1
|
Wu S, Zhou Q, Gao Z, Man J, He W, Feng J, Li X, Zhang D. Chlorogenic acid targets SIRT6 to relieve UVB - induced UV damage. Arch Dermatol Res 2025; 317:600. [PMID: 40105999 DOI: 10.1007/s00403-025-04134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Skin photoaging, one of the most critical types of exogenous skin aging, occurs when the skin is exposed to excessive ultraviolet radiation, leading to a series of skin-aging problems. The objective of this study was to utilize keratinocytes (HaCaT) treated with medium wave ultraviolet (UVB) as a photoaging model to investigate the anti-photoaging activity of chlorogenic acid (CGA) and preliminarily elucidate its underlying mechanism. The crystal violet assay shows that both 100 and 150 µM of CGA can significantly suppress the cell damage induced by 21.6 mJ/cm² UVB. Furthermore, the results of comet electrophoresis and Western Blot (WB) experiments demonstrate that CGA and OSS-128,167 (SIRT6 inhibitor) can effectively inhibit DNA damage caused by UVB, thereby alleviating cell apoptosis. The co-immunoprecipitation (CO-IP) and WB results suggest that CGA and OSS-128,167 can effectively suppress the activity and expression of the deacetylase of SIRT6, thus enhancing the expression of DDB2 and activating the nucleotide excision repair (NER) of cells to achieve the anti-photoaging effect. The aforementioned results imply that CGA activates NER repair and protects cells from UVB-induced damage by inhibiting the deacetylation activity of SIRT6 and subsequently decreasing the deacetylation modification of DDB2. The study elucidates the molecular mechanisms underlying the beneficial effects of CGA on skin photoaging and establishes a theoretical basis for the development of CGA based sunscreen formulations.
Collapse
Affiliation(s)
- Simin Wu
- College of Science, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- Beijing Academy of TCM Beauty Supplements, Beijing, 102400, China
| | - Qixing Zhou
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Ziqi Gao
- Hunan Institute for Drug Control, Changsha, 410001, China
| | - Jiaxu Man
- Institute of Agricultural Products Processing, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China
| | - Wei He
- College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Jingying Feng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaoyong Li
- Collage of Food and Biological Engineering, Hezhou University, Hezhou, 542899, China.
| | - Dongying Zhang
- College of Science, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Janson WP, Breyfogle LE, Bierman JC, Chew ZY, Ehrman MC, Oblong JE. Mitigation of ultraviolet-induced erythema and inflammation by para-hydroxycinnamic acid in human skin. Int J Cosmet Sci 2025; 47:91-100. [PMID: 39138602 PMCID: PMC11787997 DOI: 10.1111/ics.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE To evaluate whether p-hydroxycinnamic acid (pHCA) alone and in combination with niacinamide (Nam) can mitigate UV-induced erythema, barrier disruption, and inflammation. METHODS Three independent placebo-controlled double-blinded studies were conducted on female panellists who were pretreated on sites on their backs for 2 weeks with skin care formulations which contained 0.3% or 1% pHCA with 5% Nam, 1% pHCA alone, 1.8% octinoxate, or control formula. Treated sites were then exposed to 1.5 minimal erythemal dose (MED) solar simulated radiation (SSR) and had chromameter and expert grading measures for erythema, barrier integrity via TEWL, and the skin surface IL-1RA/IL-1α inflammatory biomarkers isolated from D-Squame tapes. RESULTS Across the three independent studies, pHCA alone or in combination with Nam showed a significant mitigation of UV-induced erythema, barrier disruption, and levels of the surface inflammatory biomarkers IL-1RA/IL-1α. The cinnamate analogue Octinoxate did not replicate the effects of pHCA. CONCLUSION The study results show that pHCA alone or in combination with Nam can mitigate UV-induced damage to skin. These include mitigation of UV-induced erythema as measured by instrument and expert grade visualization. Additionally, pHCA with Nam protected damage to the barrier and reduced the induction of the SASP-related surface inflammatory biomarker IL-1RA/IL-1α. The inability of Octinoxate to have any protective effect and the detection of low levels of pHCA on skin surface after 24 h of application supports that these effects are based on a biological response to pHCA. These findings add to the body of evidence that pHCA alone or in combination with Nam can enhance the skin's biological response to UV-induced damage. This supports pHCA can potentially impact aging and senescence, thereby maintain skin's functionality and appearance.
Collapse
Affiliation(s)
| | | | | | | | - Matthew C. Ehrman
- Procter & Gamble International Operations (SA) Singapore BranchSingaporeSingapore
| | | |
Collapse
|
3
|
Torres-Moral T, Tell-Martí G, Bague J, Rosés-Gibert P, Calbet-Llopart N, Mateu J, Pérez-Anker J, Potrony M, Alejo B, Iglesias P, Espinosa N, Orte Cano C, Cinotti E, Del Marmol V, Fontaine M, Miyamoto M, Monnier J, Perrot JL, Rubegni P, Tognetti L, Suppa M, Demessant-Flavigny AL, Le Floc'h C, Prieto L, Malvehy J, Puig S. Evaluation of the Biological Effect of a Nicotinamide-Containing Broad-Spectrum Sunscreen on Photodamaged Skin. Dermatol Ther (Heidelb) 2024; 14:3321-3336. [PMID: 39509031 PMCID: PMC11604901 DOI: 10.1007/s13555-024-01298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION UVA-UVB increases skin matrix metalloproteinases and breaks down extracellular proteins and fibrillar type 1 collagen, leading to photodamage. Topical application of nicotinamide prevents UV-induced immunosuppression. Several studies have demonstrated the importance of protection against UV. This study aims to determine the biological effect of a high broad-spectrum UVB-UVA sunscreen containing nicotinamide and panthenol (SSNP) on photodamaged skin using linear confocal optical coherence tomography (LC-OCT), immunohistochemistry, and RNA profiling. METHODS Two areas of severely photodamaged forearm skin (L01 and L02) and one less sun-damaged (naturally protected) area on the inner part of the forearm (L03) were identified in 14 subjects. These areas were imaged using LC-OCT and L01 and L03 were biopsied at baseline. After 4 weeks of treatment with SSNP, L02 was reimaged using LC-OCT, and biopsied. Histology, immunostaining with p21, p53, PCNA, and CPD, and RNA sequencing were performed in all samples. RESULTS LC-OCT analysis showed that epidermis thickness and the number of keratinocytes is higher in the sun-exposed areas than in the non-exposed areas. Comparing before and after treatment, even though there is a trend towards normalization, the differences were not statistically significant. The expression of p21, PCNA, p53, and CPD increased in severely photodamaged skin compared to less-damaged skin. When comparing before and after treatment, only p21 showed a trend to decrease expression. RNA sequencing analysis identified 1552 significant genes correlating with the progression from non-visibly photodamaged skin to post-treatment and pre-treatment samples; in the analysis comparing pre- and post-treatment samples, 5429 genes were found to be significantly associated. A total of 1115 genes are common in these two analyses. Additionally, nine significant genes from the first analysis and eight from the second are related to collagen. Six of these collagen genes are common in the two analyses. MAPK and cGMP-PKG signalling pathways are upregulated in the progression to photodamage analysis. In the pre- and post-treatment analysis, 32 pathways are downregulated after treatment, the most statistically significant being the ErbB, Hippo, NOD-like receptor, TNF, and NF-kB signalling pathways. CONCLUSION This study demonstrates the role of SSNP in collagen generation, highlights the relevance of the cGMP-PKG and MAPK signalling pathways in photodamage, and shows the ability of SSNP to downregulate pathways activated by UV exposure. Additionally, it deepens our understanding of the effect of SSNP on immune-related pathways.
Collapse
Affiliation(s)
- Teresa Torres-Moral
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Gemma Tell-Martí
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Jaume Bague
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Pau Rosés-Gibert
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Neus Calbet-Llopart
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Judit Mateu
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Javiera Pérez-Anker
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
- Universitat de Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Míriam Potrony
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Beatriz Alejo
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Pablo Iglesias
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Natalia Espinosa
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Carmen Orte Cano
- Dermatology Department, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Elisa Cinotti
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Véronique Del Marmol
- Dermatology Department, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Margot Fontaine
- Dermatology Department, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Makiko Miyamoto
- Dermatology Department, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Jilliana Monnier
- Dermatology and Skin Cancers Department, La Timone Hospital, AP-HM, Aix-Marseille University, Marseille, France
| | - Jean Luc Perrot
- Melanoma Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Pietro Rubegni
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Linda Tognetti
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Mariano Suppa
- Dermatology Department, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
- Dermatology Department, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | | | | | - Leonor Prieto
- Scientific Direction, Laboratoire Dermatologique La Roche-Posay, L'Oréal Cosmética Activa, Madrid, Spain
| | - Josep Malvehy
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
- Universitat de Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Susana Puig
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain.
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain.
- Universitat de Barcelona, Villarroel 170, 08036, Barcelona, Spain.
| |
Collapse
|
4
|
Jesus A, Sousa E, Cidade H, Cruz MT, Almeida IF. How to fight acute sun damage? Current skin care strategies. Photochem Photobiol Sci 2024; 23:1915-1930. [PMID: 39342016 DOI: 10.1007/s43630-024-00641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Excessive exposure to sunlight can contribute for skin photo-damage, such as sunburn, dryness, wrinkles, hyperpigmentation, immunosuppressive events and skin sensitization reactions. The use of aftersun products is an effective strategy to reduce the visible signs and symptoms of acute photodamage in the skin. Aiming to unveil the active ingredients able to offset acute sun damage, this work focuses on the characterization of the aftersun products market. A total of 84 after-sun formulations from 41 international brands currently marketed in Portugal were analyzed concerning the composition described on the product label, identifying natural and synthetic/semi-synthetic ingredients with the ability to mitigate solar-induced effects. The majority of aftersun formulations contained ingredients derived from terrestrial and marine sources (> 80%). An in-depth examination of these compounds is also offered, revealing the top of the most used natural and synthetic/semi-synthetic ingredients present in aftersun products, as well as their mechanism of action. A critical appraisal of the scientific data was made aiming to highlight the scientific evidence of ingredients able to mitigate skin photodamage. Amino acids and peptides, and A. barbadensis extract were tested for their in vivo efficacy. Nevertheless, all the ingredients were analyzed with in vitro studies as preliminary screening before in vivo, ex vivo and/or clinical studies. In summary, this study provides an overview of the use of active ingredients in commercial aftersun products to understand better the benefits associated with their use in cosmetic formulations and identify opportunities for innovation.
Collapse
Affiliation(s)
- Ana Jesus
- Faculty of Pharmacy, UCIBIO-Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- CIIMAR-Interdisciplinary Center of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- CIIMAR-Interdisciplinary Center of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Maria T Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531, Coimbra, Portugal.
- Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal.
| | - Isabel F Almeida
- Faculty of Pharmacy, UCIBIO-Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| |
Collapse
|
5
|
Li Y, Baniel A, Diaz D, Ogawa-Momohara M, Ricco C, Eldaboush A, Bashir M, Sharma M, Liu ML, Werth VP. Keratinocyte derived extracellular vesicles mediated crosstalk between epidermis and dermis in UVB-induced skin inflammation. Cell Commun Signal 2024; 22:461. [PMID: 39350252 PMCID: PMC11441254 DOI: 10.1186/s12964-024-01839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND RATIONALE Ultraviolet-B (UVB) light induces dermal inflammation, although it is mostly absorbed in the epidermis. Recent reports suggest extracellular vesicles (EVs) act as a mediator of photodamage signaling. Melatonin is reported to be a protective factor against UV-induced damage. We hypothesized that EVs derived from UVB-irradiated keratinocytes might trigger proinflammatory responses in dermal cells and tested whether melatonin can ameliorate UVB-induced inflammation. METHODS We used UVB-irradiated HaCaT cells, primary keratinocytes and STING knock-out mice to model production of EVs under photodamaging conditions and performed immunoblotting and ELISA to measure their effect on dermal macrophages. RESULTS UVB-irradiated keratinocytes produce an increased number of EVs that contain higher concentrations of DNA and protein compared with controls. KC-derived EVs (KEVs) induced a STING- and inflammasome-mediated proinflammatory response in macrophages in vitro, and a pronounced inflammatory infiltrate in mouse dermis in vivo. Melatonin ameliorated KEVs inflammatory effect both in vitro and in vivo. CONCLUSIONS This data suggests EVs are mediators in a crosstalk that takes place between keratinocytes and their neighboring cells as a result of photodamage. Further studies exploring EVs induced by damaging doses of UVB, and their impact on other cells will provide insight into photodamage and may help develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yubin Li
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Avital Baniel
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - DeAnna Diaz
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Mariko Ogawa-Momohara
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Cristina Ricco
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Ahmed Eldaboush
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Muhammad Bashir
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Meena Sharma
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Ming-Lin Liu
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Quadri M, Baudouin C, Lotti R, Palazzo E, Campanini L, Bernard FX, Bellemere G, Pincelli C, Marconi A. Characterization of Skin Interfollicular Stem Cells and Early Transit Amplifying Cells during the Transition from Infants to Young Children. Int J Mol Sci 2024; 25:5635. [PMID: 38891823 PMCID: PMC11171949 DOI: 10.3390/ijms25115635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
In the interfollicular epidermis, keratinocyte stem cells (KSC) generate a short-lived population of transit amplifying (TA) cells that undergo terminal differentiation after several cell divisions. Recently, we isolated and characterized a highly proliferative keratinocyte cell population, named "early" TA (ETA) cell, representing the first KSC progenitor with exclusive features. This work aims to evaluate epidermis, with a focus on KSC and ETA cells, during transition from infancy to childhood. Reconstructed human epidermis (RHE) generated from infant keratinocytes is more damaged by UV irradiation, as compared to RHE from young children. Moreover, the expression of several differentiation and barrier genes increases with age, while the expression of genes related to stemness is reduced from infancy to childhood. The proliferation rate of KSC and ETA cells is higher in cells derived from infants' skin samples than of those derived from young children, as well as the capacity of forming colonies is more pronounced in KSC derived from infants than from young children's skin samples. Finally, infants-KSC show the greatest regenerative capacity in skin equivalents, while young children ETA cells express higher levels of differentiation markers, as compared to infants-ETA. KSC and ETA cells undergo substantial changes during transition from infancy to childhood. The study presents a novel insight into pediatric skin, and sheds light on the correlation between age and structural maturation of the skin.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.Q.); (E.P.); (C.P.); (A.M.)
| | | | - Roberta Lotti
- DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.Q.); (E.P.); (C.P.); (A.M.)
| | - Elisabetta Palazzo
- DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.Q.); (E.P.); (C.P.); (A.M.)
| | - Letizia Campanini
- DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.Q.); (E.P.); (C.P.); (A.M.)
| | | | - Gaëlle Bellemere
- Expanscience Laboratoires, 28230 Eprernon, France; (C.B.); (G.B.)
| | - Carlo Pincelli
- DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.Q.); (E.P.); (C.P.); (A.M.)
| | - Alessandra Marconi
- DermoLab, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.Q.); (E.P.); (C.P.); (A.M.)
| |
Collapse
|
7
|
Qiu W, Chen F, Feng X, Shang J, Luo X, Chen Y. Potential role of inflammaging mediated by the complement system in enlarged facial pores. J Cosmet Dermatol 2024; 23:27-32. [PMID: 37555304 DOI: 10.1111/jocd.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Enlarged facial pores are a common cosmetic concern of the skin, rather than a disease, and have not received much attention from dermatologists in recent years. Consequently, progress in understanding their pathogenesis has been limited, and current cosmetic solutions have limitations. Given that the complement system has regained interest as a key player in chronic inflammatory skin conditions, various mechanisms involving this system are being investigated. OBJECTIVE We aimed to shed light on the mechanism underlying enlarged facial pores by examining the role of the complement system in skin. METHODS We conducted a comprehensive literature search utilizing various academic databases including PubMed, Web of Science, and Google Scholar. Employing keywords such as "complement system," "inflammation," "facial pores," "enlarged," and "mechanisms," we compiled a selection of relevant studies. These studies provided a comprehensive understanding of the intricate mechanisms underlying the relationship between the "complement system" and "inflammation" within the context of facial pore enlargement. RESULTS Our findings suggest that inflammaging mediated by complement activation may be a critical player in the formation of enlarged facial pores. Specifically, overactivation of the complement system leading to the accumulation of complement fragments could be a major contributor to this process. Notably, the complement system in skin may be involved in a range of skin issues, including aging. CONCLUSION Modulating the complement system presents a promising avenue for future research in improving skin health. Further basic and clinical research is necessary to validate these findings, but we hope that this study can serve as a theoretical foundation for the development of targeted cosmetics.
Collapse
Affiliation(s)
- Wei Qiu
- Beijing Underproved Medical Technology Co., LTD., Beijing, China
| | - Feng Chen
- Beijing Underproved Medical Technology Co., LTD., Beijing, China
| | - Xiaoyue Feng
- Beijing Underproved Medical Technology Co., LTD., Beijing, China
| | - Jianli Shang
- Beijing Underproved Medical Technology Co., LTD., Beijing, China
| | - Xingyi Luo
- Beijing Underproved Medical Technology Co., LTD., Beijing, China
| | - Yong Chen
- Beijing Underproved Medical Technology Co., LTD., Beijing, China
| |
Collapse
|
8
|
Shu P, Li M, Zhao N, Wang Y, Zhang L, Du Z. Efficacy and mechanism of retinyl palmitate against UVB-induced skin photoaging. Front Pharmacol 2023; 14:1278838. [PMID: 37927602 PMCID: PMC10622759 DOI: 10.3389/fphar.2023.1278838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 11/07/2023] Open
Abstract
Retinyl palmitate (RP) is a vitamin A derivative that has been widely used in anti-aging and skin treatment. The aim of this study is to investigate the effect of RP on UVB (Ultraviolet radiation B) induced photoaging and its potential mechanism. Immunofluorescence assay demonstrates that RP can reduce collagen degradation in skin cells by UVB radiation and reduce apoptosis of skin cells. Cell migration assay reveals that RP can increase cell migration rate, helping to repair skin damage and restore cell viability. Immunohistochemical assays indicate that RP can significantly reduce the expression of IL-6, IL-1β, TNF-α induced by UVB radiation. Moreover, metabolomics and transcriptomics results suggest that RP regulates several metabolic pathways and gene expression, particularly in inflammatory signaling pathways, collagen synthesis and apoptosis, exhibiting significant regulatory effects. Furthermore, network pharmacological analysis predicts that RP may affect UVB-induced photoaging by regulating multiple key proteins and signaling pathways. Overall, this study demonstrates that RP has significant anti-photoaging ability, acting through several pathways including inhibition of inflammatory response, promotion of collagen synthesis and inhibition of apoptosis. These results provide a scientific basis for the application of RP in skin anti-photoaging and therapy, enabling the potential usage of RP to skin care products.
Collapse
Affiliation(s)
- Peng Shu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xing Jiang, China
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Menggeng Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Nan Zhao
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Yuan Wang
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhiyun Du
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xing Jiang, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Fonseca Hernández D, Mojica L, Berhow MA, Brownstein K, Lugo Cervantes E, Gonzalez de Mejia E. Black and pinto beans (Phaseolus vulgaris L.) unique mexican varieties exhibit antioxidant and anti-inflammatory potential. Food Res Int 2023; 169:112816. [PMID: 37254392 DOI: 10.1016/j.foodres.2023.112816] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Oxidative stress and inflammation play a key role in diverse pathological conditions such as cancer and metabolic disorders. The objective of this study was to determine the antioxidant and anti-inflammatory potentials of crude extract (CE) and phenolic-enriched extract (PHE) obtained from the seed coats (SCs) of black bean (BB) and pinto bean (PB) varieties. Delphinidin-3-O-glucoside (46 mg/g SC), malvidin-3-O-glucoside (29.9 mg/g SC), and petunidin-3-O-glucoside (7.5 mg/g SC) were found in major concentrations in the PHE-BB. Pelargonidin (0.53 mg/g SC) was only identified in the PHE-PB. PHE from both varieties showed antioxidant and radical scavenging capacities, with strong correlations associated with total phenolic content (TPC). Polyphenolics, including catechin, myricetin, kaempferol, quercetin, and isorhamnetin glucosides, were identified in the extracts. In terms of the anti-inflammatory potentials, PHE-PB had an IC50 of 10.5 µg dry extract/mL (µg DE/mL) for cyclooxygenase-2 (COX-2) inhibition. The inhibition values for cyclooxygenase-1 (COX-1) ranged from 118.1 to 162.7 µg DE/mL. Regarding inducible nitric oxide synthase (iNOS) inhibition, PHE-BB had an IC50 of 62.6 µg DE/mL. As determined via in silico analysis, pelargonidin showed binding affinities of -7.8 and -8.5 kcal/mol for COX-1 and iNOS, respectively, and catechin had a value of -8.3 kcal/mol for COX-2. Phenolic-enriched extracts from seed coats of black and pinto beans showed good antioxidant and anti-inflammatory potential that warrants in vitro and in vivo studies.
Collapse
Affiliation(s)
- David Fonseca Hernández
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico.
| | - Mark A Berhow
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Function Food Research, 1815 N University, Peoria, IL 61604, USA
| | | | - Eugenia Lugo Cervantes
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| |
Collapse
|
10
|
Sanchez MM, Tonmoy TI, Park BH, Morgan JT. Development of a Vascularized Human Skin Equivalent with Hypodermis for Photoaging Studies. Biomolecules 2022; 12:biom12121828. [PMID: 36551256 PMCID: PMC9775308 DOI: 10.3390/biom12121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Photoaging is an important extrinsic aging factor leading to altered skin morphology and reduced function. Prior work has revealed a connection between photoaging and loss of subcutaneous fat. Currently, primary models for studying this are in vivo (human samples or animal models) or in vitro models, including human skin equivalents (HSEs). In vivo models are limited by accessibility and cost, while HSEs typically do not include a subcutaneous adipose component. To address this, we developed an "adipose-vascular" HSE (AVHSE) culture method, which includes both hypodermal adipose and vascular cells. Furthermore, we tested AVHSE as a potential model for hypodermal adipose aging via exposure to 0.45 ± 0.15 mW/cm2 385 nm light (UVA). One week of 2 h daily UVA exposure had limited impact on epidermal and vascular components of the AVHSE, but significantly reduced adiposity by approximately 50%. Overall, we have developed a novel method for generating HSE that include vascular and adipose components and demonstrated potential as an aging model using photoaging as an example.
Collapse
|
11
|
Sanchez MM, Bagdasarian IA, Darch W, Morgan JT. Organotypic cultures as aging associated disease models. Aging (Albany NY) 2022; 14:9338-9383. [PMID: 36435511 PMCID: PMC9740367 DOI: 10.18632/aging.204361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Aging remains a primary risk factor for a host of diseases, including leading causes of death. Aging and associated diseases are inherently multifactorial, with numerous contributing factors and phenotypes at the molecular, cellular, tissue, and organismal scales. Despite the complexity of aging phenomena, models currently used in aging research possess limitations. Frequently used in vivo models often have important physiological differences, age at different rates, or are genetically engineered to match late disease phenotypes rather than early causes. Conversely, routinely used in vitro models lack the complex tissue-scale and systemic cues that are disrupted in aging. To fill in gaps between in vivo and traditional in vitro models, researchers have increasingly been turning to organotypic models, which provide increased physiological relevance with the accessibility and control of in vitro context. While powerful tools, the development of these models is a field of its own, and many aging researchers may be unaware of recent progress in organotypic models, or hesitant to include these models in their own work. In this review, we describe recent progress in tissue engineering applied to organotypic models, highlighting examples explicitly linked to aging and associated disease, as well as examples of models that are relevant to aging. We specifically highlight progress made in skin, gut, and skeletal muscle, and describe how recently demonstrated models have been used for aging studies or similar phenotypes. Throughout, this review emphasizes the accessibility of these models and aims to provide a resource for researchers seeking to leverage these powerful tools.
Collapse
Affiliation(s)
- Martina M. Sanchez
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - William Darch
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
12
|
Lu Z, Xia Q, Cheng Y, Lu Q, Li Y, Zeng N, Luan X, Li Y, Fan L, Luo D. Hesperetin attenuates UVA-induced photodamage in human dermal fibroblast cells. J Cosmet Dermatol 2022; 21:6261-6269. [PMID: 35816390 DOI: 10.1111/jocd.15230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Ultraviolet A (UVA) radiation causes skin damage. Recently, natural compounds have become an interest to protect skin from UV-induced photodamages. METHODS In this study, we investigated the protective effects of hesperetin, a citrus flavonoid, on UVA-induced oxidative stress, inflammation, apoptosis, and photoaging. RESULTS Our results showed that hesperetin increased the cell viability, suppressed the intracellular ROS levels, and decreased the expression of MMPs including MMP-1 and MMP-3, pro-inflammatory cytokines including IL-6 and COX-2 in UVA-irradiated HDFs. Besides, hesperetin exerted an anti-apoptotic effect by increasing expression of anti-apoptotic protein Bcl-2 and decreasing expression of pro-apoptotic protein Bax. Moreover, these anti-photodamage effects were mediated by inhibition of ERK, p38/AP-1, and NF-κb/p65 phosphorylation. CONCLUSION Therefore, hesperetin may be useful in the prevention of UVA-induced skin damage.
Collapse
Affiliation(s)
- Zhiyu Lu
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Qingyue Xia
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Cheng
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Qian Lu
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Yueyue Li
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Ni Zeng
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Xingbao Luan
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Li
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Lipan Fan
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| | - Dan Luo
- Department of dermatology, The first affiliated hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Jarrold BB, Tan CYR, Ho CY, Soon AL, Lam TT, Yang X, Nguyen C, Guo W, Chew YC, DeAngelis YM, Costello L, De Los Santos Gomez P, Przyborski S, Bellanger S, Dreesen O, Kimball AB, Oblong JE. Early onset of senescence and imbalanced epidermal homeostasis across the decades in photoexposed human skin: Fingerprints of inflammaging. Exp Dermatol 2022; 31:1748-1760. [DOI: 10.1111/exd.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/11/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Chin Yee Ho
- A*STAR Skin Research Labs Singapore City Singapore
| | - Ai Ling Soon
- A*STAR Skin Research Labs Singapore City Singapore
| | - TuKiet T. Lam
- Keck MS & Proteomics Resource Yale School of Medicine New Haven Connecticut USA
| | | | | | - Wei Guo
- Zymo Research Corporation Irvine California USA
| | | | | | | | | | | | | | | | - Alexa B. Kimball
- Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts USA
| | | |
Collapse
|
14
|
Jelly Fig (Ficus awkeotsang Makino) Exhibits Antioxidative and Anti-Inflammatory Activities by Regulating Reactive Oxygen Species Production via NFκB Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11050981. [PMID: 35624846 PMCID: PMC9138086 DOI: 10.3390/antiox11050981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antioxidant and anti-inflammatory activities of Ficus awkeotsang Makino extract (FAE) on Hs68 fibroblasts and BALB/c nude-mouse models are evaluated in this study. FAE was found to be non-toxic and showed high levels of DPPH, H2O2, and hydroxyl radical scavenging abilities; a ferrous chelating capacity; as well as ferric-reducing antioxidant capability. The antioxidant activity of FAE was strongly associated with polyphenolic content (flavonoids at 10.3 mg QE g−1 and total phenol at 107.6 mg GAE g−1). The anti-inflammatory activity of FAE and the underlying molecular mechanisms were also investigated. The a* value of the mouse dorsal skin after treatment with FAE at 1.5 mg/mL in addition to chronic UVB exposure was found to decrease by 19.2% during a ten-week period. The anti-inflammatory effect of FAE was evidenced by the decreased accumulation of inflammatory cells and skin thickness. Expression levels of UVB-induced inflammatory proteins, including ROS, NF-κB, iNOS, COX-2, and IL-6, were significantly reduced upon FAE treatment in vitro and in vivo. Collectively, our results suggest that the inhibition of ROS and UVB-induced activation of the NF-κB downstream signaling pathway by FAE, indicating considerable potential as a versatile adjuvant against free radical damage in pharmaceutical applications.
Collapse
|
15
|
Anti-Inflammatory and Pro-Regenerative Effects of Hyaluronan-Chitlac Mixture in Human Dermal Fibroblasts: A Skin Ageing Perspective. Polymers (Basel) 2022; 14:polym14091817. [PMID: 35566988 PMCID: PMC9105413 DOI: 10.3390/polym14091817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammation and the accumulation of reactive oxygen species (ROS) play an important role in the structural and functional modifications leading to skin ageing. The reduction of inflammation, cellular oxidation and dermal extracellular matrix (ECM) alterations may prevent the ageing process. The aim of this study is to investigate the expression of pro-inflammatory markers and ECM molecules in human dermal fibroblasts derived from young and middle-aged women and the effects of lactose-modified chitosan (Chitlac®, CTL), alone or in combination with mid-MW hyaluronan (HA), using an in vitro model of inflammation. To assess the response of macrophage-induced inflamed dermal fibroblasts to HA and CTL, changes in cell viability, pro-inflammatory mediators, MMPs and ECM molecules expression and intracellular ROS generation are analysed at gene and protein levels. The expression of pro-inflammatory markers, galectins, MMP-3 and ECM molecules is age-related. CTL, HA and their combination counteracted the oxidative damage, stimulating the expression of ECM molecules, and, when added to inflamed cells, restored the baseline levels of IL-1β, TNF-α, GAL-1, GAL-3 and MMP-3. In conclusion, HA and CTL mixture attenuated the macrophage-induced inflammation, inhibited the MMP-3 expression, exhibited the anti-oxidative effects and exerted a pro-regenerative effect on ECM.
Collapse
|
16
|
Resende DISP, Jesus A, Sousa Lobo JM, Sousa E, Cruz MT, Cidade H, Almeida IF. Up-to-Date Overview of the Use of Natural Ingredients in Sunscreens. Pharmaceuticals (Basel) 2022; 15:ph15030372. [PMID: 35337168 PMCID: PMC8949675 DOI: 10.3390/ph15030372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
The photoprotective skincare segment is in high demand to meet consumer concerns on UV-induced skin damage, with a recent trend towards sunscreen alternatives with a natural origin. In this study, the use of natural ingredients, either from terrestrial or marine origin, in a panel of 444 sunscreen commercial formulations (2021) was analyzed. Ingredients from terrestrial organisms represent the large majority found in the analyzed sunscreen formulations (48%), whereas marine ingredients are present only in 13% of the analyzed products. A deeper analysis regarding the most prevalent families of ingredients from terrestrial and marine organisms used as top ingredients is also presented, as well as their mechanisms of action. This study provides an up-to-date overview of the sunscreen market regarding the use of natural ingredients, which is of relevance for scientists involved in the development of new sunscreens to identify opportunities for innovation.
Collapse
Affiliation(s)
- Diana I. S. P. Resende
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Jesus
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - José M. Sousa Lobo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence: (E.S.); (I.F.A.); Tel.: +351-220-428-689 (E.S.); +351-220-428-621 (I.F.A.)
| | - Maria T. Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Honorina Cidade
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel F. Almeida
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (E.S.); (I.F.A.); Tel.: +351-220-428-689 (E.S.); +351-220-428-621 (I.F.A.)
| |
Collapse
|
17
|
IL-34 Downregulation-associated M1/M2 Macrophage Imbalance is Related to Inflammaging in Sun-exposed Human Skin. JID INNOVATIONS 2022; 2:100112. [PMID: 35521044 PMCID: PMC9062483 DOI: 10.1016/j.xjidi.2022.100112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 01/18/2023] Open
Abstract
Macrophages can be polarized into two subsets: a proinflammatory (M1) or an anti-inflammatory (M2) phenotype. In this study, we show that an increased M1-to-M2 ratio associated with a decrease in IL-34 induces skin inflammaging. The total number of macrophages in the dermis did not change, but the number of M2 macrophages was significantly decreased. Thus, the M1-to-M2 ratio was significantly increased in sun-exposed aged skin and positively correlated with the percentage of p21+ and p16+ senescent cells in the dermis. The supernatant of M1 macrophages increased the percentages of senescence-associated β-galactosidase‒positive cells, whereas the supernatant of M2 macrophages decreased the percentages of senescence-associated β-galactosidase‒positive cells in vitro. Among the mechanisms that could explain the increase in the M1-to-M2 ratio, we found that the number of IL-34+ cells was decreased in aged skin and negatively correlated with the M1-to-M2 ratio. Furthermore, IL-34 induced the expression of CD206 and IL-10, which are M2 macrophage markers, in an in vitro assay. Our results suggest that a reduction in epidermal IL-34 in aged skin may skew the M1/M2 balance in the dermis and lead to low-grade chronic inflammation and inflammaging.
Collapse
|
18
|
Takabe P, Siiskonen H, Rönkä A, Kainulainen K, Pasonen-Seppänen S. The Impact of Hyaluronan on Tumor Progression in Cutaneous Melanoma. Front Oncol 2022; 11:811434. [PMID: 35127523 PMCID: PMC8813769 DOI: 10.3389/fonc.2021.811434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
The incidence of cutaneous melanoma is rapidly increasing worldwide. Cutaneous melanoma is an aggressive type of skin cancer, which originates from malignant transformation of pigment producing melanocytes. The main risk factor for melanoma is ultraviolet (UV) radiation, and thus it often arises from highly sun-exposed skin areas and is characterized by a high mutational burden. In addition to melanoma-associated mutations such as BRAF, NRAS, PTEN and cell cycle regulators, the expansion of melanoma is affected by the extracellular matrix surrounding the tumor together with immune cells. In the early phases of the disease, hyaluronan is the major matrix component in cutaneous melanoma microenvironment. It is a high-molecular weight polysaccharide involved in several physiological and pathological processes. Hyaluronan is involved in the inflammatory reactions associated with UV radiation but its role in melanomagenesis is still unclear. Although abundant hyaluronan surrounds epidermal and dermal cells in normal skin and benign nevi, its content is further elevated in dysplastic lesions and local tumors. At this stage hyaluronan matrix may act as a protective barrier against melanoma progression, or alternatively against immune cell attack. While in advanced melanoma, the content of hyaluronan decreases due to altered synthesis and degradation, and this correlates with poor prognosis. This review focuses on hyaluronan matrix in cutaneous melanoma and how the changes in hyaluronan metabolism affect the progression of melanoma.
Collapse
Affiliation(s)
- Piia Takabe
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Hanna Siiskonen
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Aino Rönkä
- Department of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Kirsi Kainulainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- *Correspondence: Sanna Pasonen-Seppänen,
| |
Collapse
|
19
|
Lee KJ, Ratih K, Kim GJ, Lee YR, Shin JS, Chung KH, Choi EJ, Kim EK, An JH. Immunomodulatory and anti-inflammatory efficacy of hederagenin-coated maghemite (γ-Fe 2O 3) nanoparticles in an atopic dermatitis model. Colloids Surf B Biointerfaces 2021; 210:112244. [PMID: 34896691 DOI: 10.1016/j.colsurfb.2021.112244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022]
Abstract
We investigated the immunomodulatory and anti-inflammatory efficacy of hederagenin coating on maghemite (γ-Fe2O3) nanoparticles (HM) in atopic dermatitis (AD), as well as the physical and optical properties of maghemite nanoparticles (MP) using SEM, XRD spectroscopy, UV-vis spectra, Raman spectra, and FTIR spectroscopy. Dose-dependent treatment with HM (10, 50, 100, 200 μg/mL) inhibited the expression of Interleukin-2 (IL-2) and Tumor necrosis factor- α (TNF-α) in inflammatory induced HaCaT and Jurkat cells with inflammation caused by TNF/IFN-γ and PMA/A23187. AD model was induced by performing topical application of 2,4-dinitrochlorobenzene (DNCB) and dermatophagoides farinae extract (DFE) for a 31-day period on 8-week-old BALB/c mice. The HM treatments efficiently diminished the AD-like cutaneous lesion induced by DNCB-DFE sensitization in mice. Compared to the AD-only groups, HM treatment considerably attenuated mast cell infiltration and lowered epidermal, and dermal thickness of mice ears skin. In addition, HM treatment prominently alleviated the enlarged size and weight of lymph nodes. Furthermore, HM treatment resulted in a notable reduction in the mRNA expression of Th1 cytokines (TNF-α and IFN-γ), Th2 cytokines (IL-4 and IL-6), Th17 (IL-17), and TSLP. Our data showed that HM provides better AD attenuation compared to MP. Additionally, HM had synergistic effect and act as anti-inflammatory and immunomodulatory agent. Thus, HM shows great potential in AD medication and as a substitution of non-steroid-based medication.
Collapse
Affiliation(s)
- Kwon-Jai Lee
- College of H-LAC, Daejeon University, Daejeon 34520, Republic of Korea
| | - Khoirunnisa Ratih
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea; Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea
| | - Gyeong-Ji Kim
- Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea; Department of Biomedical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Yu-Rim Lee
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea; Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea
| | - Jae-Soo Shin
- Department of Advanced Materials Engineering, Daejeon University, Daejeon 34520, Republic of Korea
| | - Kang-Hyun Chung
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea
| | - Eun-Ju Choi
- Department of Physical Education, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Eun-Kyung Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Jeung Hee An
- Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea.
| |
Collapse
|
20
|
Souza de Carvalho VM, Covre JL, Correia-Silva RD, Lice I, Corrêa MP, Leopoldino AM, Gil CD. Bellis perennis extract mitigates UVA-induced keratinocyte damage: Photoprotective and immunomodulatory effects. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112247. [PMID: 34175580 DOI: 10.1016/j.jphotobiol.2021.112247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/23/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022]
Abstract
A need exists for further research elucidating the benefits of environmentally safe photoprotective agents against ultraviolet (UV) exposure, and plant extracts represent a human-friendly alternative formulation. This study was designed to evaluate the potential use of Bellis perennis extract (BPE), from the Asteraceae family, known as the common daisy or the English daisy, in cosmeceuticals as a photoprotective factor, using an in vitro model of UVA-induced keratinocyte damage. Human skin keratinocytes (HaCaT cell line) were incubated with BPE at 0.01, 0.1, or 1% in Dulbecco's Modified Eagle Medium (DMEM), and after 15 min they were submitted to UVA radiation at 5, 10, and 15 J/cm2 doses, respectively. For comparative purposes, Polypodium leucotomos extract (PLE), known as the fern, was used as a positive control in assessing the photoprotective effect. After 24 h of UVA exposure, cell viability (MTT and LDH assays), levels of cleaved caspase-3, cyclooxygenase-2, IL-6, reactive oxygen species (ROS) and antioxidant enzyme (catalase, SOD, and glutathione peroxidase) activity were determined. UVA radiation at 5, 10, and 15 J/cm2 doses reduced cell viability to 63%, 43%, and 23%, respectively; we selected 10 J/cm2 for our purposes. After 24 h of UVA exposure, treatment with 1% BPE and 1% PLE significantly recovered cell viability (p < 0.05). Furthermore, treatment was associated with lower cleaved caspase-3 and ROS levels, higher catalase activity, and lower IL-6 levels in the treated UVA keratinocytes compared with the untreated UVA group (p < 0.01). Our results demonstrate photoprotective and immunomodulatory effects of BPE in skin keratinocytes and support its use as a bioactive agent in cosmetic formulations to prevent skin damage caused by exposure to the UV light.
Collapse
Affiliation(s)
- Vivian Maria Souza de Carvalho
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Joyce L Covre
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Rebeca D Correia-Silva
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Izabella Lice
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Mab P Corrêa
- Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, Programa de Pós-Graduação em Biociências, São José do Rio Preto, SP, Brazil
| | - Andréia M Leopoldino
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Ribeirão Preto, SP, Brazil
| | - Cristiane D Gil
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil; Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, Programa de Pós-Graduação em Biociências, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
21
|
Amjad E, Sokouti B, Asnaashari S. A hybrid systems biology and systems pharmacology investigation of Zingerone's effects on reconstructed human epidermal tissues. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021; 22:90. [PMID: 36820091 PMCID: PMC8666180 DOI: 10.1186/s43042-021-00204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
Background As individuals live longer, elderly populations can be expected to face issues. This pattern urges researchers to investigate the aging concept further to produce successful anti-aging agents. In the current study, the effects of Zingerone (a natural compound) on epidermal tissues were analyzed using a bioinformatics approach. Methods For this purpose, we chose the GEO dataset GSE133338 to carry out the systems biology and systems pharmacology approaches, ranging from identifying the differentially expressed genes to analyzing the gene ontology, determining similar structures of Zingerone and their features (i.e., anti-oxidant, anti-inflammatory, and skin disorders), constructing the gene-chemicals network, analyzing gene-disease relationships, and validating significant genes through the evidence presented in the literature. Results The post-processing of the microarray dataset identified thirteen essential genes among control and Zingerone-treated samples. The procedure revealed various structurally similar chemical and herbal compounds with possible skin-related effects. Additionally, we studied the relationships of differentially expressed genes with skin-related diseases and validated their direct connections with skin disorders the evidence available in the literature. Also, the analysis of the microarray profiling dataset revealed the critical role of interleukins as a part of the cytokines family on skin aging progress. Conclusions Zingerone, and potentially any constituents of Zingerone (e.g., their similar compound scan functionality), can be used as therapeutic agents in managing skin disorders such as skin aging. However, the beneficial effects of Zingerone should be assessed in other models (i.e., human or animal) in future studies.
Collapse
Affiliation(s)
- Elham Amjad
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Sokouti
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Asnaashari
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
The Immune System and Pathogenesis of Melanoma and Non-melanoma Skin Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:211-226. [DOI: 10.1007/978-3-030-46227-7_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Bierman JC, Laughlin T, Tamura M, Hulette BC, Mack CE, Sherrill JD, Tan CY, Morenc M, Bellanger S, Oblong JE. Niacinamide mitigates SASP‐related inflammation induced by environmental stressors in human epidermal keratinocytes and skin. Int J Cosmet Sci 2020; 42:501-511. [DOI: 10.1111/ics.12651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | | | | | - Christina Y.R. Tan
- Skin Research Institute of Singapore A*STAR 8A Biomedical Grove, #06‐06 Immunos Singapore138648Singapore
| | - Malgorzata Morenc
- Skin Research Institute of Singapore A*STAR 8A Biomedical Grove, #06‐06 Immunos Singapore138648Singapore
| | - Sophie Bellanger
- Skin Research Institute of Singapore A*STAR 8A Biomedical Grove, #06‐06 Immunos Singapore138648Singapore
| | | |
Collapse
|
24
|
Langton AK, Hann M, Costello P, Halai P, Griffiths CEM, Sherratt MJ, Watson REB. Remodelling of fibrillin-rich microfibrils by solar-simulated radiation: impact of skin ethnicity. Photochem Photobiol Sci 2020; 19:1160-1167. [DOI: 10.1039/d0pp00188k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cutaneous fibrillin-rich microfibrils (FRMs) should be considered as two distinct populations that differentially accrue damage in response to SSR. Furthermore, FRMs derived from black African skin show greater change following UVR challenge.
Collapse
Affiliation(s)
- Abigail K. Langton
- Centre for Dermatology Research
- The University of Manchester & Salford Royal NHS Foundation Trust
- Manchester Academic Health Science Centre
- UK
- NIHR Manchester Biomedical Research Centre
| | - Mark Hann
- Centre for Biostatistics
- The University of Manchester
- Manchester Academic Health Science Centre
- UK
| | - Patrick Costello
- Centre for Dermatology Research
- The University of Manchester & Salford Royal NHS Foundation Trust
- Manchester Academic Health Science Centre
- UK
| | - Poonam Halai
- Centre for Dermatology Research
- The University of Manchester & Salford Royal NHS Foundation Trust
- Manchester Academic Health Science Centre
- UK
| | - Christopher E. M. Griffiths
- Centre for Dermatology Research
- The University of Manchester & Salford Royal NHS Foundation Trust
- Manchester Academic Health Science Centre
- UK
- NIHR Manchester Biomedical Research Centre
| | - Michael J. Sherratt
- Division of Cell Matrix Biology and Regenerative Medicine
- The University of Manchester
- UK
| | - Rachel E. B. Watson
- Centre for Dermatology Research
- The University of Manchester & Salford Royal NHS Foundation Trust
- Manchester Academic Health Science Centre
- UK
- NIHR Manchester Biomedical Research Centre
| |
Collapse
|
25
|
Pospíšil P, Prasad A, Rác M. Mechanism of the Formation of Electronically Excited Species by Oxidative Metabolic Processes: Role of Reactive Oxygen Species. Biomolecules 2019; 9:E258. [PMID: 31284470 PMCID: PMC6681336 DOI: 10.3390/biom9070258] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 01/07/2023] Open
Abstract
It is well known that biological systems, such as microorganisms, plants, and animals, including human beings, form spontaneous electronically excited species through oxidative metabolic processes. Though the mechanism responsible for the formation of electronically excited species is still not clearly understood, several lines of evidence suggest that reactive oxygen species (ROS) are involved in the formation of electronically excited species. This review attempts to describe the role of ROS in the formation of electronically excited species during oxidative metabolic processes. Briefly, the oxidation of biomolecules, such as lipids, proteins, and nucleic acids by ROS initiates a cascade of reactions that leads to the formation of triplet excited carbonyls formed by the decomposition of cyclic (1,2-dioxetane) and linear (tetroxide) high-energy intermediates. When chromophores are in proximity to triplet excited carbonyls, the triplet-singlet and triplet-triplet energy transfers from triplet excited carbonyls to chromophores result in the formation of singlet and triplet excited chromophores, respectively. Alternatively, when molecular oxygen is present, the triplet-singlet energy transfer from triplet excited carbonyls to molecular oxygen initiates the formation of singlet oxygen. Understanding the mechanism of the formation of electronically excited species allows us to use electronically excited species as a marker for oxidative metabolic processes in cells.
Collapse
Affiliation(s)
- Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Marek Rác
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
26
|
Abstract
As skin ages, there is a decline in physiologic function. These changes are induced by both intrinsic (chronologic) and extrinsic (predominately UV-induced) factors. Botanicals offer potential benefits to combat some of the signs of aging. Here, we review select botanicals and the scientific evidence behind their anti-aging claims. Botanicals may offer anti-inflammatory, antioxidant, moisturizing, UV-protective, and other effects. A multitude of botanicals are listed as ingredients in popular cosmetics and cosmeceuticals, but only a select few are discussed here. These were chosen based on the availability of scientific data, personal interest of the authors, and perceived “popularity” of current cosmetic and cosmeceutical products. The botanicals reviewed here include argan oil, coconut oil, crocin, feverfew, green tea, marigold, pomegranate, and soy.
Collapse
|
27
|
Ahn JM, Lee JS, Um SG, Rho BS, Lee KB, Park SG, Kim HJ, Lee Y, Chi YM, Yoon YE, Jo SH, Kim ME, Pi KB. Mussel adhesive Protein-conjugated Vitronectin (fp-151-VT) Induces Anti-inflammatory Activity on LPS-stimulated Macrophages and UVB-irradiated Keratinocytes. Immunol Invest 2018; 48:242-254. [PMID: 30188221 DOI: 10.1080/08820139.2018.1506476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Skin inflammation and dermal injuries are a major clinical problem because current therapies are limited to treating established scars, and there is a poor understanding of healing mechanisms. Mussel adhesive proteins (MAPs) have great potential in many tissue engineering and biomedical applications. It has been successfully demonstrated that the redesigned hybrid type MAP (fp-151) can be utilized as a promising adhesive biomaterial. The aim of this study was to develop a novel recombinant protein using fp-151 and vitronectin (VT) and to elucidate the anti-inflammatory effects of this recombinant protein on macrophages and keratinocytes. METHODS Lipopolysaccharide (LPS) was used to stimulate macrophages and UVB was used to stimulate keratinocytes. Inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were analyzed by Western Blot. Inflammatory cytokines and NO and ROS production were analyzed. RESULT In macrophages stimulated by LPS, expression of the inflammatory factors iNOS, COX-2, and NO production increased, while the r-fp-151-VT-treated groups had suppressed expression of iNOS, COX-2, and NO production in a dose-dependent manner. In addition, keratinocytes stimulated by UVB and treated with r-fp-151-VT had reduced expression of iNOS and COX-2. Interestingly, in UVB-irradiated keratinocytes, inflammatory cytokines, such as interleukin (IL)-1b, IL-6, and tumor necrosis factor (TNF)-a, were significantly reduced by r-fp-151-VT treatment. CONCLUSIONS These results suggest that the anti-inflammatory activity of r-fp-151-VT was more effective in keratinocytes, suggesting that it can be used as a therapeutic agent to treat skin inflammation.
Collapse
Affiliation(s)
- Jung-Mo Ahn
- a Biotechnology & Business Center , Incheon Business Information Technopark , Incheon , Republic of Korea
| | - Jun Sik Lee
- b Department of Life Science, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences , Chosun University , Gwangju , Republic of Korea
| | - Seul-Gee Um
- a Biotechnology & Business Center , Incheon Business Information Technopark , Incheon , Republic of Korea
| | - Beom-Seop Rho
- a Biotechnology & Business Center , Incheon Business Information Technopark , Incheon , Republic of Korea
| | - Ki Beom Lee
- a Biotechnology & Business Center , Incheon Business Information Technopark , Incheon , Republic of Korea
| | - Sung-Gil Park
- c R&D center , Advanced BioTech Co., Ltd , Incheon , Korea
| | - Ho-Jin Kim
- a Biotechnology & Business Center , Incheon Business Information Technopark , Incheon , Republic of Korea
| | - Yoonjin Lee
- d College of Life Sciences and Biotechnology , Korea University , Seoul , Republic of Korea
| | - Young Min Chi
- d College of Life Sciences and Biotechnology , Korea University , Seoul , Republic of Korea
| | - Ye-Eun Yoon
- e R&D center , Cosmocos Corporation , Incheon , Republic of Korea
| | - Sun Hyo Jo
- b Department of Life Science, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences , Chosun University , Gwangju , Republic of Korea
| | - Mi Eun Kim
- b Department of Life Science, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences , Chosun University , Gwangju , Republic of Korea
| | - Kyung-Bae Pi
- a Biotechnology & Business Center , Incheon Business Information Technopark , Incheon , Republic of Korea
| |
Collapse
|
28
|
Abstract
The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or younger than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. Amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.
Collapse
|
29
|
Zegarska B, Pietkun K, Giemza-Kucharska P, Zegarski T, Nowacki MS, Romańska-Gocka K. Changes of Langerhans cells during skin ageing. Postepy Dermatol Alergol 2017; 34:260-267. [PMID: 28670257 PMCID: PMC5471382 DOI: 10.5114/ada.2017.67849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/19/2016] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION During the process of skin ageing, changes occur in all skin layers and all cells, including the Langerhans cells. AIM To assess whether any quantitative difference in the number of CD1a+ LC cells/mm2 and HLA-DR+ LC cells/mm2 as well as in their morphological features can be observed during the course of different types of skin ageing. MATERIAL AND METHODS The study was conducted in a group of 60 women, which was divided into three independent groups: group I with symptoms of menopausal skin ageing, group II with symptoms of photoageing, group III with symptoms of chronological ageing. Skin biopsy samples were taken from the pre-auricular region from all of the participants. The number of CD1a+ LC cells/mm2 and HLA-DR+ LC cells/mm2 as well as their morphological features were evaluated. RESULTS The frequency of CD1a+ LC and HLA-DR+ LC in all the studied groups was diverse. In groups I and III, the LC with large cell bodies and long, multi-branched processes were the majority. In group II, the LC had small cell bodies and their processes were mainly short and unbranched. CONCLUSIONS The obtained results indicate the presence of quantitative and morphological changes of the CD1a+ LC and HLA-DR+ LC during the course of different types of skin ageing.
Collapse
Affiliation(s)
- Barbara Zegarska
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
- Clinica Dermatoestetica, Bydgoszcz, Poland
| | - Katarzyna Pietkun
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | | | - Tomasz Zegarski
- Centre for Physical Education and Sport, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Maciej S. Nowacki
- Chair and Department of Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Oncology Centre-Professor Franciszek Łukaszczyk Memorial Hospital in Bydgoszcz, Poland
| | - Krystyna Romańska-Gocka
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
30
|
Mianowska B, Narbutt J, Young AR, Fendler W, Małachowska B, Młynarski W, Lesiak A. UVR protection influences fructosamine level after sun exposure of healthy adults. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2016; 32:296-303. [PMID: 27623292 DOI: 10.1111/phpp.12274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Seasonal variation in glycated hemoglobin levels has been observed, and sun exposure has been considered as one of the factors associated with this relationship. Fructosamine is a short-time marker of blood protein glycation. AIM We investigated the effect of seven days of sunbathing on blood fructosamine concentration in healthy volunteers using different ultraviolet radiation (UVR) protections. MATERIALS AND METHODS Participants were assigned to one of three groups: group A - used a UVA and UVB absorbing sunscreen (N = 15), group B - used a UVB absorbing sunscreen (N = 18), and group C - followed uncontrolled sun protection habits (N = 22). RESULTS Overall, the fructosamine concentration did not change after sun exposure (baseline 248.8 μmol/l, 25-75%: 238.5 to 258.8 μmol/l vs. after 247.3 μmol/l, 25-75%: 234.9 to 261.8 μmol/l, P = 0.6637). Median change of fructosamine differed significantly between groups (A: -1.90 μmol/l, 25-75%: -17.10 to 1.80 μmol/l vs. B: -3.80 μmol/l, 25-75%: -18.50 to 2.40 μmol/l vs. C: +4.05 μmol/l, 25-75%: -3.20 to 22.0 μmol/l; one-way ANOVAP = 0.0277). After age adjustment and combining groups A and B, the difference in change of fructosamine concentration was statistically significant between groups A + B (decrease) vs. group C (increase, P = 0.0193). CONCLUSION Appropriate sunscreen use during sunbathing resulted in decreased fructosamine concentrations, while inadequate UVR protection resulted in its increase.
Collapse
Affiliation(s)
- Beata Mianowska
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Joanna Narbutt
- Department of Dermatology, Medical University of Lodz, Lodz, Poland
| | | | - Wojciech Fendler
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Beata Małachowska
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
31
|
Hiramoto K, Yamate Y, Sato EF. The Effects of Ultraviolet Eye Irradiation on Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice. Photochem Photobiol 2016; 92:728-34. [DOI: 10.1111/php.12620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Science; Suzuka University of Medical Science; Suzuka Mie Japan
| | - Yurika Yamate
- Department of Pharmaceutical Science; Suzuka University of Medical Science; Suzuka Mie Japan
| | - Eisuke F. Sato
- Department of Pharmaceutical Science; Suzuka University of Medical Science; Suzuka Mie Japan
| |
Collapse
|
32
|
Chadha P, Katare OP, Chhibber S. In vivo efficacy of single phage versus phage cocktail in resolving burn wound infection in BALB/c mice. Microb Pathog 2016; 99:68-77. [PMID: 27498362 DOI: 10.1016/j.micpath.2016.08.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 06/16/2016] [Accepted: 08/02/2016] [Indexed: 01/21/2023]
Abstract
Klebsiella pneumoniae is one of the most predominant pathogens associated with burn wound infections, causing considerable morbidity and mortality. The indiscriminate usage of antibiotics has led to the development of resistant strains, which have contributed towards the inefficacy of antibiotics. Phage therapy is a promising alternative to hinder the progression of pathogenic bacteria. However, phage bacterial resistance is already well known but the use of phage cocktails can overcome this drawback. The aim of the study was to evaluate the therapeutic efficacy of monophage (Kpn1, Kpn2, Kpn3, Kpn4 and Kpn5) in comparison to phage cocktail in resolving the course of burn wound infection in mice. Although, animals receiving monophage therapy exhibited efficacy in resolving the course of infection but phage cocktail was highly effective in arresting the entire infection process (bacterial load, wound contraction, skin myeloperoxidase activity, collagen formation and histopathological analysis). In comparison to untreated control mice, a significant reduction in bacterial load to 4.32, 4.64, 4.42, 4.11 and 4.27 log CFU/ml in Kpn1, Kpn2, Kpn3 Kpn4 and Kpn5 treated animals was obtained respectively was on peak day (3rd day). However, the group receiving phage cocktail (group 7) showed maximum reduction in bacterial load in the skin tissue. The bacterial load was significantly reduced to 3.01 log CFU/ml on peak day. This accounts for a significant reduction of 6 log cycles (p < 0.01) as compared to that of untreated control animals where a peak of 8.81 log CFU/ml was seen followed by steady decrease thereafter. Thus, phage cocktail gave maximum protection against burn wound infection by K. pneumoniae B5055. Compared to any single phage, phage cocktail significantly checked the emergence of resistant mutants. Hence this approach can serve as an effective strategy in treating Klebsiella mediated burn wound infections in individuals who do not respond to conventional antibiotic therapy.
Collapse
Affiliation(s)
- Parul Chadha
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
33
|
Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation. Mediators Inflamm 2016; 2016:3271451. [PMID: 26903706 PMCID: PMC4745921 DOI: 10.1155/2016/3271451] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/03/2016] [Indexed: 12/22/2022] Open
Abstract
Andrographolide sodium bisulfate (ASB), a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV) irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent.
Collapse
|
34
|
Antioxidant and anti-ageing activities of citrus-based juice mixture. Food Chem 2015; 194:920-7. [PMID: 26471635 DOI: 10.1016/j.foodchem.2015.08.094] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 01/11/2023]
Abstract
The production of excessive reactive oxygen species by exposure to oxidative stress and solar radiation are primary factors in skin damage. We examined the effects of a citrus-based juice mixture and its bioactive compounds on antioxidant and anti-ageing activities in human dermal fibroblasts and hairless mice via the regulation of antioxidant enzymes and the mitogen-activated protein kinase pathway. The citrus-based juice mixture reduced H2O2-induced cell damage and intracellular reactive oxygen species production in human dermal fibroblasts. Citrus-based juice mixture pretreatment suppressed the activation of the H2O2-mediated mitogen-activated protein kinase pathway by activating the expression of activator protein 1 and matrix metalloproteinases. Moreover, it increased the expression levels of antioxidant enzymes such as glutathione reductase, catalase and manganese superoxide dismutase. In addition, oral administration of the citrus-based juice mixture decreased skin thickness and wrinkle formation and increased collagen content on an ultraviolet light B-exposed hairless mouse. These results indicate that the citrus-based juice mixture is a potentially healthy beverage for the prevention of oxidative stress-induced premature skin ageing.
Collapse
|
35
|
Jeong JH, Fan Y, You GY, Choi TH, Kim S. Improvement of photoaged skin wrinkles with cultured human fibroblasts and adipose-derived stem cells: A comparative study. J Plast Reconstr Aesthet Surg 2015; 68:372-81. [DOI: 10.1016/j.bjps.2014.10.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/03/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
|
36
|
Zhuang Y, Lyga J. Inflammaging in skin and other tissues - the roles of complement system and macrophage. ACTA ACUST UNITED AC 2015; 13:153-61. [PMID: 24853681 PMCID: PMC4082166 DOI: 10.2174/1871528113666140522112003] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/07/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022]
Abstract
Inflammaging refers to a continuous, low-grade inflammation associated with aging. Such chronic inflammatory response could build up with time and gradually causes tissue damage. It is considered as one of the driving forces for many age-related diseases such as diabetes, atherosclerosis, age-related macular degeneration (AMD), and skin aging. There is mounting evidence that indicates aging is driven by the pro-inflammatory cytokines and substances produced by our body’s innate immune system. The macrophage and complement system, two important components of innate immune system, have attracted more and more attention since they appear to be involved in the pathogenesis of several inflammaging-associated diseases, such as AMD and atherosclerosis. This paper will review what we know about these two innate immune systems in the pathogenesis of AMD, atherosclerosis and skin aging.
Collapse
Affiliation(s)
| | - John Lyga
- Avon Global R&D, 1 Avon Place, Suffern, NY, 10901, USA.
| |
Collapse
|
37
|
Abstract
With worldwide expansion of the aging population, research on age-related pathologies is receiving growing interest. In this review, we discuss current knowledge regarding the decline of skin structure and function induced by the passage of time (chronological aging) and chronic exposure to solar UV irradiation (photoaging). Nearly every aspect of skin biology is affected by aging. The self-renewing capability of the epidermis, which provides vital barrier function, is diminished with age. Vital thermoregulation function of eccrine sweat glands is also altered with age. The dermal collagenous extracellular matrix, which comprises the bulk of skin and confers strength and resiliency, undergoes gradual fragmentation, which deleteriously impacts skin mechanical properties and dermal cell functions. Aging also affects wound repair, pigmentation, innervation, immunity, vasculature, and subcutaneous fat homeostasis. Altogether, age-related alterations of skin lead to age-related skin fragility and diseases.
Collapse
|
38
|
Niu T, Tian Y, Ren Q, Wei L, Li X, Cai Q. Red light interferes in UVA-induced photoaging of human skin fibroblast cells. Photochem Photobiol 2014; 90:1349-58. [PMID: 25039464 DOI: 10.1111/php.12316] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/30/2014] [Indexed: 12/22/2022]
Abstract
The possible regulation mechanism of red light was determined to discover how to retard UVA-induced skin photoaging. Human skin fibroblasts were cultured and irradiated with different doses of UVA, thus creating a photoaging model. Fibroblasts were also exposed to a subtoxic dose of UVA combined with a red light-emitting diode (LED) for five continuous days. Three groups were examined: control, UVA and UVA plus red light. Cumulative exposure doses of UVA were 25 J cm(-2), and the total doses of red light were 0.18 J cm(-2). Various indicators were measured before and after irradiation, including cell morphology, viability, β-galactosidase staining, apoptosis, cycle phase, the length of telomeres and the protein levels of photoaging-related genes. Red light irradiation retarded the cumulative low-dose UVA irradiation-induced skin photoaging, decreased the expression of senescence-associated β-galactosidase, upregulated SIRT1 expression, decreased matrix metalloproteinase MMP-1 and the acetylation of p53 expression, reduced the horizon of cell apoptosis and enhanced cell viability. Furthermore, the telomeres in UVA-treated cells were shortened compared to those of cells in the red light groups. These results suggest that red light plays a key role in the antiphotoaging of human skin fibroblasts by acting on different signaling transduction pathways.
Collapse
Affiliation(s)
- Tianhui Niu
- Aviation Medicine Research Laboratory, The General Hospital of the Air Force, Beijing, China
| | | | | | | | | | | |
Collapse
|
39
|
Randhawa M, Sangar V, Tucker-Samaras S, Southall M. Metabolic signature of sun exposed skin suggests catabolic pathway overweighs anabolic pathway. PLoS One 2014; 9:e90367. [PMID: 24603693 PMCID: PMC3946127 DOI: 10.1371/journal.pone.0090367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/31/2014] [Indexed: 11/18/2022] Open
Abstract
Skin chronically exposed to sun results in phenotypic changes referred as photoaging. This aspect of aging has been studied extensively through genomic and proteomic tools. Metabolites, the end product are generated as a result of biochemical reactions are often studied as a culmination of complex interplay of gene and protein expression. In this study, we focused exclusively on the metabolome to study effects from sun-exposed and sun-protected skin sites from 25 human subjects. We generated a highly accurate metabolomic signature for the skin that is exposed to sun. Biochemical pathway analysis from this data set showed that sun-exposed skin resides under high oxidative stress and the chains of reactions to produce these metabolites are inclined toward catabolism rather than anabolism. These catabolic activities persuade the skin cells to generate metabolites through the salvage pathway instead of de novo synthesis pathways. Metabolomic profile suggests catabolic pathways and reactive oxygen species operate in a feed forward fashion to alter the biology of sun exposed skin.
Collapse
Affiliation(s)
- Manpreet Randhawa
- Johnson & Johnson Skin Research Center, CPPW, a Division of Johnson & Johnson Consumer Companies, Inc., Skillman, New Jersey, United States of America
- * E-mail:
| | - Vineet Sangar
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Samantha Tucker-Samaras
- Johnson & Johnson Skin Research Center, CPPW, a Division of Johnson & Johnson Consumer Companies, Inc., Skillman, New Jersey, United States of America
| | - Michael Southall
- Johnson & Johnson Skin Research Center, CPPW, a Division of Johnson & Johnson Consumer Companies, Inc., Skillman, New Jersey, United States of America
| |
Collapse
|
40
|
de Gruijl FR, Rhodes LE. Explaining a possible protective role of polymorphous light eruption against skin cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Gragnani A, Cornick SM, Chominski V, Ribeiro de Noronha SM, Alves Corrêa de Noronha SA, Ferreira LM. Review of Major Theories of Skin Aging. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aar.2014.34036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Matsuura-Hachiya Y, Arai KY, Ozeki R, Kikuta A, Nishiyama T. Angiotensin-converting enzyme inhibitor (enalapril maleate) accelerates recovery of mouse skin from UVB-induced wrinkles. Biochem Biophys Res Commun 2013; 442:38-43. [DOI: 10.1016/j.bbrc.2013.10.162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
|
43
|
Bulman A, Neagu M, Constantin C. Immunomics in Skin Cancer - Improvement in Diagnosis, Prognosis and Therapy Monitoring. CURR PROTEOMICS 2013; 10:202-217. [PMID: 24228023 PMCID: PMC3821382 DOI: 10.2174/1570164611310030003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 11/30/2022]
Abstract
This review will focus on the elements of the skin’s immune system, immune cells and/or non-immune cells that support immune mechanisms, molecules with immune origin and/or immune functions that are involved in skin
carcinogenesis. All these immune elements are compulsory in the development of skin tumors and/or sustainability of the neoplastic process. In this light, recent data gathered in this review will acknowledge all immune elements that contribute to skin tumorigenesis; moreover, they can serve as immune biomarkers. These immune markers can contribute to the
diagnostic improvement, prognosis forecast, therapy monitoring, and even personalized therapeutical approach in skin cancer. Immune processes that sustain tumorigenesis in non-melanoma and melanoma skin cancers are described in the framework of recent data.
Collapse
|
44
|
A new method for extracting skin microbes allows metagenomic analysis of whole-deep skin. PLoS One 2013; 8:e74914. [PMID: 24073227 PMCID: PMC3779245 DOI: 10.1371/journal.pone.0074914] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/07/2013] [Indexed: 01/02/2023] Open
Abstract
In the last decade, an extensive effort has been made to characterize the human microbiota, due to its clinical and economic interests. However, a metagenomic approach to the skin microbiota is hampered by the high proportion of host DNA that is recovered. In contrast with the burgeoning field of gut metagenomics, skin metagenomics has been hindered by the absence of an efficient method to avoid sequencing the host DNA. We present here a method for recovering microbial DNA from skin samples, based on a combination of molecular techniques. We have applied this method to mouse skin, and have validated it by standard, quantitative PCR and amplicon sequencing of 16S rRNA. The taxonomic diversity recovered was not altered by this new method, as proved by comparing the phylogenetic structure revealed by 16S rRNA sequencing in untreated vs. treated samples. As proof of concept, we also present the first two mouse skin metagenomes, which allowed discovering new taxa (not only prokaryotes but also viruses and eukaryots) not reachable by 16S rRNA sequencing, as well as to characterize the skin microbiome functional landscape. Our method paves the way for the development of skin metagenomics, which will allow a much deeper knowledge of the skin microbiome and its relationship with the host, both in a healthy state and in relation to disease.
Collapse
|
45
|
Randhawa M, Southall M, Samaras ST. Metabolomic analysis of sun exposed skin. MOLECULAR BIOSYSTEMS 2013; 9:2045-50. [PMID: 23670218 DOI: 10.1039/c3mb25537a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is very well known that exposure of skin to sun chronically accelerates the mechanism of aging as well as making it more susceptible toward skin cancer. This aspect of aging has been studied very well through genomics and proteomics tools. In this study we have used a metabolomic approach for the first time to determine the differences in the metabolome from full thickness skin biopsies from sun exposed and sun protected sites. We have primarily investigated the energy metabolism and the oxidative pathway in sun exposed skin. Biochemical pathway analysis revealed that energy metabolism in photoexposed skin is predominantly anaerobic. The study also validated the increased oxidative stress in skin.
Collapse
Affiliation(s)
- Manpreet Randhawa
- Johnson & Johnson Consumer Companies Inc., 199 Grandview Road, Skillman, NJ 08558, USA.
| | | | | |
Collapse
|
46
|
Kim JA, Ahn BN, Kong CS, Park SH, Park BJ, Kim SK. Antiphotoaging effect of chitooligosaccharides on human dermal fibroblasts. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2012; 28:299-306. [DOI: 10.1111/phpp.12004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jung-Ae Kim
- Marine Bioprocess Research Center; Pukyong National University; Busan; Korea
| | - Byul-Nim Ahn
- Department of Chemistry; Pukyong National University; Busan; Korea
| | - Chang-Suk Kong
- Department of Food and Nutrition; College of Medical and Life Science; Silla University; Busan; Korea
| | - Sung-Ha Park
- Bio Materials R&D Center; Korea Kolmar Corporation; Chung-Buk; Korea
| | - Byoung-Jun Park
- Bio Materials R&D Center; Korea Kolmar Corporation; Chung-Buk; Korea
| | | |
Collapse
|
47
|
Prasad A, Pospíšil P. Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:085004. [PMID: 23224187 DOI: 10.1117/1.jbo.17.8.085004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Solar radiation that reaches Earth's surface can have severe negative consequences for organisms. Both visible light and ultraviolet A (UVA) radiation are known to initiate the formation of reactive oxygen species (ROS) in human skin by photosensitization reactions (types I and II). In the present study, we investigated the role of visible light and UVA radiation in the generation of ROS on the dorsal and the palmar side of a hand. The ROS are known to oxidize biomolecules such as lipids, proteins, and nucleic acids to form electronically excited species, finally leading to ultraweak photon emission. We have employed a highly sensitive charge coupled device camera and a low-noise photomultiplier tube for detection of two-dimensional and one-dimensional ultraweak photon emission, respectively. Our experimental results show that oxidative stress is generated by the exposure of human skin to visible light and UVA radiation. The oxidative stress generated by UVA radiation is claimed to be significantly higher than that by visible light. Two-dimensional photon imaging can serve as a potential tool for monitoring the oxidative stress in the human skin induced by various stress factors irrespective of its physical or chemical nature.
Collapse
Affiliation(s)
- Ankush Prasad
- Palacký University, Faculty of Science, Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | | |
Collapse
|
48
|
Kimball A, Grant R, Wang F, Osborne R, Tiesman J. Beyond the blot: cutting edge tools for genomics, proteomics and metabolomics analyses and previous successes. Br J Dermatol 2012; 166 Suppl 2:1-8. [DOI: 10.1111/j.1365-2133.2012.10859.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Norval M, Woods GM. UV-induced immunosuppression and the efficacy of vaccination. Photochem Photobiol Sci 2011; 10:1267-74. [PMID: 21713277 DOI: 10.1039/c1pp05105a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure to ultraviolet radiation (UVR) suppresses immunity by complex pathways, initiated by chromophores located in the skin and ending with the generation of specific subsets of T and B regulatory cells. The primary and memory (recall) immune response to a wide variety of antigens, including microorganisms, can be reduced by UVR, leading to the possibility that the efficacy of vaccination could be similarly reduced. A limited number of animal models of vaccination demonstrate that this may indeed be the case. The situation in human subjects has not been rigorously assessed but there are indications from a variety of sources that UVR adversely affects the immune responses to several vaccines. These studies are reviewed and the implications for vaccine administration discussed. As vaccination represents a major public health measure world-wide for the control of an increasing number of common infections, it is important to maximise its efficacy; therefore further evaluation of UVR in the context of vaccination is required and warranted.
Collapse
Affiliation(s)
- Mary Norval
- Biomedical Sciences, University of Edinburgh Medical School, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK.
| | | |
Collapse
|
50
|
Norval M, Lucas RM, Cullen AP, de Gruijl FR, Longstreth J, Takizawa Y, van der Leun JC. The human health effects of ozone depletion and interactions with climate change. Photochem Photobiol Sci 2011; 10:199-225. [PMID: 21253670 DOI: 10.1039/c0pp90044c] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Depletion of the stratospheric ozone layer has led to increased solar UV-B radiation (280-315 nm) at the surface of the Earth. This change is likely to have had an impact on human exposure to UV-B radiation with consequential detrimental and beneficial effects on health, although behavioural changes in society over the past 60 years or so with regard to sun exposure are of considerable importance. The present report concentrates on information published since our previous report in 2007. The adverse effects of UV radiation are primarily on the eye and the skin. While solar UV radiation is a recognised risk factor for some types of cataract and for pterygium, the evidence is less strong, although increasing, for ocular melanoma, and is equivocal at present for age-related macular degeneration. For the skin, the most common harmful outcome is skin cancer, including melanoma and the non-melanoma skin cancers, basal cell carcinoma and squamous cell carcinoma. The incidence of all three of these tumours has risen significantly over the past five decades, particularly in people with fair skin, and is projected to continue to increase, thus posing a significant world-wide health burden. Overexposure to the sun is the major identified environmental risk factor in skin cancer, in association with various genetic risk factors and immune effects. Suppression of some aspects of immunity follows exposure to UV radiation and the consequences of this modulation for the immune control of infectious diseases, for vaccination and for tumours, are additional concerns. In a common sun allergy (polymorphic light eruption), there is an imbalance in the immune response to UV radiation, resulting in a sun-evoked rash. The major health benefit of exposure to solar UV-B radiation is the production of vitamin D. Vitamin D plays a crucial role in bone metabolism and is also implicated in protection against a wide range of diseases. Although there is some evidence supporting protective effects for a range of internal cancers, this is not yet conclusive, but strongest for colorectal cancer, at present. A role for vitamin D in protection against several autoimmune diseases has been studied, with the most convincing results to date for multiple sclerosis. Vitamin D is starting to be assessed for its protective properties against several infectious and coronary diseases. Current methods for protecting the eye and the skin from the adverse effects of solar UV radiation are evaluated, including seeking shade, wearing protective clothing and sunglasses, and using sunscreens. Newer possibilities are considered such as creams that repair UV-induced DNA damage, and substances applied topically to the skin or eaten in the diet that protect against some of the detrimental effects of sun exposure. It is difficult to provide easily understandable public health messages regarding "safe" sun exposure, so that the positive effects of vitamin D production are balanced against the negative effects of excessive exposure. The international response to ozone depletion has included the development and deployment of replacement technologies and chemicals. To date, limited evidence suggests that substitutes for the ozone-depleting substances do not have significant effects on human health. In addition to stratospheric ozone depletion, climate change is predicted to affect human health, and potential interactions between these two parameters are considered. These include altering the risk of developing skin tumours, infectious diseases and various skin diseases, in addition to altering the efficiency by which pathogenic microorganisms are inactivated in the environment.
Collapse
Affiliation(s)
- M Norval
- Biomedical Sciences, University of Edinburgh Medical School, Edinburgh, EH8 9AG, Scotland.
| | | | | | | | | | | | | |
Collapse
|