1
|
Lash LH. Renal Glutathione: Dual roles as antioxidant protector and bioactivation promoter. Biochem Pharmacol 2024; 228:116181. [PMID: 38556029 PMCID: PMC11410546 DOI: 10.1016/j.bcp.2024.116181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
The tripeptide glutathione (GSH) possesses two key structural features, namely the nucleophilic sulfur and the γ-glutamyl isopeptide bond. The former allows GSH to serve as a critical antioxidant and anti-electrophile. The latter allows GSH to translocate throughout the systemic circulation without being degraded. The kidneys exhibit several unique processes for handling GSH. This includes the extraction of 80% of plasma GSH, in part by glomerular filtration but mostly by transport across the basolateral plasma membrane. Studies on the protective effect of exogenous GSH are summarized, showing the different inherent susceptibility of proximal tubular and distal tubular cells and the impact on pathological or disease states, including hypoxia, diabetic nephropathy, and compensatory renal growth associated with uninephrectomy. Studies on mitochondrial GSH transport show the coordination between the citric acid cycle and oxidative phosphorylation in generating driving forces for both plasma membrane and mitochondrial carriers. The strong protective effects of increasing expression and activity of these carriers against oxidants and mitochondrial toxicants are summarized. Although GSH plays a cytoprotective role in most situations, two distinct exceptions to this are presented. In contrast to expectations, overexpression of the mitochondrial 2-oxoglutarate carrier markedly increased cell death from exposure to the nephrotoxic chemotherapeutic drug cisplatin (CDDP). Another key example of GSH serving a bioactivation role in the kidneys, rather than a detoxification role, is the metabolism of halogenated alkenes such as trichloroethylene (TCE). Although considerable research has gone into this topic, unanswered questions and emerging topics remain and are discussed.
Collapse
|
2
|
Lv H, Zhen C, Liu J, Yang P, Hu L, Shang P. Unraveling the Potential Role of Glutathione in Multiple Forms of Cell Death in Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3150145. [PMID: 31281572 PMCID: PMC6590529 DOI: 10.1155/2019/3150145] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/21/2019] [Indexed: 01/17/2023]
Abstract
Glutathione is the principal intracellular antioxidant buffer against oxidative stress and mainly exists in the forms of reduced glutathione (GSH) and oxidized glutathione (GSSG). The processes of glutathione synthesis, transport, utilization, and metabolism are tightly controlled to maintain intracellular glutathione homeostasis and redox balance. As for cancer cells, they exhibit a greater ROS level than normal cells in order to meet the enhanced metabolism and vicious proliferation; meanwhile, they also have to develop an increased antioxidant defense system to cope with the higher oxidant state. Growing numbers of studies have implicated that altering the glutathione antioxidant system is associated with multiple forms of programmed cell death in cancer cells. In this review, we firstly focus on glutathione homeostasis from the perspectives of glutathione synthesis, distribution, transportation, and metabolism. Then, we discuss the function of glutathione in the antioxidant process. Afterwards, we also summarize the recent advance in the understanding of the mechanism by which glutathione plays a key role in multiple forms of programmed cell death, including apoptosis, necroptosis, ferroptosis, and autophagy. Finally, we highlight the glutathione-targeting therapeutic approaches toward cancers. A comprehensive review on the glutathione homeostasis and the role of glutathione depletion in programmed cell death provide insight into the redox-based research concerning cancer therapeutics.
Collapse
Affiliation(s)
- Huanhuan Lv
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- Zhejiang Heye Health Technology Co. Ltd., Anji, Zhejiang 313300, China
- Research Centre of Microfluidic Chip for Health Care and Environmental Monitoring, Yangtze River Delta Research Institute of Northwestern Polytechnical University in Taicang, Suzhou, Jiangsu 215400, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Junyu Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Pengfei Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- Research Centre of Microfluidic Chip for Health Care and Environmental Monitoring, Yangtze River Delta Research Institute of Northwestern Polytechnical University in Taicang, Suzhou, Jiangsu 215400, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lijiang Hu
- Zhejiang Heye Health Technology Co. Ltd., Anji, Zhejiang 313300, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- Research Centre of Microfluidic Chip for Health Care and Environmental Monitoring, Yangtze River Delta Research Institute of Northwestern Polytechnical University in Taicang, Suzhou, Jiangsu 215400, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
3
|
Harish G, Venkateshappa C, Mahadevan A, Pruthi N, Bharath MMS, Shankar SK. Mitochondrial function in human brains is affected by pre- and post mortem factors. Neuropathol Appl Neurobiol 2013; 39:298-315. [PMID: 22639898 DOI: 10.1111/j.1365-2990.2012.01285.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM Mitochondrial function and the ensuing ATP synthesis are central to the functioning of the brain and contribute to neuronal physiology. Most studies on neurodegenerative diseases have highlighted that mitochondrial dysfunction is an important event contributing to pathology. However, studies on the human brain mitochondria in various neurodegenerative disorders heavily rely on post mortem samples. As post mortem tissues are influenced by pre- and post mortem factors, we investigated the effect of these variables on mitochondrial function. METHODS We examined whether the mitochondrial function (represented by mitochondrial enzymes and antioxidant activities) in post mortem human brains (n=45) was affected by increased storage time (11.8-104.1 months), age of the donor (2 days to 80 years), post mortem interval (2.5-26 h), gender difference and agonal state [based on Glasgow Coma Scale: range=3-15] in the frontal cortex, as a prototype. RESULTS We observed that the activities of citrate synthase, succinate dehydrogenase and mitochondrial reductase (MTT) were significantly affected only by gender difference (citrate synthase: P=0.005; succinate dehydrogenase: P=0.01; mitochondrial reductase: P=0.006), being higher in females, but not by any other factor. Mitochondrial complex I activity was significantly inhibited by increasing age (r=-0.40; P=0.05). On the other hand, the mitochondrial antioxidant enzyme glutathione reductase decreased with severe agonal state (P=0.003), while the activity of glutathione-S-transferase declined with increased storage time (P=0.005) and severe agonal state (P=0.02). CONCLUSION Our data highlight the influence of pre- and post mortem factors on preservation of mitochondrial function with implications for studies on brain pathology employing stored human samples.
Collapse
Affiliation(s)
- G Harish
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | | | | |
Collapse
|
4
|
Alteration in glutathione content and associated enzyme activities in the synaptic terminals but not in the non-synaptic mitochondria from the frontal cortex of Parkinson's disease brains. Neurochem Res 2012; 38:186-200. [PMID: 23070472 DOI: 10.1007/s11064-012-0907-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 01/04/2023]
Abstract
Altered redox dynamics contribute to physiological aging and Parkinson's disease (PD). This is reflected in the substantia nigra (SN) of PD patients as lowered antioxidant levels and elevated oxidative damage. Contrary to this observation, we previously reported that non-SN regions such as caudate nucleus and frontal cortex (FC) exhibited elevated antioxidants and lowered mitochondrial and oxidative damage indicating constitutive protective mechanisms in PD brains. To investigate whether the sub-cellular distribution of antioxidants could contribute to these protective effects, we examined the distribution of antioxidant/oxidant markers in the neuropil fractions [synaptosomes, non-synaptic mitochondria and cytosol] of FC from PD (n = 9) and controls (n = 8). In the control FC, all the antioxidant activities [Superoxide dismutase (SOD), glutathione (GSH), GSH peroxidase (GPx), GSH-S-transferase (GST)] except glutathione reductase (GR) were the highest in cytosol, but several fold lower in mitochondria and much lower in synaptosomes. However, FC synaptosomes from PD brains had significantly higher levels of GSH (p = 0.01) and related enzymes [GPx (p = 0.02), GR (p = 0.06), GST (p = 0.0001)] compared to controls. Conversely, mitochondria from the FC of PD cases displayed elevated SOD activity (p = 0.02) while the GSH and related enzymes were relatively unaltered. These changes in the neuropil fractions were associated with unchanged or lowered oxidative damage. Further, the mitochondrial content in the synaptosomes of both PD and control brains was ≥five-fold lower compared to the non-synaptic mitochondrial fraction. Altered distribution of oxidant/antioxidant markers in the neuropil fractions of the human brain during aging and PD has implications for (1) degenerative and protective mechanisms (2) distinct antioxidant mechanisms in synaptic terminals compared to other compartments.
Collapse
|
5
|
Schnellmann RG. The cellular effects of a unique pesticide sulfluramid (N-ethylperfluorooctane sulphonamide) on rabbit renal proximal tubules. Toxicol In Vitro 2012; 4:71-4. [PMID: 20702287 DOI: 10.1016/0887-2333(90)90012-i] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1989] [Revised: 04/17/1989] [Indexed: 11/25/2022]
Abstract
The cellular effects of sulfluramid (N-ethylperfluorooctane sulphonamide, NEPFOS) and its major metabolite perfluorooctane sulphonamide (PFOS) were examined using a suspension of rabbit renal proximal tubules as a model. NEPFOS and PFOS were potent stimulators of proximal tubule basal oxygen consumption (QO(2)), with initial effects exhibited at 5-10 mum and maximal effects at 50-200 mum. The increase in basal QO(2) was ouabain insensitive, which suggests that NEPFOS and PFOS may act by uncoupling oxidative phosphorylation. Exposure of tubule suspensions to NEPFOS or PFOS concentrations of 100 mum or higher for 60 min produced tubule death, indicated by an increase in the release of lactate dehydrogenase. The tubule death did not appear to result from alkylation or lipid peroxidation, since glutathione and malondialdehyde levels were unaffected. To determine the mechanism by which NEPFOS and PFOS increased tubule QO(2), the effects of NEPFOS and PFOS on isolated renal cortical mitochondria were examined. NEPFOS (10 mum) and PFOS (5 mum) increased state-4 respiration of mitochondria in the absence of a phosphate acceptor. These results suggest that NEPFOS and PFOS uncouple oxidative phosphorylation and may produce cytotoxicity through this mechanism.
Collapse
Affiliation(s)
- R G Schnellmann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Aleo MD, Taub ML, Olson JR, Kostyniak PJ. Primary cultures of rabbit renal proximal tubule cells: II. Selected phase I and phase II metabolic capacities. Toxicol In Vitro 2012; 4:727-33. [PMID: 20702158 DOI: 10.1016/0887-2333(90)90041-q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/1990] [Revised: 04/05/1990] [Indexed: 10/27/2022]
Abstract
Specific characteristics of cells vary as a function of time in culture. We have determined the stability of selected Phase I and Phase II biotransformation capacities in rabbit renal proximal tubule cells in primary culture. When grown in hormonally-defined medium, proximal tubule cells lost Phase I metabolic capacity. Cytochrome P-450 content and associated mixed-function oxidase activities present in kidney cortex microsomes were not detectable after 14 days in culture. Phase II glutathione-dependent metabolic functions were well retained in cultured cells compared with freshly isolated proximal tubules (FIPT). Cellular total glutathione content was 2.8 mug/mg protein in FIPT compared with approximately 10 mug/mg protein in stable confluent cultures. A higher total glutathione content of 20.6 mug/mg was noted in preconfluent cultures. The glutathione redox state was initially perturbed in FIPT with 37% of the total glutathione present found in its oxidized form. Tubule cells recovered to a normal ratio (6-13% of total glutathione in the oxidized form) while in culture. The glutathione S-transferase activity in 4-day-old cells in culture was reduced to 50% of the 4 U/mg protein level found in FIPT. No appreciable further decline in glutathione S-transferase activity was detected during 15 days in culture. The level of gamma-glutamyl-transpeptidase (a brush-border enzyme necessary for glutathione uptake into proximal tubule cells) declined from 1499 mU/mg protein in homogenates of FIPT to 636 mU/mg in homogenates of 8-day-old cultured cells. A further decline in activity occurred during the next 7 days in culture. In conclusion, although Phase I metabolic functions were diminished in primary cultured rabbit proximal tubule cells, Phase II metabolic functions were retained at levels comparable with FIPT and well above those found in several established kidney cell lines.
Collapse
Affiliation(s)
- M D Aleo
- Department of Pharmacology and Therapeutics, State University of New York at Buffalo, 102 Farber Hall, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
7
|
Petrache SN, Stanca L, Serban AI, Sima C, Staicu AC, Munteanu MC, Costache M, Burlacu R, Zarnescu O, Dinischiotu A. Structural and oxidative changes in the kidney of crucian carp induced by silicon-based quantum dots. Int J Mol Sci 2012; 13:10193-10211. [PMID: 22949855 PMCID: PMC3431853 DOI: 10.3390/ijms130810193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/28/2012] [Accepted: 08/09/2012] [Indexed: 11/16/2022] Open
Abstract
Silicon-based quantum dots were intraperitoneally injected in Carassius auratus gibelio specimens and, over one week, the effects on renal tissue were investigated by following their distribution and histological effects, as well as antioxidative system modifications. After three and seven days, detached epithelial cells from the basal lamina, dilated tubules and debris in the lumen of tubules were observed. At day 7, nephrogenesis was noticed. The reduced glutathione (GSH) concentration decreased in the first three days and started to rise later on. The superoxide dismutase (SOD) activity increased only after one week, whereas catalase (CAT) was up-regulated in a time-dependent manner. The activities of glutathione reductase (GR) and glutathione peroxidise (GPX) decreased dramatically by approximately 50% compared to control, whereas the glutathione-S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH) increased significantly after 3 and 7 days of treatment. Oxidative modifications of proteins and the time-dependent increase of Hsp70 expression were also registered. Our data suggest that silicon-based quantum dots induced oxidative stress followed by structural damages. However, renal tissue is capable of restoring its integrity by nephron development.
Collapse
Affiliation(s)
- Sorina Nicoleta Petrache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; E-Mails: (S.N.P.); (L.S.); (A.C.S.); (M.C.M.); (M.C.); (O.Z.)
| | - Loredana Stanca
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; E-Mails: (S.N.P.); (L.S.); (A.C.S.); (M.C.M.); (M.C.); (O.Z.)
| | - Andreea Iren Serban
- Department of Preclinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 105 Splaiul Independentei, Bucharest 050097, Romania; E-Mail:
| | - Cornelia Sima
- Laser Department, National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor, Bucharest-Magurele 077125, Romania; E-Mail:
| | - Andreia Cristina Staicu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; E-Mails: (S.N.P.); (L.S.); (A.C.S.); (M.C.M.); (M.C.); (O.Z.)
| | - Maria Cristina Munteanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; E-Mails: (S.N.P.); (L.S.); (A.C.S.); (M.C.M.); (M.C.); (O.Z.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; E-Mails: (S.N.P.); (L.S.); (A.C.S.); (M.C.M.); (M.C.); (O.Z.)
| | - Radu Burlacu
- Department of Mathematics, University of Agricultural Sciences and Veterinary Medicine, 59 Marasti Bd., Bucharest 011464, Romania; E-Mail:
| | - Otilia Zarnescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; E-Mails: (S.N.P.); (L.S.); (A.C.S.); (M.C.M.); (M.C.); (O.Z.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; E-Mails: (S.N.P.); (L.S.); (A.C.S.); (M.C.M.); (M.C.); (O.Z.)
- Author to whom correspondence should be addressed; E-Mail: or ; Tel./Fax: +40-21-318-1575 (ext. 103)
| |
Collapse
|
8
|
Geng Q, Sun X, Gong T, Zhang ZR. Peptide-drug conjugate linked via a disulfide bond for kidney targeted drug delivery. Bioconjug Chem 2012; 23:1200-10. [PMID: 22663297 DOI: 10.1021/bc300020f] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic kidney disease (CKD) is a worldwide public health problem, and unfortunately, the therapeutic index of clinically available drugs is limited. Thus, there is a great need to exploit effective treatment strategies, and the carrier-drug approach is an attractive method to improve the kidney specificity of the therapeutic agents. The aim of this present study is to develop a peptide-drug conjugate for the kidney targeted delivery of angiotensin-converting enzyme (ACE) inhibitor captopril (CAP), since G3-C12 peptide (ANTPCGPYTHDCPVKR) could specifically accumulate in the kidney after intravenous injection. Therefore, FITC labeled G3-C12 peptide (G3-C12-FITC) and peptide-drug conjugate (G3-C12-CAP) with a disulfide bond which can be cleaved by reduced glutathione in the kidney were prepared by solid-phase peptide synthesis. The fluorescence imaging of G3-C12-FITC revealed that the labeled peptide specifically accumulated in the kidney soon after i.v. injection to mice, and the accumulation is due largely to the reabsorption of the peptide by the proximal renal tubule cells. Furthermore, in comparison with the corresponding nonconjugated form, a 2.7-fold increase in renal area under concentration-time curve produced by the conjugate was observed in mice. Interestingly, the CAP entirely released in the kidney even at 0.05 h postinjection through disulfide reduction. As a consequence, the in vivo renal ACE inhibition was significantly increased. In conclusion, these findings suggest the potential of G3-C12 peptide serving as a suitable candidate carrier for kidney-targeted drug delivery.
Collapse
Affiliation(s)
- Qian Geng
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Southern Renmin Road, No. 17, Section 3, Chengdu 610041, P. R. China
| | | | | | | |
Collapse
|
9
|
Harish G, Venkateshappa C, Mahadevan A, Pruthi N, Srinivas Bharath M, Shankar S. Effect of Premortem and Postmortem Factors on the Distribution and Preservation of Antioxidant Activities in the Cytosol and Synaptosomes of Human Brains. Biopreserv Biobank 2012; 10:253-65. [DOI: 10.1089/bio.2012.0001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- G. Harish
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - C. Venkateshappa
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - M.M. Srinivas Bharath
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - S.K. Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
10
|
Prasad SB, Rosangkima G, Kharbangar A. Structural and biochemical changes in mitochondria after cisplatin treatment of Dalton’s lymphoma-bearing mice. Mitochondrion 2010; 10:38-45. [DOI: 10.1016/j.mito.2009.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 09/07/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
|
11
|
Protective Effects of the Antioxidant 4b,5,9b,10-Tetrahydroindeno[1,2-b]indole Against TCDD Toxicity in C57BL/6J Mice. Int J Toxicol 2009; 29:40-8. [DOI: 10.1177/1091581809352885] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The protection against 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD; 5 µg/kg body weight) toxicity by the antioxidant 4b,5,9b,10-tetrahydroindeno[1,2- b]indole (THII) was examined in female C57BL/6J mice. TCDD produced increases in the levels of hepatic lipid-derived aldehydes, rates of mitochondrial production of hydrogen peroxide and superoxide, and the oxidation state of cytosolic GSH. In contrast, mitochondrial GSH increased in reduction state, correlating with an increase in mitochondrial membrane potential. Systemically, TCDD lowered body weight gain, percentage body fat, and hepatic ATP levels, parameters prevented by concomitant administration of 100 µM THII in drinking water. However, TCDD-induced increases in mitochondrial respiration and decreased mitochondrial membrane fluidity were not prevented by THII. These results suggest that TCDD-mediated oxidative stress was not responsible for changes in mitochondrial respiration or membrane fluidity. Furthermore, although TCDD produced a large increase in mitochondrial oxygen consumption, this was not associated with the poor gain in weight produced by TCDD.
Collapse
|
12
|
|
13
|
Gukasyan HJ, Lee VHL, Simityan H, Kim KJ, Kannan R. Thermodynamic stoichiometry of Na+-coupled glutathione transport. Can J Physiol Pharmacol 2006; 84:1223-7. [PMID: 17218987 DOI: 10.1139/y06-067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ambiguity exists with respect to mechanisms of glutathione (GSH) transport and the molecular identity of GSH transporters. Empirical and theoretical limitations have hindered functional and molecular characterizations. Published literature referring to the isolation and molecular identification of Na+-coupled GSH transporters that mediate the cellular uptake of GSH is highly debated. Whereas a number of functional and kinetic reports of this putative symport mechanism exist, the hypothetical transmembrane Na+-coupled GSH transporter protein or the genetic message encoding it has not been isolated. Theoretical thermodynamic calculations to support the concept of secondary active GSH transport and to rationalize accounts of physical-kinetic measurements describing Na+-coupled cellular GSH uptake were performed. The adequacy of requisite energy and stoichiometric conservation of the separate electrical and chemical components of a Na+gradient in maintaining a high cellular accumulation gradient for GSH was examined through a purely phenomenological perspective. Dependent on the biological context, the energetic coupling between Na+and GSH cotransport may occur at ratios from 1:1 to 3:1. Molecular identification of specific transporters responsible for cellular Na+-coupled GSH uptake will facilitate determination of their relative contribution to the overall plasma membrane resting potential. In tissues with a high GSH concentration relative to their extracellular millieu, particularly in pathologies of cystic fibrosis and dry eye syndromes, large energy coupling ratios in cotransport of Na+and GSH may be expected. Na+-coupled GSH transport may play an important role in disease onset and (or) progression, or treatment modalities thereof.
Collapse
Affiliation(s)
- Hovhannes J Gukasyan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | | | |
Collapse
|
14
|
Green RM, Graham M, O'Donovan MR, Chipman JK, Hodges NJ. Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity. Mutagenesis 2006; 21:383-90. [PMID: 17012304 DOI: 10.1093/mutage/gel043] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glutathione (GSH) is a major component of the antioxidant defence system of mammalian cells and is found in subcellular pools within the cytoplasm, nucleus and mitochondria. To evaluate the relationships between these pools and parameters of oxidative stress related to genotoxicity, wild type (WT) and 8-oxo-2'-deoxyguanosine glycosylase 1 (OGG1)-null (mOGG1(-/-)) mouse embryonic fibroblasts (MEF) were treated with buthionine sulphoximine (BSO; 0-1000 microM, 24 h), an inhibitor of GSH biosynthesis. BSO treatment resulted in a concentration-dependent depletion of GSH from the cytoplasm, but depletion of mitochondrial and nuclear GSH occurred only at concentrations > or =100 microM. GSH levels were correlated with reactive oxygen species (ROS), lipid peroxidation (measured as the increase in the genotoxic end-product malondialdehyde (MDA)) and oxidative DNA modifications, measured as both frank DNA strand-breaks (FSB) and oxidized purine lesions (OxP) using the alkaline comet assay with formamidopyrimidine DNA glycosylase (FPG) modification; this system allowed for the identification of BSO-induced DNA modifications as primarily mutagenic 8-oxo-2'-deoxyguanosine lesions. A number of significant correlations were observed. First, negative linear correlations were observed between mitochondrial GSH and ROS (r = -0.985 and r = -0.961 for WT and mOGG1(-/-) MEF, respectively), and mitochondrial GSH and MDA (r = -0.967 and r = -0.963 for WT and mOGG1(-/-) MEF, respectively). Second, positive linear correlations were observed between ROS and MDA (r = 0.996 and r = 0.935 for WT and mOGG1(-/-) MEF, respectively), and ROS and OxP (r = 0.938 and r = 0.981 for WT and mOGG1(-/-) MEF, respectively). Finally, oxidative DNA modifications displayed a negative linear correlation with nuclear GSH (r = -0.963 and -0.951 between nuclear GSH and FSB and OxP, respectively, for WT MEF and r = -0.960 between nuclear GSH and OxP in mOGG1(-/-) MEF), thus, demonstrating the genotoxic potential of compounds that deplete GSH. The findings highlight the critical roles of the mitochondrial and nuclear GSH pools in protecting cellular components, particularly DNA, from oxidative modification.
Collapse
Affiliation(s)
- Richard M Green
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
15
|
Xu F, Putt DA, Matherly LH, Lash LH. Modulation of expression of rat mitochondrial 2-oxoglutarate carrier in NRK-52E cells alters mitochondrial transport and accumulation of glutathione and susceptibility to chemically induced apoptosis. J Pharmacol Exp Ther 2006; 316:1175-86. [PMID: 16291728 DOI: 10.1124/jpet.105.094599] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously showed that two anion carriers of the mitochondrial inner membrane, the dicarboxylate carrier (DIC; Slc25a10) and oxoglutarate carrier (OGC; Slc25a11), transport glutathione (GSH) from cytoplasm into mitochondrial matrix. In the previous study, NRK-52E cells, derived from normal rat kidney proximal tubules, were transfected with the wild-type cDNA for the DIC expressed in rat kidney; DIC transfectants exhibited increased mitochondrial uptake and accumulation of GSH and were markedly protected from chemically induced apoptosis. In the present study, cDNAs for both wild-type (WT) and a double-cysteine mutant of rat OGC (rOGC and rOGC-C221,224S, respectively) were expressed in Escherichia coli, purified, and reconstituted into proteoliposomes to assess their function. Although both WT rOGC and rOGC-C221,224S exhibited transport properties for GSH and 2-oxoglutarate that were similar to those found in mitochondria of rat kidney proximal tubules, rates of transport and mitochondrial accumulation of substrates were reduced by >75% in rOGC-C221,224S compared with the WT carrier. NRK-52E cells were stably transfected with the cDNA for WT-rOGC and exhibited 10- to 20-fold higher GSH transport activity than nontransfected cells and were markedly protected from apoptosis induced by tert-butyl hydroperoxide (tBH) or S-(1,2-dichlorovinyl)-L-cysteine (DCVC). In contrast, cells stably transfected with the cDNA for rOGC-C221,224S were not protected from tBH- or DCVC-induced apoptosis. These results provide further evidence that genetic manipulation of mitochondrial GSH transporter expression alters mitochondrial and cellular GSH status, resulting in markedly altered susceptibility to chemically induced apoptosis.
Collapse
Affiliation(s)
- Feng Xu
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Ave., Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
16
|
Jezek P, Hlavatá L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 2005; 37:2478-503. [PMID: 16103002 DOI: 10.1016/j.biocel.2005.05.013] [Citation(s) in RCA: 533] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 04/26/2005] [Accepted: 05/31/2005] [Indexed: 12/22/2022]
Abstract
The recent knowledge on mitochondria as the substantial source of reactive oxygen species, namely superoxide and hydrogen peroxide efflux from mitochondria, is reviewed, as well as nitric oxide and subsequent peroxynitrite generation in mitochondria and their effects. The reactive oxygen species formation in extramitochondrial locations, in peroxisomes, by cytochrome P450, and NADPH oxidase reaction, is also briefly discussed. Conditions are pointed out under which mitochondria represent the major ROS source for the cell: higher percentage of non-phosphorylating and coupled mitochondria, in vivo oxygen levels leading to increased intensity of the reverse electron transport in the respiratory chain, and nitric oxide effects on the redox state of cytochromes. We formulate hypotheses on the crucial role of ROS generated in mitochondria for the whole cell and organism, in concert with extramitochondrial ROS and antioxidant defense. We hypothesize that a sudden decline of mitochondrial ROS production converts cells or their microenvironment into a "ROS sink" represented by the instantly released excessive capacity of ROS-detoxification mechanisms. A partial but immediate decline of mitochondrial ROS production may be triggered by activation of mitochondrial uncoupling, specifically by activation of recruited or constitutively present uncoupling proteins such as UCP2, which may counterbalance the mild oxidative stress.
Collapse
Affiliation(s)
- Petr Jezek
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ 14220 Prague, Czech Republic.
| | | |
Collapse
|
17
|
Shen D, Dalton TP, Nebert DW, Shertzer HG. Glutathione Redox State Regulates Mitochondrial Reactive OxygenProduction. J Biol Chem 2005; 280:25305-12. [PMID: 15883162 DOI: 10.1074/jbc.m500095200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin) is poorly understood. Following one dose of TCDD (5 microg/kg body weight), mitochondrial succinate-dependent production of superoxide and H2O2 in mouse liver doubled at 7-28 days, then subsided by day 56; concomitantly, levels of GSH and GSSG increased in both cytosol and mitochondria. Cytosol displayed a typical oxidative stress response, consisting of diminished GSH relative to GSSG, decreased potential to reduce protein-SSG mixed disulfide bonds (type 1 thiol redox switch) or protein-SS-protein disulfide bonds (type 2 thiol redox switch), and a +10 mV change in GSSG/2GSH reduction potential. In contrast, mitochondria showed a rise in reduction state, consisting of increased GSH relative to GSSG, increases in type 1 and type 2 thiol redox switches, and a -25 mV change in GSSG/2GSH reduction potential. Comparing Ahr(-/-) knock-out and wild-type mice, we found that TCDD-induced thiol changes in both cytosol and mitochondria were dependent on the aromatic hydrocarbon receptor (AHR). GSH was rapidly taken up by mitochondria and stimulated succinate-dependent H2O2 production. A linear dependence of H2O2 production on the reduction potential for GSSG/2GSH exists between -150 and -300 mV. The TCDD-stimulated increase in succinate-dependent and thiol-stimulated production of reactive oxygen paralleled a four-fold increase in formamidopyrimidine DNA N-glycosylase (FPG)-sensitive cleavage sites in mitochondrial DNA, compared with a two-fold increase in nuclear DNA. These results suggest that TCDD produces an AHR-dependent oxidative stress in mitochondria, with concomitant mitochondrial DNA damage mediated, at least in part, by an increase in the mitochondrial thiol reduction state.
Collapse
Affiliation(s)
- Dongxiao Shen
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, P. O. Box 670056, Cincinnati, Ohio 45267-0056, USA
| | | | | | | |
Collapse
|
18
|
Lash LH. Role of glutathione transport processes in kidney function. Toxicol Appl Pharmacol 2005; 204:329-42. [PMID: 15845422 DOI: 10.1016/j.taap.2004.10.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 10/07/2004] [Indexed: 01/23/2023]
Abstract
The kidneys are highly dependent on an adequate supply of glutathione (GSH) to maintain normal function. This is due, in part, to high rates of aerobic metabolism, particularly in the proximal tubules. Additionally, the kidneys are potentially exposed to high concentrations of oxidants and reactive electrophiles. Renal cellular concentrations of GSH are maintained by both intracellular synthesis and transport from outside the cell. Although function of specific carriers has not been definitively demonstrated, it is likely that multiple carriers are responsible for plasma membrane transport of GSH. Data suggest that the organic anion transporters OAT1 and OAT3 and the sodium-dicarboxylate 2 exchanger (SDCT2 or NaDC3) mediate uptake across the basolateral plasma membrane (BLM) and that the organic anion transporting polypeptide OATP1 and at least one of the multidrug resistance proteins mediate efflux across the brush-border plasma membrane (BBM). BLM transport may be used pharmacologically to provide renal proximal tubular cells with exogenous GSH to protect against oxidative stress whereas BBM transport functions physiologically in turnover of cellular GSH. The mitochondrial GSH pool is derived from cytoplasmic GSH by transport into the mitochondrial matrix and is mediated by the dicarboxylate and 2-oxoglutarate exchangers. Maintenance of the mitochondrial GSH pool is critical for cellular and mitochondrial redox homeostasis and is important in determining susceptibility to chemically induced apoptosis. Hence, membrane transport processes are critical to regulation of renal cellular and subcellular GSH pools and are determinants of susceptibility to cytotoxicity induced by oxidants and electrophiles.
Collapse
Affiliation(s)
- Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, Michigan 48201, USA.
| |
Collapse
|
19
|
Lash LH, Putt DA, Hueni SE, Cao W, Xu F, Kulidjian SJ, Horwitz JP. Cellular energetics and glutathione status in NRK-52E cells: toxicological implications. Biochem Pharmacol 2002; 64:1533-46. [PMID: 12417266 DOI: 10.1016/s0006-2952(02)01360-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cellular energetics and redox status were evaluated in NRK-52E cells, a stable cell line derived from rat proximal tubules. To assess toxicological implications of these properties, susceptibility to apoptosis induced by S-(1,2-dichlorovinyl)-L-cysteine (DCVC), a well-known mitochondrial and renal cytotoxicant, was studied. Cells exhibited high activities of several glutathione (GSH)-dependent enzymes, including gamma-glutamylcysteine synthetase, GSH peroxidase, glutathione disulfide reductase, and GSH S-transferase, but very low activities of gamma-glutamyltransferase and alkaline phosphatase, consistent with a low content of brush-border microvilli. Uptake and total cellular accumulation of [14C]alpha-methylglucose was significantly higher when cells were exposed at the basolateral as compared to the brush-border membrane. Similarly, uptake of GSH was nearly 2-fold higher across the basolateral than the brush-border membrane. High activities of (Na(+)+K(+))-ATPase and malic dehydrogenase, but low activities of other mitochondrial enzymes, respiration, and transport of GSH and dicarboxylates into mitochondria were observed. Examination of mitochondrial density by confocal microscopy, using a fluorescent marker (MitoTracker Orange), indicated that NRK-52E cells contain a much lower content of mitochondria than rat renal proximal tubules in vivo. Incubation of cells with DCVC caused time- and concentration-dependent ATP depletion that was largely dependent on transport and bioactivation, as observed in the rat, on induction of apoptosis, and on morphological damage. Comparison with primary cultures of rat and human proximal tubular cells suggests that the NRK-52E cells are modestly less sensitive to DCVC. In most respects, however, NRK-52E cells exhibited functions similar to those of the rat renal proximal tubule in vivo.
Collapse
Affiliation(s)
- Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Lash LH, Putt DA, Matherly LH. Protection of NRK-52E cells, a rat renal proximal tubular cell line, from chemical-induced apoptosis by overexpression of a mitochondrial glutathione transporter. J Pharmacol Exp Ther 2002; 303:476-86. [PMID: 12388626 DOI: 10.1124/jpet.102.040220] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dicarboxylate carrier (DCC) is one of two carriers responsible for glutathione (GSH) transport into rat kidney mitochondria. The central hypothesis of the present study was that overexpression of this carrier in renal proximal tubular cells increases content of mitochondrial GSH, which in turn can protect these cells from chemical-induced injury. We first cloned the carrier protein and verified its properties. This was accomplished by reverse transcribing total rat kidney RNA and polymerase chain reaction amplification with primers based on the complete cDNA sequence for the mitochondrial DCC protein. DCC was expressed as a His(6)-tagged protein, purified from Escherichia coli inclusion bodies, and reconstituted into proteoliposomes for transport assays. Time- and concentration-dependent uptake of both L-[(3)H-glycyl]GSH and [2-(14)C]malonate was observed with kinetics, substrate specificity, and inhibitor sensitivities similar to those observed in rat kidney proximal tubules. We next transiently transfected NRK-52E cells with the cDNA for rat kidney DCC to overexpress the protein. The presence of the recombinant DCC-His(6) protein was confirmed by immunoblots. Transport of both GSH and malonate into the mitochondrial fraction of transfected cells was enhanced 2.45- to 11.3-fold, compared with that in wild-type cells. Transfected cells exhibited markedly less apoptosis from tert-butyl hydroperoxide or S-(1,2-dichlorovinyl)-L-cysteine than did wild-type cells, validating the central hypothesis and providing us with a valuable and novel tool with which to further study GSH and thiol redox status in renal mitochondria, and the function of GSH transport in regulation of processes such as apoptosis and oxidative phosphorylation.
Collapse
Affiliation(s)
- Lawrence H Lash
- Department of Pharmacology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
21
|
Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001; 30:1191-212. [PMID: 11368918 DOI: 10.1016/s0891-5849(01)00480-4] [Citation(s) in RCA: 3208] [Impact Index Per Article: 133.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Redox state is a term used widely in the research field of free radicals and oxidative stress. Unfortunately, it is used as a general term referring to relative changes that are not well defined or quantitated. In this review we provide a definition for the redox environment of biological fluids, cell organelles, cells, or tissue. We illustrate how the reduction potential of various redox couples can be estimated with the Nernst equation and show how pH and the concentrations of the species comprising different redox couples influence the reduction potential. We discuss how the redox state of the glutathione disulfide-glutathione couple (GSSG/2GSH) can serve as an important indicator of redox environment. There are many redox couples in a cell that work together to maintain the redox environment; the GSSG/2GSH couple is the most abundant redox couple in a cell. Changes of the half-cell reduction potential (E(hc)) of the GSSG/2GSH couple appear to correlate with the biological status of the cell: proliferation E(hc) approximately -240 mV; differentiation E(hc) approximately -200 mV; or apoptosis E(hc) approximately -170 mV. These estimates can be used to more fully understand the redox biochemistry that results from oxidative stress. These are the first steps toward a new quantitative biology, which hopefully will provide a rationale and understanding of the cellular mechanisms associated with cell growth and development, signaling, and reductive or oxidative stress.
Collapse
Affiliation(s)
- F Q Schafer
- Free Radical Research Institute & ESR Facility, The University of Iowa, Iowa City, IA 52242-1101, USA.
| | | |
Collapse
|
22
|
Cummings BS, Angeles R, McCauley RB, Lash LH. Role of voltage-dependent anion channels in glutathione transport into yeast mitochondria. Biochem Biophys Res Commun 2000; 276:940-4. [PMID: 11027572 DOI: 10.1006/bbrc.2000.3572] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione (GSH) is imported into mitochondria from the extra-mitochondrial cytoplasm. Translocation across the inner membrane of mitochondria is thought to occur via the dicarboxylate and 2-oxoglutarate carriers; however, the means by which GSH passes through the outer membrane is unknown. Disruption of the outer membrane of yeast mitochondria using either digitonin or osmotic shock did not alter GSH accumulation as compared with accumulation in intact mitochondria. These results suggested that passage across the outer membrane was not the rate-limiting step in GSH accumulation. Mitochondria isolated from yeast strains with a disruption in the major pore-forming protein of the outer membrane, VDAC1, accumulated GSH to a greater extent than mitochondria isolated from a wild-type strain. Disruption of the gene for VDAC2 did not affect GSH import. Thus, neither VDAC form is essential for GSH translocation into mitochondria, and the participation of another outer membrane channel in GSH import is possible.
Collapse
Affiliation(s)
- B S Cummings
- Department of Pharmacology, Wayne State University, Detroit, Michigan, 48201, USA
| | | | | | | |
Collapse
|
23
|
Chen Z, Putt DA, Lash LH. Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport. Arch Biochem Biophys 2000; 373:193-202. [PMID: 10620338 DOI: 10.1006/abbi.1999.1527] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In previous studies, we provided evidence for uptake of glutathione (GSH) by the dicarboxylate and the 2-oxoglutarate carriers in rat kidney mitochondria. To investigate further the role of these two carriers, GSH transport activity was enriched from rabbit kidney mitochondria and functionally reconstituted into phospholipid vesicles. Starting with 200 mg of mitoplast protein, 2 mg of partially enriched proteins were obtained after Triton X-114 solubilization and hydroxyapatite chromatography. The reconstituted proteoliposomes catalyzed butylmalonate-sensitive uptake of [(14)C]malonate, phenylsuccinate-sensitive uptake of [(14)C]2-oxoglutarate, and transport activity with [(3)H]GSH. The initial rate of uptake of 5 mM GSH was approximately 170 nmol/min per mg protein, with a first-order rate constant of 0.3 min(-1), which is very close to that previously determined in freshly isolated rat kidney mitochondria. The enrichment procedure resulted in an approximately 60-fold increase in the specific activity of GSH transport. Substrates and inhibitors for the dicarboxylate and the 2-oxoglutarate carriers (i.e., malate, malonate, 2-oxoglutarate, butylmalonate, phenylsuccinate) significantly inhibited the uptake of [(3)H]GSH, whereas most substrates for the tricarboxylate and monocarboxylate carriers had no effect. GSH uptake exhibited an apparent K(m) of 2.8 mM and a V(max) of 260 nmol/min per mg protein. Analysis of mutual inhibition between GSH and the dicarboxylates suggested that the dicarboxylate carrier contributes a somewhat higher proportion to overall GSH uptake and that both carriers account for 70 to 80% of total GSH uptake. These results provide further evidence for the function of the dicarboxylate and 2-oxoglutarate carriers in the mitochondrial transport of GSH.
Collapse
Affiliation(s)
- Z Chen
- Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, Michigan, 48201, USA
| | | | | |
Collapse
|
24
|
Abstract
Chronic cadmium (Cd)-induced nephrotoxicity is believed to be irreversible at advanced stages and no treatment is currently available. This study examined the beneficial effect of N-acetyl cysteine (NAC) on Cd-induced nephrotoxicity. Female Sprague-Dawley rats were injected s.c. with 5 micromol CdCl2/kg per day, five times/week for up to 26 weeks. Nephrotoxicity was detected after 10 weeks by elevation in urinary lactate dehydrogenase activity and protein. NAC co-administration from week 13 prevented the progression of nephrotoxicity. In these animals, with low-level nephrotoxicity, discontinuation of Cd exposure at the end of week 22 resulted in gradual recovery over the next several weeks, without the need for treatment with NAC. On the other hand, discontinuation of NAC co-treatment at the end of week 22 resulted in quick progression of nephrotoxicity, indicating that NAC protection was short-lived. Resumption of NAC treatment and cessation of Cd exposure after 26 weeks resulted in rapid recovery from advanced nephrotoxicity. It is concluded that protection from Cd-induced nephrotoxicity is possible by continued co-administration of NAC and that recovery from advanced nephrotoxicity can also be achieved with NAC, provided that Cd exposure is stopped.
Collapse
Affiliation(s)
- Z A Shaikh
- Department of Biomedical Sciences, College of Pharmacy, University of Rhode Island, Kingston 02881, USA.
| | | | | | | |
Collapse
|
25
|
Parks LD, Zalups RK, Barfuss DW. Heterogeneity of glutathione synthesis and secretion in the proximal tubule of the rabbit. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:F924-31. [PMID: 9612330 DOI: 10.1152/ajprenal.1998.274.5.f924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study was designed to examine the synthesis and possible secretion of glutathione (GSH) in the S1, S2, and S3 segments of the rabbit proximal tubule. GSH synthesis and secretion rates were measured in the three segments of the proximal tubule, using the isolated perfused renal tubule technique. Tritiated (3H) glycine was perfused into segments and synthesized [3H]GSH (3H on the glycine residue) was measured in the bathing solution, collectate, and tubule extract. In the S1 segments, GSH was synthesized at the rate of 8.65 +/- 0.88 fmol.min-1.mm-1 tubule length and preferentially secreted into the lumen at the rate of 7.28 +/- 0.74 fmol.min-1.mm-1. The difference between synthesis and secretion appeared in the bathing solution. The S2 segment synthesized GSH at the rate of 3.88 +/- 0.82 and secreted GSH at the rate of 2.78 +/- 0.57 fmol.min-1.mm-1. GSH synthesis and secretion rates in the S3 segment were 5.45 +/- 1.19 and 4.22 +/- 1.16 fmol.min-1.mm-1, respectively. Cellular concentrations of [3H]GSH increased along the length of the proximal tubule, with the highest concentrations in the S3 segment. The respective GSH cellular concentrations in the S1, S2, and S3 segments were 35.89 +/- 10.51, 49.65 +/- 9.32, and 116.90 +/- 15.76 microM. These findings indicate that there is heterogeneity of GSH synthesis along the proximal tubule and that synthesized GSH is secreted preferentially into the lumen.
Collapse
Affiliation(s)
- L D Parks
- Biology Department, Georgia State University, Atlanta 30302-4010, USA
| | | | | |
Collapse
|
26
|
Potter AJ, Grossmann A, Rabinovitch PS, Eaton DL, Kavanagh TJ. The effect of in vitro phorone exposure on glutathione content and T cell antigen receptor (CD3)-stimulated calcium mobilization in murine splenic T lymphocytes. Toxicol In Vitro 1997; 11:355-63. [PMID: 20654322 DOI: 10.1016/s0887-2333(97)82756-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/1997] [Indexed: 11/25/2022]
Abstract
An increase in cytosolic free calcium ([Ca(2+)](i)) is one of the earliest events to occur in T lymphocytes following stimulation of the transmembrane T cell receptor/CD3 complex (TCR/CD3). This [Ca(2+)](i) mobilization has been found to be sensitive to intracellular thiol redox status, which in turn is modulated by cellular glutathione (GSH) content. We have previously reported that GSH depletion, by treatment with either the alpha, beta-carbonyl diethyl maleate or the aromatic halo-compound 1-chloro-2,4-dinitrobenzene, correlates with decreased [Ca(2+)](i) mobilization in anti-CD3 monoclonal antibody (mAb)-stimulated human peripheral blood lymphocytes (HPBL). This prompted us to determine whether this correlation between GSH content and TCR/CD3 signal transduction capability was also present in murine lymphocytes, since the mouse model is often used as a surrogate for the human immune system. The results presented here demonstrate that in vitro treatment with the alpha, beta-carbonyl phorone dose-dependently depletes intracellular GSH in murine splenic T lymphocytes. Both CD4(+) and CD8(+) T lymphocytes depleted of GSH by greater than 40% were found to have a decreased [Ca(2+)](i) mobilization following anti-CD3 mAb stimulation. Similar to what has been described for HPBL, these results indicate that the cellular GSH status influences the initial response of murine T lymphocytes to TCR/CD3 stimulation.
Collapse
Affiliation(s)
- A J Potter
- Department of Environmental Health, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
27
|
Grune T, Siems WG, Petras T. Identification of metabolic pathways of the lipid peroxidation product 4-hydroxynonenal in in situ perfused rat kidney. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37184-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
McAnulty JF, Huang XQ. The efficacy of antioxidants administered during low temperature storage of warm ischemic kidney tissue slices. Cryobiology 1997; 34:406-15. [PMID: 9200825 DOI: 10.1006/cryo.1997.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Accumulation of products of lipid peroxidation (malondialdehyde, conjugated dienes, lipid peroxides, and Schiff bases) was evaluated in rabbit kidney cortex slices made ischemic for 60 min followed by 18 h storage at 5 degrees C in UW Na gluconate solution and 210 min normothermic reoxygenated incubation. In addition, the effect of adding Trolox (1 mM), deferoxamine (1 mM), and ascorbate (1 mM) as supplemental antioxidants to the UW gluconate solution was evaluated. Lipid peroxidation was slightly increased after hypothermic storage compared to slices subjected to ischemia alone but was not significantly different than ischemic slices during subsequent incubation at normothermia. The addition of either deferoxamine or Trolox to the storage solution substantially reduced lipid peroxidation both during hypothermic storage and subsequent to normothermic incubation. Ascorbate had a mild prooxidant effect as a sole additive to the UW gluconate solution but was clearly prooxidant when combined with either deferoxamine or Trolox. These results suggest that supplemental antioxidants added to the UW gluconate solution under conditions analogous to machine perfusion preservation have a potential role in reducing oxidative stress in kidney tissues harvested after warm ischemia and that hypothermia may be a valuable adjunct to resuscitative therapeutic regimens developed for salvage of ischemic kidneys for transplantation.
Collapse
Affiliation(s)
- J F McAnulty
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
29
|
Toutain HJ, Sarsat JP, Bouant A, Hoet D, Leroy D, Moronvalle-Halley V. Precision-cut dog renal cortical slices in dynamic organ culture for the study of cisplatin nephrotoxicity. Cell Biol Toxicol 1996; 12:289-98. [PMID: 9034623 DOI: 10.1007/bf00438160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The dog is the non-rodent species the most often used in preclinical drug safety evaluation. In this study, we established a new system of precision-cut dog renal cortical slices, evaluated their biochemical, functional, and morphological integrity, and determined the effects of cisplatin (cis-diamminedichloroplatinum (II), CDDP), a very potent nephrotoxic antineoplastic agent used to treat a variety of solid tumors, on the viability and histopathology of slices. Precision-cut renal cortical slices were made perpendicular to the cortical-papillary axis. Slices were incubated in DMEM/Ham's F12 culture medium containing 1 g/L glucose, 2 mmol/L glutamine, and 2 mmol/L heptanoic acid at 37 degrees C in an atmosphere of 5% CO2-70% O2-25% N2 in dynamic organ culture. Our results showed that slices maintained ATP and GSH content, protein synthesis, Na(+)-dependent uptake of glucose inhibited by phlorizin, PAH (p-aminohippuric acid) uptake inhibited by probenecid, and TEA (tetraethylammonium) uptake inhibited by mepiperphenidol for at least 6 h of culture, and morphological integrity up to 24 h. After 6 h of exposure, CDDP induced vacuolation and cell necrosis in the epithelial tubular cells of slices with a concentration-related increase in extension but not in severity. The development of the lesions started in the proximal tubules and extended to the distal tubules. The location and the extension of the lesions confirmed the observations in dog kidneys after in vivo treatment with CDDP by the intravenous route. The concentration-related decrease in slice viability after 6 h exposure to CDDP was in keeping with the extension of the histopathological lesions in the renal parenchyma. The slice viability was unaffected up to 0.63 mmol/L CDDP. At 1.25 and 2.5 mmol/L CDDP, slice viability fell by 35% and 75%, respectively. These results suggest that precision-cut dog renal cortical slices in culture may be suitable for addressing the specific nephrotoxicity issues encountered in this species.
Collapse
Affiliation(s)
- H J Toutain
- Département Sécurité du Médicament, Rhône-Poulenc Rorer SA, Vitry sur Seine, France
| | | | | | | | | | | |
Collapse
|
30
|
Visarius TM, Putt DA, Schare JM, Pegouske DM, Lash LH. Pathways of glutathione metabolism and transport in isolated proximal tubular cells from rat kidney. Biochem Pharmacol 1996; 52:259-72. [PMID: 8694851 DOI: 10.1016/0006-2952(96)00203-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cellular uptake and metabolism of exogenous glutathione (GSH) in freshly isolated proximal tubular (PT) cells from rat kidney were examined in the absence and presence of inhibitors of GSH turnover [acivicin, L-buthionine-S,R-sulfoximine (BSO)] to quantify and assess the role of different pathways in the handling of GSH in this renal cell population. Incubation of PT cells with 2 or 5 mM GSH in the presence of acivicin/BSO produced 3- to 4-fold increases in intracellular GSH within 10-15 min. These significantly higher intracellular concentrations were maintained for up to 60 min. At lower concentrations of extracellular GSH, an initial increase in intracellular GSH concentrations was observed, but this was not maintained for the 60-min time course. In the absence of inhibitors, intracellular concentrations of GSH increased to levels that were 2- to 3-fold higher than initial values in the first 10-15 min, but these dropped below initial levels thereafter. In both the absence and presence of acivicin/BSO, PT cells catalyzed oxidation of GSH to glutathione disulfide (GSSG) and degradation of GSH to glutamate and cyst(e)ine. Exogenous tert-butyl hydroperoxide oxidized intracellular GSH to GSSG in a concentration-dependent manner and extracellular GSSG was transported into PT cells, but limited intracellular reduction of GSSG to GSH occurred. Furthermore, incubation of cells with precursor amino acids produced little intracellular synthesis of GSH, suggesting that PT cells have limited biosynthetic capacity for GSH under these conditions. Hence, direct uptake of GSH, rather than reduction of GSSG or resynthesis from precursors, may be the primary mechanism to maintain intracellular thiol redox status under toxicological conditions. Since PT cells are a primary target for toxicants, the ability of these cells to rapidly take up and metabolize GSH may serve as a defensive mechanism to protect against chemical injury.
Collapse
Affiliation(s)
- T M Visarius
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
31
|
Lash LH. Intracellular distribution of thiols and disulfides: assay of mitochondrial glutathione transport. Methods Enzymol 1995; 252:14-26. [PMID: 7476347 DOI: 10.1016/0076-6879(95)52004-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- L H Lash
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| |
Collapse
|
32
|
Stratta P, Segoloni GP, Canavese C, Muzio G, Dogliani M, Serra A, Allemandi P, Salomone M, Caramellino C, Canuto R. Oxygen free radicals are not the main factor in experimental gentamicin nephrotoxicity. Ren Fail 1994; 16:445-55. [PMID: 7938753 DOI: 10.3109/08860229409045076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
As a role for oxygen free radicals has been suggested in gentamicin (G) nephrotoxicity, we tested the hypothesis that exogenously administered glutathione (GSH), able to restore intracellular antioxidant potential, could be useful in reducing damage. Adult Sprague-Dawley rats were injected with saline (n = 30), subcutaneous (s.c.) G 100 (n = 23) and 150 mg/kg/day (n = 14), or s.c. G at the same dosages plus intraperitoneal (i.p.) GSH 1200 mg/kg/day (n = 24 and 14, respectively) for 7 days. In the G-100-day protocol, GSH-treated rats showed significantly lower renal G content (2.79 +/- 0.8 vs. 3.61 +/- 1.4 micrograms/mg prot) coupled with lower plasma urea (153 +/- 79 vs. 188 +/- 61 mg/dL) and creatinine levels (1.63 +/- 1 vs. 2.45 +/- 1 mg/dL). As to renal oxidant/antioxidant balance, local GSH was increased (0.32 +/- 0.01 vs. 0.19 +/- 0.01 microgram/mg prot) while lipid peroxidation, determined by production of thiobarbituric acid reactive substances (TBARS), was decreased (0.35 +/- 0.02 vs. 0.52 +/- 0.02 nmol/mg prot). In the G-150-mg protocol, GSH-treated rats showed no differences in renal gentamicin content or in blood urea and creatinine levels, in spite of a significantly lower renal TBARS production and a significantly higher GSH content. Urine enzyme excretion did not significantly change in GSH-treated vs. not-GSH-treated rats in both protocols. We conclude that: (a) GSH interferes with G nephrotoxicity mainly via a reduction in G uptake; (b) the oxidative renal stress is not crucial in inducing renal damage. In fact, when increased G dosages blunt the ability of GSH in reducing G uptake, no substantial protection is demonstrated.
Collapse
Affiliation(s)
- P Stratta
- Department of Nephrology, University of Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Transport of GSH into renal cortical mitochondria was studied. Mitochondria were highly enriched with little contamination from other subcellular organelles (as assessed by marker enzymes), they exhibited coupled respiration (respiratory control ratio greater than 3.0), and they had initial GSH concentrations of 5.71 +/- 0.65 nmol/mg protein (n = 47). Incubation of mitochondria with GSH in a triethanolamine, pH 7.4, buffer containing sucrose, potassium phosphate, MgCl2, and KCl, produced time- and concentration-dependent increases in intramitochondrial GSH content. Uptake was linear versus time for at least 2 min and exhibited kinetics consistent with one low-affinity, high-capacity process (Km = 1.3 mM, Vmax = 5.59 nmol/min per mg protein), although the results cannot exclude the presence of other, less quantitatively significant pathways. The initial rate of uptake of 5 mM GSH was not significantly altered by uncouplers (0.1 mM 2,4-dinitrophenol and 25 microM carbonyl cyanide m-chlorophenylhydrazone) or by 1 mM ADP. In contrast, incubation with 1 mM ATP, 1 mM KCN, 0.1 mM or 1 mM CaCl2 inhibited uptake by 41, 39, 43, or 55%, respectively. GSH uptake was markedly inhibited by gamma-glutamylglutamate and by a series of S-alkyl GSH derivatives. Strong interactions (i.e., both cis and trans effects) were observed with other dicarboxylates (i.e., succinate, malate, glutamate) but not with monocarboxylates (i.e., lactate, pyruvate). Preincubation of mitochondria with GSH protected against tert-butyl hydroperoxide- or methyl vinyl ketone-induced inhibition of state 3 respiration. These results demonstrate uptake of GSH into renal cortical mitochondria that appears to involve electroneutral countertransport (exchange) with other dicarboxylates. Functionally, GSH uptake into mitochondria can protect these organelles from various forms of injury, such as oxidative stress.
Collapse
Affiliation(s)
- T B McKernan
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|
34
|
Abstract
Freshly isolated tightly coupled rabbit renal cortical mitochondria rapidly accumulated glutathione (GSH) against an electrical and concentration gradient, and in the presence and absence of pyruvate/malate, succinate, antimycin A, or FCCP. Mitochondrial GSH uptake was dependent on medium GSH concentration, was not saturable, and reached equilibrium within 1 min of addition. Mitochondrial GSH uptake was partially inhibited by glycine, ophthalmic acid, and serine but not glutamate, cysteine, gamma-glutamyl-glutamate, or proline. These results show that 1) mitochondrial GSH uptake is by both a carrier-mediated process and by diffusion, and 2) the GSH carrier system has structural specificity with the glycine residue being a recognition site.
Collapse
Affiliation(s)
- R G Schnellmann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens 30602
| |
Collapse
|
35
|
Rodeheaver DP, Aleo MD, Schnellmann RG. Differences in enzymatic and mechanical isolated rabbit renal proximal tubules: comparison in long-term incubation. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1990; 26:898-904. [PMID: 1977732 DOI: 10.1007/bf02624615] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Suspensions of renal proximal tubules (RPT) are the in vitro model for many biochemical and physiologic investigations. Inasmuch as there are numerous procedures for tubule isolation and the more commonly used enzymatic procedures may disrupt the basement membrane, there is a need for information comparing the influence of various isolation methods on RPT viability and function in long-term suspension. Rabbit RPT isolated a) enzymatically (ENZ) by in vitro collagenase digestion and Percoll size and density purification, and b) mechanically (MECH) by in vitro iron oxide perfusion and purification by sieving and magnetic removal of glomeruli were compared for viability, morphology, and functional stability during long-term suspension. RPT isolated by ENZ and MECH methods had excellent viability (less than 15% lactate dehydrogenase release), limited lipid peroxidation (less than 0.2 nmol MDA.mg protein-1), and stable nystatin-stimulated oxygen consumption (QO2) (38 and 36 nmol O2.mg protein-1.min-1) throughout 24 h of incubation. Basal QO2 was higher in ENZ than MECH tubules (27 and 19 nmol O2.mg protein-1.min-1, respectively), and was unchanged over 24 h in each preparation. The higher basal QO2 in ENZ tubules was ouabain-sensitive, suggesting an increased rate of Na+,K(+)-ATPase activity in these tubules. Total glutathione content (oxidized + reduced) in ENZ and MECH tubules increased over the 24-h incubation from 8 to 18 nmol.mg protein-1. gamma-Glutamyltranspeptidase (GGT) activity of the RPT homogenates was equivalent in both preparations and stable over time. The ratio of suspension GGT activity to homogenate GGT activity doubled (0.4 to 0.8) during the incubation period. MECH tubules retained their tubule structure during 24 h of incubation whereas the ENZ tubules had a striking loss of tubular morphology over time. These results show that ENZ- and MECH-isolated renal proximal tubule suspensions exhibit similar biochemical properties in long-term incubations but differ in ouabain-sensitive QO2 and the retention of tubular morphology. The loss of tubular morphology and the increase in the rate of Na+,K(+)-ATPase activity in ENZ tubules may be secondary to the disruption of the tubular basement membrane.
Collapse
Affiliation(s)
- D P Rodeheaver
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens 30602
| | | | | |
Collapse
|
36
|
Weinberg JM, Davis JA, Abarzua M, Kiani T, Kunkel R. Protection by glycine of proximal tubules from injury due to inhibitors of mitochondrial ATP production. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 258:C1127-40. [PMID: 2360621 DOI: 10.1152/ajpcell.1990.258.6.c1127] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have determined whether glycine or glutathione can protect rabbit proximal tubules damaged by chemical inhibitors of oxidative phosphorylation: antimycin A, rotenone, cyanide, oligomycin, or carbonyl cyanide m-chlorophenylhdrazone (CCCP). All the agents severely depleted cell ATP levels within 15 min and caused lethal cell injury, as quantified by lactate dehydrogenase (LDH) release. Glycine and glutathione largely prevented this injury without altering the primary effects of the inhibitors on tubule respiration or the depletion of ATP. Buthionine sulfoximine and 1,3-bis(2-chloroethyl)-1-nitrosourea decreased cell glutathione but did not prevent the protective effects of either glycine or glutathione in tubules treated with rotenone. Protection was sustained during both a 15-min exposure and a 45-min postwash period irrespective of whether the wash removed the agent or mitochondrial function recovered. Cysteine uniquely induced a dramatic recovery of mitochondrial function in tubules washed after treatment with CCCP. These data 1) demonstrate that the cytoprotective effects of glycine previously seen during hypoxia extend to other tubule lesions characterized by severe ATP depletion, 2) emphasize the actions of glycine to preserve cell structural integrity in spite of sustained severe impairment of ATP-generating processes in proximal tubules, and 3) indicate that it is glycine rather than intracellular or extracellular glutathione which mediates protection.
Collapse
Affiliation(s)
- J M Weinberg
- Department of Internal Medicine, Veterans Administration Medical Center, Ann Arbor, Michigan
| | | | | | | | | |
Collapse
|
37
|
Mandel LJ, Schnellmann RG, Jacobs WR. Intracellular glutathione in the protection from anoxic injury in renal proximal tubules. J Clin Invest 1990; 85:316-24. [PMID: 2298907 PMCID: PMC296426 DOI: 10.1172/jci114440] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous results (Weinberg, J. M., J. A. David, M. Abarzua, and T. Rajan. 1987. J. Clin. Invest. 80:1446-1454) have shown that GSH and glycine (GLY) are cytoprotective during anoxia when added extracellularly. The present studies investigate the role that intracellular GSH plays in this cytoprotection. Proximal renal tubules in suspension prepared with either high (11 +/- 1 nmol/mg protein) or low (6 +/- 1 nmol/mg protein) GSH contents were subjected to 40 min of anoxia and 40 min of reoxygenation. Low GSH tubules were protected from plasma membrane damage during anoxia by exogenous addition of 1 mM GSH or GLY, reducing lactate dehydrogenase (LDH) release from 42 +/- 7 to 14 +/- 1 and 10 +/- 1%, respectively. High GSH tubules were equally protected from anoxic damage without exogenous additions. Since the high GSH content approximates the in vivo values, it may be concluded that GSH may be cytoprotective during anoxia in vivo. However, it is not the intracellular GSH itself that is cytoprotective; rather, this protection resides in the ability to produce GLY, which appears to be the cytoprotective agent. Alanine was also shown to have similar cytoprotective properties, although higher concentrations were required. Sulfhydryl reducing agents such as cysteine and dithiothreitol offered less, but significant protection from anoxic damage. Protection by GSH, GLY, or alanine was not associated with higher ATP levels during anoxia. Tubules that were protected from membrane damage during anoxia recovered oxygen consumption and K and ATP contents significantly better during reoxygenation than unprotected tubules.
Collapse
Affiliation(s)
- L J Mandel
- Department of Cell Biology, Duke University Medical Center, Durham, Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
38
|
Boogaard PJ, Nagelkerke JF, Mulder GJ. Renal proximal tubular cells in suspension or in primary culture as in vitro models to study nephrotoxicity. Chem Biol Interact 1990; 76:251-91. [PMID: 2225232 DOI: 10.1016/0009-2797(90)90096-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The kidney forms a frequent target for xenobiotic toxicity. The complex biochemical mechanisms underlying nephrotoxicity are best studied in vitro provided that reliable and relevant in vitro models are available. Since most nephrotoxicants affect primarily the cells of the proximal tubules (PTC), much effort has been directed towards the development of in vitro models of PTC. This review focuses on the preparation of PTC and the use of these cells. Discussed are important criteria such as the viability (survival time) of the cells and the parameters to assess toxicity. Recent studies have shown that isolated PTC in suspension are especially suitable for studies on the biochemical mechanisms of 'acute' nephrotoxicity, whereas PTC in primary culture may be used to investigate mechanisms of nephrotoxic damage at very low concentrations, upon prolonged exposure. PTC cultured on porous filter membranes provide new possibilities to study toxicity in relation to cell and transport polarity. Primary cell cultures of human PTC have been set up. Although a further characterization of these systems is needed, recent data indicate their usefulness.
Collapse
Affiliation(s)
- P J Boogaard
- Division of Toxicology, Leiden University, The Netherlands
| | | | | |
Collapse
|
39
|
Tune BM, Fravert D, Hsu CY. Thienamycin nephrotoxicity. Mitochondrial injury and oxidative effects of imipenem in the rabbit kidney. Biochem Pharmacol 1989; 38:3779-83. [PMID: 2597171 DOI: 10.1016/0006-2952(89)90585-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nephrotoxic cephalosoprins cephaloridine and cephaloglycin both produce mitochondrial respiratory toxicity in renal cortex. Recent work has provided evidence that this respiratory toxicity is caused by acylation and inactivation of mitochondrial anionic substrate transporters. While cephaloridine also causes significant lipid peroxidative injury in cortical mitochondria and microsomes, cephaloglycin causes little or no oxidative damage under identical conditions. The recently released thienamycin antibiotic, imipenem, like the toxic cephalosporins, produces acute proximal tubular necrosis which can be prevented completely by prior administration of probenecid. The ability of imipenem to block mitochondrial substrate uptake and respiration and produce oxidative changes has not been examined. We therefore evaluated the effects of imipenem in rabbit renal cortex on the following: (1) mitochondrial function [respiration with and uptake of succinate, and uptake of ADP]; and (2) evidence of oxidative change [depletion of reduced glutathione (GSH), production of oxidized glutathione (GSSG), and production of lipid peroxidative injury, as reflected in microsomal conjugated dienes (CDs)]. The mitochondrial effects of 300 mg/kg body wt of imipenem, given i.v. 1 and 2 hr before killing the animals, were comparable to those of the nephrotoxic cephalosporins. There was significant reduction of respiration with, and unidirectional uptake of, succinate at both times, while mitochondrial ADP transport was comparatively unaffected. Imipenem also depleted GSH and increased GSSG and CDs at 1 hr. These effects, however, were considerably smaller than those of a comparably nephrotoxic dose of cephaloridine, and this evidence of oxidative stress had resolved by 2 hr. We conclude that imipenem and the nephrotoxic cephalosporins have similar effects on mitochondrial substrate uptake and respiration, but differ significantly in their production of oxidative injury.
Collapse
Affiliation(s)
- B M Tune
- Department of Pediatrics, Stanford University School of Medicine, CA 94305
| | | | | |
Collapse
|