1
|
Potential Novel Role of Membrane-Associated Carbonic Anhydrases in the Kidney. Int J Mol Sci 2023; 24:ijms24044251. [PMID: 36835660 PMCID: PMC9961601 DOI: 10.3390/ijms24044251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Carbonic anhydrases (CAs), because they catalyze the interconversion of carbon dioxide (CO2) and water into bicarbonate (HCO3-) and protons (H+), thereby influencing pH, are near the core of virtually all physiological processes in the body. In the kidneys, soluble and membrane-associated CAs and their synergy with acid-base transporters play important roles in urinary acid secretion, the largest component of which is the reabsorption of HCO3- in specific nephron segments. Among these transporters are the Na+-coupled HCO3- transporters (NCBTs) and the Cl--HCO3- exchangers (AEs)-members of the "solute-linked carrier" 4 (SLC4) family. All of these transporters have traditionally been regarded as "HCO3-" transporters. However, recently our group has demonstrated that two of the NCBTs carry CO32- rather than HCO3- and has hypothesized that all NCBTs follow suit. In this review, we examine current knowledge on the role of CAs and "HCO3-" transporters of the SLC4 family in renal acid-base physiology and discuss how our recent findings impact renal acid secretion, including HCO3- reabsorption. Traditionally, investigators have associated CAs with producing or consuming solutes (CO2, HCO3-, and H+) and thus ensuring their efficient transport across cell membranes. In the case of CO32- transport by NCBTs, however, we hypothesize that the role of membrane-associated CAs is not the appreciable production or consumption of substrates but the minimization of pH changes in nanodomains near the membrane.
Collapse
|
2
|
Kurtz I, Schwartz GJ. Base (HCO3-/CO32-) Transport Properties of SLC4 Proteins: New Insights in Acid-Base Kidney Physiology. J Am Soc Nephrol 2023; 34:8-13. [PMID: 36719145 PMCID: PMC10101619 DOI: 10.1681/asn.0000000000000008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 01/22/2023] Open
Abstract
H+ or base transporters and channels in the mammalian genome play important roles in the maintenance of numerous cellular biochemical and physiologic processes throughout the body. Among the known base transporters, those within the SLC4 and SLC26 gene families are involved in cell, transepithelial, and whole organ function. Whether the functional properties of these transporters involve HCO3-, CO32-, or HCO3-/CO32- stimulated H+ (or OH-) transport has not received widespread attention in the literature. Accordingly, "bicarbonate" is the term typically used in most textbooks without greater specificity. Moreover, clinicians and physiologists have historically focused on the blood HCO3- concentration as the base term in the Henderson-Hasselbalch equation in the analysis of clinical acid-base abnormalities, thus, bicarbonate has been assumed to be the species reabsorbed along the nephron as required to maintain the blood [HCO3-] at approximately 25 mM. However, accumulating data in the literature suggest that carbonate, rather than bicarbonate, is the species absorbed across the proximal tubule basolateral membrane, whereas in the collecting duct, bicarbonate is indeed transported. Various experimental approaches leading to this new concept are herein reviewed.
Collapse
Affiliation(s)
- Ira Kurtz
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| | - George J. Schwartz
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
3
|
|
4
|
Rasmussen JK, Boedtkjer E. Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO 2/HCO 3- fluctuations. J Cereb Blood Flow Metab 2018; 38:492-505. [PMID: 28318362 PMCID: PMC5851140 DOI: 10.1177/0271678x17699224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The CO2/HCO3- buffer minimizes pH changes in response to acid-base loads, HCO3- provides substrate for Na+,HCO3--cotransporters and Cl-/HCO3--exchangers, and H+ and HCO3- modify vasomotor responses during acid-base disturbances. We show here that rat middle cerebral arteries express cytosolic, mitochondrial, extracellular, and secreted carbonic anhydrase isoforms that catalyze equilibration of the CO2/HCO3- buffer. Switching from CO2/HCO3--free to CO2/HCO3--containing extracellular solution results in initial intracellular acidification due to hydration of CO2 followed by gradual alkalinization due to cellular HCO3- uptake. Carbonic anhydrase inhibition decelerates the initial acidification and attenuates the associated transient vasoconstriction without affecting intracellular pH or artery tone at steady-state. Na+,HCO3--cotransport and Na+/H+-exchange activity after NH4+-prepulse-induced intracellular acidification are unaffected by carbonic anhydrase inhibition. Extracellular surface pH transients induced by transmembrane NH3 flux are evident under CO2/HCO3--free conditions but absent when the buffer capacity and apparent H+ mobility increase in the presence of CO2/HCO3- even after the inhibition of carbonic anhydrases. We conclude that (a) intracellular carbonic anhydrase activity accentuates pH transients and vasoconstriction in response to acute elevations of pCO2, (b) CO2/HCO3- minimizes extracellular surface pH transients without requiring carbonic anhydrase activity, and (c) carbonic anhydrases are not rate limiting for acid–base transport across cell membranes during recovery from intracellular acidification.
Collapse
Affiliation(s)
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Kreitzer MA, Swygart D, Osborn M, Skinner B, Heer C, Kaufman R, Williams B, Shepherd L, Caringal H, Gongwer M, Tchernookova BK, Malchow RP. Extracellular H + fluxes from tiger salamander Müller (glial) cells measured using self-referencing H +-selective microelectrodes. J Neurophysiol 2017; 118:3132-3143. [PMID: 28855292 DOI: 10.1152/jn.00409.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 12/22/2022] Open
Abstract
Self-referencing H+-selective electrodes were used to measure extracellular H+ fluxes from Müller (glial) cells isolated from the tiger salamander retina. A novel chamber enabled stable recordings using H+-selective microelectrodes in a self-referencing format using bicarbonate-based buffer solutions. A small basal H+ flux was observed from the end foot region of quiescent cells bathed in 24 mM bicarbonate-based solutions, and increasing extracellular potassium induced a dose-dependent increase in H+ flux. Barium at 6 mM also increased H+ flux. Potassium-induced extracellular acidifications were abolished when bicarbonate was replaced by 1 mM HEPES. The carbonic anhydrase antagonist benzolamide potentiated the potassium-induced extracellular acidification, while 300 μM DIDS, 300 μM SITS, and 30 μM S0859 significantly reduced the response. Potassium-induced extracellular acidifications persisted in solutions lacking extracellular calcium, although potassium-induced changes in intracellular calcium monitored with Oregon Green were abolished. Exchange of external sodium with choline also eliminated the potassium-induced extracellular acidification. Removal of extracellular sodium by itself induced a transient alkalinization, and replacement of sodium induced a transient acidification, both of which were blocked by 300 μM DIDS. Recordings at the apical portion of the cell showed smaller potassium-induced extracellular H+ fluxes, and removal of the end foot region further decreased the H+ flux, suggesting that the end foot was the major source of acidifications. These studies demonstrate that self-referencing H+-selective electrodes can be used to monitor H+ fluxes from retinal Müller cells in bicarbonate-based solutions and confirm the presence of a sodium-coupled bicarbonate transporter, the activity of which is largely restricted to the end foot of the cell.NEW & NOTEWORTHY The present study uses self-referencing H+-selective electrodes for the first time to measure H+ fluxes from Müller (glial) cells isolated from tiger salamander retina. These studies demonstrate bicarbonate transport as a potent regulator of extracellular levels of acidity around Müller cells and point toward a need for further studies aimed at addressing how such glial cell pH regulatory mechanisms may shape neuronal signaling.
Collapse
Affiliation(s)
| | - David Swygart
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Meredith Osborn
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Blair Skinner
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Chad Heer
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Ryan Kaufman
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Bethany Williams
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Lexi Shepherd
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Hannah Caringal
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Michael Gongwer
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Boriana K Tchernookova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois; and
| | - Robert P Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois; and.,Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Abstract
Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.
Collapse
Affiliation(s)
- Christian Aalkjaer
- Department of Biomedicine, and the Water and Salt Research Center, Aarhus University, Aarhus, Denmark; Department of Physiology, Emory University School of Medicine, Atlanta, USA
| | | | | | | |
Collapse
|
7
|
Seki G, Nakamura M, Suzuki M, Satoh N, Horita S. Species differences in regulation of renal proximal tubule transport by certain molecules. World J Nephrol 2015; 4:307-312. [PMID: 25949945 PMCID: PMC4419141 DOI: 10.5527/wjn.v4.i2.307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/24/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Renal proximal tubules (PTs) play important roles in the regulation of acid/base, plasma volume and blood pressure. Recent studies suggest that there are substantial species differences in the regulation of PT transport. For example, thiazolidinediones (TZDs) are widely used for the treatment of type 2 diabetes mellitus, but the use of TZDs is associated with fluid overload. In addition to the transcriptional enhancement of sodium transport in distal nephrons, TZDs rapidly stimulate PT sodium transport via a non-genomic mechanism depending on peroxisome proliferator activated receptor γ/Src/epidermal growth factor receptor (EGFR)/MEK/ERK. In mouse PTs, however, TZDs fail to stimulate PT transport probably due to constitutive activation of Src/EGFR/ERK pathway. This unique activation of Src/ERK may also affect the effect of high concentrations of insulin on mouse PT transport. On the other hand, the effect of angiotensin II (Ang II) on PT transport is known to be biphasic in rabbits, rats, and mice. However, Ang II induces a concentration-dependent, monophasic transport stimulation in human PTs. The contrasting responses to nitric oxide/guanosine 3’,5’-cyclic monophosphate pathway may largely explain these different effects of Ang II on PT transport. In this review, we focus on the recent findings on the species differences in the regulation of PT transport, which may help understand the species-specific mechanisms underlying edema formation and/or hypertension occurrence.
Collapse
|
8
|
Seki G, Horita S, Suzuki M, Yamazaki O, Usui T, Nakamura M, Yamada H. Molecular mechanisms of renal and extrarenal manifestations caused by inactivation of the electrogenic Na(+)-HCO3 (-) cotransporter NBCe1. Front Physiol 2013; 4:270. [PMID: 24101904 PMCID: PMC3787273 DOI: 10.3389/fphys.2013.00270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/10/2013] [Indexed: 11/13/2022] Open
Abstract
The electrogenic Na(+)-HCO3 (-) cotransporter NBCe1 plays an essential role in bicarbonate absorption from renal proximal tubules, but also mediates the other biological processes in extrarenal tissues such as bicarbonate secretion from pancreatic ducts, maintenance of tissue homeostasis in eye, enamel maturation in teeth, or local pH regulation in synapses. Homozygous mutation in NBCe1 cause proximal renal tubular acidosis (pRTA) associated with extrarenal manifestations such as short stature, ocular abnormalities, enamel abnormalities, and migraine. Functional analyses of NBCe1 mutants using different expression systems suggest that at least a 50% reduction of the transport activity may be required to induce severe pRTA. In addition to functional impairments, some NBCe1 mutants show trafficking defects. Some of the pRTA-related NBCe1 mutants showing the cytoplasmic retention have been shown to exert a dominant negative effect through hetero-oligomer complexes with wild-type NBCe1 that may explain the occurrence of extrarenal manifestations in the heterozygous carries of NBCe1 mutations. Both NBCe1 knockout (KO) and W516X knockin (KI) mice showed very severe pRTA and reproduced most of the clinical manifestations observed in human pRTA patients. Functional analysis on isolated renal proximal tubules from W516X KI mice directly confirmed the indispensable role of NBCe1 in bicarbonate absorption from this nephron segment. In this review, we will focus on the molecular mechanisms underling the renal and extrarenal manifestations caused by NBCe1 inactivation.
Collapse
Affiliation(s)
- George Seki
- Department of Internal Medicine, School of Medicine, The University of Tokyo Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Suzuki M, Seki G, Yamada H, Horita S, Fujita T. Functional Roles of Electrogenic Sodium Bicarbonate Cotransporter NBCe1 in Ocular Tissues. Open Ophthalmol J 2012; 6:36-41. [PMID: 22798968 PMCID: PMC3394102 DOI: 10.2174/1874364101206010036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 12/04/2022] Open
Abstract
Electrogenic Na+-HCO3- cotransporter NBCe1 is expressed in several tissues such as kidney, eye, and brain, where it may mediate distinct biological processes. In particular, NBCe1 in renal proximal tubules is essential for the regulation of systemic acid/base balance. On the other hand, NBCe1 in eye may be indispensable for the maintenance of tissue homeostasis. Consistent with this view, homozygous mutations in NBCe1 cause severe proximal renal tubular acidosis associated with ocular abnormalities such as band keratopathy, glaucoma, and cataract. The widespread expression of NBCe1 in eye suggests that the inactivation of NBCe1 per se may be responsible for the occurrence of these ocular abnormalities. In this review, we discuss about physiological and pathological roles of NBCe1 in eye.
Collapse
Affiliation(s)
- Masashi Suzuki
- Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Lopardo ML, Diaz-Sylvester P, Amorena C. The effect of shear stress on the basolateral membrane potential of proximal convoluted tubule of the rat kidney. Pflugers Arch 2007; 454:289-95. [PMID: 17219192 DOI: 10.1007/s00424-006-0198-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 11/14/2006] [Accepted: 12/04/2006] [Indexed: 10/23/2022]
Abstract
As consequence of glomerular filtration the viscosity of blood flowing through the efferent arteriole increases. Recently, we found that shear stress modulates proximal bicarbonate reabsorption and nitric oxide (NO.) was the chemical mediator of this effect. In the present work, we found that agonists of NO. production affected basolateral membrane potential (V (blm)) of the proximal convoluted tubule (PCT) epithelium. Using paired micropuncture experiments, we perfused peritubular capillaries with solutions with different viscosity while registering the V (blm). Our results showed that a 50% increment in the viscosity, or the addition of bradykinin (10(-5) M) to the peritubular perfusion solution, induced a significant and similar hyperpolarization of the V (blm) at the PCT epithelium of 6 +/- 0.7 mV (p < 0.05). Both hyperpolarizations were reverted by L-NAME (10(-4) M). Addition of 2,2'-(hydroxynitrosohydrazino) bis-ethanamine (NOC-18) 3 x 10(-4) M to the peritubular perfusion solution induced a hyperpolarization of the same magnitude of that high viscosity or bradykinin. These results strongly suggest the involvement of NO. in the effect of high viscosity solutions. This effect seems to be mediated by activation of K+(ATP) channels as glybenclamide (5 x 10(-5) M) added to peritubular solutions induced a larger depolarization of the V (blm) with high viscosity solutions. Acetazolamide (5 x 10(-5) M) added to high viscosity solutions induced a larger hyperpolarization (8 +/- 1 mV; p < 0.05), suggesting that depolarizing current due to HCO(-)3 exit across the basolateral membrane damps the hyperpolarizing effect of high viscosity. Considering that Na(+) and consequently water reabsorption is highly dependent on electrical gradient, the present data suggest that the endothelium of kidney vascular bed interacts in paracrine fashion with the epithelia, affecting V (blm) and thus modulating PCT reabsorption.
Collapse
Affiliation(s)
- Mariano L Lopardo
- CESyMA, Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Avenida Gral Paz 5445, Ed. 23, 1650 San Martín, Argentina
| | | | | |
Collapse
|
12
|
Pastorekova S, Parkkila S, Zavada J. Tumor-associated carbonic anhydrases and their clinical significance. Adv Clin Chem 2006. [PMID: 17131627 DOI: 10.1016/s0065-2423(06)42005-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Carbonic anhydrases (CAs) are physiologically important enzymes that catalyze a reversible conversion of carbon dioxide to bicarbonate and participate in ion transport and pH control. Two human isoenzymes, CA IX and CA XII, are overexpressed in cancer and contribute to tumor physiology. Particularly CA IX is confined to only few normal tissues but is ectopically induced in many tumor types mainly due to its strong transcriptional activation by hypoxia accomplished via HIF-1 transcription factor. Therefore, CA IX can serve as a surrogate marker of hypoxia and a prognostic indicator. CA IX appears implicated in cell adhesion and in balance of pH disturbances caused by tumor metabolism. Both tumor-related expression pattern and functional involvement in tumor progression make it a suitable target for anticancer treatment. Here we summarize a current knowledge on CA IX and CA XII, and discuss possibilities of their exploitation for cancer detection, diagnostics, and therapy.
Collapse
Affiliation(s)
- Silvia Pastorekova
- Centre of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
13
|
Abstract
One of the major tasks of the renal proximal tubule is to secrete acid into the tubule lumen, thereby reabsorbing approximately 80% of the filtered HCO3- as well as generating new HCO3- for regulating blood pH. This review summarizes the cellular and molecular events that underlie four major processes in HCO3- reabsorption. The first is CO2 entry across the apical membrane, which in large part occurs via a gas channel (aquaporin 1) and acidifies the cell. The second process is apical H+ secretion via Na-H exchange and H+ pumping, processes that can be studied using the NH4+ prepulse technique. The third process is the basolateral exit of HCO3- via the electrogenic Na/HCO3 co-transporter, which is the subject of at least 10 mutations that cause severe proximal renal tubule acidosis in humans. The final process is the regulation of overall HCO3- reabsorption by CO2 and HCO3- sensors at the basolateral membrane. Together, these processes ensure that the proximal tubule responds appropriately to acute acid-base disturbances and thereby contributes to the regulation of blood pH.
Collapse
Affiliation(s)
- Walter F Boron
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8026, USA.
| |
Collapse
|
14
|
Pastor-Soler N, Piétrement C, Breton S. Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction. Physiology (Bethesda) 2006; 20:417-28. [PMID: 16287991 DOI: 10.1152/physiol.00036.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acid/base transporters play a key role in establishing an acidic luminal environment for sperm maturation and storage in the male reproductive tract. Impairment of the acidification capacity of the epididymis, via either genetic mutations or exposure to environmental factors, may have profound consequences on male fertility.
Collapse
Affiliation(s)
- Nuria Pastor-Soler
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | | |
Collapse
|
15
|
Horita S, Yamada H, Inatomi J, Moriyama N, Sekine T, Igarashi T, Endo Y, Dasouki M, Ekim M, Al-Gazali L, Shimadzu M, Seki G, Fujita T. Functional analysis of NBC1 mutants associated with proximal renal tubular acidosis and ocular abnormalities. J Am Soc Nephrol 2005; 16:2270-8. [PMID: 15930088 DOI: 10.1681/asn.2004080667] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mutations in the Na+-HCO3- co-transporter (NBC1) cause permanent proximal renal tubular acidosis (pRTA) with ocular abnormalities. However, little has been known about the relationship between the degree of NBC1 inactivation and the severity of pRTA. This study identified three new homozygous mutations (T485S, A799V, and R881C) in the common coding regions of NBC1. Functional analysis of these new as well as the known mutants (R298S and R510H) in Xenopus oocytes revealed a considerable variation in their electrogenic activities. Whereas the activities of R298S, A799V, and R881C were 15 to 40% of the wild-type (WT) activity, T485S and R510H, as a result of poor surface expression, showed almost no activities. However, T485S, like R510H, had the transport activity corresponding to approximately 50% of the WT activity in ECV304 cells, indicating that surface expression of T485S and R510H varies between the different in vitro cell systems. Electrophysiologic analysis showed that WT, R298S, and R881C all function with 2HCO3- to 1Na+ stoichiometry and have similar extracellular Na+ affinity, indicating that reduction in Na+ affinity cannot explain the inactivation of R298S and R881C. These results, together with the presence of nonfunctional mutants (Q29X and DeltaA) in other patients, suggest that at least approximately 50% reduction of NBC1 activity would be required to cause severe pRTA.
Collapse
MESH Headings
- Acidosis, Renal Tubular/genetics
- Acidosis, Renal Tubular/pathology
- Adolescent
- Animals
- Blotting, Western
- Cell Line
- Cell Membrane/metabolism
- Child, Preschool
- DNA, Complementary/metabolism
- Electrophysiology
- Eye Abnormalities/genetics
- Eye Abnormalities/pathology
- Female
- Gene Expression Regulation
- Genetic Techniques
- Homozygote
- Humans
- Hydrogen-Ion Concentration
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Male
- Membrane Potentials
- Microscopy, Fluorescence
- Models, Statistical
- Mutagenesis
- Mutation
- Mutation, Missense
- Oocytes/cytology
- Oocytes/metabolism
- Sodium/metabolism
- Sodium-Bicarbonate Symporters/genetics
- Xenopus laevis
Collapse
Affiliation(s)
- Shoko Horita
- Department of Internal Medicine, Faculty of Medicine, Tokyo University, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kyllönen MS, Parkkila S, Rajaniemi H, Waheed A, Grubb JH, Shah GN, Sly WS, Kaunisto K. Localization of carbonic anhydrase XII to the basolateral membrane of H+-secreting cells of mouse and rat kidney. J Histochem Cytochem 2003; 51:1217-24. [PMID: 12923247 DOI: 10.1177/002215540305100912] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Membrane-associated carbonic anhydrase (CA) has a crucial role in renal HCO(3)(-) absorption. CA activity has been localized to both luminal and basolateral membranes of the tubule epithelial cells. CA XII is a transmembrane isoenzyme that has been demonstrated in the basolateral plasma membrane of human renal, intestinal, and reproductive epithelia. The present study was designed to demonstrate the distribution of CA XII expression in the rodent kidney. A new polyclonal antibody to recombinant mouse CA XII was used in both Western blotting and immunohistochemistry. Western blotting analysis revealed a 40-45-kD polypeptide in CA XII-expressing CHO cells and isolated membranes of mouse and rat kidney. Immunofluorescence staining localized CA XII in the basolateral plasma membranes of S1 and S2 proximal tubule segments. Abundant basolateral staining of CA XII was seen in a subpopulation of cells in both cortical and medullary collecting ducts. Double immunofluorescence staining identified these cells as H(+)-secreting type A intercalated cells. The localization of CA XII in the peritubular space of proximal tubules suggests that it may play a role in renal HCO(3)(-) absorption, whereas the function of CA XII in the type A intercalated cells needs further investigation.
Collapse
Affiliation(s)
- Matti S Kyllönen
- Departments of Anatomy and Cell Biology, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Frömter E. Acceptance of the 2001 A.N. Richards Award. Kidney Int 2003; 63:2334. [PMID: 12753327 DOI: 10.1046/j.1523-1755.2003.t01-1-06360.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Usui T, Hara M, Satoh H, Moriyama N, Kagaya H, Amano S, Oshika T, Ishii Y, Ibaraki N, Hara C, Kunimi M, Noiri E, Tsukamoto K, Inatomi J, Kawakami H, Endou H, Igarashi T, Goto A, Fujita T, Araie M, Seki G. Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis. J Clin Invest 2001; 108:107-15. [PMID: 11435462 PMCID: PMC209339 DOI: 10.1172/jci11869] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Proximal renal tubular acidosis associated with ocular abnormalities such as band keratopathy, glaucoma, and cataracts is caused by mutations in the Na(+)-HCO(3)(-) cotransporter (NBC-1). However, the mechanism by which NBC-1 inactivation leads to such ocular abnormalities remains to be elucidated. By immunological analysis of human and rat eyes, we demonstrate that both kidney type (kNBC-1) and pancreatic type (pNBC-1) transporters are present in the corneal endothelium, trabecular meshwork, ciliary epithelium, and lens epithelium. In the human lens epithelial (HLE) cells, RT-PCR detected mRNAs of both kNBC-1 and pNBC-1. Although a Na(+)-HCO(3)-cotransport activity has not been detected in mammalian lens epithelia, cell pH (pH(i)) measurements revealed the presence of Cl(-)-independent, electrogenic Na(+)-HCO(3)-cotransport activity in HLE cells. In addition, up to 80% of amiloride-insensitive pH(i) recovery from acid load in the presence of HCO(3)(-)/CO(2) was inhibited by adenovirus-mediated transfer of a specific hammerhead ribozyme against NBC-1, consistent with a major role of NBC-1 in overall HCO(3)-transport by the lens epithelium. These results indicate that the normal transport activity of NBC-1 is indispensable not only for the maintenance of corneal and lenticular transparency but also for the regulation of aqueous humor outflow.
Collapse
MESH Headings
- 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology
- Acidosis, Renal Tubular/complications
- Acidosis, Renal Tubular/genetics
- Amiloride/pharmacology
- Animals
- Bicarbonates/metabolism
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cataract/etiology
- Cataract/genetics
- Cells, Cultured
- Chlorides/metabolism
- Cornea/metabolism
- Cornea/pathology
- Corneal Opacity/etiology
- Corneal Opacity/genetics
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Glaucoma/etiology
- Glaucoma/genetics
- Humans
- Ion Transport/genetics
- Kidney Tubules, Proximal/metabolism
- Lens, Crystalline/metabolism
- Lens, Crystalline/pathology
- Pancreas/metabolism
- Protein Isoforms/deficiency
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/pharmacology
- RNA, Messenger/biosynthesis
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Sodium/metabolism
- Sodium-Bicarbonate Symporters
- Valinomycin/pharmacology
Collapse
Affiliation(s)
- T Usui
- Department of Ophthalmology, Faculty of Medicine, Tokyo University, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Swenson ER. Respiratory and renal roles of carbonic anhydrase in gas exchange and acid-base regulation. EXS 2001:281-341. [PMID: 11268521 DOI: 10.1007/978-3-0348-8446-4_15] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- E R Swenson
- VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA 98108, USA
| |
Collapse
|
20
|
Seidler U, Rossmann H, Jacob P, Bachmann O, Christiani S, Lamprecht G, Gregor M. Expression and function of Na+HCO3- cotransporters in the gastrointestinal tract. Ann N Y Acad Sci 2001; 915:1-14. [PMID: 11193561 DOI: 10.1111/j.1749-6632.2000.tb05219.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stomach, duodenum, colon, and pancreas secrete HCO3- ions into the lumen. Although the importance of HCO3- secretion for the maintenance of mucosal integrity, a normal digestion, and the reabsorption of Cl- has been well established, the molecular nature of the apical and basolateral HCO3- transporting proteins has remained largely unknown. Functional studies have suggested that a Na+HCO3- cotransport system, similar but not identical to the well-characterized Na+HCO3- cotransporter in the basolateral membrane of the kidney proximal tubule, is present in duodenal and colonic enterocytes, pancreatic ducts cells, and gastric cells and involved in HCO3- uptake from the interstitium. This report describes our work towards understanding the molecular nature, cellular origin, and functional relevance of the Na+HCO3- cotransporter(s) in the stomach and intestine and reviews work by others on the function and localization of Na+HCO3- cotransport processes in the gastrointestinal tract.
Collapse
Affiliation(s)
- U Seidler
- Medizinische Klinik, Universität Tübingen, 72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tsuruoka S, Swenson ER, Petrovic S, Fujimura A, Schwartz GJ. Role of basolateral carbonic anhydrase in proximal tubular fluid and bicarbonate absorption. Am J Physiol Renal Physiol 2001; 280:F146-54. [PMID: 11133524 DOI: 10.1152/ajprenal.2001.280.1.f146] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Membrane-bound carbonic anhydrase (CA) is critical to renal acidification. The role of CA activity on the basolateral membrane of the proximal tubule has not been defined clearly. To investigate this issue in microperfused rabbit proximal straight tubules in vitro, we measured fluid and HCO(3)(-) absorption and cell pH before and after the extracellular CA inhibitor p-fluorobenzyl-aminobenzolamide was applied in the bath to inhibit only basolateral CA. This inhibitor was 1% as permeant as acetazolamide. Neutral dextran (2 g/dl, molecular mass 70,000) was used as a colloid to support fluid absorption because albumin could affect CO(2) diffusion and rheogenic HCO(3)(-) efflux. Indeed, dextran in the bath stimulated fluid absorption by 55% over albumin. Basolateral CA inhibition reduced fluid absorption ( approximately 30%) and markedly decreased HCO(3)(-) absorption ( approximately 60%), both reversible when CA was added to the bathing solution. In the presence of luminal CA inhibition, which reduced fluid ( approximately 16%) and HCO(3)(-) ( approximately 66%) absorption, inhibition of basolateral CA further decreased the absorption of fluid (to 74% of baseline) and HCO(3)(-) (to 22% of baseline). CA inhibition also alkalinized cell pH by approximately 0.2 units, suggesting the presence of an alkaline disequilibrium pH in the interspace, which would secondarily block HCO(3)(-) exit from the cell and thereby decrease luminal proton secretion (HCO(3)(-) absorption). These data clearly indicate that basolateral CA has an important role in mediating fluid and especially HCO(3)(-) absorption in the proximal straight tubule.
Collapse
Affiliation(s)
- S Tsuruoka
- Department of Clinical Pharmacology, Jichi Medical School, Kawachi, Tochigi 329-0498, Japan
| | | | | | | | | |
Collapse
|
22
|
Parkkila S, Parkkila AK, Saarnio J, Kivelä J, Karttunen TJ, Kaunisto K, Waheed A, Sly WS, Türeci O, Virtanen I, Rajaniemi H. Expression of the membrane-associated carbonic anhydrase isozyme XII in the human kidney and renal tumors. J Histochem Cytochem 2000; 48:1601-8. [PMID: 11101628 DOI: 10.1177/002215540004801203] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carbonic anhydrase isozyme XII (CA XII) is a novel membrane-associated protein with a potential role in von Hippel-Lindau carcinogenesis. Although Northern blotting has revealed positive signal for CA XII in normal human kidney, this is the first study to demonstrate its cellular and subcellular localization along the human nephron and collecting duct. Immunohistochemistry with a polyclonal antibody (PAb) raised against truncated CA XII revealed distinct staining in the basolateral plasma membrane of the epithelial cells in the thick ascending limb of Henle and distal convoluted tubules, and in the principal cells of the collecting ducts. A weak basolateral signal was also detected in the epithelium of the proximal convoluted tubules. In addition to the normal kidney specimens, this immunohistochemical study included 31 renal tumors. CA XII showed moderate or strong plasma membrane-associated expression in most oncocytomas and clear-cell carcinomas. The segmental, cellular, and subcellular distribution of CA XII along the human nephron and collecting duct suggests that it may be one of the key enzymes involved in normal renal physiology, particularly in the regulation of water homeostasis. High expression of CA XII in some renal carcinomas may contribute to its role in von Hippel-Lindau carcinogenesis.
Collapse
Affiliation(s)
- S Parkkila
- Departments of Anatomy and Cell Biology, University of Oulu, Oulu, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sun XC, Bonanno JA, Jelamskii S, Xie Q. Expression and localization of Na(+)-HCO(3)(-) cotransporter in bovine corneal endothelium. Am J Physiol Cell Physiol 2000; 279:C1648-55. [PMID: 11029313 DOI: 10.1152/ajpcell.2000.279.5.c1648] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functional studies support the presence of the Na(+)-HCO(3)(-) cotransporter (NBC) in corneal endothelium and possibly corneal epithelium; however, molecular identification and membrane localization have not been reported. To test whether NBC is expressed in bovine cornea, Western blotting was performed, which showed a single band at approximately 130 kDa for freshly isolated and cultured endothelial cells, but no band for epithelium. Two isoforms of NBC have recently been cloned in kidney (kNBC) and pancreas (pNBC). RT-PCR was run using cultured and fresh bovine corneal endothelial and fresh corneal epithelial total RNA and specific primers for kNBC and pNBC. RT-PCR analysis for pNBC was positive in endothelium and weak in epithelium. The RT-PCR product was subcloned and confirmed as pNBC by sequencing. No specific bands for kNBC were obtained from corneal cells. Indirect immunofluorescence and confocal microscopy indicated that NBC locates predominantly to the basolateral membrane in corneal endothelial cells. Furthermore, Na(+)-dependent HCO(3)(-) fluxes and HCO(3)(-)-dependent cotransport with Na(+) were elicited only from the basolateral side of corneal endothelial cells. Therefore, we conclude that pNBC is present in the basolateral membrane of both fresh and cultured bovine corneal endothelium and weakly expressed in the corneal epithelium.
Collapse
Affiliation(s)
- X C Sun
- School of Optometry, Indiana University, Bloomington, Indiana 47401, USA
| | | | | | | |
Collapse
|
24
|
Kunimi M, Seki G, Hara C, Taniguchi S, Uwatoko S, Goto A, Kimura S, Fujita T. Dopamine inhibits renal Na+:HCO3- cotransporter in rabbits and normotensive rats but not in spontaneously hypertensive rats. Kidney Int 2000; 57:534-43. [PMID: 10652030 DOI: 10.1046/j.1523-1755.2000.00873.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Dopamine (DA) is thought to regulate renal proximal transport through the inhibition of the Na+,K+-ATPase and/or Na+/H+ exchanger. Defects in this dopaminergic system are proposed to be a pathogenic factor of genetic hypertension. However, microperfusion studies have not consistently confirmed direct tubular effects of DA. METHODS Isolated proximal straight tubules were perfused peritubularly with Dulbecco's modified Eagle's tissue culture medium (DMEM) containing norepinephrine (NE) to improve incubation conditions. Intracellular Na+ concentrations ([Na+]i) and cell pH (pHi) were measured with fluorescence probes. RESULTS When incubated in DMEM plus NE, DA increased [Na+]i in rabbit tubules. Inhibition of Na+,K+-ATPase could not explain this response, as it was not suppressed by ouabain. An analysis of pHi responses to bath HCO3- reduction revealed that DA, SKF 38393 (a DA1 agonist), and adenosine 3',5'-cyclic monophosphate (cAMP) inhibited the basolateral Na+:HCO3- cotransporter in rabbit and Wistar-Kyoto rat (WKY), if its transport stoichiometry was converted to 3 HCO3-:1 Na+ by DMEM plus NE incubation. The inhibitory effect of DA was abolished by SCH 23390, a DA1 antagonist, but not by (-)-sulpiride, a DA2 antagonist. In spontaneously hypertensive rats (SHRs), however, DA and SKF 38393 failed to inhibit the cotransporter, although the inhibitory effects of cAMP and parathyroid hormone were comparable to those in WKY. CONCLUSION These results indicate that DA inhibits the Na+:HCO3- cotransporter in renal proximal tubules and also suggest that dysregulation of the cotransporter, possibly through the defect in DA1 receptor signaling, could play an important role in development of hypertension in SHRs.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Acetazolamide/pharmacology
- Adenylyl Cyclases/metabolism
- Animals
- Bicarbonates/pharmacokinetics
- Biological Transport/drug effects
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/metabolism
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/pharmacology
- Diuretics/pharmacology
- Dopamine/pharmacology
- Dopamine Agonists/pharmacology
- Enzyme Inhibitors/pharmacology
- Female
- Hydrogen-Ion Concentration
- Hypertension, Renal/genetics
- Hypertension, Renal/metabolism
- Kidney Tubules, Proximal/chemistry
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/enzymology
- Male
- Parathyroid Hormone/pharmacology
- Rabbits
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Dopamine D1/physiology
- Second Messenger Systems/physiology
- Sodium/pharmacokinetics
- Sodium-Bicarbonate Symporters
- Sodium-Potassium-Exchanging ATPase/metabolism
- Thionucleotides/pharmacology
Collapse
Affiliation(s)
- M Kunimi
- Department of Nephrology and Endocrinology, and Department of Infectious Diseases, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lindinger MI, Franklin TW, Lands LC, Pedersen PK, Welsh DG, Heigenhauser GJ. NaHCO(3) and KHCO(3) ingestion rapidly increases renal electrolyte excretion in humans. J Appl Physiol (1985) 2000; 88:540-50. [PMID: 10658021 DOI: 10.1152/jappl.2000.88.2.540] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This paper describes and quantifies acute responses of the kidneys in correcting plasma volume, acid-base, and ion disturbances resulting from NaHCO(3) and KHCO(3) ingestion. Renal excretion of ions and water was studied in five men after ingestion of 3.57 mmol/kg body mass of sodium bicarbonate (NaHCO(3)) and, in a separate trial, potassium bicarbonate (KHCO(3)). Subjects had a Foley catheter inserted into the bladder and indwelling catheters placed into an antecubital vein and a brachial artery. Blood and urine were sampled in the 30-min period before, the 60-min period during, and the 210-min period after ingestion of the solutions. NaHCO(3) ingestion resulted in a rapid, transient diuresis and natriuresis. Cumulative urine output was 44 +/- 11% of ingested volume, resulting in a 555 +/- 119 ml increase in total body water at the end of the experiment. The cumulative increase (above basal levels) in renal Na(+) excretion accounted for 24 +/- 2% of ingested Na(+). In the KHCO(3) trial, arterial plasma K(+) concentration rapidly increased from 4.25 +/- 0.10 to a peak of 7.17 +/- 0.13 meq/l 140 min after the beginning of ingestion. This increase resulted in a pronounced, transient diuresis, with cumulative urine output at 270 min similar to the volume ingested, natriuresis, and a pronounced kaliuresis that was maintained until the end of the experiment. Cumulative (above basal) renal K(+) excretion at 270 min accounted for 26 +/- 5% of ingested K(+). The kidneys were important in mediating rapid corrections of substantial portions of the fluid and electrolyte disturbances resulting from ingestion of KHCO(3) and NaHCO(3) solutions.
Collapse
Affiliation(s)
- M I Lindinger
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada L8N 3Z5.
| | | | | | | | | | | |
Collapse
|