1
|
Chen Y, Xue C. Cross-talk of renal cells through WNT signal transduction in the development of fibrotic kidneys. Front Cell Dev Biol 2025; 12:1517181. [PMID: 40012992 PMCID: PMC11860889 DOI: 10.3389/fcell.2024.1517181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/16/2024] [Indexed: 02/28/2025] Open
Abstract
Chronic kidney disease (CKD) is a progressive condition that can lead to chronic renal failure (CRF), affecting 8%-16% of adults globally and imposing a significant burden on healthcare systems. Renal fibrosis is a key pathological hallmark of CKD progression and is linked to poor prognosis. Multiple signaling pathways, including WNT/β-catenin.Aberrant activation of WNT/β-catenin is implicated in renal fibrosis. The roles of renal macrophages and fibroblasts are pivotal in fibrosis progression and prognosis.
Collapse
Affiliation(s)
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Hao D, Yang X, Li Z, Xie B, Feng Y, Liu G, Ren X. Screening core genes for minimal change disease based on bioinformatics and machine learning approaches. Int Urol Nephrol 2025; 57:655-671. [PMID: 39382604 DOI: 10.1007/s11255-024-04226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Based on bioinformatics and machine learning methods, we conducted a study to screen the core genes of minimal change disease (MCD) and further explore its pathogenesis. First, we obtained the chip data sets GSE108113 and GSE200828 from the Gene Expression Comprehensive Database (GEO), which contained MCD information. We then used R software to analyze the gene chip data and performed functional enrichment analysis. Subsequently, we employed Cytoscape to screen the core genes and utilized machine learning algorithms (random forest and LASSO regression) to accurately identify them. To validate and analyze the core genes, we conducted immunohistochemistry (IHC) and gene set enrichment analysis (GSEA). Our results revealed a total of 394 highly expressed differential genes. Enrichment analysis indicated that these genes are primarily involved in T cell differentiation and p13k-akt signaling pathway of immune response. We identified NOTCH1, TP53, GATA3, and TGF-β1 as the core genes. IHC staining demonstrated significant differences in the expression of these four core genes between the normal group and the MCD group. Furthermore, GSEA suggested that their up-regulation may be closely associated with the pathological changes in MCD kidneys, particularly in the glycosaminoglycans signaling pathway. In conclusion, our study highlights NOTCH1, TP53, GATA3, and TGF-β1 as the core genes in MCD and emphasizes the close relationship between glycosaminoglycans and pathogenesis of MCD.
Collapse
Affiliation(s)
- Dingfan Hao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
| | - Xiuting Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
| | - Zexuan Li
- Department of Nephrology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, No. 99 Longcheng Street, Taiyuan, 030032, Shanxi, China
| | - Bin Xie
- Department of Nephrology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, No. 99 Longcheng Street, Taiyuan, 030032, Shanxi, China
| | - Yongliang Feng
- Department of Epidemiology, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
- Department of Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Gaohong Liu
- Department of Nephrology, Shanxi Provincial People's Hospital, No. 29 Shuangtasi Street, Taiyuan, 030012, 030001, Shanxi, China.
| | - Xiaojun Ren
- Department of Nephrology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, No. 99 Longcheng Street, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
3
|
Thornton M, Sommer N, McGonigle M, Kumar Ram A, Yerrathota S, Ehirim H, Chaturvedi A, Dinh Phan J, Chakraborty A, Chakravarthi VP, Gunewardena S, Tyagi M, Talreja J, Wang T, Singhal P, Tran PV, Fields TA, Ray PE, Dhillon NK, Sharma M. Notch3 deletion regulates HIV-1 gene expression and systemic inflammation to ameliorate chronic kidney disease. Dis Model Mech 2025; 18:DMM052056. [PMID: 39910908 PMCID: PMC11892680 DOI: 10.1242/dmm.052056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
Anti-retroviral therapy (ART) has decreased human immunodeficiency virus (HIV)-1-associated morbidity. However, despite ART, immune cells remain latently infected, leading to chronic inflammation and HIV-1-associated comorbidities. New strategies are needed to target viral proteins and inflammation. We found activation of Notch3 in renal cells of the HIV-1 transgenic mouse model (HIV-Tg26) and in patients with HIV-associated nephropathy. We hypothesized that targeting NOTCH3 activation constitutes an effective therapy for HIV-related chronic kidney disease. We generated HIV-Tg26 mice with Notch3 knocked out (Tg-N3KO). Compared to HIV-Tg26 mice at 3 months, Tg-N3KO mice showed a marked reduction in renal injury, skin lesions and mortality rate. They also showed reduced renal infiltrating cells and significantly reduced expression of HIV genes. Moreover, Notch3 activated the HIV long terminal repeat promoter, and induction of HIV-1 increased Notch3 activation, indicating a feedback mechanism. Further, bone marrow-derived macrophages from HIV-Tg26 mice showed activation of Notch3, indicating systemic effects. Consistent with that observation, systemic levels of TNF and MCP-1 were reduced in Tg-N3KO compared to HIV-Tg26 mice. Thus, Notch3 deletion/inhibition has a dual-therapeutic effect in HIV-related chronic kidney disease, which might extend to other HIV-related pathologies.
Collapse
Affiliation(s)
- Mackenzie Thornton
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nicole Sommer
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mercedes McGonigle
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anil Kumar Ram
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sireesha Yerrathota
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Henrietta Ehirim
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Aakriti Chaturvedi
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Johnny Dinh Phan
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anubhav Chakraborty
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mudit Tyagi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jaya Talreja
- Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI 48201, USA
| | - Tao Wang
- Department of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Pravin Singhal
- Institute of Molecular Medicine, Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra-Northwell, New York, NY 11021, USA
| | - Pamela V. Tran
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Timothy A. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Patricio E. Ray
- Child Health Research Center and Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Navneet K. Dhillon
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Madhulika Sharma
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Wang Y, Zhao S, Ni N, Chen H, Zhao W, Xing K, Sun X, Jing X. Nanoparticles induced glomerular endothelial leakiness promoting albuminuria level. NANOIMPACT 2025; 37:100548. [PMID: 39956289 DOI: 10.1016/j.impact.2025.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/26/2024] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
Nanomaterials have been widely used in various fields due to their excellent properties. However, the long-term exposure of humans to the environment of nanomaterials may lead to some pathological and physiological changes, such as the disruption of the glomerular filtration barrier (GFB), which can lead to high permeability and filterable albumin. Glomerular albuminuria results from the failure of the GFB, which may be caused by activation of the Notch1 signaling pathway. The reduction of glomerular endocalyx results in the level of VE-cadherin being diminished between endothelial cells, leading to leakiness in the endothelium. As previously discovered, certain nanoparticles, such as negatively charged gold nanoparticles of appropriate size, can directly facilitate the onset of endothelial leakiness through disrupting connections between vascular endothelial cells, in a process known as nanomaterial-induced endothelial leakiness (NanoEL). In this study, the negatively charged Au NPs with a diameter of 20 nm were synthesized first. Through the co-incubation of 20 nm Au NPs with a single layer of continuous HUVECs, we revealed that the synthesized 20 nm Au NPs could break the tight junctions and cause endothelial cell leakage. In addition, by constructing an endothelial leakage model between glomerular vascular endothelial cells, we confirmed that 20 nm Au NPs can generate NanoEL between glomerular endothelial cells, involving downstream processes coinciding with Notch signaling activation, resulting in the increase of urinary protein. The results of this study add to the understanding of the behaviour of nanoparticles in complex biological systems.
Collapse
Affiliation(s)
- Yingqi Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Shen Zhao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Nengyi Ni
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Hongyu Chen
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Wenjian Zhao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China; Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Xiuli Jing
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.
| |
Collapse
|
5
|
Tian M, Tang M, Chen C, Lin Y, Chen H, Xu Y. Macrophage Infiltration Correlated with IFI16, EGR1 and MX1 Expression in Renal Tubular Epithelial Cells Within Lupus Nephritis-Associated Tubulointerstitial Injury via Bioinformatics Analysis. J Inflamm Res 2024; 17:11469-11483. [PMID: 39735896 PMCID: PMC11681807 DOI: 10.2147/jir.s489087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/03/2024] [Indexed: 12/31/2024] Open
Abstract
Objective A comprehensive bioinformatics analysis was conducted to investigate potential new diagnostic biomarkers and immune infiltration characteristics associated with tubulointerstitial injury in lupus nephritis (LN), and to examine possible correlations between key genes and infiltrating immune cells. Methods The GSE32591, GSE113342, and GSE200306 datasets were downloaded from the Gene Expression Omnibus database and differentially expressed genes (DEGs) were identified in the pooled dataset. Support vector machine-recursive feature elimination analysis and the least absolute shrinkage and selection operator regression model were used to screen for possible markers, and the compositional patterns of the 22 types of immune cell fractions in LN were determined using CIBERSORT. Finally, Western blotting, quantitative real-time polymerase chain reaction, and multiple immunofluorescence methods were used to confirm the significance of these feature genes in MRL/lpr mice and patients with LN. Results Seventeen DEGs were identified, of which 11 were considerably upregulated and six were markedly downregulated. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed significant enrichment in pertussis, complement and coagulation cascades, systemic lupus erythematosus, and other pathways. Based on the machine learning results, we identified IFI16, EGR1 and MX1 were key diagnostic genes for tubulointerstitial injury associated with LN. Immune cell infiltration analysis revealed that IFI16, EGR1 and MX1 were associated with M1 macrophages. Finally, the association between IFI16, EGR1, MX1 and macrophages in MRL/lpr mice and patients with LN were verified. Conclusion This study suggests that IFI16, EGR1 and MX1 which are highly expressed in renal tubular epithelial cells in LN and are associated with macrophage infiltration, may be a novel diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Ming Tian
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Min Tang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Caiming Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Yufang Lin
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Hong Chen
- Department of Pathology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| |
Collapse
|
6
|
Xu L, Liu W, Huang X, Sun T, Mei L, Liu M, Ren Z, Wang M, Zheng H, Wang Q, Li D, Wang Q, Ke X. Sinomenine hydrochloride improves DSS-induced colitis in mice through inhibition of the Notch signaling pathway. BMC Gastroenterol 2024; 24:451. [PMID: 39695403 DOI: 10.1186/s12876-024-03546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE To study the therapeutic effect of sinomenine hydrochloride (SH) on dextran sodium sulfate (DSS)-induced colitis in mice as an animal model and the changes of Notch signaling pathway in colon tissue of mice after treatment. METHODS Twenty-four mice were randomly divided into control group, model group, SH low-dose group (20 mg/kg) and SH high-dose group (60 mg/kg), with 6 mice in each group. Disease activity index (DAI), colonic mucosal injury index and colonic histopathological score were calculated. The expression levels of related genes, proteins in Notch signaling pathway and inflammatory factors were quantified. RESULTS SH can significantly reduce the symptoms of colitis mice, and can significantly reduce the DAI score (Model: 3.44 ± 0.27; SH-20: 2.50 ± 0.18; SH-60: 1.89 ± 0.17; P < 0.001) and histopathological injury degree (Model: 7.67 ± 0.52; SH-20: 5.17 ± 0.75, P < 0.01; SH-60: 3.33 ± 0.52, P < 0.001). SH can down-regulate the expression levels of Notch1, NICD1, Jagged1 and Hes1 proteins in colon tissue of colitis mice (Model: 1.92 ± 0.16, 1.83 ± 0.21, 2.23 ± 0.22, 1.91 ± 0.17; SH-20: 1.56 ± 0.12, 1.39 ± 0.13, 1.58 ± 0.12, 1.38 ± 0.11; SH-60: 1.24 ± 0.09, 1.23 ± 0.10, 1.23 ± 0.11, 1.22 ± 0.09; P < 0.01), and reduce the contents of serum pro-inflammatory cytokines TNF-α, IL-1β and IL-6 (Model: 718.53 ± 81.81, 51.62 ± 2.80, 444.07 ± 67.77; SH-20: 544.72 ± 90.03, 34.10 ± 2.90, 345.43 ± 43.40; SH-60: 434.11 ± 71.75, 29.44 ± 3.70, 236.11 ± 29.35; P < 0.001). CONCLUSION The therapeutic effect of SH on DSS-induced colitis in mice may be related to inhibiting the overactivation of Notch signaling pathway.
Collapse
Affiliation(s)
- Linxia Xu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Wei Liu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Xixiang Huang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Tong Sun
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Letian Mei
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Man Liu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Zhi Ren
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Meng Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Hailun Zheng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Qiangwu Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Dapeng Li
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Qizhi Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Xiquan Ke
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China.
| |
Collapse
|
7
|
Zhu S, Zhang J, Gao L, Ye Q, Mao J. The Pathogenesis of Nephrotic Syndrome: A Perspective from B Cells. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:531-544. [PMID: 39664337 PMCID: PMC11631018 DOI: 10.1159/000540511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/20/2024] [Indexed: 12/13/2024]
Abstract
Background Nephrotic syndrome is a special type of chronic kidney disease, the specific pathogenesis of which remains unclear. An increasing number of studies have suggested that B cells play an important role in the pathogenesis of nephrotic syndrome. Summary Idiopathic nephrotic syndrome is a common kidney disease in children. While previously believed to be primarily caused by T-cell disorders, recent research has shifted its focus to B cells. Studies have shown that B cells play a significant role in the pathogenesis of NS, potentially even more so than T cells. This article provides a comprehensive review of the involvement of B cells in the development of idiopathic nephrotic syndrome. Key Messages B cells are involved in the pathogenesis of nephrotic syndrome by producing autoantibodies and various cytokines.
Collapse
Affiliation(s)
- Shifan Zhu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Jiayu Zhang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Langping Gao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Qing Ye
- Department of Clinical Laboratory, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| |
Collapse
|
8
|
de Sire R, La Mantia A, Bonacci L, Testa A, Guarino AD, Rispo A, Nardone OM, Castiglione F. Inflammatory Bowel Diseases and Nephropathies: Exploring the Gut-Kidney Axis. Life (Basel) 2024; 14:1541. [PMID: 39768250 PMCID: PMC11678131 DOI: 10.3390/life14121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) can extend beyond the gastrointestinal tract, affecting extraintestinal organs and significantly increasing morbidity and mortality. Despite early studies revealing kidney involvement in nearly a quarter of patients with IBD, renal manifestations have been notably overlooked. Among these manifestations, nephrolithiasis, obstructive uropathy, and fistula formation between the bowel and urinary tract are the most reported occurrences. Additionally, renal parenchymal involvement in IBD, including glomerulonephritis (GN), tubulointerstitial nephritis, and amyloidosis, has been documented. GN is particularly noteworthy, as a significant proportion of patients progress to end-stage kidney disease (ESKD). Although GN has long been recognized as a potential extraintestinal manifestation (EIM) of IBD, it has often been dismissed as an anecdotal association. Recently, several studies highlighted the clinical correlation between GN and IBD, suggesting a pathogenic interplay involving gut inflammation, dysbiosis, and intrinsic glomerular processes. Thus, our objective is to elucidate the basis of IBD-related nephropathies, with a specific focus on IgA nephropathy (IgAN) and the gut-kidney axis.
Collapse
Affiliation(s)
- Roberto de Sire
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
- Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Alessia La Mantia
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
| | - Livio Bonacci
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
| | - Anna Testa
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
| | - Alessia Dalila Guarino
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
| | - Antonio Rispo
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
| | - Olga Maria Nardone
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
| | - Fabiana Castiglione
- IBD Unit, Department of Clinical Medicine and Surgery, University Federico II, 80126 Naples, Italy; (A.L.M.); (L.B.); (A.T.); (A.D.G.); (A.R.); (O.M.N.); (F.C.)
| |
Collapse
|
9
|
Li Y, Chen Y, Zhang H, Chen W, Pan Y. Liraglutide Ameliorates Renal Endothelial Dysfunction in Diabetic Rats Through the Inhibition of the Dll4/Notch2 Pathway. Diabetes Metab Syndr Obes 2024; 17:4091-4104. [PMID: 39492960 PMCID: PMC11531755 DOI: 10.2147/dmso.s492252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose The glucagon-like peptide-1 receptor agonist (GLP-1RA) is a pharmacological agent utilized for the treatment of diabetes, known for its significant reno protective effects. This study aims to investigate the impact of liraglutide, a representative GLP-1RA medication, on early endothelial dysfunction in diabetic rats and elucidate its underlying mechanisms. Methods The present study employed a high-fat, high-sugar diet in combination with a single intraperitoneal injection of streptozotocin (STZ) to establish an experimental rat model of diabetes. Subsequently, the therapeutic efficacy of liraglutide on renal injury in this model was evaluated using various doses. Results Compared to the DKD rats, the rats treated with Liraglutide exhibited significant reductions in levels of blood glucose (Glu), serum creatinine (Scr), and blood urea nitrogen (BUN) (P < 0.05). Furthermore, there was a dose-dependent decrease in urinary protein levels, including 24-hour urinary protein excretion rate and microalbuminuria (m-ALB), with higher doses demonstrating more pronounced therapeutic effects (P <0.05). In addition, treatment with Liraglutide effectively improved glomerular and interstitial damage, and suppressed the expression of CD31, CD34, and VE-cadherin associated with endothelial cell injury (P < 0.05). Furthermore, Liraglutide administration significantly increased nitric oxide (NO) production (P < 0.05). Moreover, Liraglutide treatment resulted in decreased expression of vascular endothelial growth factor (VEGF), Delta-like ligand-4(Dll4), and Notch2 protein in the Notch2 signaling pathway (P < 0.05). Conclusion The findings indicate that Liraglutide has a substantial effect on decreasing urinary protein excretion and improving vascular microinflammation, thus alleviating endothelial dysfunction in diabetic nephropathy. This observed mechanism can be attributed to the inhibition of the Dll4/Notch2 signaling pathway.
Collapse
Affiliation(s)
- Yining Li
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People’s Republic of China
| | - Yulin Chen
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People’s Republic of China
| | - Hui Zhang
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People’s Republic of China
| | - Weidong Chen
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People’s Republic of China
| | - Yan Pan
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, People’s Republic of China
| |
Collapse
|
10
|
Zhou Z, Wang Y, Xing Y, Pan S, Wang W, Yang J, Wu W, Zhou J, Huang L, Liang Q, Zhang D, Kong L. Magnolol Inhibits High Fructose-Induced Podocyte Inflammation via Downregulation of TKFC/Sp1/HDAC4/Notch1 Activation. Pharmaceuticals (Basel) 2024; 17:1416. [PMID: 39598328 PMCID: PMC11597211 DOI: 10.3390/ph17111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES High fructose has been implicated as an important trigger of kidney inflammation in patients and experimental models. Magnolol, isolated from Magnolia officinalis, has an anti-inflammatory effect, but its protective role in podocytes remains underexplored. This study explored the protective effects and underlying mechanism of magnolol against high fructose-induced podocyte inflammation. METHODS The effects of magnolol on high fructose-induced podocyte inflammation were assessed in male Sprague Dawley rats administered 10% (w/v) fructose water for 12 weeks and heat-sensitive human podocyte cell lines (HPCs) exposed to 5 mM fructose. Podocyte foot processes were examined using transmission electron microscopy. The expression levels of nephrin, podocin, tumor necrosis factor-α (TNF-α), Notch1 intracellular domain (NICD1), triokinase/FMN cyclase (TKFC), specificity protein 1 (Sp1) and histone deacetylase 4 (HDAC4) were determined by Western blot, immunofluorescence and real-time quantitative polymerase chain reaction (qRT-PCR). The chromatin immunoprecipitation (ChIP) assay was performed to evaluate the interaction between Sp1 and the promoter region of HDAC4. RESULTS Magnolol mitigated the impairment of glomerular filtration function in high fructose-fed rats. Besides, it significantly alleviated the inflammatory responses in glomeruli and HPCs, evidenced by decreased protein levels of TNF-α and NICD1. Increased protein levels of TKFC, Sp1 and HDAC4 were observed in high fructose-stimulated HPCs and rat glomeruli. TMP195, an HDAC4 inhibitor, reduced TNF-α and NICD1 protein levels in high fructose-exposed HPCs. The increased Sp1 was shown to associate with the promoter region of HDAC4, promoting HDAC4 protein expression in high fructose-exposed HPCs. The knockdown of TKFC in HPCs by TKFC siRNA decreased Sp1, HDAC4 and NICD1 protein levels, alleviating podocyte inflammatory response. Furthermore, magnolol inhibited TKFC/Sp1/HDAC4/Notch1 activation in vivo and in vitro. CONCLUSIONS Magnolol attenuated high fructose-induced podocyte inflammation possibly through the suppression of TKFC/Sp1/HDAC4/Notch1 activation, providing new evidence for its potential role in podocyte protection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dongmei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China; (Z.Z.); (Y.W.); (Y.X.); (S.P.); (W.W.); (J.Y.); (W.W.); (J.Z.); (L.H.); (Q.L.)
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing 210023, China; (Z.Z.); (Y.W.); (Y.X.); (S.P.); (W.W.); (J.Y.); (W.W.); (J.Z.); (L.H.); (Q.L.)
| |
Collapse
|
11
|
Thornton M, Sommer N, McGonigle M, Ram AK, Yerrathota S, Ehirim H, Chaturvedi A, Phan JD, Chakraborty A, Chakravarthi PV, Gunewardena S, Tyagi M, Talreja J, Wang T, Singhal P, Tran PV, Fields TA, Ray PE, Dhillon NK, Sharma M. Notch3 deletion regulates HIV-1 gene expression and systemic inflammation to ameliorate chronic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557484. [PMID: 37745500 PMCID: PMC10515825 DOI: 10.1101/2023.09.12.557484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antiretroviral therapy (ART) has decreased HIV-1 associated morbidity. However, despite ART, immune cells remain latently infected and slowly release viral proteins, leading to chronic inflammation and HIV-1 associated comorbidities. New strategies are needed to target viral proteins and inflammation. We found activation of Notch3 in several renal cells of the HIV-1 mouse model (HIV-Tg26) and in patients with HIV associated Nephropathy. We hypothesized that targeting Notch3 activation constitutes an effective therapy for HIV-related chronic kidney diseases (HIV-CKD). We generated HIV-Tg26 mice with Notch3 knocked out (Tg-N3KO). Compared to HIV-Tg26 mice at 3 months, HIV-Tg-N3KO mice showed a marked reduction in renal injury, skin lesions and mortality rate. Bulk RNA sequencing revealed that N3KO not only reduced renal infiltrating cells but significantly reduced the expression of HIV genes. Moreover, Notch3 activated the HIV- promoter and induction of HIV-1 resulted in increased Notch3 activation indicating a feedback mechanism. Further, bone marrow derived macrophages (BMDMs) from HIV-Tg26 mice showed activation of Notch3 indicating systemic effects. Consistent with that, systemic levels of TNF-α, MCP-1 and other inflammatory chemokines and cytokines were reduced in Tg-N3KO mice. Thus, Notch3 inhibition/deletion has a dual therapeutic effect in HIV-CKD and may extend to other HIV-related pathologies.
Collapse
Affiliation(s)
- Mackenzie Thornton
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Nicole Sommer
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Mercedes McGonigle
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Anil Kumar Ram
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Sireesha Yerrathota
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Henrietta Ehirim
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Aakriti Chaturvedi
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Johnny Dinh Phan
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Anubhav Chakraborty
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Praveen V Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Mudit Tyagi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Jaya Talreja
- Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI
| | - Tao Wang
- Department of Biology, Medicine and Health, The University of Manchester, UK
| | - Pravin Singhal
- Institute of Molecular Medicine, Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra-Northwell, New York, NY
| | - Pamela V Tran
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Timothy A Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Patricio E Ray
- Child Health Research Center and Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA
| | - Navneet K Dhillon
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Madhulika Sharma
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
12
|
Ran L, Li W, Zhang H, Lin J, Zhu L, Long H, Xiang L, Chen L, Li Q, Hu Y, Gong M, Xiao B, Zhao H. Identification of Plasma hsa_circ_0001230 and hsa_circ_0023879 as Potential Novel Biomarkers for Focal Segmental Glomerulosclerosis and circRNA-miRNA-mRNA Network Analysis. Kidney Blood Press Res 2024; 49:310-325. [PMID: 38648755 DOI: 10.1159/000538825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
INTRODUCTION Focal segmental glomerulosclerosis (FSGS) is a common glomerulopathy with an unclear mechanism. The demand for FSGS clinical diagnostic biomarkers has not yet been met. Circular RNA (circRNA) is a novel non-coding RNA with multiple functions, but its diagnostic value for FSGS remains unexplored. This study aimed to identify circRNAs that could aid in early clinical diagnosis and to investigate their mechanisms in podocyte injury. METHODS The signature of plasma circRNAs for FSGS was identified by circRNA microarray. The existence of circRNAs was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR), RNase R assay, and DNA sequencing. Plasma levels of circRNAs were evaluated by qRT-PCR. The diagnostic value was appraised by the receiver operating characteristic curve. The circRNA-miRNA-mRNA network was built with Cytoscape 7.3.2. Statistically significant differences were calculated by the Mann-Whitney U test. RESULTS A total of 493 circRNAs (165 upregulated, 328 downregulated) were differentially expressed in the plasma of FSGS patients (n = 3) and normal controls (n = 3). Eight candidate circRNAs were demonstrated to be circular and stable transcripts. Among them, hsa_circ_0001230 and hsa_circ_0023879 were significantly upregulated in FSGS patients (n = 29) compared to normal controls (n = 51). The areas under the curve value of hsa_circ_0001230 and hsa_circ_0023879 were 0.668 and 0.753, respectively, while that of the two-circRNA panel was 0.763. The RNA pull-down analysis revealed that hsa_circ_0001230 and hsa_circ_0023879 could sponge hsa-miR-106a. Additionally, hsa_circ_0001230 and hsa_circ_0023879 positively regulated hsa-miR-106a target genes phosphatase and tensin homolog (PTEN) and Bcl-2-like protein 11 (BCL2L11) in podocytes. CONCLUSION hsa_circ_0001230 and hsa_circ_0023879 are novel blood biomarkers for FSGS. They may regulate podocyte apoptosis by competitively binding to hsa-miR-106a.
Collapse
Affiliation(s)
- Lingyu Ran
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China,
| | - Wei Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Huhai Zhang
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jie Lin
- Department of Disease Control and Prevention, The 904th Hospital of Joint Logistic Support Force of the PLA, Wuxi, China
| | - Longyin Zhu
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Huanping Long
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lunli Xiang
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Liping Chen
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qixuan Li
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yuhan Hu
- Department of Clinical Lab, Southwest Hospital, Army Medical University, Chongqing, China
| | - Min Gong
- College of Traditional Chinese Medicine, Chongqing Three Gorges Medical College, Chongqing, China
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Hongwen Zhao
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Zhong W, Hong C, Zhang Y, Li Y, Xiao C, Liu X. ASH2L-mediated H3K4me3 drives diabetic nephropathy through HIPK2 and Notch1 pathway. Transl Res 2024; 264:85-96. [PMID: 37879562 DOI: 10.1016/j.trsl.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Diabetic nephropathy (DN) is one of the complications of diabetes. Long-term hyperglycemia in the kidney results in renal insufficiency, and eventually leads to end-stage renal disease. Epigenetic factor ASH2L has long been identified as a transcriptional activator, and we previously indicated that ASH2L aggravated fibrosis and inflammation in high glucose-induced glomerular mesangial cells, but the pathophysiological relevance and the mechanism of ASH2L-mediated H3K4me3 in DN is not well understood. Here we demonstrated that ASH2L is upregulated in glomeruli isolated from db/db mice. Loss of ASH2L protected glomerular injury caused by hyperglycemia, as evidenced by reduced albuminuria, preserved structure, decreased glomerular extracellular matrix deposition, and lowered renal glomerular expression of proinflammatory and profibrotic markers in db/db mice. Furthermore, we demonstrated that enrichment of ASH2L-mediated H3K4me3 on the promoter regions of ADAM17 and HIPK2 triggered their transcription, leading to aberrant activation of Notch1 signaling pathway, thereby contributing to fibrosis and inflammation in DN. The findings of this study provide compelling evidence for targeting ASH2L as a potential therapeutic strategy to prevent or slow down the progression of DN.
Collapse
Affiliation(s)
- Wen Zhong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chen Hong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yuyu Zhang
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yuhui Li
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chenxi Xiao
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Xinhua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China.
| |
Collapse
|
14
|
Zhang Y, Ding X, Guo L, Zhong Y, Xie J, Xu Y, Li H, Zheng D. Comprehensive analysis of the relationship between xanthine oxidoreductase activity and chronic kidney disease. iScience 2023; 26:107332. [PMID: 37927553 PMCID: PMC10622700 DOI: 10.1016/j.isci.2023.107332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 11/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a common disease that seriously endangers human health. However, the potential relationship between xanthine oxidoreductase (XOR) activity and CKD remains unclear. In this study, we used clinical data, CKD datasets from the Gene Expression Omnibus database, and untargeted metabolomics to explain the relationship between XOR activity and CKD. First, XOR activity showed high correlation with the biomarkers of CKD, such as serum creatinine, blood urea nitrogen, uric acid, and estimated glomerular filtration rate. Then, we used least absolute shrinkage and selection operator logical regression algorithm and random forest algorithm to screen CKD molecular markers from differentially expressed genes, and the results of qRT-PCR of XDH, KOX-1, and ROMO1 were in accordance with the results of bioinformatics analyses. In addition, untargeted metabolomics analysis revealed that the purine metabolism pathway was significantly enriched in CKD patients in the simulated models of kidney fibrosis.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Xiaobao Ding
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Pharmacology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Lihao Guo
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Yanan Zhong
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Juan Xie
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Yong Xu
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Hailun Li
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Donghui Zheng
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| |
Collapse
|
15
|
Daniel EA, Sommer NA, Sharma M. Polycystic kidneys: interaction of notch and renin. Clin Sci (Lond) 2023; 137:1145-1150. [PMID: 37553961 PMCID: PMC11132639 DOI: 10.1042/cs20230023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
Polycystic kidney disease (PKD) is a developmental disorder, which either manifests in early childhood or later in life, depending on the genetic mutation one harbors. The mechanisms of cyst initiation are not well understood. Increasing literature is now suggesting that Notch signaling may play a critical role in PKD. Activation of Notch signaling is important during nephrogenesis and slows down after development. Deletion of various Notch molecules in the cap mesenchyme leads to formation of cysts and early death in mice. A new study by Belyea et al. has now found that cells of renin lineage may link Notch expression and cystic kidney disease. Here, we use our understanding of Notch signaling and PKD to speculate about the significance of these interactions.
Collapse
Affiliation(s)
- Emily A Daniel
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| | - Nicole A Sommer
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, U.S.A
| |
Collapse
|
16
|
Sugiura R, Nakayama T, Nishino T, Sambe N, Radtke F, Yoshihara M, Takahashi S. Notch1 signaling is limited in healthy mature kidneys in vivo. BMC Res Notes 2023; 16:54. [PMID: 37069662 PMCID: PMC10111784 DOI: 10.1186/s13104-023-06326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
OBJECTIVE A Delta-Notch signaling component, Notch1, is involved in the normal development and multiple disorders of the kidney. Although the increase in Notch1 signaling is crucial to these pathogeneses, the basal signaling level in 'healthy' mature kidneys is still unclear. To address this question, we used an artificial Notch1 receptor fused with Gal4/UAS components in addition to the Cre/loxP system and fluorescent proteins in mice. This transgenic reporter mouse system enabled labeling of past and ongoing Notch1 signaling with tdsRed or Cre recombinase, respectively. RESULTS We confirmed that our transgenic reporter mouse system mimicked the previously reported Notch1 signaling pattern. Using this successful system, we infrequently observed cells with ongoing Notch1 signaling only in Bowman's capsule and tubules. We consider that Notch1 activation in several lines of disease model mice was pathologically significant itself.
Collapse
Affiliation(s)
- Ryosuke Sugiura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Takahiro Nakayama
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Teppei Nishino
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
- Department of Medical Education and Training, Tsukuba Medical Center Hospital, 1-3-1 Amakubo, Tsukuba, Ibaraki, 305-8558 Japan
| | - Naoto Sambe
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Freddy Radtke
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), SV 2534 (Bâtiment SV) Station 19, Lausanne, CH-1015 Switzerland
| | - Masaharu Yoshihara
- PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, 1- 1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 Japan
- Department of Primary Care and Medical Education, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| |
Collapse
|
17
|
Tasar GE, Uzerk Kibar M, Dag O, Erdem Y, Ertoy Baydar D, Saglam A. Cytoplasmic WT1 in IgA nephropathy, an indicator of poor prognosis associated with mesangial/peri-mesangial C4d. Int Urol Nephrol 2023; 55:661-669. [PMID: 36036855 DOI: 10.1007/s11255-022-03357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/21/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND We aimed to investigate the immuno-histochemical expression of C4d, ADAM10 and WT1 in kidney biopsies of immunoglobulin A nephropathy (IgAN) patients and correlate the findings with clinical, laboratory and histopathologic features in the hope of defining new parameters to better understand the pathogenesis of the disease, and predict prognosis. MATERIALS AND METHODS Paraffin-embedded kidney biopsy samples of 128 IgAN patients were immuno-histochemically treated with C4d and ADAM10/WT1 dual stain. Results were evaluated according to Oxford classification parameters, epidemiologic features, laboratory findings at presentation and clinical follow-up. RESULTS We observed C4d positivity in 40.6% of our patients, 25% of which was mesangial/peri-mesangial (m/pm) staining. Only m/pmC4d positivity statistically correlated with progression to end-stage renal disease (ESRD). M/pmC4d positive patients had statistically significantly higher baseline proteinuria levels, presence of crescents and > 25% segmental sclerosis of glomeruli. There was cytoplasmic staining of WT1 in 11.2% of cases. Presence of cWT1 correlated with m/pmC4d positivity and progression to ESRD. There was no glomerular ADAM10 detected and tubular expression of this protein did not relate to amount of tubular damage or other parameters. CONCLUSION This study is the first to show that cWT1is involved in IgAN and appears as an independent variable for worse prognosis.
Collapse
Affiliation(s)
- Gozde Elif Tasar
- Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Muge Uzerk Kibar
- Department of Nephrology, Hacettepe University School of Medicine, Hacettepe University, Ankara, Turkey
| | - Osman Dag
- Department of Biostatistics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Yunus Erdem
- Department of Nephrology, Hacettepe University School of Medicine, Hacettepe University, Ankara, Turkey
| | - Dilek Ertoy Baydar
- Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Arzu Saglam
- Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey.
| |
Collapse
|
18
|
Notch Signaling in Acute Inflammation and Sepsis. Int J Mol Sci 2023; 24:ijms24043458. [PMID: 36834869 PMCID: PMC9967996 DOI: 10.3390/ijms24043458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Notch signaling, a highly conserved pathway in mammals, is crucial for differentiation and homeostasis of immune cells. Besides, this pathway is also directly involved in the transmission of immune signals. Notch signaling per se does not have a clear pro- or anti-inflammatory effect, but rather its impact is highly dependent on the immune cell type and the cellular environment, modulating several inflammatory conditions including sepsis, and therefore significantly impacts the course of disease. In this review, we will discuss the contribution of Notch signaling on the clinical picture of systemic inflammatory diseases, especially sepsis. Specifically, we will review its role during immune cell development and its contribution to the modulation of organ-specific immune responses. Finally, we will evaluate to what extent manipulation of the Notch signaling pathway could be a future therapeutic strategy.
Collapse
|
19
|
Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-021-2187-3. [PMID: 36738430 PMCID: PMC9898710 DOI: 10.1007/s11427-021-2187-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
With the exception of an extremely small number of cases caused by single gene mutations, most autoimmune diseases result from the complex interplay between environmental and genetic factors. In a nutshell, etiology of the common autoimmune disorders is unknown in spite of progress elucidating certain effector cells and molecules responsible for pathologies associated with inflammatory and tissue damage. In recent years, population genetics approaches have greatly enriched our knowledge regarding genetic susceptibility of autoimmunity, providing us with a window of opportunities to comprehensively re-examine autoimmunity-associated genes and possible pathways. In this review, we aim to discuss etiology and pathogenesis of common autoimmune disorders from the perspective of human genetics. An overview of the genetic basis of autoimmunity is followed by 3 chapters detailing susceptibility genes involved in innate immunity, adaptive immunity and inflammatory cell death processes respectively. With such attempts, we hope to expand the scope of thinking and bring attention to lesser appreciated molecules and pathways as important contributors of autoimmunity beyond the 'usual suspects' of a limited subset of validated therapeutic targets.
Collapse
|
20
|
Elkhoely A. Liraglutide ameliorates gentamicin-induced acute kidney injury in rats via PGC-1α- mediated mitochondrial biogenesis: Involvement of PKA/CREB and Notch/Hes-1 signaling pathways. Int Immunopharmacol 2023; 114:109578. [PMID: 36525794 DOI: 10.1016/j.intimp.2022.109578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a challenging side effect which may clinically impede the use of gentamicin (GM). The present study explored the impact of liraglutide (Lir) on GM-induced kidney injury in rats. Lir (0.2 and 0.4 mg/kg, s.c) was given for 10 days (a dose/day) starting 3 days before giving GM (100 mg/kg, i.p) once daily for 7 days. Interestingly, Lir notably ameliorated GM-induced elevated levels of renal injury markers; urea and creatinine. Moreover, Lir remarkably mitigated malondialdehyde (MDA) level and elevated glutathione (GSH) level as well as superoxide dismutase (SOD) activity. Also, Lir pre-treatment notably diminished inflammatory markers levels; interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), vascular cell adhesion molecule (VCAM), monocyte chemoattractant protein 1 (MCP-1) and interferon gamma (INF-γ). In addition, Lir significantly replenished expression of Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α), Protein kinase A (PKA), cAMP response element-binding protein (CREB), nuclear Nuclear factor erythroid 2-related factor 2 (Nrf2), heme Oxygenase-1 (HO-1), B-cell lymphoma 2 (Bcl-2), and remarkably attenuated expression of Notch homolog 1 (Notch1), Hairy and enhancer of split-1 (Hes-1), Bcl-2-associated X (Bax), cleaved caspase 3 and nuclear Nuclear factor Kappa B (NF-κB (p65)). The nephroprotective activity of Lir was further confirmed by histopathological examination as well as transmission electron microscopy (TEM). In conclusion Lir achieved its nephroprotective effects through the amelioration of oxidative stress, inflammatory and apoptotic manifestations. It is worth-mentioning that the current study is the first to focus on the involvement of mitochondrial biogenesis and its upstream regulators, PKA/CREB and Notch/Hes-1 signaling pathways in the nephroprotective potentials of Lir. The attenuation of the aforementioned injurious aspects is partially attributed to the improvement of the mitochondrial status as demonstrated by elevated PGC-1α expression via acceleration of PKA/CREB and abatement of Notch/Hes-1 signaling pathways.
Collapse
Affiliation(s)
- Abeer Elkhoely
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| |
Collapse
|
21
|
Wan J, Liu D, Pan S, Zhou S, Liu Z. NLRP3-mediated pyroptosis in diabetic nephropathy. Front Pharmacol 2022; 13:998574. [PMID: 36304156 PMCID: PMC9593054 DOI: 10.3389/fphar.2022.998574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease (ESRD), which is characterized by a series of abnormal changes such as glomerulosclerosis, podocyte loss, renal tubular atrophy and excessive deposition of extracellular matrix. Simultaneously, the occurrence of inflammatory reaction can promote the aggravation of DN-induced kidney injury. The most important processes in the canonical inflammasome pathway are inflammasome activation and membrane pore formation mediated by gasdermin family. Converging studies shows that pyroptosis can occur in renal intrinsic cells and participate in the development of DN, and its activation mechanism involves a variety of signaling pathways. Meanwhile, the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome can not only lead to the occurrence of inflammatory response, but also induce pyroptosis. In addition, a number of drugs targeting pyroptosis-associated proteins have been shown to have potential for treating DN. Consequently, the pathogenesis of pyroptosis and several possible activation pathways of NLRP3 inflammasome were reviewed, and the potential drugs used to treat pyroptosis in DN were summarized in this review. Although relevant studies are still not thorough and comprehensive, these findings still have certain reference value for the understanding, treatment and prognosis of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| |
Collapse
|
22
|
SGLT2 inhibitors attenuate nephrin loss and enhance TGF-β 1 secretion in type 2 diabetes patients with albuminuria: a randomized clinical trial. Sci Rep 2022; 12:15695. [PMID: 36127497 PMCID: PMC9489863 DOI: 10.1038/s41598-022-19988-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022] Open
Abstract
To evaluate the effect of SGLT2 inhibitor (SGLT2i) on albuminuria, nephrin (NPH) and transforming-growth-factor-beta1 (TGF-β1) levels in urine and low-grade inflammation in type 2 diabetes (T2D) patients. A randomized, blank-controlled clinical trial included 68 T2D patients and 10 controls. Based on the urinary albumin-to-creatinine ratio (UACR), 68 diabetic patients were stratified into three levels, UACR < 30 mg/g, UACR ≧ 30 mg/g to ≦ 300 mg/g and UACR ˃ 300 mg/g, who were randomized (1:1:1) to receive SGLT2i treatment for 12 weeks. The concentrations of NPH and TGF-β1 in urine were measured as indications of podocyte injury and renal fibrosis. Low-grade inflammation was assessed by the levels of IL-6, TNFα and hsCRP. After 12 weeks of SGLT2i treatment, the levels of UACR and NPH decreased, UTGF-β1 increased in the T2D with microalbuminuria and macroalbuminuria groups, NPH (1.12 [0.59, 1.29] vs. 0.71 [0.41, 1.07] µg/ml, P = 0.022) and (1.29 [0.99, 1.96] vs. 0.93 [0.57, 1.31] µg/ml, P = 0.002), UTGF-β1 (4.88 ± 1.31 vs. 7.27 ± 1.21 pg/ml, P < 0.001) and (4.30 ± 1.34 vs. 6.78 ± 2.59 pg/ml, P < 0.001), respectively. The changes in NPH were positively correlated with the UACR and negatively correlated with UTGF-β1 in T2D with albuminuria. SGLT2i alleviate nephrin loss and enhance TGF-β1 excretion in urine in T2DM with albuminuria. The anti-albuminuric effect of SGLT2i could be attributed to mitigating podocyte apoptosis and attenuating renal fibrosis. Trial registration This clinical trial was registered on 15/10/2019, in ClinicalTrials.gov, and the registry number is NCT04127084.
Collapse
|
23
|
Kobayashi H, Looker HC, Satake E, Saulnier PJ, Md Dom ZI, O'Neil K, Ihara K, Krolewski B, Galecki AT, Niewczas MA, Wilson JM, Doria A, Duffin KL, Nelson RG, Krolewski AS. Results of untargeted analysis using the SOMAscan proteomics platform indicates novel associations of circulating proteins with risk of progression to kidney failure in diabetes. Kidney Int 2022; 102:370-381. [PMID: 35618095 PMCID: PMC9333266 DOI: 10.1016/j.kint.2022.04.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
This study applies a large proteomics panel to search for new circulating biomarkers associated with progression to kidney failure in individuals with diabetic kidney disease. Four independent cohorts encompassing 754 individuals with type 1 and type 2 diabetes and early and late diabetic kidney disease were followed to ascertain progression to kidney failure. During ten years of follow-up, 227 of 754 individuals progressed to kidney failure. Using the SOMAscan proteomics platform, we measured baseline concentration of 1129 circulating proteins. In our previous publications, we analyzed 334 of these proteins that were members of specific candidate pathways involved in diabetic kidney disease and found 35 proteins strongly associated with risk of progression to kidney failure. Here, we examined the remaining 795 proteins using an untargeted approach. Of these remaining proteins, 11 were significantly associated with progression to kidney failure. Biological processes previously reported for these proteins were related to neuron development (DLL1, MATN2, NRX1B, KLK8, RTN4R and ROR1) and were implicated in the development of kidney fibrosis (LAYN, DLL1, MAPK11, MATN2, endostatin, and ROR1) in cellular and animal studies. Specific mechanisms that underlie involvement of these proteins in progression of diabetic kidney disease must be further investigated to assess their value as targets for kidney-protective therapies. Using multivariable LASSO regression analysis, five proteins (LAYN, ESAM, DLL1, MAPK11 and endostatin) were found independently associated with risk of progression to kidney failure. Thus, our study identified proteins that may be considered as new candidate prognostic biomarkers to predict risk of progression to kidney failure in diabetic kidney disease. Furthermore, three of these proteins (DLL1, ESAM, and MAPK11) were selected as candidate biomarkers when all SOMAscan results were evaluated.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, Tokyo, Japan
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Eiichiro Satake
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Pierre Jean Saulnier
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA; Centre Hospitalier Universitaire, Centre d Investigation Clinique Poitiers, France
| | - Zaipul I Md Dom
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina O'Neil
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Katsuhito Ihara
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Bozena Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrzej T Galecki
- Cognitive Health Services Research Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Monika A Niewczas
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan M Wilson
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Alessandro Doria
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin L Duffin
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA.
| | - Andrzej S Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
24
|
Differences in Immunohistochemical and Ultrastructural Features between Podocytes and Parietal Epithelial Cells (PECs) Are Observed in Developing, Healthy Postnatal, and Pathologically Changed Human Kidneys. Int J Mol Sci 2022; 23:ijms23147501. [PMID: 35886848 PMCID: PMC9322852 DOI: 10.3390/ijms23147501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
During human kidney development, cells of the proximal nephron gradually differentiate into podocytes and parietal epithelial cells (PECs). Podocytes are terminally differentiated cells that play a key role in both normal and pathological kidney function. Therefore, the potential of podocytes to regenerate or be replaced by other cell populations (PECs) is of great interest for the possible treatment of kidney diseases. In the present study, we analyzed the proliferation and differentiation capabilities of podocytes and PECs, changes in the expression pattern of nestin, and several early proteins including WNT4, Notch2, and Snail, as well as Ki-67, in tissues of developing, postnatal, and pathologically changed human kidneys by using immunohistochemistry and electron microscopy. Developing PECs showed a higher proliferation rate than podocytes, whereas nestin expression characterized only podocytes and pathologically changed kidneys. In the developing kidneys, WNT4 and Notch2 expression increased moderately in podocytes and strongly in PECs, whereas Snail increased only in PECs in the later fetal period. During human kidney development, WNT4, Notch2, and Snail are involved in early nephrogenesis control. In kidneys affected by congenital nephrotic syndrome of the Finnish type (CNF) and focal segmental glomerulosclerosis (FSGS), WNT4 decreased in both cell populations, whereas Notch2 decreased in FSGS. In contrast, Snail increased both in CNF and FSGS, whereas Notch2 increased only in CNF. Electron microscopy revealed cytoplasmic processes spanning the urinary space between the podocytes and PECs in developing and healthy postnatal kidneys, whereas the CNF and FSGS kidneys were characterized by numerous cellular bridges containing cells with strong expression of nestin and all analyzed proteins. Our results indicate that the mechanisms of gene control in nephrogenesis are reactivated under pathological conditions. These mechanisms could have a role in restoring glomerular integrity by potentially inducing the regeneration of podocytes from PECs.
Collapse
|
25
|
Begum F, Keni R, Ahuja TN, Beegum F, Nandakumar K, Shenoy RR. Notch signaling: A possible therapeutic target and its role in diabetic foot ulcers. Diabetes Metab Syndr 2022; 16:102542. [PMID: 35724488 DOI: 10.1016/j.dsx.2022.102542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND & AIM Diabetic foot ulcers are major cause of lower limb amputations in the diabetic population. The major factors that play a role in causing the delay of the process of healing in diabetic foot ulcers broadly are decreased angiogenesis, reduced proliferation and migration of keratinocytes/fibroblasts. The typical wound healing process has four phases which are overlapping with each other thus making the healing even more complex. Hence it is essential to identify a therapeutic target that involves the regulation of the cellular factors involved in healing and helps to increase angiogenesis and can regulate all four phases accordingly. METHOD Literature review involved a search of the databases namely, PubMed, Cochrane, EMBASE, and Web of Science database. Articles were identified and retrieved that specifically dealt with Notch as a target in healing of wounds and its mechanism of action on various cells and phases of healing. RESULTS Notch is a cell surface receptor which interacts with transmembrane ligands of the nearby cells and is involved in cell proliferation, differentiation, cell fate and death. It is also involved in cell-to-cell communication, cell signaling, and various phases of development. There exist four known notch genes and five ligands which interact with notch proteins. Hyperglycemia plays a role in the activation of the notch receptor thus causing the release of inflammatory mediators via macrophages. As notch can regulate macrophage-mediated inflammation it can serve as a therapeutic target for diabetic foot ulcers. CONCLUSION This review focuses on the effect of notch on various cell mediators and phases of diabetic wound healing and deals with how notch activation or inhibition can serve as a potential therapeutic target for healing diabetic foot ulcers.
Collapse
Affiliation(s)
- Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghuvir Keni
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Tejas N Ahuja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
26
|
Zhang R, Zeng J, Deng Z, Yin G, Wang L, Tan J. PGC1 α plays a pivotal role in renal fibrosis via regulation of fatty acid metabolism in renal tissue. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:786-793. [PMID: 35837779 PMCID: PMC10930027 DOI: 10.11817/j.issn.1672-7347.2022.200953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 06/15/2023]
Abstract
Renal fibrosis is a common and irreversible pathological feature of end-stage renal disease caused by multiple etiologies. The role of inflammation in renal fibrosis tissue has been generally accepted. The latest view is that fatty acid metabolism disorder contributes to renal fibrosis. peroxisome proliferator activated receptor-gamma coactivator 1α (PGC1α) plays a key role in fatty acid metabolism, regulating fatty acid uptake and oxidized protein synthesis, preventing the accumulation of lipid in the cytoplasm, and maintaining a dynamic balanced state of intracellular lipid. In multiple animal models of renal fibrosis caused by acute or chronic kidney disease, or even age-related kidney disease, almost all of the kidney specimens show the down-regulation of PGC1α. Upregulation of PGC1α can reduce the degree of renal fibrosis in animal models, and PGC1α knockout animals exhibit severe renal fibrosis. Studies have demonstrated that AMP-activated protein kinase (AMPK), MAPK, Notch, tumor necrosis factor-like weak inducer of apoptosis (TWEAK), epidermal growth factor receptor (EGFR), non-coding RNA (ncRNAs), liver kinase B1 (LKB1), hairy and enhancer of split 1 (Hes1), and other pathways regulate the expression of PGC1α and affect fatty acid metabolism. But some of these pathways interact with each other, and the effect of the integrated pathway on renal fibrosis is not clear.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Jia Zeng
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhijun Deng
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Guangming Yin
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Long Wang
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jing Tan
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
27
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
28
|
Epigenetic Modulation of Gremlin-1/NOTCH Pathway in Experimental Crescentic Immune-Mediated Glomerulonephritis. Pharmaceuticals (Basel) 2022; 15:ph15020121. [PMID: 35215234 PMCID: PMC8876310 DOI: 10.3390/ph15020121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/20/2022] Open
Abstract
Crescentic glomerulonephritis is a devastating autoimmune disease that without early and properly treatment may rapidly progress to end-stage renal disease and death. Current immunosuppressive treatment provides limited efficacy and an important burden of adverse events. Epigenetic drugs are a source of novel therapeutic tools. Among them, bromodomain and extraterminal domain (BET) inhibitors (iBETs) block the interaction between bromodomains and acetylated proteins, including histones and transcription factors. iBETs have demonstrated protective effects on malignancy, inflammatory disorders and experimental kidney disease. Recently, Gremlin-1 was proposed as a urinary biomarker of disease progression in human anti-neutrophil cytoplasmic antibody (ANCA)-associated crescentic glomerulonephritis. We have now evaluated whether iBETs could regulate Gremlin-1 in experimental anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS) in mice, a model resembling human crescentic glomerulonephritis. In NTS-injected mice, the iBET JQ1 inhibited renal Gremlin-1 overexpression and diminished glomerular damage, restoring podocyte numbers. Chromatin immunoprecipitation assay demonstrated BRD4 enrichment of the Grem-1 gene promoter in injured kidneys, consistent with Gremlin-1 epigenetic regulation. Moreover, JQ1 blocked BRD4 binding and inhibited Grem-1 gene transcription. The beneficial effect of iBETs was also mediated by modulation of NOTCH pathway. JQ1 inhibited the gene expression of the NOTCH effectors Hes-1 and Hey-1 in NTS-injured kidneys. Our results further support the role for epigenetic drugs, such as iBETs, in the treatment of rapidly progressive crescentic glomerulonephritis.
Collapse
|
29
|
Márquez-Expósito L, Lavoz C, Cantero-Navarro E, Rodrigues-Diez RR, Mezzano S, Ruiz-Ortega M. Studying the NOTCH Signaling Pathway Activation in Kidney Biopsies. Methods Mol Biol 2022; 2472:187-196. [PMID: 35674901 DOI: 10.1007/978-1-0716-2201-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The NOTCH signaling pathway is an evolutionarily conserved family of transmembrane receptors, ligands, and transcription factors. The NOTCH signaling is activated in many biological processes including nephrogenesis, tubulogenesis, and glomerulogenesis, as well as during pathological situations. Activation of Notch signaling is characterized by successive proteolytic cleavages triggered by the interaction between membrane-bound Notch receptors and ligands expressed on neighboring cells. In chronic kidney diseases, activation of the canonical NOTCH signaling pathway has been described. The following protocols will allow the direct assessment of Jagged-1/NOTCH signaling activation in biopsies of patients with chronic kidney diseases and in murine experimental models of renal damage.
Collapse
Affiliation(s)
- Laura Márquez-Expósito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain.
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
30
|
Screening and Analysis of Key Genes in miRNA-mRNA Regulatory Network of Membranous Nephropathy. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5331948. [PMID: 34824764 PMCID: PMC8610666 DOI: 10.1155/2021/5331948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022]
Abstract
Background MicroRNAs (miRNAs) are confirmed to participate in occurrence, development, and prevention of membranous nephropathy (MN), but their mechanism of action is unclear. Objective With the GEO database and the use of bioinformatics, miRNA-mRNA regulatory network genes relevant to MN were explored and their potential mechanism of action was explained. Methods The MN-related miRNA chip data set (GSE51674) and mRNA chip data set (GSE108109) were downloaded from the GEO database. Differential analysis was performed using the GEO2R online tool. TargetScan, miRTarBase, and StarBase databases were used to predict potential downstream target genes regulated by differentially expressed miRNAs, and the intersection with differential genes were taken to obtain candidate target genes. According to the regulatory relationship between miRNA and mRNA, the miRNA-mRNA relationship pair was clarified and Cytoscape was used to construct a miRNA-mRNA regulatory network. WebGestalt was used to conduct enrichment analysis of the biological process of differential mRNAs in the regulatory network; FunRich analyzes the differential mRNA pathways in the miRNA-mRNA regulatory network. And the STRING database was used to construct a PPI network for candidate target genes, and Cytoscape visually analyzes the PPI network. Results Experiments were conducted to screen differentially expressed miRNAs and mRNAs. There were 30 differentially expressed miRNAs, including 22 upregulated and 8 downregulated; and 1267 differentially expressed mRNAs, including 536 upregulated and 731 downregulated. Using TargetScan, miRTarBase, and StarBase databases to predict the downstream targets of differentially expressed miRNAs, 2957 downstream target genes coexisting in the 3 databases were predicted to intersect with differentially expressed mRNAs to obtain 175 candidate target genes. Finally, 36 miRNA-mRNA relationship pairs comprising 10 differentially expressed miRNAs and 27 differentially expressed mRNAs were screened out, and the regulatory network was constructed. Further analysis revealed that the miRNA regulatory network genes may be involved in the development of membranous nephropathy by mTOR, PDGFR-β, LKB1, and VEGF/VEGFR signaling pathways. Conclusion The miRNA regulatory network genes may participate in the regulation of podocyte autophagy, lipid metabolism, and renal fibrosis through mTOR, PDGFR-β, LKB1, and VEGF/VEGFR signaling pathways, thereby affecting the occurrence and development of membranous nephropathy.
Collapse
|
31
|
Wei SY, Guo S, Feng B, Ning SW, Du XY. Identification of miRNA-mRNA network and immune-related gene signatures in IgA nephropathy by integrated bioinformatics analysis. BMC Nephrol 2021; 22:392. [PMID: 34823491 PMCID: PMC8620631 DOI: 10.1186/s12882-021-02606-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide, and its diagnosis depends mainly on renal biopsy. However, there is no specific treatment for IgAN. Moreover, its causes and underlying molecular events require further exploration. METHODS The expression profiles of GSE64306 and GSE93798 were downloaded from the Gene Expression Omnibus (GEO) database and used to identify the differential expression of miRNAs and genes, respectively. The StarBase and TransmiR databases were employed to predict target genes and transcription factors of the differentially expressed miRNAs (DE-miRNAs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to predict biological functions. A comprehensive analysis of the miRNA-mRNA regulatory network was constructed, and protein-protein interaction (PPI) networks and hub genes were identified. CIBERSORT was used to examine the immune cells in IgAN, and correlation analyses were performed between the hub genes and infiltrating immune cells. RESULTS Four downregulated miRNAs and 16 upregulated miRNAs were identified. Forty-five and twelve target genes were identified for the upregulated and downregulated DE-miRNAs, respectively. CDKN1A, CDC23, EGR1, HIF1A, and TRIM28 were the hub genes with the highest degrees of connectivity. CIBERSORT revealed increases in the numbers of activated NK cells, M1 and M2 macrophages, CD4 naive T cells, and regulatory T cells in IgAN. Additionally, HIF1A, CDC23, TRIM28, and CDKN1A in IgAN patients were associated with immune cell infiltration. CONCLUSIONS A potential miRNA-mRNA regulatory network contributing to IgAN onset and progression was successfully established. The results of the present study may facilitate the diagnosis and treatment of IgAN by targeting established miRNA-mRNA interaction networks. Infiltrating immune cells may play significant roles in IgAN pathogenesis. Future studies on these immune cells may help guide immunotherapy for IgAN patients.
Collapse
Affiliation(s)
- Shi-Yao Wei
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang Province, 150086, People's Republic of China
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
| | - Bei Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
- Department of Nephrology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Shang-Wei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China.
| | - Xuan-Yi Du
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang Province, 150086, People's Republic of China.
| |
Collapse
|
32
|
Ectodomain shedding by ADAM proteases as a central regulator in kidney physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119165. [PMID: 34699872 DOI: 10.1016/j.bbamcr.2021.119165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
Besides its involvement in blood and bone physiology, the kidney's main function is to filter substances and thereby regulate the electrolyte composition of body fluids, acid-base balance and toxin removal. Depending on underlying conditions, the nephron must undergo remodeling and cellular adaptations. The proteolytic removal of cell surface proteins via ectodomain shedding by A Disintegrin and Metalloproteases (ADAMs) is of importance for the regulation of cell-cell and cell-matrix adhesion of renal cells. ADAM10 controls glomerular and tubule development in a Notch1 signaling-dependent manner and regulates brush border composition. ADAM17 regulates the renin angiotensin system and is together with ADAM10 involved in calcium phosphate homeostasis. In kidney disease ADAMs, especially ADAM17 contribute to inflammation through their involvement in IL-6 trans-signaling, Notch-, epithelial growth factor receptor-, and tumor necrosis factor α signaling. ADAMs are interesting drug targets to reduce the inflammatory burden, defective cell adhesion and impaired signaling pathways in kidney diseases.
Collapse
|
33
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
34
|
Zhang H, Xing J, Zhao L. Lysine-specific demethylase 1 induced epithelial-mesenchymal transition and promoted renal fibrosis through Jagged-1/Notch signaling pathway. Hum Exp Toxicol 2021; 40:S203-S214. [PMID: 34396798 DOI: 10.1177/09603271211038743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE TGF-β1-induced excessive deposition of extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT) process of tubular epithelial cells play critical roles in the progression of renal fibrosis. We are aimed to explore the effects of lysine-specific demethylase 1 (LSD1) in TGF-β1-treated HK-2 cells and in rats with unilateral ureteral obstruction (UUO), and to investigate the underlying molecular mechanism. METHODS TGF-β1-treated HK-2 cells and UUO-treated rats were used to establish the model of renal fibrosis in vitro and in vivo, respectively. Protein expression of LSD1, E-cadherin, a-smooth muscle actin (a-SMA), Vimentin, Jagged-1, Notch-1 and Notch-2 were detected by Western blot. The concentrations of type I collagen (Col-I) and Fibronectin (FN) were measured by ELISA. Transwell assay were used to assess cell invasion. RESULTS LSD1 was dramatically increased in TGF-β1-stimulated HK-2 cells. Knockdown of LSD1 decreased the TGF-β1-induced secretion of Col-I and FN, and suppressed TGF-β1-induced expression of E-cadherin,α-SMA and Vimentin, while suppressed cell invasion. Consistent with the in vitro data, the severe histopathological damage, collagen deposition and reduced E-cadherin, increased α-SMA induced by UUO was abated by the knockdown of LSD1 in vivo. Moreover, knockdown of LSD1 suppressed TGF-β1-induced expression of Jagged-1, Notch-1 and Notch-2. Furthermore, we found that inhibition of Notch signaling by a γ-secretase inhibitor RO4929097 almost recapitulated the effects of LSD1 knockdown in TGF-β1-induced HK-2 cells, and at least in part reversed the effects of LSD1 overexpression on EMT and ECM deposition in HK-2 cells. CONCLUSIONS Taken together, LSD1 significantly impact on the progression of TGF-β1-mediated EMT and ECM deposition in HK-2 cells, and it may represent novel target for the prevention strategies of renal fibrosis.
Collapse
Affiliation(s)
- Huali Zhang
- Gerontology Department, 586778Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Jiaming Xing
- Gerontology Department, 586778Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Lingwei Zhao
- Nephrology Department, Sichuan Province Forestry Center Hospital, Chengdu, China
| |
Collapse
|
35
|
Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F, Tong X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front Cell Dev Biol 2021; 9:696542. [PMID: 34327204 PMCID: PMC8314387 DOI: 10.3389/fcell.2021.696542] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease (DKD), as the most common complication of diabetes mellitus (DM), is the major cause of end-stage renal disease (ESRD). Renal interstitial fibrosis is a crucial metabolic change in the late stage of DKD, which is always considered to be complex and irreversible. In this review, we discuss the pathological mechanisms of diabetic renal fibrosis and discussed some signaling pathways that are closely related to it, such as the TGF-β, MAPK, Wnt/β-catenin, PI3K/Akt, JAK/STAT, and Notch pathways. The cross-talks among these pathways were then discussed to elucidate the complicated cascade behind the tubulointerstitial fibrosis. Finally, we summarized the new drugs with potential therapeutic effects on renal fibrosis and listed related clinical trials. The purpose of this review is to elucidate the mechanisms and related pathways of renal fibrosis in DKD and to provide novel therapeutic intervention insights for clinical research to delay the progression of renal fibrosis.
Collapse
Affiliation(s)
- Yuqing Zhang
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Endocrinology Department, Guang'anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rongrong Zhou
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
36
|
Marquez-Exposito L, Rodrigues-Diez RR, Rayego-Mateos S, Fierro-Fernandez M, Rodrigues-Diez R, Orejudo M, Santos-Sanchez L, Blanco EM, Laborda J, Mezzano S, Lamas S, Lavoz C, Ruiz-Ortega M. Deletion of delta-like 1 homologue accelerates renal inflammation by modulating the Th17 immune response. FASEB J 2021; 35:e21213. [PMID: 33368614 DOI: 10.1096/fj.201903131r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Preclinical studies have demonstrated that activation of the NOTCH pathway plays a key role in the pathogenesis of kidney damage. There is currently no information on the role of the Delta-like homologue 1 (DLK1), a NOTCH inhibitor, in the regulation of renal damage. Here, we investigated the contribution of DLK1 to experimental renal damage and the underlying molecular mechanisms. Using a Dlk1-null mouse model in the experimental renal damage of unilateral ureteral obstruction, we found activation of NOTCH, as shown by increased nuclear translocation of the NOTCH1 intracellular domain, and upregulation of Dlk2/hey-1 expression compared to wild-type (WT) littermates. NOTCH1 over-activation in Dlk1-null injured kidneys was associated with a higher inflammatory response, characterized by infiltration of inflammatory cells, mainly CD4/IL17A + lymphocytes, and activation of the Th17 immune response. Furthermore, pharmacological NOTCH blockade inhibited the transcription factors controlling Th17 differentiation and gene expression of the Th17 effector cytokine IL-17A and other related-inflammatory factors, linked to a diminution of inflammation in the injured kidneys. We propose that the non-canonical NOTCH ligand DLK1 acts as a NOTCH antagonist in renal injury regulating the Th17-mediated inflammatory response.
Collapse
Affiliation(s)
- Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Raul R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida IRBLleida, Lleida, Spain
| | | | - Raquel Rodrigues-Diez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Macarena Orejudo
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Eva Maria Blanco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Jorge Laborda
- Biochemistry and Molecular Biology Branch, Department of Inorganic and Organic Chemistry and Biochemistry, University of Castilla-La Mancha, Spanish National Research Council (CSIC), Albacete, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| |
Collapse
|
37
|
Racetin A, Filipović N, Lozić M, Ogata M, Gudelj Ensor L, Kelam N, Kovačević P, Watanabe K, Katsuyama Y, Saraga-Babić M, Glavina Durdov M, Vukojević K. A Homozygous Dab1 -/- Is a Potential Novel Cause of Autosomal Recessive Congenital Anomalies of the Mice Kidney and Urinary Tract. Biomolecules 2021; 11:biom11040609. [PMID: 33924028 PMCID: PMC8073787 DOI: 10.3390/biom11040609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023] Open
Abstract
This study aimed to explore morphology changes in the kidneys of Dab1−/− (yotari) mice, as well as expression patterns of reelin, NOTCH2, LC3B, and cleaved caspase3 (CASP3) proteins, as potential determinants of normal kidney formation and function. We assumed that Dab1 functional inactivation may cause disorder in a wide spectrum of congenital anomalies of the kidney and urinary tract (CAKUT). Animals were sacrificed at postnatal days P4, P11, and P14. Paraffin-embedded kidney tissues were sectioned and analyzed by immunohistochemistry using specific antibodies. Kidney specimens were examined by bright-field, fluorescence, and electron microscopy. Data were analyzed by two-way ANOVA and t-tests. We noticed that yotari kidneys were smaller in size with a reduced diameter of nephron segments and thinner cortex. TEM microphotographs revealed foot process effacement in the glomeruli (G) of yotari mice, whereas aberrations in the structure of proximal convoluted tubules (PCT) and distal convoluted tubules (DCT) were not observed. A significant increase in reelin expression, NOTCH2, LC3B and cleaved CASP3 proteins was observed in the glomeruli of yotari mice. Renal hypoplasia in conjunction with foot process effacement and elevation in the expression of examined proteins in the glomeruli revealed CAKUT phenotype and loss of functional kidney tissue of yotari.
Collapse
Affiliation(s)
- Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (A.R.); (N.F.); (M.L.); (L.G.E.); (N.K.); (M.S.-B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (A.R.); (N.F.); (M.L.); (L.G.E.); (N.K.); (M.S.-B.)
| | - Mirela Lozić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (A.R.); (N.F.); (M.L.); (L.G.E.); (N.K.); (M.S.-B.)
| | - Masaki Ogata
- Division of Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan;
| | - Larissa Gudelj Ensor
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (A.R.); (N.F.); (M.L.); (L.G.E.); (N.K.); (M.S.-B.)
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (A.R.); (N.F.); (M.L.); (L.G.E.); (N.K.); (M.S.-B.)
| | - Petra Kovačević
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Koichiro Watanabe
- Department of Anatomy, Shiga University of Medical Science, Ötsu 520-2192, Japan; (K.W.); (Y.K.)
| | - Yu Katsuyama
- Department of Anatomy, Shiga University of Medical Science, Ötsu 520-2192, Japan; (K.W.); (Y.K.)
| | - Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (A.R.); (N.F.); (M.L.); (L.G.E.); (N.K.); (M.S.-B.)
| | | | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (A.R.); (N.F.); (M.L.); (L.G.E.); (N.K.); (M.S.-B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
- Correspondence: ; Tel.: +385-21-557-807; Fax: +385-1-557-811
| |
Collapse
|
38
|
Christopoulos PF, Gjølberg TT, Krüger S, Haraldsen G, Andersen JT, Sundlisæter E. Targeting the Notch Signaling Pathway in Chronic Inflammatory Diseases. Front Immunol 2021; 12:668207. [PMID: 33912195 PMCID: PMC8071949 DOI: 10.3389/fimmu.2021.668207] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The Notch signaling pathway regulates developmental cell-fate decisions and has recently also been linked to inflammatory diseases. Although therapies targeting Notch signaling in inflammation in theory are attractive, their design and implementation have proven difficult, at least partly due to the broad involvement of Notch signaling in regenerative and homeostatic processes. In this review, we summarize the supporting role of Notch signaling in various inflammation-driven diseases, and highlight efforts to intervene with this pathway by targeting Notch ligands and/or receptors with distinct therapeutic strategies, including antibody designs. We discuss this in light of lessons learned from Notch targeting in cancer treatment. Finally, we elaborate on the impact of individual Notch members in inflammation, which may lay the foundation for development of therapeutic strategies in chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Torleif T. Gjølberg
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre for Eye Research and Department of Ophthalmology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stig Krüger
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Guttorm Haraldsen
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan Terje Andersen
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eirik Sundlisæter
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
39
|
Fujiki K. [Involvement of Notch1 and ALK4/5 Signaling Pathways in Renal Tubular Cell Death: Their Application to Clarification of Cadmium Toxicity]. Nihon Eiseigaku Zasshi 2021; 75. [PMID: 33342936 DOI: 10.1265/jjh.20007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Renal tubular cell death is caused by various extracellular stresses including toxic amounts of cadmium, an occupational and environmental pollutant metal, and is responsible for renal dysfunction. While cadmium exposure disrupts many intracellular signaling pathways, the molecular mechanism underlying cadmium-induced renal tubular cell death has not yet been fully elucidated. We have recently identified two important intracellular signaling pathways that promote cadmium-induced renal tubular cell death: the Notch1 signaling and activin receptor-like kinase (ALK) 4/5 signaling (also known as the activin-transforming growth factor β receptor pathways). In this review paper, we introduce our previous experimental findings, focusing on Notch1 and ALK4/5 signaling pathways, which may uncover the molecular mechanisms involved in cadmium-induced renal tubular cell death.
Collapse
Affiliation(s)
- Kota Fujiki
- Department of Hygiene and Public Health, Tokyo Women's Medical University
| |
Collapse
|
40
|
Jing X, Ren D, Gao F, Chen Y, Wu X, Han Y, Han Q, Li L, Wang X, Tang W, Zhang Y. Gene deficiency or pharmacological inhibition of PDCD4-mediated FGR signaling protects against acute kidney injury. Acta Pharm Sin B 2021; 11:394-405. [PMID: 33643819 PMCID: PMC7893143 DOI: 10.1016/j.apsb.2020.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022] Open
Abstract
Recent studies have shown that programmed cell death 4 (PDCD4) modulates distinct signal transduction pathways in different pathological conditions. Despite acute and chronic immune responses elicited by ischemia contributing to the functional deterioration of the kidney, the contributions and mechanisms of PDCD4 in acute kidney injury (AKI) have remained unclear. Using two murine AKI models including renal ischemia/reperfusion injury (IRI) and cisplatin-induced AKI, we found that PDCD4 deficiency markedly ameliorated renal dysfunction and inflammatory responses in AKI mice. Consistently, upregulation of PDCD4 was also confirmed in the kidneys from patients with biopsy confirmed acute tubular necrosis from a retrospective cohort study. Moreover, we found that overexpression of Fgr, a member of the tyrosine kinase family, dramatically aggravated renal injury and counteracted the protective effects of PDCD4 deficiency in AKI mice. We discovered that FGR upregulated NOTCH1 expression through activating STAT3. Most importantly, we further found that systemic administration of ponatinib, a tyrosine kinase inhibitor, significantly ameliorated AKI in mice. In summary, we identified that PDCD4 served as an important regulator, at least in part, of FGR/NOTCH1-mediated tubular apoptosis and inflammation in AKI mice. Furthermore, our findings suggest that ponatinib-mediated pharmacologic targeting of this pathway had therapeutic potential for mitigating AKI.
Collapse
Affiliation(s)
- Xu Jing
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
- Department of Clinical Laboratory, the Second Hospital of Shandong University, Jinan 250033, China
| | - Dandan Ren
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
- Chengda Biology Co., Ltd., Shenyang 110179, China
| | - Fei Gao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ye Chen
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Xiao Wu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yue Han
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Qingsheng Han
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Liang Li
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Wei Tang
- Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Yan Zhang
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| |
Collapse
|
41
|
Li L, Liu Q, Shang T, Song W, Xu D, Allen TD, Wang X, Jeong J, Lobe CG, Liu J. Aberrant Activation of Notch1 Signaling in Glomerular Endothelium Induces Albuminuria. Circ Res 2021; 128:602-618. [PMID: 33435713 DOI: 10.1161/circresaha.120.316970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Glomerular capillaries are lined with a highly specialized fenestrated endothelium and contribute to the glomerular filtration barrier. The Notch signaling pathway is involved in regulation of glomerular filtration barrier, but its role in glomerular endothelium has not been investigated due to the embryonic lethality of animal models with genetic modification of Notch pathway components in the endothelium. OBJECTIVE To determine the effects of aberrant activation of the Notch signaling in glomerular endothelium and the underlying molecular mechanisms. METHODS AND RESULTS We established the ZEG-NICD1 (notch1 intracellular domain)/Tie2-tTA/Tet-O-Cre transgenic mouse model to constitutively activate Notch1 signaling in endothelial cells of adult mice. The triple transgenic mice developed severe albuminuria with significantly decreased VE-cadherin (vascular endothelial cadherin) expression in the glomerular endothelium. In vitro studies showed that either NICD1 (Notch1 intracellular domain) lentiviral infection or treatment with Notch ligand DLL4 (delta-like ligand 4) markedly reduced VE-cadherin expression and increased monolayer permeability of human renal glomerular endothelial cells. In addition, Notch1 activation or gene knockdown of VE-cadherin reduced the glomerular endothelial glycocalyx. Further investigation demonstrated that activated Notch1 suppression of VE-cadherin was through the transcription factors SNAI1 (snail family transcriptional repressor 1) and ERG (Ets related gene), which bind to the -373 E-box and the -134/-118 ETS (E26 transformation-specific) element of the VE-cadherin promoter, respectively. CONCLUSIONS Our results reveal novel regulatory mechanisms whereby endothelial Notch1 signaling dictates the level of VE-cadherin through the transcription factors SNAI1 and ERG, leading to dysfunction of glomerular filtration barrier and induction of albuminuria. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Liqun Li
- Institute of Microvascular Medicine, Medical Research Center (L.L., Q.L., J.L.), Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,School of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China (L.L., T.S., W.S., X.W.)
| | - Qiang Liu
- Institute of Microvascular Medicine, Medical Research Center (L.L., Q.L., J.L.), Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tongyao Shang
- School of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China (L.L., T.S., W.S., X.W.)
| | - Wei Song
- School of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China (L.L., T.S., W.S., X.W.)
| | - Dongmei Xu
- Department of Nephrology (D.X.), Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Thaddeus D Allen
- Molecular and Cellular Biology Division, Sunnybrook Health Science Centre (T.D.A., J.J., C.G.L.), University of Toronto, Ontario, Canada.,Department of Medical Biophysics (T.D.A., C.G.L.), University of Toronto, Ontario, Canada.,Tradewind BioScience, Daly City, California (T.D.A.)
| | - Xia Wang
- School of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China (L.L., T.S., W.S., X.W.)
| | - James Jeong
- General Internal Medicine, Markham Stouffville Hospital, Toronto, Ontario, Canada (J.J.)
| | - Corrinne G Lobe
- Molecular and Cellular Biology Division, Sunnybrook Health Science Centre (T.D.A., J.J., C.G.L.), University of Toronto, Ontario, Canada.,Department of Medical Biophysics (T.D.A., C.G.L.), University of Toronto, Ontario, Canada
| | - Ju Liu
- Institute of Microvascular Medicine, Medical Research Center (L.L., Q.L., J.L.), Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
42
|
Zoja C, Xinaris C, Macconi D. Diabetic Nephropathy: Novel Molecular Mechanisms and Therapeutic Targets. Front Pharmacol 2020; 11:586892. [PMID: 33519447 PMCID: PMC7845653 DOI: 10.3389/fphar.2020.586892] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes mellitus and the leading cause of end-stage kidney disease. The standard treatments for diabetic patients are glucose and blood pressure control, lipid lowering, and renin-angiotensin system blockade; however, these therapeutic approaches can provide only partial renoprotection if started late in the course of the disease. One major limitation in developing efficient therapies for DN is the complex pathobiology of the diabetic kidney, which undergoes a set of profound structural, metabolic and functional changes. Despite these difficulties, experimental models of diabetes have revealed promising therapeutic targets by identifying pathways that modulate key functions of podocytes and glomerular endothelial cells. In this review we will describe recent advances in the field, analyze key molecular pathways that contribute to the pathogenesis of the disease, and discuss how they could be modulated to prevent or reverse DN.
Collapse
Affiliation(s)
- Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Christodoulos Xinaris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,University of Nicosia Medical School, Nicosia, Cyprus
| | - Daniela Macconi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
43
|
The Role of Notch3 Signaling in Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1809408. [PMID: 33149805 PMCID: PMC7603621 DOI: 10.1155/2020/1809408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/28/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Notch receptors are transmembrane proteins that are members of the epidermal growth factor-like family. These receptors are widely expressed on the cell surface and are highly conserved. Binding to ligands on adjacent cells results in cleavage of these receptors, and their intracellular domains translocate into the nucleus, where target gene transcription is initiated. In the mammalian kidney, Notch receptors are activated during nephrogenesis and become silenced in the normal kidney after birth. Reactivation of Notch signaling in the adult kidney could be due to the genetic activation of Notch signaling or kidney injury. Notch3 is a mammalian heterodimeric transmembrane receptor in the Notch gene family. Notch3 activation is significantly increased in various glomerular diseases, renal tubulointerstitial diseases, glomerular sclerosis, and renal fibrosis and mediates disease occurrence and development. Here, we discuss numerous recently published papers describing the role of Notch3 signaling in kidney disease.
Collapse
|
44
|
Li B, Zhu C, Dong L, Qin J, Xiang W, Davidson AJ, Feng S, Wang Y, Shen X, Weng C, Wang C, Zhu T, Teng L, Wang J, Englert C, Chen J, Jiang H. ADAM10 mediates ectopic proximal tubule development and renal fibrosis through Notch signalling. J Pathol 2020; 252:274-289. [PMID: 32715474 PMCID: PMC7702158 DOI: 10.1002/path.5517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Disturbed intrauterine development increases the risk of renal disease. Various studies have reported that Notch signalling plays a significant role in kidney development and kidney diseases. A disintegrin and metalloproteinase domain 10 (ADAM10), an upstream protease of the Notch pathway, is also reportedly involved in renal fibrosis. However, how ADAM10 interacts with the Notch pathway and causes renal fibrosis is not fully understood. In this study, using a prenatal chlorpyrifos (CPF) exposure mouse model, we investigated the role of the ADAM10/Notch axis in kidney development and fibrosis. We found that prenatal CPF‐exposure mice presented overexpression of Adam10, Notch1 and Notch2, and led to premature depletion of Six2+ nephron progenitors and ectopic formation of proximal tubules (PTs) in the embryonic kidney. These abnormal phenotypic changes persisted in mature kidneys due to the continuous activation of ADAM10/Notch and showed aggravated renal fibrosis in adults. Finally, both ADAM10 and NOTCH2 expression were positively correlated with the degree of renal interstitial fibrosis in IgA nephropathy patients, and increased ADAM10 expression was negatively correlated with decreased kidney function evaluated by serum creatinine, cystatin C, and estimated glomerular filtration rate. Regression analysis also indicated that ADAM10 expression was an independent risk factor for fibrosis in IgAN. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Bingjue Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Chaohong Zhu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Lihua Dong
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jing Qin
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Wenyu Xiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| | - Shi Feng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Xiujin Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Chunhua Weng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Tingting Zhu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Lisha Teng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Junwen Wang
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, USA.,College of Health Solutions, Arizona State University, Scottsdale, AZ, USA
| | - Christoph Englert
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Institute of Biochemistry and Biophysics, Friedrich-Schiller-University, Jena, Germany
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
45
|
Nie L, Liu Y, Zhang B, Zhao J. Application of Histone Deacetylase Inhibitors in Renal Interstitial Fibrosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2020; 6:226-235. [PMID: 32903948 DOI: 10.1159/000505295] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Renal interstitial fibrosis is characterized by the accumulation of extracellular matrix proteins, which is a common feature of chronic kidney diseases. SUMMARY Increasing evidence has shown the aberrant expression of histone deacetylases (HDACs) in the development and progression of renal fibrosis, suggesting the possibility of utilizing HDAC inhibitor (HDACi) as therapeutics for renal fibrosis. Recent studies have successfully demonstrated the antifibrotic effects of HDACis in various animal models, which are associated with multiple signaling pathways including TGF-β signaling, EGRF signaling, signal transducer and activator of transcription 3 pathway, and JNK/Notch2 signaling. This review will focus on the utilization of HDACi as antifibrotic agents and its relative molecular mechanisms. KEY MESSAGES HDACis have shown promising results in antifibrotic therapy, and it is rational to anticipate that HDACis will improve clinical outcomes of renal fibrosis in the future.
Collapse
Affiliation(s)
- Ling Nie
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Yong Liu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| |
Collapse
|
46
|
Panchapakesan U, Pollock C. The primary cilia in diabetic kidney disease: A tubulocentric view? Int J Biochem Cell Biol 2020; 122:105718. [PMID: 32070746 DOI: 10.1016/j.biocel.2020.105718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 01/18/2023]
Abstract
Diabetic kidney disease is growing exponentially. This review aims to discuss alternate therapeutic approaches beyond the glomerulocentric view and to consider a novel tubulocentric approach with focus on the primary cilia. Renin-angiotensin-aldosterone system blockade to decrease glomerular capillary pressure and prevent albuminuria has been the mainstay of treatment for diabetic and non-diabetic proteinuric kidney disease. Landmark clinical trials have also shown cardiorenal benefit with sodium-glucose linked co-transporter 2 inhibitors and glucagon-like peptide 1 receptor analogues in patients with type 2 diabetes. Effective renoprotective drugs seem to have a common mechanistic mode of reducing glomerular hyperfiltration/hypertension. In the tubules, primary cilia act as "antennae" to detect mechanosensory changes such as glomerular hyperfiltration and trgger intracellular signalling pathways. They are also implicated in obesity and metabolic disorders linked to diabetes. To conclude, primary cilia of the kidney tubules offer a novel therapeutic target and may complement the current glomerulocentric approaches.
Collapse
Affiliation(s)
- Usha Panchapakesan
- Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW,2065, Australia.
| | - Carol Pollock
- Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW,2065, Australia
| |
Collapse
|
47
|
Hsu YC, Chang PJ, Tung CW, Shih YH, Ni WC, Li YC, Uto T, Shoyama Y, Ho C, Lin CL. De-Glycyrrhizinated Licorice Extract Attenuates High Glucose-Stimulated Renal Tubular Epithelial-Mesenchymal Transition via Suppressing the Notch2 Signaling Pathway. Cells 2020; 9:cells9010125. [PMID: 31948095 PMCID: PMC7016866 DOI: 10.3390/cells9010125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Tubulointerstitial fibrosis is a major pathological hallmark of diabetic nephropathy. Increasing evidence has shown that epithelial-to-mesenchymal transition (EMT) of renal proximal tubular cells plays a crucial role in tubulointerstitial fibrosis. Herein, we aimed to elucidate the detailed mechanism of EMT in renal tubular cells under high glucose (HG) conditions, and to investigate the potential of licorice, a medicinal herb, to inhibit HG-induced EMT. Our results showed that renal tubular epithelial cells (normal rat kidney cell clone 52E; NRK-52E) exposed to HG resulted in EMT induction characterized by increased fibronectin and α-SMA (alpha-smooth muscle actin) but decreased E-cadherin. Elevated levels of cleaved Notch2, MAML-1 (mastermind-like transcriptional coactivator 1), nicastrin, Jagged-1 and Delta-like 1 were also concomitantly detected in HG-cultured cells. Importantly, pharmacological inhibition, small interfering RNA (siRNA)-mediated depletion or overexpression of the key components of Notch2 signaling in NRK-52E cells supported that the activated Notch2 pathway is essential for tubular EMT. Moreover, we found that licorice extract (LE) with or without glycyrrhizin, one of bioactive components in licorice, effectively blocked HG-triggered EMT in NRK-52E cells, mainly through suppressing the Notch2 pathway. Our findings therefore suggest that Notch2-mediated renal tubular EMT could be a therapeutic target in diabetic nephropathy, and both LE and de-glycyrrhizinated LE could have therapeutic potential to attenuate renal tubular EMT and fibrosis.
Collapse
Affiliation(s)
- Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Pey-Jium Chang
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Wu Tung
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Wen-Chiu Ni
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Yi-Chen Li
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Takuhiro Uto
- Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan; (T.U.); (Y.S.)
| | - Yukihiro Shoyama
- Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan; (T.U.); (Y.S.)
| | - Cheng Ho
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Correspondence: (C.H.); (C.-L.L.)
| | - Chun-Liang Lin
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (C.H.); (C.-L.L.)
| |
Collapse
|
48
|
Marquez-Exposito L, Cantero-Navarro E, R Rodrigues-Diez R, Orejudo M, Tejera-Muñoz A, Tejedor L, Rayego-Mateos S, Rández-Carbayo J, Santos-Sanchez L, Mezzano S, Lavoz C, Ruiz-Ortega M. Molecular Regulation of Notch Signaling by Gremlin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:81-94. [PMID: 32072500 DOI: 10.1007/978-3-030-36422-9_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gremlin is a member of the TGF-β superfamily that can act as a BMP antagonist, and recently, has been described as a ligand of the vascular endothelial growth factor receptor 2 (VEGFR2). Gremlin shares properties with the Notch signaling pathway. Both participate in embryonic development and are reactivated in pathological conditions. Gremlin is emerging as a potential therapeutic target and biomarker of renal diseases. Here we review the role of the Gremlin-VEGFR2 axis in renal damage and downstream signaling mechanisms, such as Notch pathway.
Collapse
Affiliation(s)
- Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Macarena Orejudo
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Lucia Tejedor
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida IRBLleida, Lleida, Spain
| | - Javier Rández-Carbayo
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain. .,Red de Investigación Renal (REDINREN), Madrid, Spain.
| |
Collapse
|
49
|
Identification of susceptibility locus shared by IgA nephropathy and inflammatory bowel disease in a Chinese Han population. J Hum Genet 2019; 65:241-249. [PMID: 31857673 DOI: 10.1038/s10038-019-0699-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Genome-wide association studies (GWAS) had discovered several genetic risk loci for IgA nephropathy (IgAN), where the susceptibility genes of CARD9 and HORMAD2 for IgAN were also implicated in inflammatory bowel disease (IBD), suggesting a shared genetic etiology of these two diseases. The aim of this study is to explore the common susceptibility loci between IgAN and IBD and provide evidences to elucidate the shared pathogenesis between these two autoimmune diseases. Nineteen single-nucleotide polymorphisms (SNPs) associated with IBD in Asian populations were selected through the National Human Genome Research Institute (NHGRI) GWAS Catalog, and 2078 IgAN patients and 2085 healthy individuals of Chinese Han ancestry were included in the two-stage case-control association study. Serum levels of complement factor B (CFB) and complement split product C3a were detected by enzyme-linked immunosorbent assay (ELISA). One significant shared association at rs4151657 (OR = 1.28, 95%CI = 1.13-1.45, P = 1.42 × 10-4) was discovered between these two diseases, which implicated CFB as a susceptibility gene for IgAN. Genotype-phenotype correlation analysis found significant association of the rs4151657-C allele with decreased serum C3 levels. In addition, the rs4151657-C allele was also associated with higher CFB levels and C3a levels, which suggested a certain degree of systemic complement activation in IgAN patients with the rs4151657-CT or CC genotypes. Our study identified one risk locus (CFB) shared by IgAN and IBD, and genetic variants of CFB may affect complement activation and associate with the predisposition to IgAN.
Collapse
|
50
|
Puri RV, Yerrathota S, Home T, Idowu JY, Chakravarthi VP, Ward CJ, Singhal PC, Vanden Heuvel GB, Fields TA, Sharma M. Notch4 activation aggravates NF-κB-mediated inflammation in HIV-1-associated nephropathy. Dis Model Mech 2019; 12:dmm.040642. [PMID: 31727625 PMCID: PMC6918754 DOI: 10.1242/dmm.040642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
Notch pathway activation plays a central role in the pathogenesis of many glomerular diseases. We have previously shown that Notch4 expression was upregulated in various renal cells in human immunodeficiency virus (HIV)-associated nephropathy (HIVAN) patients and rodent models of HIVAN. In this study, we examined whether the Notch pathway can be distinctly activated by HIV-1 gene products and whether Notch4, in particular, can influence disease progression. Using luciferase reporter assays, we did not observe activation of the NOTCH4 promoter with the HIV protein Nef in podocytes. Further, we observed upregulated expression of a gamma secretase complex protein, presenilin 1, but not Notch4, in podocytes infected with an HIV-1 expression construct. To assess the effects of Notch4 on HIVAN disease progression, we engineered Tg26 mice with global deletion of the Notch4 intracellular domain (Notch4dl), which is required for signaling function. These mice (Notch4d1/Tg26+) showed a significant improvement in renal function and a significant decrease in mortality compared to Tg26 mice. Histological examination of kidneys showed that Notch4d1/Tg26+ mice had overall glomerular, tubulointerstitial injury and a marked decrease in interstitial inflammation. A significant decrease in the proliferating cells was observed in the tubulointerstitial compartments of Notch4d1/Tg26+ mice. Consistent with the diminished inflammation, kidneys from Notch4d1/Tg26+ mice also showed a significant decrease in expression of the inflammatory cytokine transcripts Il-6 and Ccl2, as well as the master inflammatory transcription factor NF-κB (Nfkb1 transcripts and p65 protein). These data identify Notch4 as an important mediator of tubulointerstitial injury and inflammation in HIVAN and a potential therapeutic target. Summary: Notch4 activation contributes to the inflammation seen in HIV-associated nephropathy (HIVAN), and inhibition of Notch4 ameliorates inflammation and prolongs life in a mouse model of HIVAN.
Collapse
Affiliation(s)
- Rajni Vaid Puri
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sireesha Yerrathota
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Trisha Home
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jessica Y Idowu
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - V Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Christopher J Ward
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pravin C Singhal
- Institute of Molecular Medicine, Feinstein Institute for Medical Research and Zucker School of Medicine at Hofstra-Northwell, New York, NY 11549, USA
| | | | - Timothy A Fields
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Madhulika Sharma
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA .,The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|