1
|
van Beek N, Holtsche MM, Atefi I, Olbrich H, Schmitz MJ, Pruessmann J, Vorobyev A, Schmidt E. State-of-the-art diagnosis of autoimmune blistering diseases. Front Immunol 2024; 15:1363032. [PMID: 38903493 PMCID: PMC11187241 DOI: 10.3389/fimmu.2024.1363032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/15/2024] [Indexed: 06/22/2024] Open
Abstract
Autoimmune blistering disorders (AIBDs) are a heterogeneous group of approximately a dozen entities comprising pemphigus and pemphigoid disorders and dermatitis herpetiformis. The exact diagnosis of AIBDs is critical for both prognosis and treatment and is based on the clinical appearance combined with the detection of tissue-bound and circulating autoantibodies. While blisters and erosions on the skin and/or inspectable mucosal surfaces are typical, lesions may be highly variable with erythematous, urticarial, prurigo-like, or eczematous manifestations. While direct immunofluorescence microscopy (IFM) of a perilesional biopsy is still the diagnostic gold standard, the molecular identification of the major target antigens opened novel therapeutic avenues. At present, most AIBDs can be diagnosed by the detection of autoantigen-specific serum antibodies by enzyme-linked immunosorbent assay (ELISA) or indirect IFM when the clinical picture is known. This is achieved by easily available and highly specific and sensitive assays employing recombinant immunodominant fragments of the major target antigens, i.e., desmoglein 1 (for pemphigus foliaceus), desmoglein 3 (for pemphigus vulgaris), envoplakin (for paraneoplastic pemphigus), BP180/type XVII collagen (for bullous pemphigoid, pemphigoid gestationis, and mucous membrane pemphigoid), laminin 332 (for mucous membrane pemphigoid), laminin β4 (for anti-p200 pemphigoid), type VII collagen (for epidermolysis bullosa acquisita and mucous membrane pemphigoid), and transglutaminase 3 (for dermatitis herpetiformis). Indirect IFM on tissue substrates and in-house ELISA and immunoblot tests are required to detect autoantibodies in some AIBD patients including those with linear IgA disease. Here, a straightforward modern approach to diagnosing AIBDs is presented including diagnostic criteria according to national and international guidelines supplemented by long-term in-house expertise.
Collapse
Affiliation(s)
- Nina van Beek
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Maike M. Holtsche
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Ingeborg Atefi
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Henning Olbrich
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Marie J. Schmitz
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Jasper Pruessmann
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Artem Vorobyev
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Szymański K, Kowalewski C, Pietrzyk E, Woźniak K. Case Report: Biological treatment of epidermolysis bullosa acquisita: report on four cases and literature review. Front Immunol 2023; 14:1214011. [PMID: 37503352 PMCID: PMC10371012 DOI: 10.3389/fimmu.2023.1214011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is a chronic, recurrent autoimmune subepidermal bullous disease characterized by the presence of autoantibodies targeting type VII collagen -- basement membrane zone antigen. Standard therapy for EBA includes a combination of systemic corticosteroids and dapsone; however, severe cases may require advanced treatment. The current article reports on four EBA cases in which biologics: infliximab, rituximab (Rtx), and intravenous immunoglobulin (IVIG) were applied. All patients fulfilled the clinical and immunological criteria of EBA: they presented tense blisters healing with atrophic scars on the skin on traumatized areas and in mucous membranes. The diagnosis of EBA was established using numerous techniques: direct and indirect immunofluorescence, salt split skin, ELISA, Fluorescence Overlay Antigen Mapping using Laser Scanning Confocal Microscopy. Since all the patients did not achieve long-term remission on standard treatment (prednisone, dapsone) due to ineffectiveness or side effects of drugs, they eventually were treated with biologics leading to extraordinary skin improvement and stopping the disease for 1-3 years. Biologics in all patients were tolerated very well. No side effects were observed during application as well as multi-month follow-up. The presented cases provide a premise that biological drugs can be a valuable component of EBA therapy.
Collapse
|
3
|
Alramadhan SA, Islam MN. Vesiculobullous Lesions of the Oral Cavity. Oral Maxillofac Surg Clin North Am 2023; 35:203-217. [PMID: 37019505 DOI: 10.1016/j.coms.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Several dermatological conditions may manifest in the oral cavity, particularly those that are immune-mediated, and they must be distinguished from the various other types of oral ulcerations. This chapter discusses the clinical features, pathogenesis, differential diagnosis, and diagnostic features, including histology and immunofluorescence findings, as well as management of vesiculobullous diseases. These diseases include pemphigus Vulgaris, benign mucous membrane pemphigoid, bullous pemphigoid, and epidermolysis bullosa acquisita. These diseases have a significant impact on the quality of life, as they can lead to serious complications, depending on the extent of the disease. Therefore, early recognition is crucial, helping to reduce disease-related morbidity, mortality and prevent life-threatening complications.
Collapse
|
4
|
Vičić M, Marinović B. Autoimmune bullous diseases in pregnancy: an overview of pathogenesis, clinical presentations, diagnostics and available therapies. Ital J Dermatol Venerol 2023; 158:99-109. [PMID: 37153944 DOI: 10.23736/s2784-8671.23.07553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Autoimmune bullous diseases (AIBDs) are rare organ-specific diseases characterized by the appearance of blisters and erosions on the skin and mucous membranes. These dermatoses are marked by the development of autoantibodies targeting the autoantigens located in intercellular junctions, i.e., between keratinocytes or in the basement membrane area. Therefore, the fundamental division of AIBDs into the pemphigus and pemphigoid groups exists. Although AIBDs are uncommon in the general population, their overall incidence is somewhat higher in women of all ages, for which a pregnant women can be likely affected too. While the pemphigoid gestationis is exclusive bullous dermatosis of pregnancy, the other AIBDs can also start or worsen during this period. The appearance of AIBDs in childbearing women is a particularly sensitive situation requiring exceptional clinicians' caution due to the possibility of pregnancy complications with adverse effects and risks to the mother and the child. Also, there are numerous management difficulties in the period of pregnancy and lactation related to the drugs' choice and safety. This paper aimed to outline the pathophysiologic mechanisms, clinical manifestations, diagnostic approach and therapy of the most commonly recognized AIBDs in pregnancy.
Collapse
Affiliation(s)
- Marijana Vičić
- Department of Dermatovenereology, Faculty of Medicine, Clinical Hospital Centre of Rijeka, University of Rijeka, Rijeka, Croatia
| | - Branka Marinović
- Department of Dermatovenereology, Faculty of Medicine, University Hospital Centre of Zagreb, University of Zagreb, Zagreb, Croatia -
| |
Collapse
|
5
|
Stenger S, Grasshoff H, Hundt JE, Lange T. Potential effects of shift work on skin autoimmune diseases. Front Immunol 2023; 13:1000951. [PMID: 36865523 PMCID: PMC9972893 DOI: 10.3389/fimmu.2022.1000951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 02/16/2023] Open
Abstract
Shift work is associated with systemic chronic inflammation, impaired host and tumor defense and dysregulated immune responses to harmless antigens such as allergens or auto-antigens. Thus, shift workers are at higher risk to develop a systemic autoimmune disease and circadian disruption with sleep impairment seem to be the key underlying mechanisms. Presumably, disturbances of the sleep-wake cycle also drive skin-specific autoimmune diseases, but epidemiological and experimental evidence so far is scarce. This review summarizes the effects of shift work, circadian misalignment, poor sleep, and the effect of potential hormonal mediators such as stress mediators or melatonin on skin barrier functions and on innate and adaptive skin immunity. Human studies as well as animal models were considered. We will also address advantages and potential pitfalls in animal models of shift work, and possible confounders that could drive skin autoimmune diseases in shift workers such as adverse lifestyle habits and psychosocial influences. Finally, we will outline feasible countermeasures that may reduce the risk of systemic and skin autoimmunity in shift workers, as well as treatment options and highlight outstanding questions that should be addressed in future studies.
Collapse
Affiliation(s)
- Sarah Stenger
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
6
|
Tešanović Perković D, Bukvić Mokos Z, Marinović B. Epidermolysis Bullosa Acquisita-Current and Emerging Treatments. J Clin Med 2023; 12:jcm12031139. [PMID: 36769788 PMCID: PMC9917799 DOI: 10.3390/jcm12031139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is a rare chronic autoimmune subepidermal blistering disease of the skin and mucous membranes, usually beginning in adulthood. EBA is induced by autoantibodies to type VII collagen, a major component of anchoring fibrils in the dermal-epidermal junction (DEJ). The binding of autoantibodies to type-VII collagen subsequently leads to the detachment of the epidermis and the formation of mucocutaneous blisters. EBA has two major clinical subtypes: the mechanobullous and inflammatory variants. The classic mechanobullous variant presentation consists of skin fragility, bullae with minimal clinical or histological inflammation, erosions in acral distribution that heal with scarring, and milia formation. The inflammatory variant is challenging to differentiate from other autoimmune bullous diseases, most commonly bullous pemphigoid (BP) but also mucous membrane pemphigoid (MMP), Brunsting-Perry pemphigoid, and linear IgA dermatosis. Due to its recalcitrance conventional treatment of epidermolysis bullosa acquisita is shown to be demanding. Here we discuss novel therapeutic strategies that have emerged and which could potentially improve the quality of life in patients with EBA.
Collapse
Affiliation(s)
| | - Zrinka Bukvić Mokos
- Department of Dermatology and Venereology, School of Medicine, University Hospital Centre Zagreb, University of Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Branka Marinović
- Department of Dermatology and Venereology, School of Medicine, University Hospital Centre Zagreb, University of Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
7
|
Tukaj S, Sitko K. Heat Shock Protein 90 (Hsp90) and Hsp70 as Potential Therapeutic Targets in Autoimmune Skin Diseases. Biomolecules 2022; 12:biom12081153. [PMID: 36009046 PMCID: PMC9405624 DOI: 10.3390/biom12081153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/22/2022] Open
Abstract
Over a hundred different autoimmune diseases have been described to date, which can affect every organ in the body, including the largest one, the skin. In fact, up to one-fifth of the world's population suffers from chronic, noninfectious inflammatory skin diseases, the development of which is significantly influenced by an autoimmune response. One of the hallmarks of autoimmune diseases is the loss of immune tolerance, which leads to the formation of autoreactive lymphocytes or autoantibodies and, consequently, to chronic inflammation and tissue damage. The treatment of autoimmune skin diseases mainly focuses on immunosuppression (using, e.g., corticosteroids) but almost never leads to the development of permanent mechanisms of immune tolerance. In addition, current therapies and their long-term administration may cause serious adverse effects. Hence, safer and more effective therapies that bring sustained balance between pro- and anti-inflammatory responses are still desired. Both intra- and extracellular heat shock proteins (Hsps), specifically well-characterized inducible Hsp90 and Hsp70 chaperones, have been highlighted as therapeutic targets for autoimmune diseases. This review presents preclinical data on the involvement of Hsp90 and Hsp70 in modulating the immune response, specifically in the context of the treatment of selected autoimmune skin diseases with emphasis on autoimmune bullous skin diseases and psoriasis.
Collapse
|
8
|
Epidermolysis bullosa acquisita. An Bras Dermatol 2022; 97:409-423. [PMID: 35701269 PMCID: PMC9263658 DOI: 10.1016/j.abd.2021.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
Epidermolysis bullosa acquisita is a rare autoimmune disease, characterized by the synthesis of anti-collagen VII autoantibodies, the main component of hemidesmosome anchoring fibrils. The antigen-antibody binding elicits a complex inflammatory response, which culminates in the loss of dermo-epidermal adhesion of the skin and/or mucous membranes. Skin fragility with bullae, erosions, and milia in areas of trauma characterizes the mechanobullous form of the disease. In the inflammatory form of epidermolysis bullosa acquisita, urticarial inflammatory plaques with tense bullae, similar to bullous pemphigoid, or mucosal lesions can determine permanent scars and loss of functionality in the ocular, oral, esophageal, and urogenital regions. Due to the similarity of the clinical findings of epidermolysis bullosa acquisita with other diseases of the pemphigoid group and with porphyria cutanea tarda, the diagnosis is currently confirmed mainly based on the clinical correlation with histopathological findings (pauci-inflammatory subepidermal cleavage or with a neutrophilic infiltrate) and the demonstration of the presence of anti-collagen VII IgG in situ by direct immunofluorescence, or circulating anti-collagen VII IgG through indirect immunofluorescence and/or ELISA. There is no specific therapy for epidermolysis bullosa acquisita and the response to treatment is variable, usually with complete remission in children and a worse prognosis in adults with mucosal involvement. Systemic corticosteroids and immunomodulators (colchicine and dapsone) are alternatives for the treatment of mild forms of the disease, while severe forms require the use of corticosteroid therapy associated with immunosuppressants, intravenous immunoglobulin, and rituximab.
Collapse
|
9
|
Oral Alterations in Heritable Epidermolysis Bullosa: A Clinical Study and Literature Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6493156. [PMID: 35686231 PMCID: PMC9173894 DOI: 10.1155/2022/6493156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022]
Abstract
Epidermolysis bullosa (EB) is a group of skin disorders with skin fragility characterized by blistering from minimal mechanical trauma with rupture at the dermoepidermal junction. There are four major classical heritable EB types, due to mutations in as many as 20 distinct genes: EB simplex (EBS), junctional EB (JEB), dystrophic EB (DEB), and Kindler EB (KEB). This study is aimed at reporting case series on patients (N = 8; males, n = 5 and females, n = 3, age range 12-68 years) affected by EB and performs a review of the literature on this topic. This group of disorders can affect oral soft and hard tissues in various ways, resulting in various effects including enamel hypoplasia, dental caries, microstomia, ankyloglossia, oral blistering, and ulcerations early-onset periodontal disease. From the sample results, it can be concluded that the clinical manifestation of EB patients is highly variable and very different in prognosis. Oral health deeply influences the quality of life of EB patients. Dental management is essential to prevent the aggravation of soft tissue damage and tooth loss and to improve the quality of life through prosthetic and restorative therapies. Dentists should consider the oral alterations of EB subtypes to perform a personalized approach to the patients' needs in a preventive and therapeutic point of view.
Collapse
|
10
|
Tukaj S, Mantej J, Sitko K, Zillikens D, Ludwig RJ, Bieber K, Kasperkiewicz M. Pathological Relevance of Anti-Hsp70 IgG Autoantibodies in Epidermolysis Bullosa Acquisita. Front Immunol 2022; 13:877958. [PMID: 35514963 PMCID: PMC9065281 DOI: 10.3389/fimmu.2022.877958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Stress-induced heat shock protein 70 (Hsp70) is a key intra- and extracellular molecular chaperone implicated in autoimmune processes. Highly immunogenic extracellular Hsp70 can activate innate and acquired (adaptive) immune responses driving the generation of anti-Hsp70 autoantibodies that are frequently observed in inflammatory/autoimmune disorders. We recently described the direct pathological role of extracellular Hsp70 in epidermolysis bullosa acquisita (EBA), an anti-type VII collagen autoantibody-mediated autoimmune blistering skin disease. Here, we determined the role of anti-Hsp70 autoantibodies in EBA. We observed that circulating anti-Hsp70 IgG autoantibodies were significantly elevated in EBA patients compared to healthy individuals and positively correlated with serum levels of pro-inflammatory interferon gamma (IFN-γ). The pathophysiological relevance of anti-Hsp70 IgG autoantibodies was demonstrated in an antibody transfer-induced EBA mouse model in which elevated serum levels of anti-Hsp70 IgG were found. In addition, anti-Hsp70 IgG-treated animals had a more intense clinical and histological disease activity, as well as upregulated nuclear factor kappa B (NF-κB) activation in skin biopsies compared to isotype-treated animals. Our results suggest that autoantibodies to Hsp70 may contribute to EBA development via enhanced neutrophil infiltration to the skin and activation of the NF-κB signaling pathway in an IFN-γ-associated manner.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Detlef Zillikens
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
11
|
Bioengineered Efficacy Models of Skin Disease: Advances in the Last 10 Years. Pharmaceutics 2022; 14:pharmaceutics14020319. [PMID: 35214050 PMCID: PMC8877988 DOI: 10.3390/pharmaceutics14020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Models of skin diseases, such as psoriasis and scleroderma, must accurately recapitulate the complex microenvironment of human skin to provide an efficacious platform for investigation of skin diseases. Skin disease research has been shifting from less complex and less relevant 2D (two-dimensional) models to significantly more relevant 3D (three-dimensional) models. Three-dimensional modeling systems are better able to recapitulate the complex cell–cell and cell–matrix interactions that occur in vivo within skin. Three-dimensional human skin equivalents (HSEs) have emerged as an advantageous tool for the study of skin disease in vitro. These 3D HSEs can be highly complex, containing both epidermal and dermal compartments with integrated adnexal structures. The addition of adnexal structures to 3D HSEs has allowed researchers to gain more insight into the complex pathology of various hereditary and acquired skin diseases. One method of constructing 3D HSEs, 3D bioprinting, has emerged as a versatile and useful tool for generating highly complex HSEs. The development of commercially available 3D bioprinters has allowed researchers to create highly reproducible 3D HSEs with precise integration of multiple adnexal structures. While the field of bioengineered models for study of skin disease has made tremendous progress in the last decade, there are still significant efforts necessary to create truly biomimetic skin disease models. In future studies utilizing 3D HSEs, emphasis must be placed on integrating all adnexal structures relevant to the skin disease under investigation. Thorough investigation of the intricate pathology of skin diseases and the development of effective treatments requires use of highly efficacious models of skin diseases.
Collapse
|
12
|
Seiler DL, Kleingarn M, Kähler KH, Gruner C, Schanzenbacher J, Ehlers-Jeske E, Kenno S, Sadik CD, Schmidt E, Bieber K, Köhl J, Ludwig RJ, Karsten CM. C5aR2 deficiency ameliorates inflammation in murine epidermolysis bullosa acquisita by regulating FcγRIIb expression on neutrophils. J Invest Dermatol 2022; 142:2715-2723.e2. [PMID: 35007559 DOI: 10.1016/j.jid.2021.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
Epidermolysis bullosa acquisita (EBA) is a rare blistering skin disease induced by autoantibodies directed against type VII collagen (COL7). Transfer of antibodies against murine COL7 (mCOL7) into mice mimics the effector phase of EBA and results in a subepidermal blistering phenotype. Activation of the complement system, and especially the C5a/C5aR1 axis driving neutrophil activation, are critical for EBA pathogenesis. However, the role of the alternative C5a receptor, C5aR2, which is commonly thought to be more immunosuppressive, in the pathogenesis of EBA is still elusive. Therefore, we sought to delineate the functional relevance of C5aR2 during the effector phase of EBA. Unexpectedly, C5aR2-deficient (C5ar2-/-) mice showed an attenuated disease phenotype, suggesting a pathogenic contribution of C5aR2 to disease progression. In vitro, C5ar2-/- neutrophils exhibited significantly reduced (Ca2+)i flux, reactive oxygen species release, and migratory capacity when activated with immune complexes or exposed to C5a. These functions were completely absent when C5ar1-/- neutrophils were activated. Moreover, C5aR2 deficiency more than tripled FcγRIIb expression on neutrophils thus lowering the A/I ratio of FcγRs and impeding the sustainment of inflammation. Collectively, we demonstrate here a pro-inflammatory contribution of C5aR2 to the pathogenesis of antibody-induced tissue damage in experimental EBA.
Collapse
Affiliation(s)
- Daniel L Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany; Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja H Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Caroline Gruner
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Jovan Schanzenbacher
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Elvira Ehlers-Jeske
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Samyr Kenno
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Christian D Sadik
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ralf J Ludwig
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
13
|
Ujiie H, Yamagami J, Takahashi H, Izumi K, Iwata H, Wang G, Sawamura D, Amagai M, Zillikens D. The pathogeneses of pemphigus and pemphigoid diseases. J Dermatol Sci 2021; 104:154-163. [PMID: 34916040 DOI: 10.1016/j.jdermsci.2021.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Autoimmune bullous diseases (AIBDs) are skin disorders which are mainly induced by autoantibodies against desmosomal or hemidesmosomal structural proteins. Previous studies using patients' samples and animal disease models identified target antigens and elucidated the mechanisms of blister formation. Pemphigus has been the subject of more active clinical and basic research than any other AIBD. These efforts have revealed the pathogenesis of pemphigus, which in turn has led to optimal diagnostic methods and novel therapies, such as rituximab. In bullous pemphigoid (BP), studies with passive-transfer mouse models using rabbit anti-mouse BP180 antibodies and studies with passive-transfer or active mouse models using autoantigen-humanized mice elucidated the immune reactions to BP180 in vivo. Recently, dipeptidyl peptidase-4 inhibitors have attracted attention as a trigger for BP. For epidermolysis bullosa acquisita (EBA), investigations using mouse models are actively under way and several molecules have been identified as targets for novel therapies. In this review, we give an overview and discussion of the recent progress in our understanding of the pathogenesis of pemphigus, BP, and EBA. Further studies on the breakdown of self-tolerance and on the identification of key molecules that are relevant to blister formation may expand our understanding of the etiology of AIBDs and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Jun Yamagami
- Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hayato Takahashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Izumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Detlef Zillikens
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany, University of Lübeck, Lübeck, Germany
| |
Collapse
|
14
|
Murthy S, Schilf P, Patzelt S, Thieme M, Becker M, Kröger L, Bremer T, Derenda-Hell A, Knebel L, Fagiani F, Ibrahim SM, Schmidt E, Zillikens D, Sadik CD. Dapsone Suppresses Disease in Preclinical Murine Models of Pemphigoid Diseases. J Invest Dermatol 2021; 141:2587-2595.e2. [PMID: 34033839 DOI: 10.1016/j.jid.2021.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 01/10/2023]
Abstract
Epidermolysis bullosa acquisita and mucous membrane pemphigoid are autoimmune blistering diseases characterized by mucocutaneous blisters elicited by an autoantibody-mediated immune response against specific proteins of the epidermal basement membrane. The antibiotic dapsone is frequently used to treat both diseases, but its therapeutic effectiveness is uncertain, and its mode of action in these diseases is largely unknown. We evaluated the effect of dapsone in antibody transfer mouse models of epidermolysis bullosa acquisita and mucous membrane pemphigoid, which do not allow the drawing of conclusions on clinical treatment regimens but can be instrumental to partially uncover the mode(s) of action of dapsone in these diseases. Dapsone significantly mitigated inflammation in both models, reducing the recruitment of neutrophils into the skin and disrupting their release of leukotriene B4 (LTB4) and ROS in response to immune complexes. LTB4 has been implicated in numerous diseases, but effective LTB4 inhibitors for clinical use are not available. Our findings indicate that the mode of action of dapsone in these models may be based on the inhibition of LTB4 and ROS release from neutrophils. Moreover, they encourage testing the use of dapsone as an effective, albeit nonspecific, inhibitor of LTB4 biosynthesis in other LTB4-driven diseases.
Collapse
Affiliation(s)
- Sripriya Murthy
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Paul Schilf
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Sabrina Patzelt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Markus Thieme
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Mareike Becker
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Lasse Kröger
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Tabea Bremer
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Aleksandra Derenda-Hell
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Lea Knebel
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Francesca Fagiani
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Saleh M Ibrahim
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany; Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany; Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany; Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Christian D Sadik
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany; Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
15
|
Vicari E, Haeberle S, Bolduan V, Ramcke T, Vorobyev A, Goletz S, Iwata H, Ludwig RJ, Schmidt E, Enk AH, Hadaschik EN. Pathogenic Autoantibody Derived from Regulatory T Cell‒Deficient Scurfy Mice Targets Type VII Collagen and Leads to Epidermolysis Bullosa Acquisita‒Like Blistering Disease. J Invest Dermatol 2021; 142:980-984.e4. [PMID: 34678154 DOI: 10.1016/j.jid.2021.08.441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Elisabeth Vicari
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Stefanie Haeberle
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Vanessa Bolduan
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Torben Ramcke
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Artem Vorobyev
- Department of Dermatology, University Medical Center Schleswig-Holstein, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ralf J Ludwig
- Department of Dermatology, University Medical Center Schleswig-Holstein, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, University Medical Center Schleswig-Holstein, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Alexander H Enk
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Eva N Hadaschik
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany; Department of Dermatology, Essen University Hospital, Essen, Germany
| |
Collapse
|
16
|
Wen L, Dong X, Li Q, Schramm G, Zhang B, Zillikens D, Ludwig RJ, Petersen F, Yu X. Preventive but Not Therapeutic Topical Application of Local Anesthetics Can Inhibit Experimental Epidermolysis Bullosa Acquisita in Mice. Front Immunol 2021; 12:750160. [PMID: 34712239 PMCID: PMC8546209 DOI: 10.3389/fimmu.2021.750160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is an autoimmune blistering disorder characterized and caused by autoantibodies against type VII collagen (COL7). Although it has been noticed that EBA in both patients and mice is associated with an increased scratching, it is not clear whether and how the scratching contributes to disease manifestation. Hence, we here aimed to validate this clinical observation and also to investigate the potential contribution of increased scratching in EBA pathogenesis in mice. Longitudinal assessment of scratching behavior revealed an increased frequency of scratching as early as 12 hours after injection of anti-COL7 IgG into the skin of mice. Subsequently, scratching events became even more frequent in mice. In contrast, mice injected with a control antibody showed an unaltered scratching behavior throughout the observation period. Based on these observations, we hypothesized that mechanical irritation may promote the induction of inflammation in experimental EBA. To challenge this assumption, the local anesthetic dyclonine hydrochloride was topically applied before injection of anti-COL7 IgG. Dyclonine hydrochloride reduced the scratching events and impaired clinical disease manifestation. In therapeutic experimental settings, i.e. administration of the local anesthetic 24 hours after injection of anti-COL7 IgG, dyclonine hydrochloride only inhibited the scratching behavior, but had no significant effect on clinical disease development. In addition, eosinophils were detected in the skin before the injection of anti-COL7 IgG and significantly increased 48 hours after the antibody injection. Collectively, our results suggest that scratching behavior contributes to the initiation phase of disease manifestation in experimental EBA.
Collapse
Affiliation(s)
- Lifang Wen
- Department of Basic Medical Science, The Medical College of Xiamen University, Xiamen, China
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Borstel, Germany
| | - Xiaoru Dong
- Department of Basic Medical Science, The Medical College of Xiamen University, Xiamen, China
- Clinical Laboratory, Boai Hospital of Zhongshan, Zhongshan, China
| | - Qing Li
- Department of Basic Medical Science, The Medical College of Xiamen University, Xiamen, China
| | - Gabriele Schramm
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Borstel, Germany
| | - Bing Zhang
- Department of Basic Medical Science, The Medical College of Xiamen University, Xiamen, China
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Frank Petersen
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Borstel, Germany
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Borstel, Germany
| |
Collapse
|
17
|
Schilf P, Schmitz M, Derenda-Hell A, Thieme M, Bremer T, Vaeth M, Zillikens D, Sadik CD. Inhibition of Glucose Metabolism Abrogates the Effector Phase of Bullous Pemphigoid-Like Epidermolysis Bullosa Acquisita. J Invest Dermatol 2021; 141:1646-1655.e3. [DOI: 10.1016/j.jid.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/09/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
|
18
|
Subepithelial autoimmune blistering dermatoses: Clinical features and diagnosis. J Am Acad Dermatol 2021; 85:1-14. [PMID: 33684496 DOI: 10.1016/j.jaad.2020.11.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 01/19/2023]
Abstract
Subepithelial autoimmune blistering dermatoses are a group of rare skin disorders that are characterized by the disruption of the dermal-epidermal junction through the action of autoantibodies. The third article in this continuing medical education series explores the background, epidemiology, clinical features, and diagnostic criteria of each of the major subepithelial autoimmune blistering dermatoses, including bullous pemphigoid, pemphigoid gestationis, lichen planus pemphigoides, mucous membrane pemphigoid, linear IgA bullous dermatosis, and dermatitis herpetiformis.
Collapse
|
19
|
Antonelli E, Bassotti G, Tramontana M, Hansel K, Stingeni L, Ardizzone S, Genovese G, Marzano AV, Maconi G. Dermatological Manifestations in Inflammatory Bowel Diseases. J Clin Med 2021; 10:jcm10020364. [PMID: 33477990 PMCID: PMC7835974 DOI: 10.3390/jcm10020364] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) may be associated with extra-intestinal manifestations. Among these, mucocutaneous manifestations are relatively frequent, often difficult to diagnose and treat, and may complicate the course of the underlying disease. In the present review, a summary of the most relevant literature on the dermatologic manifestations occurring in patients with inflammatory bowel diseases has been reviewed. The following dermatological manifestations associated with IBDs have been identified: (i) specific manifestations with the same histological features of the underlying IBD (occurring only in Crohn's disease); (ii) cutaneous disorders associated with IBDs (such as aphthous stomatitis, erythema nodosum, psoriasis, epidermolysis bullosa acquisita); (iii) reactive mucocutaneous manifestations of IBDs (such as pyoderma gangrenosum, Sweet's syndrome, bowel-associated dermatosis-arthritis syndrome, aseptic abscess ulcers, pyodermatitis-pyostomatitis vegetans, etc.); (iv) mucocutaneous conditions secondary to treatment (including injection site reactions, infusion reactions, paradoxical reactions, eczematous and psoriasis-like reactions, cutaneous infections, and cutaneous malignancies); (v) manifestations due to nutritional malabsorption (such as stomatitis, glossitis, angular cheilitis, pellagra, scurvy, purpura, acrodermatitis enteropathica, phrynoderma, seborrheic-type dermatitis, hair and nail abnormalities). An accurate dermatological examination is essential in all IBD patients, especially in candidates to biologic therapies, in whom drug-induced cutaneous reactions may assume marked clinical relevance.
Collapse
Affiliation(s)
| | - Gabrio Bassotti
- Gastroenterology Section, Perugia General Hospital, 06156 Perugia, Italy;
- Gastroenterology & Hepatology Section, Department of Medicine, University of Perugia, 06156 Perugia, Italy
- Correspondence:
| | - Marta Tramontana
- Dermatology Section, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (M.T.); (K.H.); (L.S.)
| | - Katharina Hansel
- Dermatology Section, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (M.T.); (K.H.); (L.S.)
| | - Luca Stingeni
- Dermatology Section, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (M.T.); (K.H.); (L.S.)
| | - Sandro Ardizzone
- Gastroenterology Unit, Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, 20157 Milano, Italy; (S.A.); (G.M.)
| | - Giovanni Genovese
- Dermatology Unit, Fondazione IRCSS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy; (G.G.); (A.V.M.)
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCSS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy; (G.G.); (A.V.M.)
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
| | - Giovanni Maconi
- Gastroenterology Unit, Department of Biomedical and Clinical Sciences, “L.Sacco” Hospital, 20157 Milano, Italy; (S.A.); (G.M.)
| |
Collapse
|
20
|
Sezin T, Ferreirós N, Jennrich M, Ochirbold K, Seutter M, Attah C, Mousavi S, Zillikens D, Geisslinger G, Sadik CD. 12/15-Lipoxygenase choreographs the resolution of IgG-mediated skin inflammation. J Autoimmun 2020; 115:102528. [DOI: 10.1016/j.jaut.2020.102528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/11/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022]
|
21
|
Jegodzinski L, Sezin T, Loser K, Mousavi S, Zillikens D, Sadik CD. The G Protein-Coupled Receptor (GPR) 15 Counteracts Antibody-Mediated Skin Inflammation. Front Immunol 2020; 11:1858. [PMID: 32922401 PMCID: PMC7456807 DOI: 10.3389/fimmu.2020.01858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Abstract
The G protein-coupled receptor 15 (GPR15) has recently been highlighted as an important regulator of T cell trafficking into the gut under physiological and pathophysiological conditions. Additionally, circumstantial evidence has accumulated that GPR15 may also play a role in the regulation of chronic inflammation. However, the (patho)physiological significance of GPR15 has, in general, remained rather enigmatic. In the present study, we have addressed the role of GPR15 in the effector phase of autoantibody-mediated skin inflammation, specifically in the antibody transfer mouse model of bullous pemphigoid-like epidermolysis bullosa acquisita (BP-like EBA). Subjecting Gpr15 -/- mice to this model, we have uncovered that GPR15 counteracts skin inflammation. Thus, disease was markedly aggravated in Gpr15 -/- mice, which was associated with an increased accumulation of γδ T cells in the dermis. Furthermore, GPR15L, the recently discovered cognate ligand of GPR15, was markedly upregulated in inflamed skin. Collectively, our results highlight GPR15 as counter-regulator of neutrophilic, antibody-mediated cutaneous inflammation. Enhancing the activity of GPR15 may therefore constitute a novel therapeutic principle in the treatment of pemphigoid diseases, such as BP-like EBA.
Collapse
Affiliation(s)
- Lina Jegodzinski
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Tanya Sezin
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Karin Loser
- Department of Dermatology, University of Münster, Münster, Germany
| | - Sadegh Mousavi
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| |
Collapse
|
22
|
Clauder AK, Kordowski A, Bartsch YC, Köhl G, Lilienthal GM, Almeida LN, Lindemann T, Petry J, Rau CN, Gramalla-Schmitz A, Dühring L, Elbracht C, Kenno S, Tillmann J, Wuhrer M, Ludwig RJ, Ibrahim SM, Bieber K, Köhl J, Ehlers M, Manz RA. IgG Fc N-Glycosylation Translates MHCII Haplotype into Autoimmune Skin Disease. J Invest Dermatol 2020; 141:285-294. [PMID: 32653301 DOI: 10.1016/j.jid.2020.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex haplotype represents the most prevalent genetic risk factor for the development of autoimmune diseases. However, the mechanisms by which major histocompatibility complex-associated genetic susceptibility translates into autoimmune disease are not fully understood. Epidermolysis bullosa acquisita is an autoimmune skin-blistering disease driven by autoantibodies to type VII collagen. Here, we investigated autoantigen-specific plasma cells, CD4+ T cells, and IgG fraction crystallizable glycosylation in murine epidermolysis bullosa acquisita in congenic mouse strains with the disease-permitting H2s or disease-nonpermitting H2b major histocompatibility complex II haplotypes. Mice with an H2s haplotype showed increased numbers of autoreactive CD4+ T cells and elevated IL-21 and IFN-γ production, associated with a higher frequency of IgG autoantibodies with an agalactosylated, proinflammatory N-glycan moiety. Mechanistically, we show that the altered antibody glycosylation leads to increased ROS release from neutrophils, the main drivers of autoimmune inflammation in this model. These results indicate that major histocompatibility complex II-associated susceptibility to autoimmune diseases acuminates in a proinflammatory IgG fraction crystallizable N-glycosylation pattern and provide a mechanistic link to increased ROS release by neutrophils.
Collapse
Affiliation(s)
- Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Anna Kordowski
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany; Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Yannic C Bartsch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Gabriele Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Gina-Maria Lilienthal
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Larissa N Almeida
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Timo Lindemann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Christina N Rau
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | | | - Lara Dühring
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Claudia Elbracht
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Samyr Kenno
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jenny Tillmann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Saleh M Ibrahim
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
23
|
Kumetz EA, Meyerle JH, Rivard SC. Epidermolysis Bullosa Acquisita: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e919432. [PMID: 32310912 PMCID: PMC7193220 DOI: 10.12659/ajcr.919432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Patient: Male, 79-year-old Final Diagnosis: Epidermal bullosa acquisita (differential: anti-epiligrin variants of pemphigoid) Symptoms: Multiple blisters on hands and feet Medication: Dapsone Clinical Procedure: Direct immunofluorescence (DIF) • hematoxylin and eosin (H&E) punch biopsies Specialty: Dermatology
Collapse
Affiliation(s)
- Erik A Kumetz
- Department of Flight Medicine, 36th Medical Group, Andersen Air Force Base, Yigo, Guam
| | - Jon H Meyerle
- Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Shayna C Rivard
- Division of Dermatology, U.S. Naval Hospital Guam, Agana Heights, Guam
| |
Collapse
|
24
|
Visualization of autoantibodies and neutrophils in vivo identifies novel checkpoints in autoantibody-induced tissue injury. Sci Rep 2020; 10:4509. [PMID: 32161277 PMCID: PMC7066238 DOI: 10.1038/s41598-020-60233-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/21/2019] [Indexed: 12/29/2022] Open
Abstract
In several autoimmune diseases, e.g., pemphigoid disease (PD), autoantibodies are the direct cause of pathology. Albeit key requirements for antibody-mediated diseases were identified, their interactions and exact temporal and spatial interactions remained elusive. The skin is easily accessible for imaging. Thus, we selected epidermolysis bullosa acquisita (EBA), a PD with autoantibodies to type VII collagen (COL7), to visualize interactions of autoantibodies, target tissue and effector cells (neutrophils). Following injection into mice, anti-COL7 IgG bound to the dermal-epidermal junction (DEJ) within minutes. We unexpectedly observed an inhomogeneous distribution of autoantibodies along the DEJ. Thus, we hypothesized that specific external triggers may affect autoantibody distribution. Indeed, mechanical irritation led to an increased autoantibody binding along the DEJ. Subsequently, anti-COL7 IgG was injected into mice expressing green fluorescent protein under the LysM promoter (LysM-eGFP) mice. This allows to visualize myeloid cells in vivo in these animals. Using multiphoton imaging, we observed a limited extravasation of LysM-eGFP+ cells into skin was observed within 24 hours. Intriguingly, LysM-eGFP+ cells did not immediately co-localize with autoantibodies, which was only noted at later time points. Of note, interactions of LysM-eGFP+ with the autoantibodies at the DEJ were short-lived. Collectively, our results define the following checkpoints for autoantibody-induced tissue injury: (i) autoantibody egress to target tissue influenced by mechanical trigger factors, (ii) neutrophil recruitment into the vicinity of autoantibody deposits and (iii) short-term neutrophil localization to these deposits, as well as (iv) delayed recruitment of neutrophils with subsequent autoantibody-induced inflammation.
Collapse
|
25
|
Kovacs B, Tillmann J, Freund LC, Nimmerjahn F, Sadik CD, Bieber K, Ludwig RJ, Karsten CM, Köhl J. Fcγ Receptor IIB Controls Skin Inflammation in an Active Model of Epidermolysis Bullosa Acquisita. Front Immunol 2020; 10:3012. [PMID: 31993051 PMCID: PMC6971089 DOI: 10.3389/fimmu.2019.03012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is an autoimmune skin blistering disease characterized by IgG autoantibodies (aAb) against type VII collagen (COL7). The mechanisms controlling the formation of such aAbs and their effector functions in the skin tissue are incompletely understood. Here, we assessed whether the inhibitory IgG Fc receptor, FcγRIIB, controls the development of autoimmune skin blistering disease in an active model of EBA. For this purpose, we immunized congenic EBA-susceptible B6.SJL-H2s (B6.s) and B6.s-Fcgr2b−/− mice with the immunodominant vWFA2 region of COL7. B6.s-Fcgr2b−/− mice developed a strong clinical phenotype with 15 ± 3.3% of affected body surface area at week 4. In contrast, the body surface area in B6.s mice was affected to a maximum of 5% at week 6 with almost no disease signs at week 4. Surprisingly, we already found strong but similar COL7-specific serum IgG1 and IgG2b aAb production at week 2. Further, aAb and C3b deposition in the skin of B6.s and B6.s-Fcgr2b−/− mice increased between weeks 2 and 6 after vWFA2 immunization. Importantly, neutrophil skin infiltration and activation was much stronger in B6s-Fcgr2b−/− than in B6.s mice and already present at week 2. Also, the early aAb response in B6.s-Fcgr2b−/− mice was more diverse than in wt B6.s mice. Reactive oxygen species (ROS) release from infiltrating neutrophils play a crucial role as mediator of skin inflammation in EBA. In line, sera from B6.s and B6.s-Fcgr2b−/− mice induced strong ROS release from bone marrow-neutrophils in vitro. In contrast to the antibody-transfer-induced EBA model, individual targeting of FcγRIII or FcγRIV decreased ROS release to 50%. Combined FcγR blocking abrogated ROS release from BM neutrophils. Also, ROS release induced by COL7-specific serum IgG aAbs was significantly higher using BM neutrophils from B6.s-Fcgr2b−/− than from B6.s mice. Together, our findings identified FcγRIIB as a suppressor of skin inflammation in the active EBA model through inhibition of early epitope spreading, protection from strong early neutrophil infiltration to and activation of neutrophils in the skin and suppression of FcγRIII activation by IgG1 aAbs which drive strong ROS release from neutrophils leading to tissue destruction at the dermal-epidermal junction.
Collapse
Affiliation(s)
- Balint Kovacs
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Jenny Tillmann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Lisa-Christin Freund
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, Chair of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Katja Bieber
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital and College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
26
|
Abstract
Pemphigoid diseases are a group of autoimmune blistering skin diseases defined by an immune response against certain components of the dermal-epidermal adhesion complex. They are prototypical, autoantibody-driven, organ-specific diseases with the emergence of inflammatory skin lesions dependent on the recruitment of immune cells, particularly granulocytes, into the skin. During an acute flare of disease, inflammatory skin lesions typically progressing from erythema through urticarial plaques to subepidermal blisters erosions erupt and, finally, completely resolve, thus illustrating that resolution of inflammation is continuously executed in pemphigoid disease patients and can be directly monitored on the skin. Despite these superb conditions for examining resolution in pemphigoid diseases as paradigm diseases for antibody-induced tissue inflammation, the mechanisms of resolution in pemphigoid are underinvestigated and still largely elusive. In the last decade, mouse models for pemphigoid diseases were developed, which have been instrumental to identify several key pathways for the initiation of inflammation in these diseases. More recently, also protective pathways, specifically IL-10 and C5aR2 signalling on the molecular level and Tregs on the cellular level, counteracting skin inflammation have been highlighted and may contribute to the continuous execution of resolution in pemphigoid diseases. The upstream orchestrators of this process are currently under investigation. Pemphigoid disease patients, particularly bullous pemphigoid patients, who are predominantly above 75 years of age, often succumb to the side effects of the immunosuppressive therapeutics nowadays still required to suppress the disease. Pemphigoid disease patients may therefore represent a group of patients benefiting most substantially from the introduction of non-immunosuppressive, proresolving therapeutics into the treatment regimens for their disease.
Collapse
Affiliation(s)
- Christian D Sadik
- Department of Dermatology, Allergy, and Venerology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, Allergy, and Venerology, University of Lübeck, Lübeck, Germany.
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
27
|
The Sphingosine-1-Phosphate Receptor Modulator Fingolimod Aggravates Murine Epidermolysis Bullosa Acquisita. J Invest Dermatol 2019; 139:2381-2384.e3. [DOI: 10.1016/j.jid.2019.03.1159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/04/2019] [Accepted: 03/14/2019] [Indexed: 02/04/2023]
|
28
|
Kridin K, Kowalski EH, Kneiber D, Laufer-Britva R, Amber KT. From bench to bedside: evolving therapeutic targets in autoimmune blistering disease. J Eur Acad Dermatol Venereol 2019; 33:2239-2252. [PMID: 31314932 DOI: 10.1111/jdv.15816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune blistering diseases comprise a group of heterogenous conditions characterized by the loss of tolerance and subsequent development of autoantibodies targeting epidermal and subepidermal adhesion proteins. Blisters and erosions form on the skin and mucous membranes leading to significant morbidity and mortality. Traditional therapies rely on systemic immunosuppression. Advancements in our understanding of the pathophysiology of pemphigus and pemphigoid have led to the development of molecules which target specific pathways involved in induction and perpetuation of disease. In this review, we outline the novel therapeutic strategies including B-cell depletion, T-regulatory cell repletion, cell signalling inhibitors and small molecular inhibitors, inhibitory monoclonal antibodies, as well as complement inhibition. We additionally review their current level of clinical evidence. We lastly review therapeutics targets gleaned from the experimental epidermolysis bullosa acquisita mouse model. These emerging treatments offer an exciting progression from basic science discoveries that have the potential to transform the treatment paradigm in autoimmune blistering diseases.
Collapse
Affiliation(s)
- K Kridin
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - E H Kowalski
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - D Kneiber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - R Laufer-Britva
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - K T Amber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
29
|
Epidermolysis bullosa acquisita: A comprehensive review. Autoimmun Rev 2019; 18:786-795. [DOI: 10.1016/j.autrev.2019.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
|
30
|
Santi CG, Gripp AC, Roselino AM, Mello DS, Gordilho JO, Marsillac PFD, Porro AM. Consensus on the treatment of autoimmune bullous dermatoses: bullous pemphigoid, mucous membrane pemphigoid and epidermolysis bullosa acquisita - Brazilian Society of Dermatology. An Bras Dermatol 2019; 94:33-47. [PMID: 31166405 PMCID: PMC6544032 DOI: 10.1590/abd1806-4841.2019940207] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Bullous pemphigoid, mucous membrane pemphigoid and epidermolysis bullosa
acquisita are subepidermal autoimmune blistering diseases whose antigenic target
is located at the basement membrane zone. Mucous membrane pemphigoid and
epidermolysis bullosa acquisita can evolve with cicatricial mucosal involvement,
leading to respiratory, ocular and/or digestive sequelae with important
morbidity. For each of these dermatoses, a literature review covering all
therapeutic options was performed. A flowchart, based on the experience and
joint discussion among the authors of this consensus, was constructed to provide
treatment orientation for these diseases in Brazil. In summary, in the
localized, low-risk or non-severe forms, drugs that have immunomodulatory action
such as dapsone, doxycycline among others may be a therapeutic option. Topical
treatment with corticosteroids or immunomodulators may also be used. Systemic
corticosteroid therapy continues to be the treatment of choice for severe forms,
especially those involving ocular, laryngeal-pharyngeal and/or esophageal
mucosal involvement, as may occur in mucous membrane pemphigoid and
epidermolysis bullosa acquisita. Several immunosuppressants are used as adjuvant
alternatives. In severe and recalcitrant cases, intravenous immunoglobulin is an
alternative that, while expensive, may be used. Immunobiological drugs such as
rituximab are promising drugs in this area. Omalizumab has been used in bullous
pemphigoid.
Collapse
Affiliation(s)
- Claudia Giuli Santi
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexandre Carlos Gripp
- Department of Dermatology, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Maria Roselino
- Department of Medical Clinics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Danielle Santana Mello
- Department of Dermatology, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Paula Figueiredo de Marsillac
- Department of Dermatology, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriana Maria Porro
- Department of Dermatology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
31
|
Hiroyasu S, Turner CT, Richardson KC, Granville DJ. Proteases in Pemphigoid Diseases. Front Immunol 2019; 10:1454. [PMID: 31297118 PMCID: PMC6607946 DOI: 10.3389/fimmu.2019.01454] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/10/2019] [Indexed: 12/28/2022] Open
Abstract
Pemphigoid diseases are a subgroup of autoimmune skin diseases characterized by widespread tense blisters. Standard of care typically involves immunosuppressive treatments, which may be insufficient and are often associated with significant adverse events. As such, a deeper understanding of the pathomechanism(s) of pemphigoid diseases is necessary in order to identify improved therapeutic approaches. A major initiator of pemphigoid diseases is the accumulation of autoantibodies against proteins at the dermal-epidermal junction (DEJ), followed by protease activation at the lesion. The contribution of proteases to pemphigoid disease pathogenesis has been investigated using a combination of in vitro and in vivo models. These studies suggest proteolytic degradation of anchoring proteins proximal to the DEJ is crucial for dermal-epidermal separation and blister formation. In addition, proteases can also augment inflammation, expose autoantigenic cryptic epitopes, and/or provoke autoantigen spreading, which are all important in pemphigoid disease pathology. The present review summarizes and critically evaluates the current understanding with respect to the role of proteases in pemphigoid diseases.
Collapse
Affiliation(s)
- Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Christopher T. Turner
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Katlyn C. Richardson
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
32
|
Stevens NE, Cowin AJ, Kopecki Z. Skin Barrier and Autoimmunity-Mechanisms and Novel Therapeutic Approaches for Autoimmune Blistering Diseases of the Skin. Front Immunol 2019; 10:1089. [PMID: 31156638 PMCID: PMC6530337 DOI: 10.3389/fimmu.2019.01089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
One of the most important functions of the skin besides regulating internal body temperature includes formation of the barrier between the organism and the external environment, hence protecting against pathogen invasion, chemical and physical assaults and unregulated loss of water and solutes. Disruption of the protective barrier is observed clinically in blisters and erosions of the skin that form in autoimmune blistering diseases where the body produces autoantibodies against structural proteins of the epidermis or the epidermal-dermal junction. Although there is no cure for autoimmune skin blistering diseases, immune suppressive therapies currently available offer opportunities for disease management. In cases where no treatment is sought, these disorders can lead to life threatening complications and current research efforts have focused on developing therapies that target autoantibodies which contribute to disease symptoms. This review will outline the involvement of the skin barrier in main skin-specific autoimmune blistering diseases by describing the mechanisms underpinning skin autoimmunity and review current progress in development of novel therapeutic approaches targeting the underlying causes of autoimmune skin blistering diseases.
Collapse
Affiliation(s)
- Natalie E Stevens
- Regenerative Medicine Laboratory, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Allison J Cowin
- Regenerative Medicine Laboratory, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Zlatko Kopecki
- Regenerative Medicine Laboratory, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
33
|
Bhattacharjee O, Ayyangar U, Kurbet AS, Ashok D, Raghavan S. Unraveling the ECM-Immune Cell Crosstalk in Skin Diseases. Front Cell Dev Biol 2019; 7:68. [PMID: 31134198 PMCID: PMC6514232 DOI: 10.3389/fcell.2019.00068] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/09/2019] [Indexed: 01/06/2023] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins and proteoglycans secreted by keratinocytes, fibroblasts and immune cells. The function of the skin ECM has expanded from being a scaffold that provides structural integrity, to a more dynamic entity that is constantly remodeled to maintain tissue homeostasis. The ECM functions as ligands for cell surface receptors such as integrins, dystroglycans, and toll-like receptors (TLRs) and regulate cellular signaling and immune cell dynamics. The ECM also acts as a sink for growth factors and cytokines, providing critical cues during epithelial morphogenesis. Dysregulation in the organization and deposition of ECMs lead to a plethora of pathophysiological conditions that are exacerbated by aberrant ECM-immune cell interactions. In this review, we focus on the interplay between ECM and immune cells in the context of skin diseases and also discuss state of the art therapies that target the key molecular players involved.
Collapse
Affiliation(s)
- Oindrila Bhattacharjee
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Uttkarsh Ayyangar
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Ambika S. Kurbet
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Driti Ashok
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Srikala Raghavan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| |
Collapse
|
34
|
Abstract
Epidermolysis bullosa acquisita (EBA) is a rare acquired subepidermal bullous autoimmune dermatosis, associated with autoantibodies against collagen type VII, the most important component of dermal anchoring fibrils. Blister induction occurs after binding of autoantibodies to collagen type VII, leading to complement activation, recruitment of neutrophils and secretion of proteases. Clinically, the disease is mostly characterized by tense blisters on trauma-exposed body areas which heal with scarring (mechanobullous form of EBA). The second most frequent subtype of EBA is inflammatory EBA, a bullous pemphigoid-like disease associated with pruritus. Involvement of mucous membranes and/or lesions in the head and neck area additionally point to the diagnosis of EBA. The mechanobullous type of EBA and EBA with intensive mucous membrane lesions display a chronic course and are often extremely resistant to therapy. Topical and systemic glucocorticoids, dapsone, colchicine, classical immunosuppressants, anti-CD20 antibodies, immunoadsorption or intravenous immunoglobulins have been reported as treatments.
Collapse
|
35
|
Abstract
Pemphigoid diseases (PDs) are a group of autoimmune bullous diseases characterized and caused by autoantibodies targeting structural proteins of the skin and mucous membranes. Chronic inflammation, subepidermal blistering, and often scaring are the clinical characteristics of PDs. Itching and, in severe cases, disabilities resulting from scaring (i.e., blindness, esophageal strictures) are the leading subjective symptoms. Treatment of PDs, which is based on nonspecific immunosuppression, is challenging because of frequent relapses, lack of efficacy, and numerous adverse events. In addition, the incidence of PDs is increasing. Given the high morbidity, limited therapeutic options, and increasing incidence, there is a growing urgency for drug discovery to help treat this condition. The recent development of PD model systems has added to the understanding of PD pathogenesis and, based on these insights, new clinical trials will soon be launched. The (auto-)antibody transfer PD models allow for investigations into autoantibody-mediated tissue pathology, while immunization-induced PD models more closely resemble the clinical situation. The latter duplicate all aspects of the human disease and are useful for investigating PD pathogenesis and testing therapeutic interventions. This article describes antibody transfer and immunization-induced PD mouse models currently employed for translational PD research. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Anika Kasprick
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
36
|
Giusti D, Le Jan S, Gatouillat G, Bernard P, Pham BN, Antonicelli F. Biomarkers related to bullous pemphigoid activity and outcome. Exp Dermatol 2018; 26:1240-1247. [PMID: 29105148 DOI: 10.1111/exd.13459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2017] [Indexed: 12/11/2022]
Abstract
Bullous pemphigoid (BP) is the most common autoimmune subepidermal blistering disease of the skin. Investigation of the BP-associated pathophysiological processes during the last decades showed that the generation of autoantibodies directed against the hemidesmosome proteins BP180 and BP230, a hallmark of the BP-associated autoimmune response, leads to the recruitment of inflammatory immune cells at the dermal-epidermal junction, and subsequently to the release of a large amount of inflammatory molecules involved in blister formation. Analysis in transversal and longitudinal studies of autoantibodies and inflammatory molecules production both at the time of diagnosis and under treatment was mainly performed within the serum but also in the blister fluid. Some autoimmune or inflammatory molecules expression was related to the presence of clinical signs, while others were mere bystanders. In this review, we focused on the autoimmune and inflammatory molecules that have been identified as potential biomarkers of BP development and outcome.
Collapse
Affiliation(s)
- Delphine Giusti
- Laboratory of Dermatology, Faculty of Medicine of Reims, IFR CAP Santé, University of Reims Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
| | - Sébastien Le Jan
- Laboratory of Dermatology, Faculty of Medicine of Reims, IFR CAP Santé, University of Reims Champagne-Ardenne, Reims, France
| | - Gregory Gatouillat
- Laboratory of Dermatology, Faculty of Medicine of Reims, IFR CAP Santé, University of Reims Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
| | - Philippe Bernard
- Laboratory of Dermatology, Faculty of Medicine of Reims, IFR CAP Santé, University of Reims Champagne-Ardenne, Reims, France.,Department of Dermatology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
| | - Bach Nga Pham
- Laboratory of Dermatology, Faculty of Medicine of Reims, IFR CAP Santé, University of Reims Champagne-Ardenne, Reims, France.,Laboratory of Immunology, Reims University Hospital, University of Reims Champagne-Ardenne, Reims, France
| | - Frank Antonicelli
- Laboratory of Dermatology, Faculty of Medicine of Reims, IFR CAP Santé, University of Reims Champagne-Ardenne, Reims, France.,Department of Biological Sciences, Immunology, UFR Odontology, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
37
|
Abstract
Autoimmmune bullous diseases are mediated by pathogenetically relevant autoantibodies against components of the epidermis and/or superficial mucous membranes (in pemphigus) and structural proteins of the dermal-epidermal junction (in pemphigoid diseases). Using immunoadsorption (IA), an already well-established procedure in cardiac and rheumatic disorders, antibodies can be removed from the plasma. At present, most data on the adjuvant use of IA in dermatology are derived from patients with severe and/or refractory pemphigus vulgaris or pemphigus foliaceus and also from patients with pemphigoid diseases. Additionally, in the last few years different protocols for IA in patients with severe atopic dermatitis and elevated total serum IgE levels have been published. While panimmunoglobulin adsorbers are mainly used in dermatology, an IgE-specific adsorber has been used in some patients with atopic dermatitis and in the future, antigen-specific adsorbers are to be expected that will enable the specific reduction of autoantibodies.
Collapse
Affiliation(s)
- Franziska Hübner
- Klinik für Dermatologie, Allergologie und Venerologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - Michael Kasperkiewicz
- Klinik für Dermatologie, Allergologie und Venerologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - Detlef Zillikens
- Klinik für Dermatologie, Allergologie und Venerologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - Enno Schmidt
- Klinik für Dermatologie, Allergologie und Venerologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland. .,Lübecker Institut für Experimentelle Dermatologie (LIED), Universität zu Lübeck, Lübeck, Deutschland.
| |
Collapse
|
38
|
Iwata H, Vorobyev A, Koga H, Recke A, Zillikens D, Prost-Squarcioni C, Ishii N, Hashimoto T, Ludwig RJ. Meta-analysis of the clinical and immunopathological characteristics and treatment outcomes in epidermolysis bullosa acquisita patients. Orphanet J Rare Dis 2018; 13:153. [PMID: 30180870 PMCID: PMC6122731 DOI: 10.1186/s13023-018-0896-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/22/2018] [Indexed: 12/31/2022] Open
Abstract
Background Epidermolysis bullosa acquisita (EBA) is an orphan autoimmune disease. Several clinical phenotypes have been described, but subepidermal blistering is characteristic of all variants. Limited data on clinical and immunopathological characteristics and treatment outcomes in EBA are available. To fill this gap, we collected this information from EBA cases, meeting current diagnostic criteria, published between 1971 and 2016. Results We identified 1159 EBA cases. This number must be, however, interpreted with caution, as it is not possible to check for multiple reporting. The analysis of all cases indicated that EBA affects all age groups (median: 50 years, range: 1 to 94 years) at an equal gender distribution. Non-mechanobullous (non-MB) forms of EBA were observed in 55% of patients, whereas the mechanobullous variant (MB-EBA) or a combination of both variants was described in 38 or 7% of patients, respectively. Type VII collagen (COL7)-specific autoantibodies were primarily of the IgG isotype, but anti-COL7 IgA, IgM and IgE were also documented. Comparison of the 2 clinical EBA types showed a higher frequency of IgA deposits in non-MB EBA as opposed to MB EBA. Mucous membrane involvement was observed in 23% of patients, and 4.4% of cases were associated with other chronic inflammatory diseases. Of note, IgA deposits were more frequently observed in cases with mucous membrane involvement. Our analysis indicated that EBA is difficult to treat and that the choice of treatment varies widely. Chi square was applied to identify medications associated with complete remission (CR). Considering all EBA cases, intravenous immunoglobulin (IVIG, p = 0.0047) and rituximab (p = 0.0114) were associated with CR. Subgroup analysis demonstrated that no treatment was associated with CR for non-MB EBA, while IVIG (p = 0.003) was associated with CR in MB EBA. Conclusions Within the limitations of the study, we here document the clinical and immunopathological characteristics and treatment outcomes in a large cohort of EBA patients. The observed associations of single drugs with treatment outcome may serve as a guide to develop clinical trials. Electronic supplementary material The online version of this article (10.1186/s13023-018-0896-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroaki Iwata
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany.,Present address: Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Artem Vorobyev
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany
| | - Hiroshi Koga
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany.,Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, Japan
| | - Andreas Recke
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany
| | - Catherine Prost-Squarcioni
- Referral center for auto-immune bullous diseases, Department of Dermatology, APHP, Avicenne Hospital, Bobigny, France
| | - Norito Ishii
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, Japan
| | - Takashi Hashimoto
- Department of Dermatology, Faculty of Medicine, Osaka City University, Osaka, Japan
| | - Ralf J Ludwig
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany. .,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
39
|
Amber KT, Murrell DF, Schmidt E, Joly P, Borradori L. Autoimmune Subepidermal Bullous Diseases of the Skin and Mucosae: Clinical Features, Diagnosis, and Management. Clin Rev Allergy Immunol 2018; 54:26-51. [PMID: 28779299 DOI: 10.1007/s12016-017-8633-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Autoimmune subepidermal blistering diseases of the skin and mucosae constitute a large group of sometimes devastating diseases, encompassing bullous pemphigoid, gestational pemphigoid, mucous membrane pemphigoid, epidermolysis bullosa acquisita, and anti-p200 pemphigoid. Their clinical presentation is polymorphic. These autoimmune blistering diseases are associated with autoantibodies that target distinct components of the basement membrane zone of stratified epithelia. These autoantigens represent structural proteins important for maintenance of dermo-epidermal integrity. Bullous pemphigoid (BP) is the most common subepidermal autoimmune blistering disease of the skin and mucosae. Although the disease typically presents with a generalized blistering eruption associated with itch, atypical variants with either localized bullous lesions or "non-bullous" presentations are observed in approximately 20% of patients. A peculiar form of BP typically associated with pregnancy is pemphigoid gestationis. In anti-p200 pemphigoid, patients present with tense blisters on erythematosus or normal skin resembling BP, with a predilection for acral surfaces. These patients have antibodies targeting the 200-kDa basement membrane protein. Epidermolysis bullosa is a rare autoimmune blistering disease associated with autoantibodies against type VII collagen that can have several phenotypes including a classical form mimicking dystrophic epidermolysis bullosa, an inflammatory presentation mimicking BP, or mucous membrane pemphigoid-like lesions. Mucous membrane pemphigoid (MMP) is the term agreed upon by international consensus for an autoimmune blistering disorder, which affects one or more mucous membrane and may involve the skin. The condition involves a number of different autoantigens in the basement membrane zone. It may result in severe complications from scarring, such as blindness and strictures. Diagnosis of these diseases relies on direct immunofluorescence microscopy studies and immunoserological assays. Management of affected patients is often challenging. We will here review the clinical and immunopathological features as well as the pathophysiology of this group of organ-specific autoimmune diseases. Finally, we will discuss the diagnostic approach and the principles of management in clinical practice.
Collapse
Affiliation(s)
- Kyle T Amber
- Department of Dermatology, University of California Irvine Health, 118 Med Surg 1, Irvine, CA, 92697, USA.
| | - Dedee F Murrell
- Department of Dermatology, St. George Hospital, Gray Street, Kogarah, Sydney, NSW, Australia
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Pascal Joly
- Department of Dermatology, INSERM U901, University of Rouen, Rouen, France
| | - Luca Borradori
- Department of Dermatology, University of Bern, Bern, Switzerland
| |
Collapse
|
40
|
Koga H, Kasprick A, López R, Aulí M, Pont M, Godessart N, Zillikens D, Bieber K, Ludwig RJ, Balagué C. Therapeutic Effect of a Novel Phosphatidylinositol-3-Kinase δ Inhibitor in Experimental Epidermolysis Bullosa Acquisita. Front Immunol 2018; 9:1558. [PMID: 30050528 PMCID: PMC6052048 DOI: 10.3389/fimmu.2018.01558] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is a rare, but prototypical, organ-specific autoimmune disease, characterized and caused by autoantibodies against type VII collagen (COL7). Mucocutaneous inflammation, blistering, and scarring are the clinical hallmarks of the disease. Treatment of EBA is difficult and mainly relies on general immunosuppression. Hence, novel treatment options are urgently needed. The phosphatidylinositol-3-kinase (PI3K) pathway is a putative target for the treatment of inflammatory diseases, including EBA. We recently discovered LAS191954, an orally available, selective PI3Kδ inhibitor. PI3Kδ has been shown to be involved in B cell and neutrophil cellular functions. Both cell types critically contribute to EBA pathogenesis, rendering LAS191954 a potential drug candidate for EBA treatment. We, here, demonstrate that LAS191954, when administered chronically, dose-dependently improved the clinical phenotype of mice harboring widespread skin lesions secondary to immunization-induced EBA. Direct comparison with high-dose corticosteroid treatment indicated superiority of LAS191954. Interestingly, levels of circulating autoantibodies were unaltered in all groups, indicating a mode of action independent of the inhibition of B cell function. In line with this, LAS191954 also hindered disease progression in antibody transfer-induced EBA, where disease develops dependent on myeloid, but independent of B cells. We further show that, in vitro, LAS191954 dose-dependently impaired activation of human myeloid cells by relevant disease stimuli. Specifically, immune complex-mediated and C5a-mediated ROS release were inhibited in a PI3Kδ-dependent manner. Accordingly, LAS191954 also modulated the dermal–epidermal separation induced in vitro by co-incubation of immune complexes with polymorph nuclear cells, thus pointing to an important role of PI3Kδ in EBA effector functions. Altogether, these results suggest a new potential mechanism for the treatment of EBA and potentially also other autoimmune bullous diseases.
Collapse
Affiliation(s)
- Hiroshi Koga
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Rosa López
- Skin Biology and Pharmacology, Almirall R&D, Barcelona, Spain
| | - Mariona Aulí
- Preclinical Safety and Toxicology, Almirall R&D, Barcelona, Spain
| | - Mercè Pont
- Skin Biology and Pharmacology, Almirall R&D, Barcelona, Spain
| | - Núria Godessart
- Skin Biology and Pharmacology, Almirall R&D, Barcelona, Spain
| | | | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Department of Dermatology University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
41
|
Berg SA, Chu EY. SnapshotDx Quiz: July 2018. J Invest Dermatol 2018; 138:e47. [DOI: 10.1016/j.jid.2018.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Maderal AD, Lee Salisbury P, Jorizzo JL. Desquamative gingivitis. J Am Acad Dermatol 2018; 78:839-848. [DOI: 10.1016/j.jaad.2017.05.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
|
43
|
Haeberle S, Wei X, Bieber K, Goletz S, Ludwig RJ, Schmidt E, Enk AH, Hadaschik EN. Regulatory T-cell deficiency leads to pathogenic bullous pemphigoid antigen 230 autoantibody and autoimmune bullous disease. J Allergy Clin Immunol 2018; 142:1831-1842.e7. [PMID: 29704595 DOI: 10.1016/j.jaci.2018.04.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/12/2018] [Accepted: 04/04/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Autoimmune bullous diseases/dermatoses (AIBDs) are severe autoantibody-mediated skin diseases. The pathogenic relevance of autoreactive CD4+ T cells for the induction of autoantibody production remains to be fully evaluated. Scurfy mice lack functional regulatory T (Treg) cells, experience spontaneous activation of autoreactive CD4+ T cells, and display severe erosive skin lesions suggestive of AIBDs. OBJECTIVE We sought to determine whether AIBDs develop in Treg cell-deficient scurfy mice. METHODS Histology, indirect immunofluorescence (IF) microscopy, direct IF, and ELISA were used to prove the presence of AIBDs in scurfy mice. Monoclonal autoantibodies from sera of scurfy mice were screened by using indirect IF on murine skin, and immunoprecipitation and mass spectrometry were used for target antigen identification, followed by confirmation in modified human embryonic kidney cells and murine keratinocytes. Pathogenicity was determined by injecting the autoantibody into neonatal mice and transferring scurfy CD4+ T cells into nu/nu mice. RESULTS Autoantibodies against different known autoantigens of AIBDs spontaneously develop in scurfy mice. Histology reveals subepidermal blisters, and direct IF of skin of scurfy mice shows a predominant linear staining pattern. The mAb 20B12 shows a linear staining pattern in indirect IF, recognizes the murine hemidesmosomal protein bullous pemphigoid antigen 230 (BP230) as the target antigen, and cross-reacts with human BP230. Purified mAb 20B12 induces subepidermal blisters in neonatal mice. Transfer of scurfy CD4+ T cells is sufficient to induce antibodies with reactivity to AIBD autoantigens and subepidermal blisters in the skin of recipient T cell-deficient nu/nu mice. CONCLUSION We show that the absence of Treg cells leads to AIBDs by pathogenic autoantibodies targeting BP230.
Collapse
Affiliation(s)
- Stefanie Haeberle
- Department of Dermatology, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Xiaoying Wei
- Department of Dermatology, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Katja Bieber
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Stephanie Goletz
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Alexander H Enk
- Department of Dermatology, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Eva N Hadaschik
- Department of Dermatology, Ruprecht-Karls University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
44
|
Sadik CD, Miyabe Y, Sezin T, Luster AD. The critical role of C5a as an initiator of neutrophil-mediated autoimmune inflammation of the joint and skin. Semin Immunol 2018; 37:21-29. [PMID: 29602515 DOI: 10.1016/j.smim.2018.03.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/15/2023]
Abstract
The deposition of IgG autoantibodies in peripheral tissues and the subsequent activation of the complement system, which leads to the accumulation of the anaphylatoxin C5a in these tissues, is a common hallmark of diverse autoimmune diseases, including rheumatoid arthritis (RA) and pemphigoid diseases (PDs). C5a is a potent chemoattractant for granulocytes and mice deficient in its precursor C5 or its receptor C5aR1 are resistant to granulocyte recruitment and, consequently, to tissue inflammation in several models of autoimmune diseases. However, the mechanism whereby C5a/C5aR regulates granulocyte recruitment in these diseases has remained elusive. Mechanistic studies over the past five years into the role of C5a/C5aR1 in the K/BxN serum arthritis mouse model have provided novel insights into the mechanisms C5a/C5aR1 engages to initiate granulocyte recruitment into the joint. It is now established that the critical actions of C5a/C5aR1 do not proceed in the joint itself, but on the luminal endothelial surface of the joint vasculature, where C5a/C5aR1 mediate the arrest of neutrophils on the endothelium by activating β2 integrin. Then, C5a/C5aR1 induces the release of leukotriene B4 (LTB4) from the arrested neutrophils. The latter, subsequently, initiates by autocrine/paracrine actions via its receptor BLT1 the egress of neutrophils from the blood vessel lumen into the interstitial. Compelling evidence suggests that this C5a/C5aR1-LTB4/BLT1 axis driving granulocyte recruitment in arthritis may represent a more generalizable biological principle critically regulating effector cell recruitment in other IgG autoantibody-induced diseases, such as in pemphigoid diseases. Thus, dual inhibition of C5a and LTB4, as implemented in nature by the lipocalin coversin in the soft-tick Ornithodoros moubata, may constitute a most effective therapeutic principle for the treatment of IgG autoantibody-driven diseases.
Collapse
Affiliation(s)
- Christian D Sadik
- Department of Dermatology, Allergy, and Venereology University of Lübeck, 23538, Lübeck, Germany.
| | - Yoshishige Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanya Sezin
- Department of Dermatology, Allergy, and Venereology University of Lübeck, 23538, Lübeck, Germany
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Mihai S, Hirose M, Wang Y, Thurman JM, Holers VM, Morgan BP, Köhl J, Zillikens D, Ludwig RJ, Nimmerjahn F. Specific Inhibition of Complement Activation Significantly Ameliorates Autoimmune Blistering Disease in Mice. Front Immunol 2018; 9:535. [PMID: 29616034 PMCID: PMC5865061 DOI: 10.3389/fimmu.2018.00535] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/02/2018] [Indexed: 11/13/2022] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is an antibody-mediated blistering skin disease associated with tissue-bound and circulating autoantibodies to type VII collagen (COL7). Transfer of antibodies against COL7 into mice results in a subepidermal blistering phenotype, strictly depending on the complement component C5. Further, activation predominantly by the alternative pathway is required to induce experimental EBA, as blistering was delayed and significantly ameliorated only in factor B-/- mice. However, C5 deficiency not only blocked the activation of terminal complement components and assembly of the membrane attack complex (MAC) but also eliminated the formation of C5a. Therefore, in the present study, we first aimed to elucidate which molecules downstream of C5 are relevant for blister formation in this EBA model and could be subsequently pharmaceutically targeted. For this purpose, we injected mice deficient in C5a receptor 1 (C5aR1) or C6 with antibodies to murine COL7. Importantly, C5ar1-/- mice were significantly protected from experimental EBA, demonstrating that C5a-C5aR1 interactions are critical intermediates linking pathogenic antibodies to tissue damage in this experimental model of EBA. By contrast, C6-/- mice developed widespread blistering disease, suggesting that MAC is dispensable for blister formation in this model. In further experiments, we tested the therapeutic potential of inhibitors of complement components which were identified to play a key role in this experimental model. Complement components C5, factor B (fB), and C5aR1 were specifically targeted using complement inhibitors both prophylactically and in mice that had already developed disease. All complement inhibitors led to a significant improvement of the blistering phenotype when injected shortly before anti-COL7 antibodies. To simulate a therapeutic intervention, anti-fB treatment was first administered in full-blown EBA (day 5) and induced significant amelioration only in the final phase of disease evolution, suggesting that early intervention in disease development may be necessary to achieve higher efficacy. Anti-C5 treatment in incipient EBA (day 2) significantly ameliorated disease during the whole experiment. This finding is therapeutically relevant, since the humanized anti-C5 antibody eculizumab is already successfully used in patients. In conclusion, in this study, we have identified promising candidate molecules for complement-directed therapeutic intervention in EBA and similar autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Sidonia Mihai
- Lübeck Institute of Experimental Dermatology and Department of Dermatology, University of Lübeck, Lübeck, Germany.,Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Misa Hirose
- Lübeck Institute of Experimental Dermatology and Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Yi Wang
- Alexion Pharmaceuticals, Cheshire, CT, United States
| | - Joshua M Thurman
- Departments of Medicine and Immunology, University of Colorado Health Sciences Center, Denver, CO, United States
| | - V Michael Holers
- Departments of Medicine and Immunology, University of Colorado Health Sciences Center, Denver, CO, United States
| | - B Paul Morgan
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Detlef Zillikens
- Lübeck Institute of Experimental Dermatology and Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
46
|
Samavedam UK, Mitschker N, Kasprick A, Bieber K, Schmidt E, Laskay T, Recke A, Goletz S, Vidarsson G, Schulze FS, Armbrust M, Schulze Dieckhoff K, Pas HH, Jonkman MF, Kalies K, Zillikens D, Gupta Y, Ibrahim SM, Ludwig RJ. Whole-Genome Expression Profiling in Skin Reveals SYK As a Key Regulator of Inflammation in Experimental Epidermolysis Bullosa Acquisita. Front Immunol 2018; 9:249. [PMID: 29497423 PMCID: PMC5818881 DOI: 10.3389/fimmu.2018.00249] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/29/2018] [Indexed: 12/31/2022] Open
Abstract
Because of the morbidity and limited therapeutic options of autoimmune diseases, there is a high, and thus far, unmet medical need for development of novel treatments. Pemphigoid diseases, such as epidermolysis bullosa acquisita (EBA), are prototypical autoimmune diseases that are caused by autoantibodies targeting structural proteins of the skin, leading to inflammation, mediated by myeloid cells. To identify novel treatment targets, we performed cutaneous genome-wide mRNA expression profiling in 190 outbred mice after EBA induction. Comparison of genome-wide mRNA expression profiles in diseased and healthy mice, and construction of a co-expression network identified Sykb (spleen tyrosine kinase, SYK) as a major hub gene. Aligned, pharmacological SYK inhibition protected mice from experimental EBA. Using lineage-specific SYK-deficient mice, we identified SYK expression on myeloid cells to be required to induce EBA. Within the predicted co-expression network, interactions of Sykb with several partners (e.g., Tlr13, Jdp2, and Nfkbid) were validated by curated databases. Additionally, novel gene interaction partners of SYK were experimentally validated. Collectively, our results identify SYK expression in myeloid cells as a requirement to promote inflammation in autoantibody-driven pathologies. This should encourage exploitation of SYK and SYK-regulated genes as potential therapeutic targets for EBA and potentially other autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Unni K Samavedam
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Nina Mitschker
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Tamás Laskay
- Institute for Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
| | - Andreas Recke
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - S Goletz
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Gestur Vidarsson
- Department of Experimental Hematology, Sanquin Research Institute, Amsterdam, Netherlands
| | - Franziska S Schulze
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Mikko Armbrust
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Hendri H Pas
- Center for Blistering Diseases, Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marcel F Jonkman
- Center for Blistering Diseases, Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Yask Gupta
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Saleh M Ibrahim
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
47
|
Watanabe M, Natsuga K, Shinkuma S, Shimizu H. Epidermal aspects of type VII collagen: Implications for dystrophic epidermolysis bullosa and epidermolysis bullosa acquisita. J Dermatol 2018; 45:515-521. [PMID: 29352483 DOI: 10.1111/1346-8138.14222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 02/02/2023]
Abstract
Type VII collagen (COL7), a major component of anchoring fibrils in the epidermal basement membrane zone, has been characterized as a defective protein in dystrophic epidermolysis bullosa and as an autoantigen in epidermolysis bullosa acquisita. Although COL7 is produced and secreted by both epidermal keratinocytes and dermal fibroblasts, the role of COL7 with regard to the epidermis is rarely discussed. This review focuses on COL7 physiology and pathology as it pertains to epidermal keratinocytes. We summarize the current knowledge of COL7 production and trafficking, its involvement in keratinocyte dynamics, and epidermal carcinogenesis in COL7 deficiency and propose possible solutions to unsolved issues in this field.
Collapse
Affiliation(s)
- Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoru Shinkuma
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
48
|
Niebuhr M, Kasperkiewicz M, Maass S, Hauenschild E, Bieber K, Ludwig RJ, Westermann J, Kalies K. Evidence for a contributory role of a xenogeneic immune response in experimental epidermolysis bullosa acquisita. Exp Dermatol 2017; 26:1207-1213. [DOI: 10.1111/exd.13439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Markus Niebuhr
- Institute of Anatomy; University of Lübeck; Lübeck Germany
| | | | | | | | - Katja Bieber
- Lübeck Institute of Experimental Dermatology; University of Lübeck; Lübeck Germany
| | - Ralf J. Ludwig
- Department of Dermatology; University of Lübeck; Lübeck Germany
- Lübeck Institute of Experimental Dermatology; University of Lübeck; Lübeck Germany
| | | | - Kathrin Kalies
- Institute of Anatomy; University of Lübeck; Lübeck Germany
| |
Collapse
|
49
|
Bieber K, Sun S, Witte M, Kasprick A, Beltsiou F, Behnen M, Laskay T, Schulze FS, Pipi E, Reichhelm N, Pagel R, Zillikens D, Schmidt E, Sparwasser T, Kalies K, Ludwig RJ. Regulatory T Cells Suppress Inflammation and Blistering in Pemphigoid Diseases. Front Immunol 2017; 8:1628. [PMID: 29225603 PMCID: PMC5705561 DOI: 10.3389/fimmu.2017.01628] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are well known for their modulatory functions in adaptive immunity. Through regulation of T cell functions, Tregs have also been demonstrated to indirectly curb myeloid cell-driven inflammation. However, direct effects of Tregs on myeloid cell functions are insufficiently characterized, especially in the context of myeloid cell-mediated diseases, such as pemphigoid diseases (PDs). PDs are caused by autoantibodies targeting structural proteins of the skin. Autoantibody binding triggers myeloid cell activation through specific activation of Fc gamma receptors, leading to skin inflammation and subepidermal blistering. Here, we used mouse models to address the potential contribution of Tregs to PD pathogenesis in vivo. Depletion of Tregs induced excessive inflammation and blistering both clinically and histologically in two different PD mouse models. Of note, in the skin of Treg-depleted mice with PD, we detected increased expression of different cytokines, including Th2-specific IL-4, IL-10, and IL-13 as well as pro-inflammatory Th1 cytokine IFN-γ and the T cell chemoattractant CXCL-9. We next aimed to determine whether Tregs alter the migratory behavior of myeloid cells, dampen immune complex (IC)-induced myeloid cell activation, or both. In vitro experiments demonstrated that co-incubation of IC-activated myeloid cells with Tregs had no impact on the release of reactive oxygen species (ROS) but downregulated β2 integrin expression. Hence, Tregs mitigate PD by altering the migratory capabilities of myeloid cells rather than their release of ROS. Modulating cytokine expression by administering an excess of IL-10 or blocking IFN-γ may be used in clinical translation of these findings.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Shijie Sun
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Mareike Witte
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Foteini Beltsiou
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Martina Behnen
- Department for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Tamás Laskay
- Department for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Franziska S Schulze
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Elena Pipi
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Niklas Reichhelm
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - René Pagel
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Tim Sparwasser
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hanover, Germany
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
50
|
Kunz N, Hauenschild E, Maass S, Kalies KU, Klinger M, Barra M, Hecht L, Helbig F, Soellner S, Caldwell CC, Ludwig RJ, Westermann J, Kalies K. Nanoparticles prepared from porcine cells support the healing of cutaneous inflammation in mice and wound re-epithelialization in human skin. Exp Dermatol 2017; 26:1199-1206. [PMID: 28940860 DOI: 10.1111/exd.13450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Previous reports have demonstrated that cell-derived nanoparticles (CDNPs) composed of bovine or porcine protein complexes exerted therapeutic effects against viral infections and cancer in mice and humans. Based on these observations, we asked whether CDNPs would improve inflammatory skin disorders. To address this, we utilized two distinct mouse models of cutaneous inflammation: the autoimmune skin-blistering disease epidermolysis bullosa acquisita (EBA) as an example of an autoantibody-induced cutaneous inflammation, and Leishmania major (L. major) infection as an example of a pathogen-induced cutaneous inflammation. In both models, we observed that CDNPs increased mRNA expression of the Th2 cytokine IL-4. Clinically, CDNPs decreased inflammation due to EBA and increased L. major-specific IgG1 levels without major effects on infected skin lesions. In addition, CDNPs supported the growth of keratinocytes in human skin cultures. In vitro studies revealed that CDNPs were taken up predominantly by macrophages, leading to a shift towards the expression of anti-inflammatory cytokine genes. Altogether, our data demonstrate that treatment with porcine CDNPs may be a new therapeutic option for the control of autoimmune-mediated inflammatory skin disorders.
Collapse
Affiliation(s)
- Natalia Kunz
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Eva Hauenschild
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Sebastian Maass
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Kai-Uwe Kalies
- Institute of Biology, University of Luebeck, Luebeck, Germany
| | | | - Melanie Barra
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | | | | | | | - Charles C Caldwell
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ralf J Ludwig
- The Lübeck Institute of Experimental Dermatology, University of Luebeck, Luebeck, Germany
| | | | - Kathrin Kalies
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| |
Collapse
|