1
|
Gu J, Liu F, Li L, Mao J. Advances and Challenges in Modeling Autosomal Dominant Polycystic Kidney Disease: A Focus on Kidney Organoids. Biomedicines 2025; 13:523. [PMID: 40002937 PMCID: PMC11852630 DOI: 10.3390/biomedicines13020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent hereditary disorder characterized by distinct phenotypic variability that has posed challenges for advancing in-depth research. Recent advancements in kidney organoid construction technologies have enabled researchers to simulate kidney development and create simplified in vitro experimental environments, allowing for more direct observation of how genetic mutations drive pathological phenotypes and disrupt physiological functions. Emerging technologies, such as microfluidic bioreactor culture systems and single-cell transcriptomics, have further supported the development of complex ADPKD organoids, offering robust models for exploring disease mechanisms and facilitating drug discovery. Nevertheless, significant challenges remain in constructing more accurate ADPKD disease models. This review will summarize recent advances in ADPKD organoid construction, focusing on the limitations of the current techniques and the critical issues that need to be addressed for future breakthroughs. New and Noteworthy: This review presents recent advancements in ADPKD organoid construction, particularly iPSC-derived models, offering new insights into disease mechanisms and drug discovery. It focuses on challenges such as limited vascularization and maturity, proposing potential solutions through emerging technologies. The ongoing optimization of ADPKD organoid models is expected to enhance understanding of the disease and drive breakthroughs in disease mechanisms and targeted therapy development.
Collapse
Affiliation(s)
| | | | | | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310058, China; (J.G.); (F.L.); (L.L.)
| |
Collapse
|
2
|
Kofotolios I, Bonios MJ, Adamopoulos M, Mourouzis I, Filippatos G, Boletis JN, Marinaki S, Mavroidis M. The Han:SPRD Rat: A Preclinical Model of Polycystic Kidney Disease. Biomedicines 2024; 12:362. [PMID: 38397964 PMCID: PMC10887417 DOI: 10.3390/biomedicines12020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) stands as the most prevalent hereditary renal disorder in humans, ultimately culminating in end-stage kidney disease. Animal models carrying mutations associated with polycystic kidney disease have played an important role in the advancement of ADPKD research. The Han:SPRD rat model, carrying an R823W mutation in the Anks6 gene, is characterized by cyst formation and kidney enlargement. The mutated protein, named Samcystin, is localized in cilia of tubular epithelial cells and seems to be involved in cystogenesis. The homozygous Anks6 mutation leads to end-stage renal disease and death, making it a critical factor in kidney development and function. This review explores the utility of the Han:SPRD rat model, highlighting its phenotypic similarity to human ADPKD. Specifically, we discuss its role in preclinical trials and its importance for investigating the pathogenesis of the disease and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Ioannis Kofotolios
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| | - Michael J. Bonios
- Heart Failure and Transplant Unit, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - Markos Adamopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Gerasimos Filippatos
- Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - John N. Boletis
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Smaragdi Marinaki
- Clinic of Nephrology and Renal Tranplantation, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece (M.M.)
| |
Collapse
|
3
|
Airik M, Schüler M, McCourt B, Weiss AC, Herdman N, Lüdtke TH, Widmeier E, Stolz DB, Nejak-Bowen KN, Yimlamai D, Wu YL, Kispert A, Airik R, Hildebrandt F. Loss of Anks6 leads to YAP deficiency and liver abnormalities. Hum Mol Genet 2021; 29:3064-3080. [PMID: 32886109 PMCID: PMC7733532 DOI: 10.1093/hmg/ddaa197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/03/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
ANKS6 is a ciliary protein that localizes to the proximal compartment of the primary cilium, where it regulates signaling. Mutations in the ANKS6 gene cause multiorgan ciliopathies in humans, which include laterality defects of the visceral organs, renal cysts as part of nephronophthisis and congenital hepatic fibrosis (CHF) in the liver. Although CHF together with liver ductal plate malformations are common features of several human ciliopathy syndromes, including nephronophthisis-related ciliopathies, the mechanism by which mutations in ciliary genes lead to bile duct developmental abnormalities is not understood. Here, we generated a knockout mouse model of Anks6 and show that ANKS6 function is required for bile duct morphogenesis and cholangiocyte differentiation. The loss of Anks6 causes ciliary abnormalities, ductal plate remodeling defects and periportal fibrosis in the liver. Our expression studies and biochemical analyses show that biliary abnormalities in Anks6-deficient livers result from the dysregulation of YAP transcriptional activity in the bile duct-lining epithelial cells. Mechanistically, our studies suggest, that ANKS6 antagonizes Hippo signaling in the liver during bile duct development by binding to Hippo pathway effector proteins YAP1, TAZ and TEAD4 and promoting their transcriptional activity. Together, this study reveals a novel function for ANKS6 in regulating Hippo signaling during organogenesis and provides mechanistic insights into the regulatory network controlling bile duct differentiation and morphogenesis during liver development.
Collapse
Affiliation(s)
- Merlin Airik
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Markus Schüler
- Division of Nephrology and Internal Intensive Care Medicine, Charite University, Berlin, Germany.,Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Blake McCourt
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Nathan Herdman
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Eugen Widmeier
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.,Department of Medicine, Renal Division, Medical Center - University of Freiburg, Freiburg, Germany
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kari N Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dean Yimlamai
- Division of Gastroenterology and Nutrition, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yijen L Wu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Rannar Airik
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
4
|
Bakey Z, Bihoreau MT, Piedagnel R, Delestré L, Arnould C, de Villiers AD, Devuyst O, Hoffmann S, Ronco P, Gauguier D, Lelongt B. The SAM domain of ANKS6 has different interacting partners and mutations can induce different cystic phenotypes. Kidney Int 2015; 88:299-310. [PMID: 26039630 DOI: 10.1038/ki.2015.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 01/18/2023]
Abstract
The ankyrin repeat and sterile α motif (SAM) domain-containing six gene (Anks6) is a candidate for polycystic kidney disease (PKD). Originally identified in the PKD/Mhm(cy/+) rat model of PKD, the disease is caused by a mutation (R823W) in the SAM domain of the encoded protein. Recent studies support the etiological role of the ANKS6 SAM domain in human cystic diseases, but its function in kidney remains unknown. To investigate the role of ANKS6 in cyst formation, we screened an archive of N-ethyl-N-nitrosourea-treated mice and derived a strain carrying a missense mutation (I747N) within the SAM domain of ANKS6. This mutation is only six amino acids away from the PKD-causing mutation (R823W) in cy/+ rats. Evidence of renal cysts in these mice confirmed the crucial role of the SAM domain of ANKS6 in kidney function. Comparative phenotype analysis in cy/+ rats and our Anks6(I747N) mice further showed that the two models display noticeably different PKD phenotypes and that there is a defective interaction between ANKS6 with ANKS3 in the rat and between ANKS6 and BICC1 (bicaudal C homolog 1) in the mouse. Thus, our data demonstrate the importance of ANKS6 for kidney structure integrity and the essential mediating role of its SAM domain in the formation of protein complexes.
Collapse
Affiliation(s)
- Zeineb Bakey
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France [2] INSERM, UMR_S1155, Hôpital Tenon, Paris, France
| | | | - Rémi Piedagnel
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France [2] INSERM, UMR_S1155, Hôpital Tenon, Paris, France
| | - Laure Delestré
- 1] UPD University of Paris 05, Paris, France [2] INSERM, UMR_S1138, CRC, Paris, France
| | - Catherine Arnould
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France [2] INSERM, UMR_S1155, Hôpital Tenon, Paris, France
| | - Alexandre d'Hotman de Villiers
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France [2] INSERM, UMR_S1155, Hôpital Tenon, Paris, France
| | - Olivier Devuyst
- 1] UCL Medical School, Brussels, Belgium [2] University of Zurich, Zürich, Switzerland
| | - Sigrid Hoffmann
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Pierre Ronco
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France [2] INSERM, UMR_S1155, Hôpital Tenon, Paris, France [3] AP-HP, Hôpital Tenon, Paris, France
| | - Dominique Gauguier
- 1] UPD University of Paris 05, Paris, France [2] INSERM, UMR_S1138, CRC, Paris, France [3] Institute of Cardiometabolism and Nutrition, University Pierre & Marie Curie, Hospital Pitié Salpetrière, Paris, France
| | - Brigitte Lelongt
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR_S1155, Paris, France [2] INSERM, UMR_S1155, Hôpital Tenon, Paris, France
| |
Collapse
|
5
|
Belibi F, Ravichandran K, Zafar I, He Z, Edelstein CL. mTORC1/2 and rapamycin in female Han:SPRD rats with polycystic kidney disease. Am J Physiol Renal Physiol 2010; 300:F236-44. [PMID: 20943770 DOI: 10.1152/ajprenal.00129.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rapamycin slows disease progression in the male Han:SPRD (Cy/+) rat with polycystic kidney disease (PKD). The aim of this study was to determine the effect of rapamycin on PKD and the relative contributions of the proproliferative mammalian target of rapamycin complexes 1 and 2 (mTORC1 and mTORC2) in female Cy/+ rats. Female Cy/+ rats were treated with rapamycin from 4 to 12 wk of age. In vehicle-treated Cy/+ rats, kidney volume increased by 40% and cyst volume density (CVD) was 19%. Phosphorylated S6 (p-S6) ribosomal protein, a marker of mTORC1 activity, was increased in Cy/+ rats compared with normal littermate controls (+/+) and decreased by rapamycin. Despite activation of mTORC1 in female Cy/+ rats, rapamycin had no effect on kidney size, CVD, number of PCNA-positive cystic tubular cells, caspase-3 activity, or the number of terminal deoxynucleotidyl transferase dUTP-mediated nick-end label-positive apoptotic cells. To determine a reason for the lack of effect of rapamycin, we studied the mTORC2 signaling pathway. On immunoblot of kidney, phosphorylated (Ser473) Akt (p-Akt), a marker of mTORC2 activity, was increased in female Cy/+ rats treated with rapamycin. Phosphorylated (Ser657) PKCα, a substrate of mTORC2, was unaffected by rapamycin in females. In contrast, in male rats, where rapamycin significantly decreases PKD, p-Akt (Ser473) was decreased by rapamcyin. PKCα (Ser657) was increased in male Cy/+ rats but was unaffected by rapamycin. In summary, in female Cy/+ rats, rapamycin had no effect on PKD and proproliferative p-Akt (Ser473) activity was increased by rapamycin. There were differential effects of rapamycin on mTORC2 signaling in female vs. male Cy/+ rats.
Collapse
Affiliation(s)
- Franck Belibi
- Division of Renal Diseases and Hypertension, University of Colorado at Denver and Health Sciences Center, Box C281, 12700 East 19th Ave., Aurora, CO 80262, USA
| | | | | | | | | |
Collapse
|
6
|
Calcium channel inhibition accelerates polycystic kidney disease progression in the Cy/+ rat. Kidney Int 2007; 73:269-77. [PMID: 17943077 DOI: 10.1038/sj.ki.5002629] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In polycystic kidney disease, abnormal epithelial cell proliferation is the main factor leading to cyst formation and kidney enlargement. Cyclic AMP (cAMP) is mitogenic in cystic but antimitogenic in normal human kidney cells, which is due to reduced steady-state intracellular calcium levels in cystic compared to the normal cells. Inhibition of intracellular calcium entry with channel blockers, such as verapamil, induced cAMP-dependent cell proliferation in normal renal cells. To determine if calcium channel blockers have a similar effect on cell proliferation in vivo, Cy/+ rats, a model of dominant polycystic kidney disease, were treated with verapamil. Kidney weight and cyst index were elevated in verapamil-treated Cy/+ rats. This was associated with increased cell proliferation and apoptosis, elevated expression, and phosphorylation of B-Raf with stimulation of the mitogen-activated protein kinase MEK/ERK (mitogen-activated protein kinase kinase/extracellular-regulated kinase) pathway. Verapamil had no effect on kidney morphology or B-Raf stimulation in wild-type rats. We conclude that treatment of Cy/+ rats with calcium channel blockers increases activity of the B-Raf/MEK/ERK pathway accelerating cyst growth in the presence of endogenous cAMP, thus exacerbating renal cystic disease.
Collapse
|
7
|
Phillips JK, Hopwood D, Loxley RA, Ghatora K, Coombes JD, Tan YS, Harrison JL, McKitrick DJ, Holobotvskyy V, Arnolda LF, Rangan GK. Temporal relationship between renal cyst development, hypertension and cardiac hypertrophy in a new rat model of autosomal recessive polycystic kidney disease. Kidney Blood Press Res 2007; 30:129-44. [PMID: 17446713 DOI: 10.1159/000101828] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 02/06/2007] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND/METHODS We have examined the hypothesis that cyst formation is key in the pathogenesis of cardiovascular disease in a Lewis polycystic kidney (LPK) model of autosomal-recessive polycystic kidney disease (ARPKD), by determining the relationship between cyst development and indices of renal function and cardiovascular disease. RESULTS In the LPK (n = 35), cysts appear at week 3 (1.1 +/- 0.1 mm) increasing to week 24 (2.8 +/- 2 mm). Immunostaining for nephron-specific segments indicate cysts develop predominantly from the collecting duct. Cyst formation preceded hypertension (160 +/- 22 vs. Lewis control 105 +/- 20 mm Hg systolic blood pressure (BP), n = 12) at week 6, elevated creatinine (109 +/- 63 vs. 59 +/- 6 micromol/l, n = 16) and cardiac mass (0.7 vs. 0.4% bodyweight, n = 15) at week 12, and left ventricular hypertrophy (2,898 +/- 207 vs. 1,808 +/- 192 mum, n = 14) at week 24 (all p < or = 0.05). Plasma-renin activity and angiotensin II were reduced in 10- to 12-week LPK (2.2 +/- 2.9 vs. Lewis 11.9 +/- 4.9 ng/ml/h, and 25.0 +/- 19.1 vs. 94.9 +/- 64.4 pg/ml, respectively, n = 26, p < or = 0.05). Ganglionic blockade (hexamethonium 3.3 mg/kg) significantly reduced mean BP in the LPK (52 vs. Lewis 4%, n = 9, p < or = 0.05). CONCLUSION Cyst formation is a key event in the genesis of hypertension while the sympathetic nervous system is important in the maintenance of hypertension in this model of ARPKD.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Biomarkers/metabolism
- Creatinine/blood
- Disease Models, Animal
- Female
- Hypertension, Renal/etiology
- Hypertension, Renal/genetics
- Hypertension, Renal/pathology
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/pathology
- Immunohistochemistry
- Kidney Cortex/innervation
- Kidney Cortex/metabolism
- Kidney Cortex/pathology
- Kidney Medulla/innervation
- Kidney Medulla/metabolism
- Kidney Medulla/pathology
- Kidney Tubules, Distal/innervation
- Kidney Tubules, Distal/metabolism
- Kidney Tubules, Distal/pathology
- Kidney Tubules, Proximal/innervation
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Liver/metabolism
- Liver/pathology
- Male
- Myocardium/metabolism
- Myocardium/pathology
- Polycystic Kidney, Autosomal Recessive/complications
- Polycystic Kidney, Autosomal Recessive/genetics
- Polycystic Kidney, Autosomal Recessive/pathology
- Predictive Value of Tests
- Rats
- Rats, Inbred Lew
- Rats, Mutant Strains
- Renin-Angiotensin System/physiology
- Sympathetic Nervous System/drug effects
- Sympathetic Nervous System/physiology
- Sympatholytics/pharmacology
- Time Factors
- Urea/blood
Collapse
Affiliation(s)
- Jacqueline K Phillips
- Division of Health Sciences, School of Veterinary and Biomedical Science, Murdoch University, Perth, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tao Y, Kim J, Faubel S, Wu JC, Falk SA, Schrier RW, Edelstein CL. Caspase inhibition reduces tubular apoptosis and proliferation and slows disease progression in polycystic kidney disease. Proc Natl Acad Sci U S A 2005; 102:6954-9. [PMID: 15863619 PMCID: PMC1100753 DOI: 10.1073/pnas.0408518102] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have previously demonstrated an increase in proapoptotic caspase-3 in the kidney of Han:SPRD rats with polycystic kidney disease (PKD). The aim of the present study was to determine the effect of caspase inhibition on tubular cell apoptosis and proliferation, cyst formation, and renal failure in the Han:SPRD rat model of PKD. Heterozygous (Cy/+) and littermate control (+/+) male rats were weaned at 3 weeks of age and then treated with the caspase inhibitor IDN-8050 (10 mg/kg per day) by means of an Alzet (Palo Alto, CA) minipump or vehicle [polyethylene glycol (PEG 300)] for 5 weeks. The two-kidney/total body weight ratio more than doubled in Cy/+ rats compared with +/+ rats. IDN-8050 significantly reduced the kidney enlargement by 44% and the cyst volume density by 29% in Cy/+ rats. Cy/+ rats with PKD have kidney failure as indicated by a significant increase in blood urea nitrogen. IDN-8050 significantly reduced the increase in blood urea nitrogen in the Cy/+ rats. The number of proliferating cell nuclear antigen-positive tubular cells and apoptotic tubular cells in non-cystic and cystic tubules was significantly reduced in IDN-8050-treated Cy/+ rats compared with vehicle-treated Cy/+ rats. On immunoblot, the active form of caspase-3 (20 kDa) was significantly decreased in IDN-8050-treated Cy/+ rats compared with vehicle-treated Cy/+ rats. In summary, in a rat model of PKD, caspase inhibition with IDN-8050 (i) decreases apoptosis and proliferation in cystic and noncystic tubules; (ii) inhibits renal enlargement and cystogenesis, and (iii) attenuates the loss of kidney function.
Collapse
Affiliation(s)
- Yunxia Tao
- Division of Renal Diseases and Hypertension, University of Colorado Health Sciences Center, Renal Box C281, 4200 East 9th Avenue, Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Tao Y, Kim J, Schrier RW, Edelstein CL. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 2004; 16:46-51. [PMID: 15563559 DOI: 10.1681/asn.2004080660] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Increased tubular epithelial cell proliferation is a prerequisite for cyst formation and expansion in polycystic kidney disease (PKD). Rapamycin is a potent antiproliferative agent. The aim of the present study was to determine the effect of rapamycin on tubular cell proliferation, cyst formation, and renal failure in the Han:SPRD rat model of PKD. Heterozygous (Cy/+) and littermate control (+/+) male rats were weaned at 3 wk of age and then treated with rapamycin 0.2 mg/kg per d intraperitoneally or vehicle (ethanol) for 5 wk. Vehicle-treated Cy/+ rats had a more than doubling of kidney size compared with +/+ rats. Rapamycin reduced the kidney enlargement by 65%. Rapamycin significantly reduced the cyst volume density in Cy/+ rats by >40%. Blood urea nitrogen was 59% increased in vehicle-treated Cy/+ rats compared with +/+ rats. Rapamycin reduced the blood urea nitrogen to normal in Cy/+ rats. The number of proliferating cell nuclear antigen (PCNA)-positive cells per noncystic tubule was eightfold increased in vehicle-treated Cy/+ compared with +/+ rats. Rapamycin significantly reduced the number of PCNA-positive cells in noncystic tubules of Cy/+ rats. In addition, the number of PCNA-positive cells per cyst in Cy/+ rats was significantly reduced by rapamycin. In summary, in a rat model of PKD, rapamycin treatment (1) decreases proliferation in cystic and noncystic tubules, (2) markedly inhibits renal enlargement and cystogenesis, and (3) prevents the loss of kidney function.
Collapse
Affiliation(s)
- Yunxia Tao
- Division of Renal Diseases and Hypertension, University of ColoradoHealth Sciences Center, Denver, CO, USA
| | | | | | | |
Collapse
|
10
|
Philbrick DJ, Bureau DP, Collins FW, Holub BJ. Evidence that soyasaponin Bb retards disease progression in a murine model of polycystic kidney disease. Kidney Int 2003; 63:1230-9. [PMID: 12631339 DOI: 10.1046/j.1523-1755.2003.00869.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND We reported a lessened cyst growth in the pcy mouse model of polycystic kidney disease (PKD) when mice were fed a soy protein isolate (SPI)-based diet and hypothesized that the soyasaponins may be associated with this therapeutic effect. The effects of feeding a saponin-enriched alcohol extract (SEAE) from SPI, an isoflavone- and saponin-enriched soy supplement (Novasoy 400), or a 99.5% pure soyasaponin Bb powder on cyst growth are reported here. METHODS The therapeutic effects of the soyasaponins were studied in 60-day-old male pcy mice in two separate, 90-day feeding trials. In the first study, mice were fed either a casein-based (control) diet, a diet in which SPI replaced the casein or the control diet supplemented with SEAE. In the second study, mice were fed the control diet unsupplemented or supplemented with either a soyasaponin- and isoflavone-enriched soy product (Novasoy 400) or a 99.5% pure soyasaponin Bb powder. RESULTS In study 1, kidney weight, water content, and plasma creatinine and urea levels were markedly reduced in the SEAE-fed animals compared to tissues from the control group; likewise, mice fed the SPI-based diet showed a decreased plasma creatinine, but only a slightly reduced plasma urea. In study 2, kidney weight, water content, plasma creatinine and urea levels were significantly reduced in mice fed the soyasaponin Bb powder and the Novasoy-400 supplement, compared to controls. CONCLUSION Soyasaponin Bb can impede kidney enlargement and cyst growth in the pcy mouse model of PKD. Further studies are needed to determine its most effective dose and mechanism of action.
Collapse
Affiliation(s)
- Diana J Philbrick
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
11
|
Chapman AB. Cystic disease in women: clinical characteristics and medical management. ADVANCES IN RENAL REPLACEMENT THERAPY 2003; 10:24-30. [PMID: 12616460 DOI: 10.1053/jarr.2003.50005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a dominantly inherited systemic disorder equally inherited in men and women characterized by renal cyst development and expansion ultimately leading to renal failure. ADPKD women have a slower rate of progression to renal failure, with a later age of entry into end-stage renal disease (ESRD) as compared with men. Renal cyst growth and renal expansion are the hallmarks of ADPKD, and women will develop renal insufficiency with smaller renal volume than their male counterparts. As well, women have different rates of occurrence of renal and extrarenal complications in ADPKD. Renal complications related to ADPKD, including hypertension and gross hematuria, occur more frequently in men than in women, whereas liver cystic disease occurs earlier and more frequently in women than in men. The presence of polycystic liver disease is related to pregnancy number and oral contraceptive pill use in ADPKD women. Importantly, massive polycystic liver disease requiring surgical intervention occurs primarily in ADPKD women. ADKPD women have a highly successful reproductive course. The chance of a successful pregnancy is excellent in ADPKD women and comparable to healthy unaffected women as long as prepregnancy blood pressure and renal function are normal. Fetal complication rates are no greater than in the general population; however, maternal complication rates in ADPKD women are high with an increased frequency of new or worsening hypertension as well as an increased occurrence of preeclampsia and preterm deliveries. Finally, increasing pregnancy number has minimal or no effect on renal outcome in ADPKD women.
Collapse
Affiliation(s)
- Arlene B Chapman
- Department of Medicine (Renal Division), Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
12
|
Witzgall R, Kränzlin B, Gretz N, Obermüller N. Impaired endocytosis may represent an obstacle to gene therapy in polycystic kidney disease. Kidney Int 2002; 61:S132-7. [PMID: 11841627 DOI: 10.1046/j.1523-1755.2002.0610s1132.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Autosomal-dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease and a frequent cause of chronic renal failure. The cloning of the PKD1 and PKD2 genes, which are mutated in the great majority of patients with this disease, opens up the opportunity for somatic gene therapy by introduction of the wild-type gene or cDNA. Several publications have provided evidence, that many portions of the nephron and the collecting duct can form cysts, including the proximal tubule. Alterations in the proximal tubule may prevent the efficient endocytosis of filtered proteins and thus contribute to proteinuria, a frequent symptom in patients with polycystic kidney disease. At the same time this may also negatively affect various gene therapy strategies, since endocytosis is important for the uptake of foreign DNA at least under some circumstances. In the (cy/+) rat, a widely used animal model for ADPKD, cysts almost exclusively develop from proximal tubules, and we have therefore investigated whether proteinuria and defective endocytosis also occur in this model. METHODS Proteinuria was demonstrated by direct measurement and by protein gel electrophoresis of urines from 16 week-old (cy/+) rats. Endocytosis was investigated by injection of FITC-dextran and immunohistochemical staining with anti-ClC-5 and anti-megalin antibodies. RESULTS Similar to the observations made in ADPKD patients, proteinuria also develops in the (cy/+) rat. Using FITC-labeled dextran as an in vivo tracer for renal tubular endosomal function, we could show that portions of cyst-lining epithelia from proximal tubules have lost the ability to endocytose, which is necessary for the reabsorption of albumin and lower-molecular-weight proteins. By immunohistochemistry the expression of other proteins implicated in endocytosis, such as the chloride channel ClC-5 and the albumin receptor megalin, correlated well with the presence and absence of FITC-dextran in cyst wall epithelia. CONCLUSION These data indicate that proteinuria and albuminuria in the (cy/+) rat model for ADPKD are due to a loss of the endocytic machinery in epithelia of proximal tubular cysts. Such a defect may also reduce the efficacy of certain gene therapy protocols.
Collapse
Affiliation(s)
- Ralph Witzgall
- Institute for Anatomy and Cell Biology I, University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
13
|
Cowley BD, Ricardo SD, Nagao S, Diamond JR. Increased renal expression of monocyte chemoattractant protein-1 and osteopontin in ADPKD in rats. Kidney Int 2001; 60:2087-96. [PMID: 11737583 DOI: 10.1046/j.1523-1755.2001.00065.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Human autosomal-dominant polycystic kidney disease (ADPKD) is variable in the rate of deterioration of renal function, with end-stage renal disease (ESRD) occurring in only approximately 50% of affected individuals. Evidence suggests that interstitial inflammation may be important in the development of ESRD in ADPKD. Han:SPRD rats manifest ADPKD that resembles the human disease. Homozygous cystic (Cy/Cy) rats develop rapidly progressive PKD and die near age 3 weeks. Heterozygous (Cy/+) females develop slowly progressive PKD without evidence of renal dysfunction until the second year of life, whereas heterozygous (Cy/+) males develop more aggressive PKD with renal failure beginning by 8 to 12 weeks of age. METHODS To examine the relationship between proinflammatory chemoattractants and the development of interstitial inflammation and ultimately renal failure in ADPKD, we evaluated monocyte chemoattractant protein-1 (MCP-1) and osteopontin mRNAs and proteins in kidneys from Han:SRPD rats. RESULTS MCP-1 and osteopontin mRNAs, expressed at low levels in kidneys from normal (+/+) animals at all ages, were markedly elevated in kidneys from 3-week-old Cy/Cy animals. In kidneys from heterozygous (Cy/+) adults of either gender, MCP-1 and osteopontin mRNAs were more abundant than normal; MCP-1 mRNA was more abundant in Cy/+ males than in females. Thus, chemoattractant mRNA expression correlated with the development of renal failure in Cy/Cy and Cy/+ rats. Osteopontin mRNA, localized by in situ hybridization, was moderately expressed in the renal medulla of normal animals; however, this mRNA was expressed at very high levels in the cystic epithelia of Cy/+ and Cy/Cy animals. MCP-1 and osteopontin proteins, localized by immunohistochemistry, were weakly detected in +/+ kidneys but were densely expressed in Cy/Cy and in adult Cy/+ kidneys, primarily over cystic epithelium. Increased expression of chemoattractants was associated with the accumulation of ED-1 positive cells (macrophages) in the interstitium of cystic kidneys. CONCLUSIONS We suggest that proinflammatory chemoattractants have a role in the development of interstitial inflammation and renal failure in ADPKD.
Collapse
Affiliation(s)
- B D Cowley
- Division of Nephrology & Hypertension, Department of Medicine, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, USA.
| | | | | | | |
Collapse
|
14
|
Sanzen T, Harada K, Yasoshima M, Kawamura Y, Ishibashi M, Nakanuma Y. Polycystic kidney rat is a novel animal model of Caroli's disease associated with congenital hepatic fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1605-12. [PMID: 11337358 PMCID: PMC1891952 DOI: 10.1016/s0002-9440(10)64116-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caroli's disease (congenital intrahepatic biliary dilatation) associated with congenital hepatic fibrosis is an autosomal recessive polycystic kidney disease. Recently, the polycystic kidney (PCK) rat, a spontaneous mutant derived from a colony of CRJ:CD rats with polycystic lesions in the liver and an autosomal recessive mode of inheritance, was reported. In the present study, the pathology of the hepatobiliary system and the biliary cell-kinetics were evaluated in fetuses (day 18 to 21 of gestation) and neonates and adults (1 day to 4 months after delivery) of PCK rats. CRJ:CD rats were used as a control. Multiple segmental and saccular dilatations of intrahepatic bile ducts were first observed in fetuses at 19 days of gestation. The dilatation spread throughout the liver and the degree of dilatation increased with aging. Gross and histological features characterizing ductal plate malformation were common in the intrahepatic bile ducts. Overgrowth of portal connective tissue was evident and progressive after delivery. These features were very similar to those of Caroli's disease with congenital hepatic fibrosis. Proliferative activity in the biliary epithelial cells was greater in PCK rats than controls during the development. In contrast, the biliary epithelial apoptosis was less extensive in PCK rats than the controls until 1 week after delivery, but greater after 3 weeks, suggesting that the remodeling defect in immature bile ducts associated with the imbalance of cell kinetics plays a role in the occurrence of intrahepatic biliary anomalies in PCK rats. The PCK rat could be a useful and promising animal model of Caroli's disease with congenital hepatic fibrosis.
Collapse
Affiliation(s)
- T Sanzen
- Second Department of Pathology, Kanazawa University School of Medicine, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Obermüller N, Morente N, Kränzlin B, Gretz N, Witzgall R. A possible role for metalloproteinases in renal cyst development. Am J Physiol Renal Physiol 2001; 280:F540-50. [PMID: 11181417 DOI: 10.1152/ajprenal.2001.280.3.f540] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expansion of cysts in polycystic kidneys bears several similarities to the invasion of the extracellular matrix by benign tumors. We therefore hypothesized that cyst-lining epithelial cells produce extracellular matrix-degrading metalloproteinases and that the inhibition of these enzymes may represent a potential target for therapeutic intervention. Using in situ hybridization, we first analyzed the expression of membrane-type metalloproteinase 1 (MMP-14), an essential matrix metalloproteinase, of its inhibitor TIMP-2, and of the cytokine transforming growth factor (TGF)-beta2 in the (cy/+) rat model of autosomal-dominant polycystic kidney disease. Upregulated MMP-14 mRNA was predominantly located in cyst-lining epithelia and distal tubules, whereas TIMP-2 mRNA was confined almost exclusively to fibroblasts. TGF-beta2, a cytokine known to regulate the expression of matrix metalloproteinases and their inhibitors, was also expressed by cyst wall epithelia. We then treated (cy/+) rats with the metalloproteinase inhibitor batimastat for a period of 8 wk. The treatment with the metalloproteinase inhibitor batimastat resulted in a significant reduction of cyst number and kidney weight. Our study suggests that metalloproteinase inhibitors represent a new therapeutic tool against polycystic kidney disease, which should be applicable independently of the background of the disease.
Collapse
Affiliation(s)
- N Obermüller
- Medical Research Center, Klinikum Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | | | | | | |
Collapse
|
16
|
Lager DJ, Qian Q, Bengal RJ, Ishibashi M, Torres VE. The pck rat: a new model that resembles human autosomal dominant polycystic kidney and liver disease. Kidney Int 2001; 59:126-36. [PMID: 11135065 DOI: 10.1046/j.1523-1755.2001.00473.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The pck rat is a recently identified model of polycystic kidney disease (PKD) and liver disease (PLD) that developed spontaneously in the rat strain Crj:CD/SD. Its pattern of inheritance is autosomal recessive. METHODS To characterize this new model, we studied pck rats derived from F9 breeding pairs from Charles River Japan and control Sprague-Dawley rats. Blood and tissues (kidneys, liver, and pancreas), obtained from these rats at 1, 7, 21, 70, and 182 days of age, were used for biochemical determinations, light and electron microscopy, and immunohistochemistry. RESULTS The pck rats develop progressive cystic enlargement of the kidneys after the first week of age, and liver cysts are evident by day 1. The renal cysts developed as a focal process from thick ascending loops of Henle, distal tubules, and collecting ducts in the corticomedullary region and outer medulla. Flat and polypoid epithelial hyperplasia were common in dilated tubules and cysts. Apoptosis was common and affected normal, as well as dilated tubules, but less frequently cysts lined by flat epithelium. The basement membranes of the cyst walls exhibited a variety of alterations, including thinning, lamellation, and thickening. Focal interstitial fibrosis and inflammation were evident by 70 days of age. Segmental glomerulosclerosis and segmental thickening of the basement membrane with associated effacement of the podocyte foot processes were noted in some rats at 70 days of age. The PKD was more severe in male than in female pck rats, as reflected by the higher kidney weights, while there was no gender difference in the severity of the PLD. Mild bile duct dilation was present as early as one day of age. With age, it became more severe, and the livers became markedly enlarged. Even then, however, there was only a mild increase in portal fibrosis, without formation of fibrous septae. Slight elevations of plasma blood urea nitrogen levels were detected at 70 and 182 days of age. CONCLUSIONS The pck rat is a new inherited model of PKD and PLD with a natural history and renal and hepatic histologic abnormalities that resemble human autosomal dominant PKD. This model may be useful for studying the pathogenesis and evaluating the potential therapies for PKD and PLD. The identification of the pck gene may provide further insight into the pathogenesis of autosomal dominant PKD.
Collapse
Affiliation(s)
- D J Lager
- Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
17
|
Kai K, Sato N, Watanabe A, Shiraiwa K, Ogawa S, Kobayashi Y. Polycystic Disease of the Kidney and Liver in Crj:CD(SD) Rats. J Toxicol Pathol 2001. [DOI: 10.1293/tox.14.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Kiyonori Kai
- Laboratory for Toxicological Research, Institute for Life Science Research, Asahi Chemical Industry Co., Ltd
| | - Norihiro Sato
- Laboratory for Toxicological Research, Institute for Life Science Research, Asahi Chemical Industry Co., Ltd
| | - Atsushi Watanabe
- Laboratory for Toxicological Research, Institute for Life Science Research, Asahi Chemical Industry Co., Ltd
| | - Kazumi Shiraiwa
- Laboratory for Toxicological Research, Institute for Life Science Research, Asahi Chemical Industry Co., Ltd
| | - Shinichi Ogawa
- Laboratory for Toxicological Research, Institute for Life Science Research, Asahi Chemical Industry Co., Ltd
| | - Youshiro Kobayashi
- Laboratory for Toxicological Research, Institute for Life Science Research, Asahi Chemical Industry Co., Ltd
| |
Collapse
|
18
|
Pey R, Bach J, Schieren G, Gretz N, Hafner M. A new in vitro bioassay for cyst formation by renal cells from an autosomal dominant rat model of polycystic kidney disease. In Vitro Cell Dev Biol Anim 1999; 35:571-9. [PMID: 10614866 DOI: 10.1007/s11626-999-0095-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequent human inherited diseases. The main feature of the disease is the development of renal cysts, first occurring in the proximal tubules, and with time, dominating all segments of the nephron, leading to end-stage renal disease in 50% of the patients in their fifth decade of life. A therapy for polycystic kidney disease (PKD) has not yet been developed. Patients coming to end-stage ADPKD require long-term dialysis and/or transplantation. A suitable animal model to study ADPKD is the spontaneously mutated Han:SPRD (cy/+) rat, but a method to cultivate Han:SPRD (cy/+) derived renal cells which preserves their ability to form cyst-like structures in vitro has previously not been reported. Based on this well-characterized animal model, we developed a cell culture model of renal cyst formation in vitro. When renal cells of the Han:SPRD (cy/+) rat were isolated and cultured under conditions that prevent cell-substratum adhesion, large amounts of cyst-like structures were formed de novo from Han:SPRD (cy/+) derived renal cells, but only a few from control rat renal cells. In contrast, when cultivated on plastic as monolayer cultures, Han:SPRD (cy/+)-derived and control rat-derived renal cells were indistinguishable and did not form cyst-like structures. Immunohistochemical characterization of the cyst-like structures suggests tubular epithelial origin of the cyst-forming cells. The amount of cysts formed from Han:SPRD (cy/+)-derived renal cells grown in a stationary suspension culture is susceptible to modulation by different conditions. Human cyst fluid and epidermal growth factor both stimulated the formation of cysts from Han:SPRD (cy/+)-derived renal cells whereas taxol inhibited cystogenesis. In contrast, neither human cyst fluid nor epidermal growth factor affected the amount of cysts formed by control rat renal cells. As the culture model reported here allows not only the distinction of PKD-derived tubular epithelium from its normal counterpart, but also the modulation of cyst formation especially by Han:SPRD (cy/+)-derived renal cells, it might be a useful prescreening protocol for potential treatments for PKD and thus reduce the need for animal experiments.
Collapse
Affiliation(s)
- R Pey
- Department of Molecular Biology and Cell Culture Technology, Mannheim University of Applied Sciences, Germany
| | | | | | | | | |
Collapse
|