanced cutaneous T-cell lymphoma (CTCL) are limited because of its unclear pathogenesis. Histone deacetylase (HDAC) inhibitors (HDACis) are recently developed therapeutics approved for refractory CTCL. However, the response rate is relatively low and unpredictable. Previously, we discovered that BCL11B, a key T-cell development regulator, was aberrantly overexpressed in mycosis fungoides, the most common CTCL, as compared with benign inflammatory skin. In this study, we identified a positive correlation between BCL11B expression and sensitivity to HDACi in CTCL lines. BCL11B suppression in BCL11B-high cells induced cell apoptosis by de-repressing apoptotic pathways and showed synergistic effects with suberoylanilide hydroxamic acid (SAHA), a pan-HDACi. Next, we identified the physical interaction and shared downstream genes between BCL11B and HDAC1/2 in CTCL lines. This interaction was essential in the anti-apoptosis effect of BCL11B, and the synergism between BCL11B suppression and HDACi treatment. Further, in clinical samples from 46 mycosis fungoides patients, BCL11B showed increased but varied expression in advanced tumor stage. Analysis of four patients receiving SAHA treatment suggested a positive correlation between BCL11B expression and favorable response to SAHA treatment. In conclusion, BCL11B may serve as a therapeutic target and a useful marker for improving HDACi efficacy in advanced CTCL.
Collapse
Affiliation(s)
- Wenjing Fu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Department of Dermatology and Venerology, Binzhou Medical University Hospital, Binzhou, China
| | - Shengguo Yi
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Lei Qiu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Jingru Sun
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
29
|
Han H, Xu B, Hou P, Jiang C, Liu L, Tang M, Yang X, Zhang Y, Liu Y. Icaritin Sensitizes Human Glioblastoma Cells to TRAIL-Induced Apoptosis. Cell Biochem Biophys 2017; 72:533-42. [PMID: 25577511 DOI: 10.1007/s12013-014-0499-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been considered to be one of the most promising candidates in research on treatments for cancer, because it induces apoptosis in a wide variety of cancer cells but not in most normal human cell types. However, many cells including glioblastoma (GBM) cells are resistant to TRAIL-induced apoptosis, which limits the potential application of TRAIL in cancer therapy. Icaritin, a hydrolytic product of icariin from Epimedium Genus, has been identified as a potential therapeutic and preventive agent in renal cell carcinoma and breast cancer. In this study, we investigated whether Icaritin treatment could modulate TRAIL-induced apoptosis in GBM. The effect of icaritin on TRAIL sensitivity was assessed in human GBM U87 and U373 cells. The underlying regulatory cascades were approached by biochemical and pharmacological strategies. We found that nontoxic concentration of icaritin alone had no significant effect on the level of apoptosis, but a combination treatment of TRAIL and icaritin caused a significantly more profound apoptosis. The sensitization was accompanied by c-FLIP down-regulation and inhibition of NF-κB activity. Studies have further demonstrated that silencing NF-κB alone was sufficient to down-regulate c-FLIP expression and sensitized both tested cells to TRAIL-induced apoptosis. These data suggest that icaritin sensitizes TRAIL-induced tumor cell apoptosis via suppression of NF-κB-dependent c-FLIP expression, providing in vitro evidence supporting the notion that icaritin is a potential sensitizer of TRAIL in anticancer therapy against human GBM.
Collapse
Affiliation(s)
- Hongxing Han
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Neurology, Linyi People's Hospital, Linyi, Shandong, China
| | - Bo Xu
- Department of Neurology, Provincial Hospital of Shandong University, Jinan, Shandong, China.,Department of Neurology, The Second Affiliated Hospital, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Pengzhi Hou
- Department of Neurosurgery, Huangdao Traditional Chinese Medicine Hospital, Qingdao, Shandong, China
| | - Chuanwu Jiang
- Department of Radiology, Qingdao Hiser Medical Center, Qingdao, Shandong, China.,Department of Radiology, Provincial Hospital of Shandong University, Jinan, Shandong, China
| | - Longxi Liu
- Department of Neurosurgery, Qingdao Hiser Medical Center, Qingdao, Shandong, China
| | - Ming Tang
- Department of Neurology, Qingdao Hiser Medical Center, Qingdao, Shandong, China
| | - Xiuli Yang
- Department of Neurology, Qingdao Hiser Medical Center, Qingdao, Shandong, China
| | - Yunxu Zhang
- Department of Neurosurgery, Qingdao Hiser Medical Center, Qingdao, Shandong, China
| | - Yongji Liu
- Department of Neurosurgery, Qingdao Hiser Medical Center, Qingdao, Shandong, China.
| |
Collapse
|
30
|
Srinivas C, Swathi V, Priyanka C, Anjana Devi T, Subba Reddy BV, Janaki Ramaiah M, Bhadra U, Bhadra MP. Novel SAHA analogues inhibit HDACs, induce apoptosis and modulate the expression of microRNAs in hepatocellular carcinoma. Apoptosis 2016; 21:1249-1264. [DOI: 10.1007/s10495-016-1278-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Beyer M, Vandersee S, Cosagarea I, Touba R, Möbs M, Assaf C. The Effects of Arsenic Trioxide in Combination with Retinoic Acids on Cutaneous T-Cell Lymphoma Cell Lines. Skin Pharmacol Physiol 2016; 29:63-70. [DOI: 10.1159/000443840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022]
|
32
|
Xue K, Gu JJ, Zhang Q, Mavis C, Hernandez-Ilizaliturri FJ, Czuczman MS, Guo Y. Vorinostat, a histone deacetylase (HDAC) inhibitor, promotes cell cycle arrest and re-sensitizes rituximab- and chemo-resistant lymphoma cells to chemotherapy agents. J Cancer Res Clin Oncol 2016; 142:379-87. [PMID: 26314218 DOI: 10.1007/s00432-015-2026-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/04/2015] [Indexed: 12/29/2022]
Abstract
PURPOSE Preclinical models of chemotherapy resistance and clinical observations derived from the prospective multicenter phase III collaborative trial in relapsed aggressive lymphoma (CORAL) study demonstrated that primary refractory/relapsed B cell diffuse large B cell lymphoma has a poor clinical outcome with current available second-line treatments. Preclinically, we found that rituximab resistance is associated with a deregulation on the mitochondrial potential rendering lymphoma cells resistant to chemotherapy-induced apoptotic stimuli. There is a dire need to develop agents capable to execute alternative pathways of cell death in an attempt to overcome chemotherapy resistance. Posttranscriptional histone modification plays an important role in regulating gene transcription and is altered by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs regulate several key cellular functions, including cell proliferation, cell cycle, apoptosis, angiogenesis, migration, antigen presentation, and/or immune regulation. Given their influence in multiple regulatory pathways, HDAC inhibition is an attractive strategy to evaluate its anti-proliferation activity in cancer cells. To this end, we studied the anti-proliferation activity and mechanisms of action of suberoylanilide hydroxamic acid (SAHA, vorinostat) in rituximab-chemotherapy-resistant preclinical models. METHODS A panel of rituximab-chemotherapy-sensitive (RSCL) and rituximab-chemotherapy-resistant cell lines (RRCL) and primary tumor cells isolated from relapsed/refractory B cell lymphoma patients were exposed to escalating doses of vorinostat. Changes in mitochondrial potential, ATP synthesis, and cell cycle distribution were determined by Alamar blue reduction, Titer-Glo luminescent assays, and flow cytometric, respectively. Protein lysates were isolated from vorinostat-exposed cells, and changes in members of Bcl-2 family, cell cycle regulatory proteins, and the acetylation status of histone H3 were evaluated by Western blotting. Finally, cell lines were pre-exposed to vorinostat for 48 h and subsequently exposed to several chemotherapy agents (cisplatin, etoposide, or gemcitabine); changes in cell viability were determined by CellTiter-Glo(®) luminescence assay (Promega, Fitchburg, WI), and synergistic activity was evaluated using the CalcuSyn software. RESULTS Vorinostat induced dose-dependent cell death in RRCL and in primary tumor cells. In addition, in vitro exposure of RRCL to vorinostat resulted in an increase in p21 and acetylation of histone H3 leading to G1 cell cycle arrest. Vorinostat exposure resulted in apoptosis in RSCL cell lines but not in RRCL. This finding suggests that in RRCL, vorinostat induces cell death by alternative pathways (i.e., irreversible cell cycle arrest). Of interest, vorinostat was found to reverse acquired chemotherapy resistance in RRCL. CONCLUSIONS Our data suggest that vorinostat is active in RRCL with a known defective apoptotic machinery, it can active alternative cell death pathways. Given the multiple pathways affected by HDAC inhibition, vorinostat can potentially be used to overcome acquired resistant to chemotherapy in aggressive B cell lymphoma.
Collapse
Affiliation(s)
- Kai Xue
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Juan J Gu
- Departments of Medicine and Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Qunling Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Cory Mavis
- Departments of Medicine and Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Myron S Czuczman
- Departments of Medicine and Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Ye Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
33
|
Kitadate A, Ikeda S, Teshima K, Ito M, Toyota I, Hasunuma N, Takahashi N, Miyagaki T, Sugaya M, Tagawa H. MicroRNA-16 mediates the regulation of a senescence-apoptosis switch in cutaneous T-cell and other non-Hodgkin lymphomas. Oncogene 2015; 35:3692-704. [PMID: 26640145 DOI: 10.1038/onc.2015.435] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 01/07/2023]
Abstract
Multiple sequential genetic and epigenetic alterations underlie cancer development and progression. Overcoming cellular senescence is an early step in cancer pathogenesis. Here, we demonstrate that a noncoding regulatory RNA, microRNA-16 (miR-16), has the potential to induce cellular senescence. First, we examined the expression of miR-16 in primary cutaneous T-cell lymphoma (CTCL) and other non-Hodgkin T/natural killer (NK)-cell lymphomas and found that miR-16 was downregulated than that in the corresponding normal cells. Notably, miR-16 expression was reduced as the primary CTCL progressed from the early stage to the advanced stage. Next, we transduced CTCL cells with miR-16 to examine whether this miRNA exhibited tumor-suppressive effects in CTCL cells. In CTCL cells expressing wild-type p53, forced expression of miR-16 enhanced p21 expression via downregulation of the polycomb group protein Bmi1, thereby inducing cellular senescence. Alternatively, in CTCL cells lacking functional p53, miR-16 induced compensatory apoptosis. The miR-16 transfection significantly decreased senescent cells and increased apoptotic cells in p21-knockdown CTCL cells expressing wild-type p53, suggesting that the presence or absence of p21 may be the most important condition in the senescence-apoptosis switch in CTCL lymphomagenesis. Furthermore, we found that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) restored the expression of miR-16 and its essential targets, induced senescence in CTCL cells expressing wild-type p53 and promoted apoptosis in cells with nonfunctional p53. Moreover, we found that other T/NK-cell lymphoma cell lines showed similar tumor-suppressive effects in response to miR-16 and SAHA and that these effects were dependent on p53 status. These results suggested that epigenetic silencing of miR-16 may be a key step during lymphoma development. Elucidation of the essential targets of miR-16 and SAHA provides a basis for the clinical application of SAHA in the treatment of CTCL and other non-Hodgkin T/NK-cell lymphomas.
Collapse
Affiliation(s)
- A Kitadate
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - S Ikeda
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - K Teshima
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - M Ito
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - I Toyota
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - N Hasunuma
- Department of Dermatology, Akita University, Akita, Japan
| | - N Takahashi
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - T Miyagaki
- Department of Dermatology, University of Tokyo, Tokyo, Japan
| | - M Sugaya
- Department of Dermatology, University of Tokyo, Tokyo, Japan
| | - H Tagawa
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
34
|
Braun FK, Mathur R, Sehgal L, Wilkie-Grantham R, Chandra J, Berkova Z, Samaniego F. Inhibition of methyltransferases accelerates degradation of cFLIP and sensitizes B-cell lymphoma cells to TRAIL-induced apoptosis. PLoS One 2015; 10:e0117994. [PMID: 25738497 PMCID: PMC4349737 DOI: 10.1371/journal.pone.0117994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/03/2015] [Indexed: 12/16/2022] Open
Abstract
Non-Hodgkin lymphomas (NHLs) are characterized by specific abnormalities that alter cell cycle regulation, DNA damage response, and apoptotic signaling. It is believed that cancer cells are particularly sensitive to cell death induced by tumor necrosis factor α–related apoptosis-inducing ligand (TRAIL). However, many cancer cells show blocked TRAIL signaling due to up-regulated expression of anti-apoptotic factors, such as cFLIP. This hurdle to TRAIL’s tumor cytotoxicity might be overcome by combining TRAIL-based therapy with drugs that reverse blockages of its apoptotic signaling. In this study, we investigated the impact of a pan-methyltransferase inhibitor (3-deazaneplanocin A, or DZNep) on TRAIL-induced apoptosis in aggressive B-cell NHLs: mantle cell, Burkitt, and diffuse large B-cell lymphomas. We characterized TRAIL apoptosis regulation and caspase activation in several NHL-derived cell lines pre-treated with DZNep. We found that DZNep increased cancer cell sensitivity to TRAIL signaling by promoting caspase-8 processing through accelerated cFLIP degradation. No change in cFLIP mRNA level indicated independence of promoter methylation alterations in methyltransferase activity induced by DZNep profoundly affected cFLIP mRNA stability and protein stability. This appears to be in part through increased levels of cFLIP-targeting microRNAs (miR-512-3p and miR-346). However, additional microRNAs and cFLIP-regulating mechanisms appear to be involved in DZNep-mediated enhanced response to extrinsic apoptotic stimuli. The capacity of DZNep to target cFLIP expression on multiple levels underscores DZNep’s potential in TRAIL-based therapies for B-cell NHLs.
Collapse
Affiliation(s)
- Frank K. Braun
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Rohit Mathur
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Lalit Sehgal
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Rachel Wilkie-Grantham
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Joya Chandra
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zuzana Berkova
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Han X, Wang S, Zhou W, Li Y, Lei W, Lv W. Synergistic combination of histone deacetylase inhibitor suberoylanilide hydroxamic acid and oncolytic adenovirus ZD55-TRAIL as a therapy against cervical cancer. Mol Med Rep 2015; 12:435-41. [PMID: 25684632 DOI: 10.3892/mmr.2015.3355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 01/21/2015] [Indexed: 11/06/2022] Open
Abstract
Oncolytic adenoviruses (OA) have been investigated as virotherapeutic agents for the treatment of cervical cancer and thus far results are promising. However, the cytotoxicity of the viruses requires improvement. The present study demonstrated that this can be achieved by combining ZD55-TRAIL, an OA containing the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene, with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). It was demonstrated that these agents act synergistically to kill HeLa cells by inducing G2 growth arrest and apoptosis. Notably, in a mouse xenograft model, ZD55-TRAIL/SAHA combination inhibited tumor growth. At the molecular level, it was found that upregulation of IκBα and the p50 and p65 subunits of nuclear factor-κB induced by ZD55-TRAIL, can be abrogated by SAHA treatment. These data strongly suggested that ZD55-TRAIL/SAHA co-treatment may serve as an effective therapeutic strategy against cervical cancer.
Collapse
Affiliation(s)
- Xiujun Han
- Institute of Oncology, Women's Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shibing Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Wenjing Zhou
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ying Li
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wen Lei
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Weiguo Lv
- Institute of Oncology, Women's Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
36
|
Miyagaki T, Sugaya M, Oka T, Fujita H, Sato S. Serum chemokine levels differentially regulated by vorinostat in a Sézary syndrome patient. Br J Dermatol 2015; 173:620-2. [PMID: 25640919 DOI: 10.1111/bjd.13696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- T Miyagaki
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - M Sugaya
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - T Oka
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - H Fujita
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - S Sato
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
37
|
Möbs M, Gryzik S, Haidar A, Humme D, Beyer M, Vandersee S. Analysis of the IL-31 pathway in Mycosis fungoides and Sézary syndrome. Arch Dermatol Res 2014; 307:479-85. [DOI: 10.1007/s00403-014-1527-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/06/2014] [Accepted: 11/29/2014] [Indexed: 12/01/2022]
|
38
|
Zheng Z, Cheng S, Wu W, Wang L, Zhao Y, Shen Y, Janin A, Zhao WL. c-FLIP is involved in tumor progression of peripheral T-cell lymphoma and targeted by histone deacetylase inhibitors. J Hematol Oncol 2014; 7:88. [PMID: 25477070 PMCID: PMC4261569 DOI: 10.1186/s13045-014-0088-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/12/2014] [Indexed: 12/22/2022] Open
Abstract
Background Peripheral T-cell lymphomas (PTCLs) are often aggressive tumors and resistant to conventional chemotherapy. Dysregulation of extrinsic apoptosis plays an important role on tumor cell sensitivity to chemotherapeutic agents. Cellular FLICE inhibitory protein (c-FLIP) is a key regulator of extrinsic apoptotic pathway. Methods c-FLIP expression was assessed by real-time PCR and compared according to clinical parameters in patients with PTCLs. The relation of c-FLIP to tumor cell apoptosis mediated by histone deacetylases inhibitors (HDACIs) and the possible mechanism were examined in T-lymphoma cell lines and in a murine xenograft model. Results c-FLIP was overexpressed and associated with decreased tumor TRAIL/DR5 expression, elevated serum lactate dehydrogenase level and high-risk International Prognostic Index of the patients. In vitro, molecular silencing of c-FLIP by specific small-interfering RNA increased TRAIL/DR5 expression, enhanced T-lymphoma cell apoptosis and sensitized cells to chemotherapeutic agents. However, HDACIs valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) could downregulate c-FLIP expression and triggered extrinsic apoptosis of T-lymphoma cells, through inhibiting NF-κB signaling and interrupting P50 interaction with c-FLIP promoter. As Class I HDACIs, both VPA and SAHA inhibited HDAC1, resulting in P50 inactivation and c-FLIP downregulation. In vivo, oral VPA treatment significantly retarded tumor growth and induced in situ apoptosis, consistent with inhibition of HDAC1/P50/c-FLIP axis and increase of TRAIL/DR5 expression. Conclusions c-FLIP overexpression in PTCLs protected tumor cells from extrinsic apoptosis and contributed to tumor progression. Although linking to chemoresistance, c-FLIP indicated tumor cell sensitivity to HDACIs, providing a potential biomarker of targeting apoptosis in treating PTCLs. Electronic supplementary material The online version of this article (doi:10.1186/s13045-014-0088-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhong Zheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China.
| | - Shu Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China.
| | - Wen Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China.
| | - Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| | - Yan Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China.
| | - Yang Shen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China.
| | - Anne Janin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China. .,U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Pairs, France.
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
39
|
Bose P, Dai Y, Grant S. Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther 2014; 143:323-336. [PMID: 24769080 PMCID: PMC4117710 DOI: 10.1016/j.pharmthera.2014.04.004] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 02/05/2023]
Abstract
Initially regarded as "epigenetic modifiers" acting predominantly through chromatin remodeling via histone acetylation, HDACIs, alternatively referred to as lysine deacetylase or simply deacetylase inhibitors, have since been recognized to exert multiple cytotoxic actions in cancer cells, often through acetylation of non-histone proteins. Some well-recognized mechanisms of HDACI lethality include, in addition to relaxation of DNA and de-repression of gene transcription, interference with chaperone protein function, free radical generation, induction of DNA damage, up-regulation of endogenous inhibitors of cell cycle progression, e.g., p21, and promotion of apoptosis. Intriguingly, this class of agents is relatively selective for transformed cells, at least in pre-clinical studies. In recent years, additional mechanisms of action of these agents have been uncovered. For example, HDACIs interfere with multiple DNA repair processes, as well as disrupt cell cycle checkpoints, critical to the maintenance of genomic integrity in the face of diverse genotoxic insults. Despite their pre-clinical potential, the clinical use of HDACIs remains restricted to certain subsets of T-cell lymphoma. Currently, it appears likely that the ultimate role of these agents will lie in rational combinations, only a few of which have been pursued in the clinic to date. This review focuses on relatively recently identified mechanisms of action of HDACIs, with particular emphasis on those that relate to the DNA damage response (DDR), and discusses synergistic strategies combining HDACIs with several novel targeted agents that disrupt the DDR or antagonize anti-apoptotic proteins that could have implications for the future use of HDACIs in patients with cancer.
Collapse
Affiliation(s)
- Prithviraj Bose
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yun Dai
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
40
|
Zang F, Wei X, Leng X, Yu M, Sun B. C-FLIP(L) contributes to TRAIL resistance in HER2-positive breast cancer. Biochem Biophys Res Commun 2014; 450:267-73. [PMID: 24909691 DOI: 10.1016/j.bbrc.2014.05.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
Breast cancers with HER2 amplification have a poorer prognosis than the luminal phenotypes. TRAIL activates apoptosis upon binding its receptors in some but not all breast cancer cell lines. Herein, we investigated the expression pattern of c-FLIP(L) in a cohort of 251 invasive breast cancer tissues and explored its potential role in TRAIL resistance. C-FLIP(L) was relatively high-expressed in HER2-positive breast cancer in comparison with other molecular subtypes, co-expressed with TRAIL death receptors, and inversely correlated with the apoptosis index. Downregulation of c-FLIP(L) sensitized SKBR3 cells to TRAIL-induced apoptosis in a concentration- and time-dependent manner and enhanced the activities and cleavages of caspase-8 and caspase-3, without altering the surface expression of death receptors. Together, our results indicate that c-FLIP(L) promotes TRAIL resistance and inhibits caspase-3 and caspase-8 activation in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Fenglin Zang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xiyin Wei
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xue Leng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Man Yu
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
41
|
Zhang S, Huang WB, Wu L, Wang LY, Ye LB, Feng BH. A Novel Suberoylanilide Hydroxamic Acid Histone Deacetylase Inhibitor Derivative, N25, Exhibiting Improved Antitumor Activity in both Human U251 and H460 Cells. Asian Pac J Cancer Prev 2014; 15:4331-8. [DOI: 10.7314/apjcp.2014.15.10.4331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
42
|
YOU BORA, PARK WOOHYUN. Suberoylanilide hydroxamic acid-induced HeLa cell death is closely correlated with oxidative stress and thioredoxin 1 levels. Int J Oncol 2014; 44:1745-55. [PMID: 24626405 DOI: 10.3892/ijo.2014.2337] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/06/2014] [Indexed: 11/05/2022] Open
|
43
|
Lin WH, Yeh TK, Jiaang WT, Yen KJ, Chen CH, Huang CT, Yen SC, Hsieh SY, Chou LH, Chen CP, Chiu CH, Kao LC, Chao YS, Chen CT, Hsu JTA. Evaluation of the antitumor effects of BPR1J-340, a potent and selective FLT3 inhibitor, alone or in combination with an HDAC inhibitor, vorinostat, in AML cancer. PLoS One 2014; 9:e83160. [PMID: 24416160 PMCID: PMC3885398 DOI: 10.1371/journal.pone.0083160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/31/2013] [Indexed: 01/09/2023] Open
Abstract
Overexpression or/and activating mutation of FLT3 kinase play a major driving role in the pathogenesis of acute myeloid leukemia (AML). Hence, pharmacologic inhibitors of FLT3 are of therapeutic potential for AML treatment. In this study, BPR1J-340 was identified as a novel potent FLT3 inhibitor by biochemical kinase activity (IC50 approximately 25 nM) and cellular proliferation (GC50 approximately 5 nM) assays. BPR1J-340 inhibited the phosphorylation of FLT3 and STAT5 and triggered apoptosis in FLT3-ITD+ AML cells. The pharmacokinetic parameters of BPR1J-340 in rats were determined. BPR1J-340 also demonstrated pronounced tumor growth inhibition and regression in FLT3-ITD+ AML murine xenograft models. The combination treatment of the HDAC inhibitor vorinostat (SAHA) with BPR1J-340 synergistically induced apoptosis via Mcl-1 down-regulation in MOLM-13 AML cells, indicating that the combination of selective FLT3 kinase inhibitors and HDAC inhibitors could exhibit clinical benefit in AML therapy. Our results suggest that BPR1J-340 may be further developed in the preclinical and clinical studies as therapeutics in AML treatments.
Collapse
Affiliation(s)
- Wen-Hsing Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Weir-Torn Jiaang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kuei-Jung Yen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Hwa Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chin-Ting Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Chieh Yen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Yi Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Ling-Hui Chou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Ching-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Hsien Chiu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Li-Chun Kao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Sheng Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
- * E-mail: (CTC); (JT-AH)
| | - John T.-A. Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail: (CTC); (JT-AH)
| |
Collapse
|
44
|
Chen S, Zhao Y, Gou WF, Zhao S, Takano Y, Zheng HC. The anti-tumor effects and molecular mechanisms of suberoylanilide hydroxamic acid (SAHA) on the aggressive phenotypes of ovarian carcinoma cells. PLoS One 2013; 8:e79781. [PMID: 24236158 PMCID: PMC3827455 DOI: 10.1371/journal.pone.0079781] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi), such as suberoylanilide hydroxamic acid (SAHA), have been shown to act selectively on gene expression, and are potent inducers of growth arrest, differentiation and apoptosis in various types of cancers in vitro and in vivo. This study aimed to elucidate the anti-tumor effects and molecular mechanisms of SAHA on the aggressive phenotypes of ovarian carcinoma. Two pairs of cell lines (SKOV3 and SKOV3/DDP; HO8910 and HO8910-PM) were exposed to SAHA treatment, and the effects on acetyl-Histone H3 and H4 expression levels were analyzed and compared against the aggressive behaviors of ovarian carcinoma. Our results showed that SAHA suppressed proliferation in both a concentration- and time-dependent manner in all four cell lines; induced S/G2 arrest in SKOV3 and SKOV3/DDP cells; and conversely, induced G1 arrest in HO8910 and HO8910-PM cells. SAHA treatment induced apoptosis and reduced migration, invasion and lamellipodia formation in the ovarian carcinoma cells; furthermore, SAHA decreased expression of Cyclin B1 and CDC2P34 mRNA, and downregulated CDC2P34, Erk1/2, CyclinB1 and MMP-9 proteins. In contrast, SAHA increased expression of Caspase-3, p21 and p53 mRNA, and upregulated acetyl-Histones H3 and H4, Caspase-8, and p53 proteins. Basal acetylation of histone H3 and H4 was higher in ovarian carcinoma compared to normal ovarian tissues and benign ovarian tumors, and in borderline tumor than in normal ovarian tissues, and was positively correlated with differentiation and expression of the proliferative marker, Ki-67 (P < 0.05). We suggest that SAHA may suppress growth, migration and invasion in ovarian carcinoma cells, including cisplatin-resistant or highly-invasive ovarian cells, by promoting histone acetylation and modulating their phenotype-related molecules. As such, aberrant acetylation of histone H3 and H4 may play an important role in the carcinogenesis and differentiation of ovarian carcinoma.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Zhao
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wen-feng Gou
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, China
| | - Shuang Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, China
| | - Yasuo Takano
- Clinical Cancer Institute, Kanagawa Cancer Center, Yokohama, Japan
| | - Hua-chuan Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
45
|
Histone deacetylase inhibition downregulates collagen 3A1 in fibrotic lung fibroblasts. Int J Mol Sci 2013; 14:19605-17. [PMID: 24084714 PMCID: PMC3821575 DOI: 10.3390/ijms141019605] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/27/2013] [Accepted: 09/11/2013] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a deadly disease characterized by chronic inflammation and excessive collagen accumulation in the lung. Myofibroblasts are the primary collagen-producing cells in pulmonary fibrosis. Histone deacetylase inhibitor (HDACi) can affect gene expression, and some, such as suberoylanilide hydroxamic acid (SAHA), are US FDA approved for cancer treatment. In this study, we investigated SAHA’s effects on the expression of collagen III alpha 1 (COL3A1) in primary human IPF fibroblasts and in a murine model of pulmonary fibrosis. We observed that increased COL3A1 expression in IPF fibroblasts can be substantially reduced by SAHA treatment at the level of transcription as detected by RT-PCR; collagen III protein level was also reduced, as detected by Western blots and immunofluorescence. The deacetylation inhibitor effect of SAHA was verified by observing higher acetylation levels of both histone H3 and H4 in treated IPF cells. Chromatin immunoprecipitation (ChIP) experiments demonstrated that the reduced expression of COL3A1 by SAHA is with increased association of the repressive chromatin marker, H3K27Me3, and decreased association of the active chromatin marker, H3K9Ac. In our murine model of bleomycin-induced pulmonary fibrosis, the SAHA treated group demonstrated significantly less collagen III, as detected by immunohistochemistry. Our data indicate that the HDACi SAHA alters the chromatin associated with COL3A1, resulting in its decreased expression.
Collapse
|
46
|
Han BR, You BR, Park WH. Valproic acid inhibits the growth of HeLa cervical cancer cells via caspase-dependent apoptosis. Oncol Rep 2013; 30:2999-3005. [PMID: 24064712 DOI: 10.3892/or.2013.2747] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/26/2013] [Indexed: 11/05/2022] Open
Abstract
Valproic acid (VPA) as a histone deacetylase (HDAC) inhibitor has an anticancer effect. In the present study, we evaluated the effects of VPA on the growth and death of HeLa cervical cancer cells in relation to reactive oxygen species (ROS) and glutathione (GSH). Dose- and time-dependent growth inhibition was observed in HeLa cells with an IC50 of approximately 10 mM at 24 h. DNA flow cytometric analysis indicated that 10 mM VPA induced a G2/M phase arrest of the cell cycle. This agent also induced apoptosis, which was accompanied by the cleavage of PARP, the activation of caspase-3, -8 and -9, and the loss of mitochondrial membrane potential (MMP; ∆Ψm). All the tested caspase inhibitors significantly prevented HeLa apoptotic cell death induced by VPA, whereas TNF-α intensified the apoptotic cell death. With respect to ROS and GSH levels, VPA increased ROS levels and induced GSH depletion. However, N-acetyl cysteine (NAC; an antioxidant) and L-buthionine sulfoximine (BSO; a GSH synthesis inhibitor) did not significantly affect cell death in VPA-treated HeLa cells. In conclusion, VPA inhibits the growth of HeLa cervical cancer cells via caspase-dependent apoptosis and the growth inhibition is independent of ROS and GSH level changes.
Collapse
Affiliation(s)
- Bo Ram Han
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, Jeonju 561-180, Republic of Korea
| | | | | |
Collapse
|
47
|
Devarakonda SS, Shahan JL, Takalkar A, Chaudhery SI, Jean G, Koshy NV, Hildebrandt GC. Graft-versus-lymphoma effect plus vorinostat as successful approach in a case of refractory gastric peripheral T cell lymphoma, not otherwise specified, after reduced intensity conditioning allogeneic hematopoietic cell transplant. Leuk Lymphoma 2013; 54:2545-7. [DOI: 10.3109/10428194.2013.776682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Srinivas S. Devarakonda
- Department of Medicine – Feist-Weiller Cancer Center, LSU Health Sciences Center – Shreveport,
Shreveport, LA, USA
| | - Jaime L. Shahan
- Department of Medicine – Feist-Weiller Cancer Center, LSU Health Sciences Center – Shreveport,
Shreveport, LA, USA
| | - Amol Takalkar
- Department of Radiology, LSU Health Sciences Center – Shreveport,
Shreveport, LA, USA
| | - Shubnum I. Chaudhery
- Department of Pathology, LSU Health Sciences Center – Shreveport,
Shreveport, LA, USA
| | - Gary Jean
- Department of Pharmacy, LSU Health Sciences Center – Shreveport,
Shreveport, LA, USA
| | - Nebu V. Koshy
- Department of Medicine – Feist-Weiller Cancer Center, LSU Health Sciences Center – Shreveport,
Shreveport, LA, USA
| | - Gerhard C. Hildebrandt
- Department of Medicine – Feist-Weiller Cancer Center, LSU Health Sciences Center – Shreveport,
Shreveport, LA, USA
- Division of Hematology and Hematologic Malignancies, Department of Medicine, University of Utah School of Medicine,
Salt Lake City, UT, USA
| |
Collapse
|
48
|
Abstract
HDACs (histone deacetylases) are a group of enzymes that deacetylate histones as well as non-histone proteins. They are known as modulators of gene transcription and are associated with proliferation and differentiation of a variety of cell types and the pathogenesis of some diseases. Recently, HDACs have come to be considered crucial targets in various diseases, including cancer, interstitial fibrosis, autoimmune and inflammatory diseases, and metabolic disorders. Pharmacological inhibitors of HDACs have been used or tested to treat those diseases. In the present review, we will examine the application of HDAC inhibitors in a variety of diseases with the focus on their effects of anti-cancer, fibrosis, anti-inflammatory, immunomodulatory activity and regulating metabolic disorders.
Collapse
|