1
|
Malarska M, Moczulska H, Pachniak P, Gadzalska K, Jakiel P, Gorządek M, Juścińska E, Pietrusiński M, Mazerant M, Pukajło-Marczyk A, Kiliś-Pstrusińska K, Majos A, Podgórski M, Zmysłowska A. Phenotype-genotype correlations in patients with Alport syndrome from the Polish population. J Nephrol 2025:10.1007/s40620-025-02251-3. [PMID: 40237890 DOI: 10.1007/s40620-025-02251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/14/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Alport syndrome (AS) is a rare inherited kidney disease associated with progressive renal failure and visual and hearing disorders. The purpose of this study was to find genetic variants in patients with suspected Alport syndrome from Central and Southwestern Poland and their association with the clinical course of the disease, and to evaluate the impact of Alport syndrome on pregnancy. METHODS Initially, 90 patients with suspected Alport syndrome were evaluated by molecular-based testing. Clinical analyses, including urinalysis, evaluation of serum parameters, ultrasound, ophthalmologic, cardiovascular and audiology examination, and genetic testing were performed using next-generation sequencing and the Sanger method. RESULTS Seventy-seven patients (40.26% male; 59.74% female) with a median age of 6 years were included in the study group, after receiving a diagnosis of Alport syndrome. Twenty pathogenic/potentially pathogenic variants within the COL4A3, COL4A4 and COL4A5 genes were identified in these patients. The c.1871G > A variant in the COL4A5 gene was the most common (53.25%). Isolated hematuria was the most common initial sign of Alport syndrome (70.8%). Genetic testing confirmed Alport syndrome in 85% of symptomatic patients and in 15% of asymptomatic patients. Sensorineural hearing loss (17%) and ocular abnormalities (6%) were also detected in patients in the study group. Isolated hematuria showed a significant association with COL4A5 gene variants (p < 0.001). Genetic variants showed an association with initial clinical symptoms and age at Alport syndrome manifestation. CONCLUSIONS Regular urinalysis and genetic testing should be considered in suspected cases of Alport syndrome for rapid diagnosis and effective patient management.
Collapse
Affiliation(s)
- Maria Malarska
- Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, 92-213, Lodz, Poland
| | - Hanna Moczulska
- Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, 92-213, Lodz, Poland
| | - Paulina Pachniak
- Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, 92-213, Lodz, Poland
| | - Karolina Gadzalska
- Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, 92-213, Lodz, Poland
| | - Paulina Jakiel
- Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, 92-213, Lodz, Poland
| | - Monika Gorządek
- Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, 92-213, Lodz, Poland
| | - Ewa Juścińska
- Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, 92-213, Lodz, Poland
| | - Michał Pietrusiński
- Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, 92-213, Lodz, Poland
| | - Marcin Mazerant
- Department of Otorhinolaryngology, District Hospital in Radomsko, Radomsko, Poland
| | | | | | - Alicja Majos
- Department of General and Transplant Surgery, Medical University of Lodz, Lodz, Poland
| | - Michał Podgórski
- 3rd Radiology and Imaging Diagnostics Department, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Zmysłowska
- Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, 92-213, Lodz, Poland.
| |
Collapse
|
2
|
Gross O, Boeckhaus J, Weber LT, Heerspink HJL, Simon JF, Ahmed R, Gerst C, Duerr U, Walker F, Tostmann R, Helm J, Asendorf T, Friede T. Protocol and rationale for a randomized controlled SGLT2 inhibitor trial in paediatric and young adult populations with chronic kidney disease: DOUBLE PRO-TECT Alport. Nephrol Dial Transplant 2025; 40:679-687. [PMID: 39122650 PMCID: PMC11960741 DOI: 10.1093/ndt/gfae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Clinical trials have demonstrated positive cardiovascular and kidney outcomes of sodium-glucose co-transporter 2 (SGLT2) inhibitors in adult patients with diabetic and other chronic kidney diseases (CKDs). Whether benefits extend to children, teenagers and young adults with early-stage CKD is unknown. For this reason, the DOUBLE PRO-TECT Alport trial (NCT05944016) will study the progression of albuminuria in young patients with Alport syndrome (AS), the most common hereditary CKD, to assess the safety and efficacy of the SGLT2 inhibitor dapagliflozin. Patients living with AS and chronically elevated albuminuria have a high risk of kidney failure before the age of 50 years. METHODS DOUBLE PRO-TECT Alport is a multicentre, randomized, double-blind, placebo-controlled trial. Participants (ages 10-39 years) must have a diagnosis of AS by genetic testing or kidney biopsy, be on a stable (>3 months) maximum tolerated dose of a renin-angiotensin system inhibitor and have a urinary albumin:creatinine ratio (UACR) of >300 mg/g (paediatric) or >500 mg/g (adult).Eligible participants will be randomly assigned at a 2:1 ratio to 48 weeks of treatment with dapaglifozin 10 mg/day or matched placebo. Most participants are expected to be children with a normal estimated glomerular filtration rate (eGFR). In addition to safety, the primary (change in UACR from baseline to week 48) and key secondary (eGFR change from baseline to week 52) efficacy outcomes will be analysed with a mixed model repeated measures approach. Efficacy analyses will be performed primarily in the full analysis set according to the intention-to-treat principle. A sensitivity analysis will be performed using reference-based multiple imputation. CONCLUSION DOUBLE PRO-TECT Alport will assess whether SGLT2 inhibitors can safely reduce the UACR change from baseline as a marker for progression of CKD in young patients living with AS.
Collapse
Affiliation(s)
- Oliver Gross
- Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Boeckhaus
- Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Lutz T Weber
- Pediatric Nephrology, Children's and Adolescents’ Hospital, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - James F Simon
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Rees Ahmed
- Legal Department, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Gerst
- Legal Department, University Medical Center Göttingen, Göttingen, Germany
| | - Ulrike Duerr
- Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
- Clinical Trials Unit, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Walker
- Clinical Trials Unit, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Tostmann
- Clinical Trials Unit, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Helm
- Clinical Trials Unit, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Asendorf
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Huang HX, Tsai IJ, Greenbaum LA. Alport syndrome: Expanding diagnosis and treatment. Pediatr Neonatol 2025; 66 Suppl 1:S13-S17. [PMID: 39521677 DOI: 10.1016/j.pedneo.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Alport syndrome (AS) is the second common monogenic cause of end-stage kidney disease (ESKD) worldwide and is caused by defective type 4 collagen due to pathogenic variants of COL4A3, COL4A4, or COL4A5. Type 4 collagen also exists in the eyes and ears, and thus ocular defects and hearing loss occur in AS. The understanding of AS has expanded over the past two decades due to greater availability of genetic testing and research on genotype-phenotype correlation. Patients previously diagnosed with idiopathic steroid resistant nephrotic syndrome or ESKD of unknown etiology may now be diagnosed as AS if pathogenic COL4A3-5 variants are identified. Some carriers of heterozygous COL4A3-5 variants may now be classified into females with X-linked AS or autosomal dominant AS, if there are typical pathologic changes in the glomerular basement membrane or if there is proteinuria and progression of kidney disease. Lastly, it has been recommended that renin-angiotensin-aldosterone system inhibition be started as soon as possible for selected AS patients for its long-term protective effect against kidney function deterioration. The purpose of this review is to introduce these important concepts to general pediatricians and pediatric nephrologists.
Collapse
Affiliation(s)
- Hou-Xuan Huang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Jung Tsai
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Larry A Greenbaum
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.
| |
Collapse
|
4
|
Kawanishi K, Baba M, Kobayashi R, Hori R, Hashikami K, Danbayashi K, Iwachido T, Kato M. A Novel Deep Learning Approach for Analyzing Glomerular Basement Membrane Lesions in a Mouse Model of X-Linked Alport Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:143-154. [PMID: 39427762 DOI: 10.1016/j.ajpath.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alport syndrome is a rare kidney disease typically more severe in males due to its X-linked inheritance. However, female patients with heterozygous X-linked Alport syndrome (XLAS) can develop renal failure over time, necessitating accurate pathologic assessment for effective therapy. A key pathologic finding in female patients with XLAS is the mosaic pattern of partial loss of α5 chains of type IV collagen (COL4α5). This study, using a mouse model of XLAS with a nonsense mutation (R471∗) in the Col4a5 gene, analogous to human XLAS, aimed to examine the consistency of this pattern with the glomerular basement membrane (GBM) structure. A modified periodic acid-methenamine silver staining method was developed for clearer GBM visualization. The integrated images from COL4α5-stained fluorescence, periodic acid-methenamine silver, and low-vacuum scanning electron microscopy into a single-slide section and applied supervised deep learning to predict GBM lesions. Results showed significant individual variability in urinary protein levels and histologic lesions. Pathologic parameters, including crescent formation, focal segmental glomerulosclerosis, and the COL4α5/α2 ratio, correlated with clinical parameters like urinary protein and plasma creatinine levels. Integrated low-vacuum scanning electron microscopy analysis revealed dense GBM regions corresponded to areas where COL4α5 was preserved, whereas coarse GBM (basket-weave lesions) occurred in COL4α5-deficient regions. These advanced techniques can enhance biopsy-based diagnosis of Alport syndrome and aid in developing artificial intelligence diagnostic tools for diseases involving basement membrane lesions.
Collapse
Affiliation(s)
- Kunio Kawanishi
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Masaki Baba
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Ryotaro Hori
- Axcelead Drug Discovery Partners Inc., Fujisawa, Japan
| | | | | | | | - Mitsuyasu Kato
- Department of Experimental Pathology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Lim C, Lim RS, Choo J, Leow EH, Chan GC, Zhang Y, Ng JL, Chin HL, Tan ES, Goh J, Gandhi N, Ng YH, Than M, Ganesan I, Chong SL, Yap C, Chao SM, Cham B, Kam S, Lim JY, Mok I, Tan HZ, Kwek JL, Lee TL, Wang Z, Goh SM, Lim R, Yeo SC, Teo BW, Da Y, Matchar D, Ng KH. Clinical Implementation of Nephrologist-Led Genomic Testing for Glomerular Diseases in Singapore: Rationale and Protocol. Am J Nephrol 2024; 56:158-171. [PMID: 39626636 PMCID: PMC11975324 DOI: 10.1159/000542942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/02/2024] [Indexed: 01/14/2025]
Abstract
INTRODUCTION The early diagnosis and appropriate treatment of monogenic glomerular diseases can reduce kidney failure, avoid unnecessary investigations such as kidney biopsies and ineffective treatment with immunosuppressants, guide transplant decisions, and inform the genetic risks of their family members. Yet, genetic testing for kidney disease is underutilized in Singapore. We aimed to implement a nephrologist-led genetic service and evaluate the acceptance, adoption, utility, and cost-effectiveness of genetic testing for monogenic glomerular disease in Singapore. METHODS We will perform a prospective, multi-centre, type II hybrid effectiveness-implementation study with a post-design to evaluate both implementation and clinical outcomes of nephrologist-led genetic testing for suspected genetic glomerular kidney diseases. The multi-disciplinary implementation team will train "genetic nephrologists" to provide pre- and post-test counselling, order targeted exome panel sequencing for suspected glomerular kidney diseases (persistent microscopic haematuria and/or albuminuria or proteinuria in the absence of known causes, steroid-resistant primary nephrotic syndrome, apparent familial IgA nephropathy, or chronic kidney disease with no apparent cause), and interpret genetic test results; create workflows for patient referral, evaluation and management, and discuss genetic results at regular genomic board meetings. The outcomes are acceptance, appropriateness and adoption among patients and nephrologists, utility (proportion of patients who received genetic testing and have a confirmed diagnosis of genetic glomerular disease), and cost-effectiveness. CONCLUSION This study will create and evaluate a nephrologist-led genetic service, develop an efficient variant curation process, and inform future recommendations on the optimal referral and genetic testing strategy for monogenic glomerular disease in Singapore. This will facilitate the future mainstreaming of genetic testing that will enable precision medicine in kidney care.
Collapse
Affiliation(s)
- Cynthia Lim
- Department of Renal Medicine, Medicine, Singapore General Hospital, SingHealth Duke-NUS Academic Medical Center, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ru Sin Lim
- Department of Renal Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jason Choo
- Department of Renal Medicine, Medicine, Singapore General Hospital, SingHealth Duke-NUS Academic Medical Center, Singapore, Singapore
| | - Esther Huimin Leow
- Department of Paediatrics, Nephrology, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Gek Cher Chan
- Department of Medicine, Nephrology, National University Hospital, Singapore, Singapore
| | - Yaochun Zhang
- Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Jun Li Ng
- Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Hui-Lin Chin
- Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Ee Shien Tan
- Department of Paediatrics, Genetics, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Jeannette Goh
- Department of Paediatrics, Genetics, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Naline Gandhi
- Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Yong Hong Ng
- Department of Paediatrics, Nephrology, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Mya Than
- Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Indra Ganesan
- Department of Paediatrics, Nephrology, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Siew Le Chong
- Department of Paediatrics, Nephrology, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Celeste Yap
- Department of Paediatrics, Nephrology, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Sing Ming Chao
- Department of Paediatrics, Nephrology, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Breana Cham
- Department of Paediatrics, Genetics, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Sylvia Kam
- Department of Paediatrics, Genetics, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Jiin Ying Lim
- Department of Paediatrics, Genetics, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Irene Mok
- Department of Renal Medicine, Medicine, Singapore General Hospital, SingHealth Duke-NUS Academic Medical Center, Singapore, Singapore
| | - Hui Zhuan Tan
- Department of Renal Medicine, Medicine, Singapore General Hospital, SingHealth Duke-NUS Academic Medical Center, Singapore, Singapore
| | - Jia Liang Kwek
- Department of Renal Medicine, Medicine, Singapore General Hospital, SingHealth Duke-NUS Academic Medical Center, Singapore, Singapore
| | - Tung Lin Lee
- Department of Renal Medicine, Medicine, Singapore General Hospital, SingHealth Duke-NUS Academic Medical Center, Singapore, Singapore
| | - Ziyin Wang
- Department of Renal Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Su Mein Goh
- Department of Renal Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Regina Lim
- Department of Renal Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - See Cheng Yeo
- Department of Renal Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Boon Wee Teo
- Department of Medicine, Nephrology, National University of Singapore, Singapore, Singapore
| | - Yi Da
- Department of Medicine, Nephrology, National University of Singapore, Singapore, Singapore
| | - David Matchar
- Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
- Department of Medicine (General Internal Medicine), Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Kar Hui Ng
- Department of Paediatrics, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Zellers M, Solanki K, Kelly MA, Murphy KM, Retterer K, Kirchner HL, Bucaloiu ID, Moore B, Mirshahi T, Chang AR. Genotype-First Analysis in an Unselected Health System-Based Population and Phenotypic Severity of COL4A5 Variants. J Am Soc Nephrol 2024:00001751-990000000-00501. [PMID: 39625784 DOI: 10.1681/asn.0000000580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024] Open
Abstract
Background:
Our knowledge of X-linked Alport Syndrome comes mostly from selected cohorts with more severe disease.
Methods:
We examined the phenotypic spectrum of X-linked Alport Syndrome in males and females with a genotype-based approach using data from the Geisinger MyCode DiscovEHR study, an unselected health system-based cohort with exome sequencing and electronic health records. Patients with COL4A5 variants reported as pathogenic or likely pathogenic in ClinVar, or protein-truncating variants, were each matched with up to 5 controls without COL4A3/4/5 variants by sociodemographics, diabetes diagnosis, and year of first outpatient encounter. Phenotypes examined included dipstick hematuria, bilateral sensorineural hearing loss, proteinuria, decreased estimated glomerular filtration rate, and kidney failure.
Results:
Out of 170,856 patients, there were 29 hemizygous males (mean age 52 y [SD 20]) and 55 heterozygous females (mean age 59 y [SD 19]) with a pathogenic/likely pathogenic COL4A5 variant, including 48 with the hypomorphic variant p.Gly624Asp. Overall, penetrance (having any Alport Syndrome phenotypic feature) was highest for non-p.Gly624Asp variants (males: 94%, females: 85%), intermediate for p.Gly624Asp (males: 77%, females: 69%), compared to controls (males: 32%; females: 50%). The proportion with kidney failure was highest for males with non-p.Gly624Asp variants (44%), intermediate for males with p.Gly624Asp (15%) and females with non-p.Gly624Asp variants (10%), compared to controls (males: 3%, females 2%). Only 47% of individuals with COL4A5 had completed albuminuria screening, and a minority were taking renin-angiotensin aldosterone system inhibitors. Only 38% of males and 16% of females had a known diagnosis of Alport Syndrome or thin basement membrane disease.
Conclusions:
Using a genotype-first approach, we show that men and women with X-linked Alport Syndrome are at higher risk of related phenotypic features with a wider spectrum of severity than has been described previously and variability by genotype.
Collapse
Affiliation(s)
- McKenzie Zellers
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania
| | - Kaushal Solanki
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
| | - Melissa A Kelly
- Department of Genomic Health, Geisinger, Danville, Pennsylvania
| | | | | | - H Lester Kirchner
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
| | | | - Bryn Moore
- Department of Genomic Health, Geisinger, Danville, Pennsylvania
| | - Tooraj Mirshahi
- Department of Genomic Health, Geisinger, Danville, Pennsylvania
| | - Alexander R Chang
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
- Department of Nephrology, Geisinger, Danville, Pennsylvania
| |
Collapse
|
7
|
Yu S, Gu X, Zheng Q, Liu Y, Suhas T, Du W, Xie L, Fang Z, Zhao Y, Yang M, Xu J, Wang Y, Lin MH, Pan X, Miner JH, Jin Y, Xie J. Tauroursodeoxycholic acid ameliorates renal injury induced by COL4A3 mutation. Kidney Int 2024; 106:433-449. [PMID: 38782199 PMCID: PMC11343663 DOI: 10.1016/j.kint.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/17/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
COL4A3/A4/A5 mutations have been identified as critical causes of Alport syndrome and other genetic chronic kidney diseases. However, the underlying pathogenesis remains unclear, and specific treatments are lacking. Here, we constructed a transgenic Alport syndrome mouse model by generating a mutation (Col4a3 p.G799R) identified previously from one large Alport syndrome family into mice. We observed that the mutation caused a pathological decrease in intracellular and secreted collagen IV α3α4α5 heterotrimers. The mutant collagen IV α3 chains abnormally accumulated in the endoplasmic reticulum and exhibited defective secretion, leading to persistent endoplasmic reticulum stress in vivo and in vitro. RNA-seq analysis revealed that the MyD88/p38 MAPK pathway plays key roles in mediating subsequent inflammation and apoptosis signaling activation. Treatment with tauroursodeoxycholic acid, a chemical chaperone drug that functions as an endoplasmic reticulum stress inhibitor, effectively suppressed endoplasmic reticulum stress, promoted secretion of the α3 chains, and inhibited the activation of the MyD88/p38 MAPK pathway. Tauroursodeoxycholic acid treatment significantly improved kidney function in vivo. These results partly clarified the pathogenesis of kidney injuries associated with Alport syndrome, especially in glomeruli, and suggested that tauroursodeoxycholic acid might be useful for the early clinical treatment of Alport syndrome.
Collapse
Affiliation(s)
- Shuwen Yu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangchen Gu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qimin Zheng
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunzi Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Teija Suhas
- Division of Nephrology, Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wen Du
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengying Fang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Zhao
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxin Yang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimei Wang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meei-Hua Lin
- Division of Nephrology, Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiaoxia Pan
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yuanmeng Jin
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingyuan Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Zellers M, Solanki K, Kelly MA, Murphy KM, Retterer K, Kirchner HL, Bucaloiu ID, Moore B, Mirshahi T, Chang AR. Genotype-first analysis in an unselected health system-based population reveals variable phenotypic severity of COL4A5 variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.04.24308453. [PMID: 38883771 PMCID: PMC11177927 DOI: 10.1101/2024.06.04.24308453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Introduction Our knowledge of X-linked Alport Syndrome [AS] comes mostly from selected cohorts with more severe disease. Methods We examined the phenotypic spectrum of X-linked AS in males and females with a genotype-based approach using data from the Geisinger MyCode DiscovEHR study, an unselected health system-based cohort with exome sequencing and electronic health records. Patients with COL4A5 variants reported as pathogenic (P) or likely pathogenic (LP) in ClinVar, or protein-truncating variants (PTVs), were each matched with up to 5 controls without COL4A3/4/5 variants by sociodemographics, diabetes diagnosis, and year of first outpatient encounter. AS-related phenotypes included dipstick hematuria, bilateral sensorineural hearing loss (BSHL), proteinuria, decreased eGFR, and ESKD. Results Out of 170,856 patients, there were 29 hemizygous males (mean age 52.0 y [SD 20.0]) and 55 heterozygous females (mean age 59.3 y [SD 18.8]) with a COL4A5 P/LP variant, including 48 with the hypomorphic variant p.Gly624Asp. Overall, penetrance (having any AS phenotypic feature) was highest for non-p.Gly624Asp P/LP variants (males: 94%, females: 85%), intermediate for p.Gly624Asp (males: 77%, females: 69%), compared to controls (males: 32%; females: 50%). The proportion with ESKD was highest for males with P/LP variants (44%), intermediate for males with p.Gly624Asp (15%) and females with P/LP variants (10%), compared to controls (males: 3%, females 2%). Only 47% of individuals with COL4A5 had completed albuminuria screening, and a minority were taking renin-angiotensin aldosterone system (RAAS) inhibitors. Only 38% of males and 16% of females had a known diagnosis of Alport syndrome or thin basement membrane disease. Conclusion In an unselected cohort, we show increased risks of AS-related phenotypes in men and women compared to matched controls, while showing a wider spectrum of severity than has been described previously and variability by genotype. Future studies are needed to determine whether early genetic diagnosis can improve outcomes in Alport Syndrome.
Collapse
Affiliation(s)
| | - Kaushal Solanki
- Department of Population Health Sciences, Geisinger, Danville, PA
| | | | | | | | - H Les Kirchner
- Department of Population Health Sciences, Geisinger, Danville, PA
| | | | - Bryn Moore
- Department of Genomic Health, Geisinger, Danville, PA
| | | | - Alexander R Chang
- Department of Population Health Sciences, Geisinger, Danville, PA
- Department of Nephrology, Geisinger, Danville, PA
| |
Collapse
|
9
|
Christodoulaki V, Kosma K, Marinakis NM, Tilemis FN, Stergiou N, Kampouraki A, Kapogiannis C, Karava V, Mitsioni A, Mila M, Kanaka-Gantenbein C, Makrythanasis P, Tzetis M, Traeger-Synodinos J. Alport Syndrome: Clinical Utility of Early Genetic Diagnosis in Children. Genes (Basel) 2024; 15:1016. [PMID: 39202375 PMCID: PMC11353900 DOI: 10.3390/genes15081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Alport syndrome (AS) is a hereditary glomerulopathy due to pathogenic variants in COL4A3, COL4A4, and COL4A5. Treatment with Renin-Angiotensin-Aldosterone System (RAAS) inhibitors can delay progression to end stage renal disease (ESRD). From 2018 until today, we performed Whole Exome Sequencing (WES) in 19 patients with AS phenotype with or without positive family history. Fourteen of these patients were children. Genetic testing was extended to family members at risk. All patients received a genetic diagnosis of AS: five X-linked AS (XLAS) males, five X-linked AS (XLAS) females, six autosomal dominant AS (ADAS), and one autosomal recessive AS (ARAS). After cascade screening four XLAS males and eight XLAS females, six ADAS and three ARAS heterozygotes were added to our initial results. Fifteen patients were eligible to start treatment with RAAS inhibitors after their diagnosis. All XLAS female patients, ARAS heterozygotes, and ADAS have been advised to be followed up, so that therapeutic intervention can begin in the presence of microalbuminuria. Genetic diagnosis of AS ensures early therapeutic intervention and appropriate follow up to delay progression to chronic kidney disease, especially in thet pediatric population.
Collapse
Affiliation(s)
- Vasileia Christodoulaki
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (K.K.); (N.M.M.); (F.-N.T.); (A.K.); (P.M.); (M.T.); (J.T.-S.)
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (N.S.); (C.K.); (V.K.); (C.K.-G.)
| | - Konstantina Kosma
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (K.K.); (N.M.M.); (F.-N.T.); (A.K.); (P.M.); (M.T.); (J.T.-S.)
| | - Nikolaos M. Marinakis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (K.K.); (N.M.M.); (F.-N.T.); (A.K.); (P.M.); (M.T.); (J.T.-S.)
- University Research Institute for the Study and Treatment of Genetic and Malignant Disorders in Childhood, Aghia Sophia Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Faidon-Nikolaos Tilemis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (K.K.); (N.M.M.); (F.-N.T.); (A.K.); (P.M.); (M.T.); (J.T.-S.)
| | - Nikolaos Stergiou
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (N.S.); (C.K.); (V.K.); (C.K.-G.)
| | - Afroditi Kampouraki
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (K.K.); (N.M.M.); (F.-N.T.); (A.K.); (P.M.); (M.T.); (J.T.-S.)
| | - Charalampos Kapogiannis
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (N.S.); (C.K.); (V.K.); (C.K.-G.)
| | - Vasiliki Karava
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (N.S.); (C.K.); (V.K.); (C.K.-G.)
| | - Andromachi Mitsioni
- Department of Nephrology, “P. and A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (A.M.); (M.M.)
| | - Maria Mila
- Department of Nephrology, “P. and A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (A.M.); (M.M.)
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (N.S.); (C.K.); (V.K.); (C.K.-G.)
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Medical School, Aghia Sophia Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Periklis Makrythanasis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (K.K.); (N.M.M.); (F.-N.T.); (A.K.); (P.M.); (M.T.); (J.T.-S.)
| | - Maria Tzetis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (K.K.); (N.M.M.); (F.-N.T.); (A.K.); (P.M.); (M.T.); (J.T.-S.)
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (K.K.); (N.M.M.); (F.-N.T.); (A.K.); (P.M.); (M.T.); (J.T.-S.)
| |
Collapse
|
10
|
Li Y, Yan X, Luo Z, Fu X, Li Z, Xu Q, Chen J, Yang J, Lu D. Aberrant Splicing of COL4A5 Intronic Variant Contribute to the Pathogenesis of X-Linked Alport Syndrome: A Case Series. Int J Nephrol Renovasc Dis 2024; 17:167-174. [PMID: 38855711 PMCID: PMC11162193 DOI: 10.2147/ijnrd.s459363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction X-linked Alport syndrome (XLAS) is caused by pathogenic variants in COL4A5 which lead to abnormalities of the glomerular basement membrane (GBM) structural and is characterized by progressive kidney disease, hearing loss, and ocular abnormalities. The aim of this study was to identify gene mutations in a Chinese family with XLAS by whole-exome sequencing (WES) and verified the pathogenicity of the mutation in vitro experiments. Case Presentation A five-generation pedigree with a total of 49 family members originating from Hainan province of China was investigated in this study. The proband was a 23-year-old male who developed microscopic hematuria, proteinuria and end-stage kidney disease (ESKD) at age 17. WES identified a novel splicing mutation c.321+5G>A of COL4A5, which cause exon skip. Further co-segregation analysis confirmed that this mutation exists in relatives who had renal abnormalities using Sanger sequencing. According to American College of Medical Genetics and Genomics guidelines (ACMG), the mutation was determined to be of uncertain significance (VUS). In vitro splicing experiments have shown that the COL4A5 variant induces aberrant mRNA splicing and transcript deletion. Conclusion We identified a novel intronic COL4A5 pathogenic mutation (c.321+5G>A) in a Chinese XLAS family and described the phenotypes of affected relatives. This study expands the mutation spectrum of COL4A5 gene in XLAS and demonstrates the importance of gene screening for AS.
Collapse
Affiliation(s)
- Yang Li
- Department of Nephropathy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, People’s Republic of China
| | - Xue Yan
- Department of Medicine, Shanghai WeHealth Biomedical Technology Co., Ltd., Shanghai, People’s Republic of China
| | - Zhen Luo
- Department of Nephropathy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, People’s Republic of China
| | - Xianxian Fu
- Department of Nephropathy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, People’s Republic of China
| | - Zhongju Li
- Department of Nephropathy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, People’s Republic of China
| | - Qiuzhu Xu
- Department of Central Supply Service Department, Haikou Orthopedic and Diabetes Hospital, Hainan, People’s Republic of China
| | - Juanjuan Chen
- Department of Nephropathy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, People’s Republic of China
| | - Jingmin Yang
- Department of Medicine, Shanghai WeHealth Biomedical Technology Co., Ltd., Shanghai, People’s Republic of China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute), Chongqing, People’s Republic of China
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Daru Lu
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute), Chongqing, People’s Republic of China
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Graziani L, Minotti C, Carriero ML, Bengala M, Lai S, Terracciano A, Novelli A, Novelli G. A Novel COL4A5 Pathogenic Variant Joins the Dots in a Family with a Synchronous Diagnosis of Alport Syndrome and Polycystic Kidney Disease. Genes (Basel) 2024; 15:597. [PMID: 38790225 PMCID: PMC11121527 DOI: 10.3390/genes15050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Alport Syndrome (AS) is the most common genetic glomerular disease, and it is caused by COL4A3, COL4A4, and COL4A5 pathogenic variants. The classic phenotypic spectrum associated with AS ranges from isolated hematuria to chronic kidney disease (CKD) with extrarenal abnormalities. Atypical presentation of the disorder is possible, and it can mislead the diagnosis. Polycystic kidney disease (PKD), which is most frequently associated with Autosomal Dominant PKD (ADPKD) due to PKD1 and PKD2 heterozygous variants, is emerging as a possible clinical manifestation in COL4A3-A5 patients. We describe a COL4A5 novel familial frameshift variant (NM_000495.5: c.1095dup p.(Leu366ValfsTer45)), which was associated with AS and PKD in the hemizygous proband, as well as with PKD, IgA glomerulonephritis and focal segmental glomerulosclerosis (FSGS) in the heterozygous mother. Establishing the diagnosis of AS can sometimes be difficult, especially in the context of misleading family history and atypical phenotypic features. This case study supports the emerging genotypic and phenotypic heterogeneity in COL4A3-A5-associated disorders, as well as the recently described association between PKD and collagen type IV (Col4) defects. We highlight the importance of the accurate phenotyping of all family members and the relevance of next-generation sequencing in the differential diagnosis of hereditary kidney disease.
Collapse
Affiliation(s)
- Ludovico Graziani
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.M.); (M.L.C.); (G.N.)
| | - Chiara Minotti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.M.); (M.L.C.); (G.N.)
| | - Miriam Lucia Carriero
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.M.); (M.L.C.); (G.N.)
| | - Mario Bengala
- Medical Genetics Unit, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Silvia Lai
- Division of Nephrology, Department of Translational and Precision Medicine, “Sapienza” University, 00133 Rome, Italy;
| | - Alessandra Terracciano
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.T.); (A.N.)
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.T.); (A.N.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.M.); (M.L.C.); (G.N.)
- Medical Genetics Unit, Tor Vergata University Hospital, 00133 Rome, Italy;
| |
Collapse
|
12
|
Chavez E, Goncalves S, Rheault MN, Fornoni A. Alport Syndrome. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:170-179. [PMID: 39004457 DOI: 10.1053/j.akdh.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 07/16/2024]
Abstract
Alport syndrome (AS) is characterized by progressive kidney failure, hematuria, sensorineural hearing loss, and ocular abnormalities. Pathogenic variants in the COL4A3-5 genes result in a defective deposition of the collagen IV α3α4α5 protomers in the basement membranes of the glomerulus in the kidney, the cochlea in the ear and the cornea, lens capsule and retina in the eye. The presence of a large variety of COL4A3-5 gene(s) pathogenetic variants irrespective of the mode of inheritance (X-linked, autosomal recessive, autosomal dominant, or digenic) with and without syndromic features is better defined as the "Alport spectrum disorder", and represents the most common cause of genetic kidney disease and the second most common cause of genetic kidney failure. The clinical course and prognosis of individuals with AS is highly variable. It is influenced by gender, mode of inheritance, affected gene(s), type of genetic mutation, and genetic modifiers. This review article will discuss the epidemiology, classification, pathogenesis, diagnosis, clinical course with genotype-phenotype correlations, and current and upcoming treatment of patients with AS. It will also review current recommendations with respect to when to evaluate for hearing loss or ophthalmologic abnormalities.
Collapse
Affiliation(s)
- Efren Chavez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL.
| | - Stefania Goncalves
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, University of Miami Ear Institute, Miami, FL
| | - Michelle N Rheault
- Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL.
| |
Collapse
|
13
|
Puapatanakul P, Miner JH. Alport syndrome and Alport kidney diseases - elucidating the disease spectrum. Curr Opin Nephrol Hypertens 2024; 33:283-290. [PMID: 38477333 PMCID: PMC10990029 DOI: 10.1097/mnh.0000000000000983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
PURPOSE OF REVIEW With the latest classification, variants in three collagen IV genes, COL4A3 , COL4A4 , and COL4A5 , represent the most prevalent genetic kidney disease in humans, exhibiting diverse, complex, and inconsistent clinical manifestations. This review breaks down the disease spectrum and genotype-phenotype correlations of kidney diseases linked to genetic variants in these genes and distinguishes "classic" Alport syndrome (AS) from the less severe nonsyndromic genetically related nephropathies that we suggest be called "Alport kidney diseases". RECENT FINDINGS Several research studies have focused on the genotype-phenotype correlation under the latest classification scheme of AS. The historic diagnoses of "benign familial hematuria" and "thin basement membrane nephropathy" linked to heterozygous variants in COL4A3 or COL4A4 are suggested to be obsolete, but instead classified as autosomal AS by recent expert consensus due to a significant risk of disease progression. SUMMARY The concept of Alport kidney disease extends beyond classic AS. Patients carrying pathogenic variants in any one of the COL4A3/A4/A5 genes can have variable phenotypes ranging from completely normal/clinically unrecognizable, hematuria without or with proteinuria, or progression to chronic kidney disease and kidney failure, depending on sex, genotype, and interplays of other genetic as well as environmental factors.
Collapse
Affiliation(s)
- Pongpratch Puapatanakul
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Zeng M, Di H, Liang J, Liu Z. Effectiveness of renin-angiotensin-aldosterone system blockers in patients with Alport syndrome: a systematic review and meta-analysis. Nephrol Dial Transplant 2023; 38:2485-2493. [PMID: 37218713 DOI: 10.1093/ndt/gfad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Although renin-angiotensin-aldosterone system (RAAS) blockers have been considered the primary treatment for patients with Alport syndrome (AS) for a decade, there is no comprehensive review with evidence-based analysis evaluating the effectiveness of RAAS blockers in AS. METHODS A systematic review and meta-analysis was performed of published studies that compared outcomes related to disease progression between patients with AS receiving RAAS blockers with those taking non-RAAS treatment. Outcomes were meta-analyzed using the random effects models. Cochrane risk-of-bias, Newcastle-Ottawa Scale and Grading of Recommendations Assessment, Development and Evaluation methodology (GRADE) assessment determined the certainty of evidence. RESULTS A total of eight studies (1182 patients) were included in the analysis. Overall, the risk of bias was low to moderate. Compared with non-RAAS treatment, RAAS blockers could reduce the rate of progression to end-stage kidney disease (ESKD) [four studies; hazard ratio (HR) 0.33, 95% confidence interval (CI) 0.24-0.45; moderate certainty evidence]. After stratified by genetic types, a similar benefit was detected: male X-linked AS (XLAS) (HR 0.32, 95% CI 0.22-0.48), autosomal recessive AS (HR 0.25, 95% CI 0.10-0.62), female XLAS and autosomal dominant AS (HR 0.40, 95% CI 0.21-0.75). In addition, RAAS blockers showed a clear gradient of benefit depending on the stage of disease at the initiation of treatment. CONCLUSION This meta-analysis suggested that RAAS blockers could be considered as a specific therapy to delay of ESKD for AS with any genetic type, especially at the early stage of the disease, and every further more-effective therapy would be advised to be applied on top of this standard of care.
Collapse
Affiliation(s)
- Mengyao Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hongling Di
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ju Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
15
|
Cosgrove D, Gratton MA, Madison J, Vosik D, Samuelson G, Meehan D, Delimont D, Phillips G, Smyth B, Pramparo T, Jarocki D, Nguyen M, Komers R, Jenkinson C. Dual inhibition of the endothelin and angiotensin receptor ameliorates renal and inner ear pathologies in Alport mice. J Pathol 2023; 260:353-364. [PMID: 37256677 PMCID: PMC10330771 DOI: 10.1002/path.6087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
Alport syndrome (AS), a type IV collagen disorder, leads to glomerular disease and, in some patients, hearing loss. AS is treated with inhibitors of the renin-angiotensin system; however, a need exists for novel therapies, especially those addressing both major pathologies. Sparsentan is a single-molecule dual endothelin type-A and angiotensin II type 1 receptor antagonist (DEARA) under clinical development for focal segmental glomerulosclerosis and IgA nephropathy. We report the ability of sparsentan to ameliorate both renal and inner ear pathologies in an autosomal-recessive Alport mouse model. Sparsentan significantly delayed onset of glomerulosclerosis, interstitial fibrosis, proteinuria, and glomerular filtration rate decline. Sparsentan attenuated glomerular basement membrane defects, blunted mesangial filopodial invasion into the glomerular capillaries, increased lifespan more than losartan, and lessened changes in profibrotic/pro-inflammatory gene pathways in both the glomerular and the renal cortical compartments. Notably, treatment with sparsentan, but not losartan, prevented accumulation of extracellular matrix in the strial capillary basement membranes in the inner ear and reduced susceptibility to hearing loss. Improvements in lifespan and in renal and strial pathology were observed even when sparsentan was initiated after development of renal pathologies. These findings suggest that sparsentan may address both renal and hearing pathologies in Alport syndrome patients. © 2023 Travere Therapeutics, Inc and The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Dominic Cosgrove
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Michael Anne Gratton
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacob Madison
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Denise Vosik
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Gina Samuelson
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Daniel Meehan
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Duane Delimont
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Grady Phillips
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brendan Smyth
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Diana Jarocki
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mai Nguyen
- Travere Therapeutics, San Diego, CA, USA
| | | | | |
Collapse
|
16
|
Savige J, Weinstock BA. What patients want to know about genetic testing for kidney disease. Front Med (Lausanne) 2023; 10:1201712. [PMID: 37342499 PMCID: PMC10277795 DOI: 10.3389/fmed.2023.1201712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023] Open
Abstract
Previously, genetic kidney disease was often recognised when family members shared clinical features. Now, many genetic kidney diseases are diagnosed when testing demonstrates a pathogenic variant in a gene associated with the disease. Detection of a genetic variant also identifies the mode of inheritance, and suggests family members at risk. The genetic diagnosis has additional advantages for patients and their doctors even when no specific treatment is available since it often indicates likely complications in other organs, the clinical course, and management strategies. Generally, informed consent is required for genetic testing because the result provides "certainty" with implications for the patient, and their family, and possibly for employment, and for life and medical insurance, as well as having social, ethical, and financial consequences. Patients want to be provided with a copy of their genetic test result in a format that is comprehensible and to have the result explained. Their at-risk family members should be sought out and offered genetic testing too. Patients who allow the sharing of their anonymised results in registries help advance everyone's understanding of these diseases and expedite a diagnosis in other families. Patient Support Groups not only help normalise the disease but also educate patients, and update them on recent advances and new treatments. Some registries encourage patients to themselves submit their genetic variants, clinical features and response to treatment. More and more often, patients may volunteer for clinical trials of novel therapies including some that depend on a genetic diagnosis or variant type.
Collapse
Affiliation(s)
- Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
17
|
Reiterová J, Tesař V. Current and Future Therapeutical Options in Alport Syndrome. Int J Mol Sci 2023; 24:5522. [PMID: 36982595 PMCID: PMC10056269 DOI: 10.3390/ijms24065522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Alport syndrome (AS) is a hereditary kidney disease caused by pathogenic variants in COL4A3 and COL4A4 genes with autosomal recessive or autosomal dominant transmission or in the COL4A5 gene with X-linked inheritance. Digenic inheritance was also described. Clinically it is associated with microscopic hematuria, followed by proteinuria and chronic renal insufficiency with end-stage renal disease in young adults. Nowadays, there is no curative treatment available. The inhibitors of RAS (renin-angiotensin system) since childhood slow the progression of the disease. Sodium-glucose cotransporter-2 inhibitors seem to be promising drugs from DAPA-CKD (dapagliflozin-chronic kidney disease) study, but only a limited number of patients with Alport syndrome was included. Endothelin type A receptor and angiotensin II type 1 receptor combined inhibitors, and lipid-lowering agents are used in ongoing studies in patients with AS and focal segmental glomerulosclerosis (FSGS). Hydroxychloroquine in AS is studied in a clinical trial in China. Molecular genetic diagnosis of AS is crucial not only for prognosis prediction but also for future therapeutic options. Different types of mutations will require various types of gene, RNA, or protein therapy to improve the function, the of final protein product.
Collapse
Affiliation(s)
- Jana Reiterová
- Department of Nephrology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Vladimír Tesař
- Department of Nephrology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic
| |
Collapse
|
18
|
Gregorio VD, Caparali B, Shojaei A, Ricardo S, Barua M. Alport Syndrome: Clinical Spectrum and Therapeutic Advances. Kidney Med 2023; 5:100631. [PMID: 37122389 PMCID: PMC10131117 DOI: 10.1016/j.xkme.2023.100631] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Alport syndrome is a hereditary disorder characterized by kidney disease, ocular abnormalities, and sensorineural hearing loss. Work in understanding the cause of Alport syndrome and the molecular composition of the glomerular basement membrane ultimately led to the identification of COL4A3, COL4A4 (both on chromosome 2q36), and COL4A5 (chromosome Xq22), encoding the α3, α4, and α5 chains of type IV collagen, as the responsible genes. Subsequent studies suggested that autosomal recessive Alport syndrome and males with X-linked Alport syndrome have more severe disease, whereas autosomal dominant Alport syndrome and females with X-linked Alport syndrome have more variability. Variant type is also influential-protein-truncating variants in autosomal recessive Alport syndrome or males with X-linked Alport syndrome often present with severe symptoms, characterized by kidney failure, extrarenal manifestations, and lack of the α3-α4-α5(IV) network. By contrast, mild-moderate forms from missense variants display α3-α4-α5(IV) in the glomerular basement membrane and are associated with protracted kidney involvement without extrarenal manifestations. Regardless of type, therapeutic intervention for kidney involvement is focused on early initiation of angiotensin-converting enzyme inhibitors. There are several therapies under investigation including sodium/glucose cotransporter 2 inhibitors, aminoglycoside analogs, endothelin type A antagonists, lipid-modifying drugs, and hydroxychloroquine, although targeting the underlying defect through gene therapy remains in preclinical stages.
Collapse
|
19
|
Incorporation of Genetic Studies in the Kidney Transplant Evaluation Clinic: The Value of a Multidisciplinary Approach. Transplantation 2022; 107:952-960. [PMID: 36253919 DOI: 10.1097/tp.0000000000004363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent studies identified underlying genetic causes in a proportion of patients with various forms of kidney disease. In particular, genetic testing reclassified some focal segmental glomerulosclerosis (FSGS) cases into collagen type 4 (COL4)-related nephropathy. This knowledge has major implications for counseling prospective transplant recipients about recurrence risk and screening biologically related donors. We describe our experience incorporating genetic testing in our kidney transplant multidisciplinary practice. METHODS Patients' DNA was analyzed using whole exome sequencing for a comprehensive kidney gene panel encompassing 344 genes associated with kidney diseases and candidate genes highly expressed in the kidney. Results were correlated with phenotype by a multidisciplinary committee of nephrologists, renal pathologists, geneticists, and genetic counselors. Between October 2018 and July 2020, 30 recipient and 5 donor candidates completed testing. RESULTS Among recipient candidates, 24 (80%) carried the diagnosis of FSGS, 2 (6.7%) tubulointerstitial nephritis, and 1 (3.3%) nephrolithiasis, and 3 (10%) had an unknown cause of kidney disease. The yield for pathogenic/likely pathogenic variants was 43.3%, with majority being COL4 variants (53.8%). Among those with FSGS diagnosis, the yield was 10 of 24 (41.6%), with 29% reclassified into a COL4-related nephropathy. Family history of kidney disease was the only clinical characteristic difference between recipients with positive and negative results (76.9 versus 29.4%; P = 0.025). One of 5 donors tested positive for a pathogenic/likely pathogenic variant and was excluded from donation. CONCLUSIONS We conclude that thoughtful use of genetic testing can be valuable for kidney donor selection and transplant recipient management.
Collapse
|
20
|
An Update on Women and Girls with Alport Syndrome. CURRENT PEDIATRICS REPORTS 2022. [DOI: 10.1007/s40124-022-00279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Caliskan Y, Lentine KL. Approach to genetic testing to optimize the safety of living donor transplantation in Alport syndrome spectrum. Pediatr Nephrol 2022; 37:1981-1994. [PMID: 35088158 DOI: 10.1007/s00467-022-05430-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
Alport syndrome spectrum can be considered as a group of genetic diseases affecting the major basement membrane collagen type IV network in various organs including the ear, eye, and kidney. The living donor candidate evaluation is an ever-changing landscape. Recently, next-generation sequence (NGS) panels have become readily available and provide opportunities to genetically screen recipient and donor candidates for collagen network gene variants. In this review, our aim is to provide a comprehensive update on the role of genetic testing for the evaluation of potential living kidney donors to kidney candidates with Alport syndrome spectrum. We examine the utility of genetic testing in the evaluation of potential donors for recipients with Alport syndrome spectrum, and discuss risks and unresolved challenges. Suggested algorithms in the context of related and unrelated donation are offered. In contemporary practice, an approach to the evaluation of living donor candidates for transplant candidates with Alport syndrome spectrum can incorporate genetic testing in algorithms tailored for donor-recipient relationship status. Ongoing research is needed to inform optimal practice.
Collapse
Affiliation(s)
- Yasar Caliskan
- Saint Louis University Center for Abdominal Transplantation, 1201 S. Grand Blvd, St. Louis, MO, 63110, USA.
| | - Krista L Lentine
- Saint Louis University Center for Abdominal Transplantation, 1201 S. Grand Blvd, St. Louis, MO, 63110, USA
| |
Collapse
|
22
|
Gibson JT, de Gooyer M, Huang M, Savige J. A systematic review of pathogenic COL4A5 variants and proteinuria in women and girls with X-linked Alport syndrome. Kidney Int Rep 2022; 7:2454-2461. [DOI: 10.1016/j.ekir.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
|
23
|
Chavez E, Rodriguez J, Drexler Y, Fornoni A. Novel Therapies for Alport Syndrome. Front Med (Lausanne) 2022; 9:848389. [PMID: 35547199 PMCID: PMC9081811 DOI: 10.3389/fmed.2022.848389] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Alport syndrome (AS) is a hereditary kidney disease associated with proteinuria, hematuria and progressive kidney failure. It is characterized by a defective glomerular basement membrane caused by mutations in type IV collagen genes COL4A3/A4/A5 which result in defective type IV collagen α3, α4, or α5 chains, respectively. Alport syndrome has three different patterns of inheritance: X-linked, autosomal and digenic. In a study of CKD of unknown etiology type IV collagen gene mutations accounted for the majority of the cases of hereditary glomerulopathies which suggests that AS is often underrecognized. The natural history and prognosis in patients with AS is variable and is determined by genetics and environmental factors. At present, no preventive or curative therapies exist for AS. Current treatment includes the use of renin-angiotensin-aldosterone system inhibitors which slow progression of kidney disease and prolong life expectancy. Ramipril was found in retrospective studies to delay the onset of ESKD and was recently demonstrated to be safe and effective in children and adolescents, supporting that early initiation of Renin Angiotensin Aldosterone System (RAAS) blockade is very important. Mineralocorticoid receptor blockers might be favorable for patients who develop "aldosterone breakthrough." While the DAPA-CKD trial suggests a beneficial effect of SGLT2 inhibitors in CKD of non-metabolic origin, only a handful of patients had Alport in this cohort, and therefore conclusions can't be extrapolated for the treatment of AS with SGLT2 inhibitors. Advances in our understanding on the pathogenesis of Alport syndrome has culminated in the development of innovative therapeutic approaches that are currently under investigation. We will provide a brief overview of novel therapeutic targets to prevent progression of kidney disease in AS. Our review will include bardoxolone methyl, an oral NRf2 activator; lademirsen, an anti-miRNA-21 molecule; sparsentan, dual endothelin type A receptor (ETAR) and angiotensin 1 receptor inhibitor; atrasentan, oral selective ETAR inhibitor; lipid-modifying agents, including cholesterol efflux transporter ATP-binding cassette A1 (ABCA1) inducers, discoidin domain receptor 1 (DDR1) inhibitors and osteopontin blocking agents; the antimalarial drug hydroxychloroquine; the antiglycemic drug metformin and the active vitamin D analog paricalcitol. Future genomic therapeutic strategies such as chaperone therapy, genome editing and stem cell therapy will also be discussed.
Collapse
Affiliation(s)
- Efren Chavez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juanly Rodriguez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
24
|
Savige J, Huang M, Croos Dabrera MS, Shukla K, Gibson J. Genotype-Phenotype Correlations for Pathogenic COL4A3–COL4A5 Variants in X-Linked, Autosomal Recessive, and Autosomal Dominant Alport Syndrome. Front Med (Lausanne) 2022; 9:865034. [PMID: 35602506 PMCID: PMC9120524 DOI: 10.3389/fmed.2022.865034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/24/2022] [Indexed: 12/28/2022] Open
Abstract
Alport syndrome is inherited as an X-linked (XL), autosomal recessive (AR), or autosomal dominant (AD) disease, where pathogenic COL4A3 – COL4A5 variants affect the basement membrane collagen IV α3α4α5 network. About 50% of pathogenic variants in each gene (major rearrangements and large deletions in 15%, truncating variants in 20%, splicing changes in 15%) are associated with “severe” disease with earlier onset kidney failure, and hearing loss and ocular abnormalities in males with XL inheritance and in males and females with AR disease. Severe variants are also associated with early proteinuria which is itself a risk factor for kidney failure. The other half of pathogenic variants are missense changes which are mainly Gly substitutions. These are generally associated with later onset kidney failure, hearing loss, and less often with major ocular abnormalities. Further determinants of severity for missense variants for XL disease in males, and in AD disease, include Gly versus non-Gly substitutions; increased distance from a non-collagenous interruption or terminus; and Gly substitutions with a more (Arg, Glu, Asp, Val, and Trp) or less disruptive (Ala, Ser, and Cys) residue. Understanding genotype-phenotype correlations in Alport syndrome is important because they help predict the likely age at kidney failure, and the need for early and aggressive management with renin-angiotensin system blockade and other therapies. Genotype-phenotype correlations also help standardize patients with Alport syndrome undergoing trials of clinical treatment. It is unclear whether severe variants predispose more often to kidney cysts or coincidental IgA glomerulonephritis which are recognized increasingly in COL4A3-, COL4A4 - and COL4A5-associated disease.
Collapse
|
25
|
Kashtan CE. What the Adult Nephrologist Should Know About Alport Syndrome. Adv Chronic Kidney Dis 2022; 29:225-230. [PMID: 36084969 DOI: 10.1053/j.ackd.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/11/2022]
Abstract
Recent trends in the diagnosis, treatment, and classification of collagen IV-associated kidney disease are likely to result in increasing numbers of people in adult nephrology practices who have a confirmed diagnosis of Alport syndrome. These trends include the increasing use of genetic testing in the diagnostic evaluation of people with hematuria, focal segmental glomerulosclerosis, and chronic kidney disease of unknown etiology; early treatment with inhibitors of the renin-angiotensin-aldosterone system to delay kidney failure; and application of an expanded definition of Alport syndrome based on genotype rather than phenotype. This commentary discusses these trends and their implications for the adult nephrologist.
Collapse
Affiliation(s)
- Clifford E Kashtan
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN.
| |
Collapse
|
26
|
Wang S, Shao Y, Wang Y, Lu J, Shao L. Identification of Four Novel COL4A5 Variants and Detection of Splicing Abnormalities in Three Chinese X-Linked Alport Syndrome Families. Front Genet 2022; 13:847777. [PMID: 35368650 PMCID: PMC8968133 DOI: 10.3389/fgene.2022.847777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic renal disease associated with X-linked Alport syndrome (XLAS) is relatively rare. However, due to the lack of specificity in the pathologic and clinical manifestations of the disease, it is easy to be misdiagnosed. In this study, we included three Chinese families with XLAS and used targeted NGS to find gene variants. In family X1, the 36-year-old male proband had hematuria, massive proteinuria, sensorineural deafness and ESRD at 33. In silico prediction showed the novel c.1424-4C > G variant reduced the score of the normal 3’ splice site from 0.47 to 0.00 (according to BDGP). Transcriptional analysis from his peripheral blood cells indicated that it caused the insertion of an amino acid [p.(Lys474_Gly475insVal)]. In family X2, the proband was a 32-year-old male, who had hematuria, proteinuria, hypertension, hearing loss and progressed into ESRD at 30 years. He carried a novel missense variant c.2777G > T p.(Gly926Val). In family X3, the proband, a 16-year-old male, had hematuria, massive proteinuria, sensorineural deafness and ESRD; the results of renal pathological findings were consistent with AS. He carried a novel variant c.4529-2A > T, so did his mother with ESRD and probable XLAS. Bioinformatic analysis with BDGP showed that it abolished the acceptor site from 0.83 to 0.00. RT-PCR analysis from his kidney tissue indicated that it caused exon 50 skipping and exon 50 skipping along with inserting a cryptic exon derived from intron 49 p.[Gly1510Aspfs*11, Gly1510Alafs*35]. Another novel missense variant c.1552G > A p.(Gly518Arg) was identified in his mother and his aunt. No skewed X-chromosome inactivation was involved in these two female patients. In conclusion, four novel variants in COL4A5 were identified and transcriptional analysis is essential to investigate the pathogenicity of intronic variants. Thus we found a rare event in a female patient with XLAS caused by two COL4A5 variants in trans.
Collapse
Affiliation(s)
- Sai Wang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Yingfei Shao
- Wenzhou Medical University Renji College, Wenzhou, China
| | - Yixiu Wang
- Darpartment of Hepatic Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingru Lu
- School of Medicine, Southeast University, Nanjing, China
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
- *Correspondence: Leping Shao,
| |
Collapse
|
27
|
Khan K, Ahram DF, Liu YP, Westland R, Sampogna RV, Katsanis N, Davis EE, Sanna-Cherchi S. Multidisciplinary approaches for elucidating genetics and molecular pathogenesis of urinary tract malformations. Kidney Int 2022; 101:473-484. [PMID: 34780871 PMCID: PMC8934530 DOI: 10.1016/j.kint.2021.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Advances in clinical diagnostics and molecular tools have improved our understanding of the genetically heterogeneous causes underlying congenital anomalies of kidney and urinary tract (CAKUT). However, despite a sharp incline of CAKUT reports in the literature within the past 2 decades, there remains a plateau in the genetic diagnostic yield that is disproportionate to the accelerated ability to generate robust genome-wide data. Explanations for this observation include (i) diverse inheritance patterns with incomplete penetrance and variable expressivity, (ii) rarity of single-gene drivers such that large sample sizes are required to meet the burden of proof, and (iii) multigene interactions that might produce either intra- (e.g., copy number variants) or inter- (e.g., effects in trans) locus effects. These challenges present an opportunity for the community to implement innovative genetic and molecular avenues to explain the missing heritability and to better elucidate the mechanisms that underscore CAKUT. Here, we review recent multidisciplinary approaches at the intersection of genetics, genomics, in vivo modeling, and in vitro systems toward refining a blueprint for overcoming the diagnostic hurdles that are pervasive in urinary tract malformation cohorts. These approaches will not only benefit clinical management by reducing age at molecular diagnosis and prompting early evaluation for comorbid features but will also serve as a springboard for therapeutic development.
Collapse
Affiliation(s)
- Kamal Khan
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address)
| | - Dina F. Ahram
- Division of Nephrology, Columbia University, New York, USA
| | - Yangfan P. Liu
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
| | - Rik Westland
- Division of Nephrology, Columbia University, New York, USA.,Department of Pediatric Nephrology, Amsterdam UMC- Emma Children’s Hospital, Amsterdam, NL
| | | | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA (current address); Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address).,Department of Pediatrics and Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,To whom correspondence should be addressed: ADDRESS CORRESPONDENCE TO: Simone Sanna-Cherchi, MD, Division of Nephrology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Phone: 212-851-4925; Fax: 212-851-5461; . Erica E. Davis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7662; Fax: 312-503-7343; , Nicholas Katsanis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7339; Fax: 312-503-7343;
| | - Simone Sanna-Cherchi
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
28
|
Abstract
A number of genes that cause inherited kidney disorders reside on the X chromosome. Given that males have only a single active X chromosome, these disorders clinically manifest primarily in men and boys. However, phenotypes in female carriers of X-linked kidney conditions are becoming more and more recognized. This article reviews the biology of X inactivation as well as the kidney phenotype in women and girls with a number of X-linked kidney disorders including Alport syndrome, Fabry disease, nephrogenic diabetes insipidus, X-linked hypophosphatemic rickets, Dent disease, and Lowe syndrome.
Collapse
Affiliation(s)
- Catherine Quinlan
- Department of Nephrology, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle N Rheault
- Division of Pediatric Nephrology, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN.
| |
Collapse
|
29
|
Barua M, Paterson AD. Population-based studies reveal an additive role of type IV collagen variants in hematuria and albuminuria. Pediatr Nephrol 2022; 37:253-262. [PMID: 33635378 DOI: 10.1007/s00467-021-04934-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/31/2020] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Specific variants in genes that encode the α3α4α5 chains of type IV collagen cause Alport syndrome (AS), which encompass a clinical spectrum from isolated hematuria to multisystem disease affecting sight, hearing and kidney function. The commonest form is X-linked Alport syndrome (XLAS; COL4A5) with autosomal AS (COL4A3 and COL4A4) comprising a minority of cases. While historic data estimates the frequency of AS at 1:5000-10,000, recent population-based genetic studies suggest the prevalence is considerably higher. Genome-wide association studies (GWAS) have been performed in the Icelandic (deCODE) and UK (UK Biobank) populations, demonstrating an association of type IV collagen gene variants with AS relevant kidney traits. In the Icelandic population, 1 in 600 carries a 2.5-kb COL4A3 coding deletion or a COL4A3 missense variant (rs200287952[A], Gly695Arg), both of which are strongly associated with hematuria and albuminuria (P values = 1.9 × 10-5 to 2.5 × 10-20). In the UK Biobank, COL4A4 rs35138315 (Ser969X; carrier frequency 0.13%) is strongly associated with both hematuria and albuminuria (P = 1.5 × 10-73). Thus, the frequency for autosomal AS is 5-16 times higher than the historic prevalence of all forms of the disorder. Furthermore, COL4A4 rs3518315 (Ser969X) is also a reported founder mutation in families with autosomal dominant focal and segmental glomerulosclerosis and autosomal recessive forms of AS. This supports an additive mode of inheritance for specific variants, wherein a number of copies of a mutation influence disease severity in a cumulative fashion. These studies did not include the X chromosome, excluding analysis of COL4A5, which represents an area for future study.
Collapse
Affiliation(s)
- Moumita Barua
- Division of Nephrology, Toronto General Hospital, 200 Elizabeth Street, 8NU-855, Toronto, ON, M5G 2C4, Canada. .,Department of Medicine, University of Toronto, Toronto, Canada. .,Toronto General Hospital Research Institute, University Health Network, Toronto, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, Canada.
| | - Andrew D Paterson
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Divisions of Epidemiology and Biostatistics, Dalla Lana School of Public Health, Toronto, Canada.,Genetics and Genome Biology, Research Institute at Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
30
|
Savige J, Lipska-Zietkiewicz BS, Watson E, Hertz JM, Deltas C, Mari F, Hilbert P, Plevova P, Byers P, Cerkauskaite A, Gregory M, Cerkauskiene R, Ljubanovic DG, Becherucci F, Errichiello C, Massella L, Aiello V, Lennon R, Hopkinson L, Koziell A, Lungu A, Rothe HM, Hoefele J, Zacchia M, Martic TN, Gupta A, van Eerde A, Gear S, Landini S, Palazzo V, al-Rabadi L, Claes K, Corveleyn A, Van Hoof E, van Geel M, Williams M, Ashton E, Belge H, Ars E, Bierzynska A, Gangemi C, Renieri A, Storey H, Flinter F. Guidelines for Genetic Testing and Management of Alport Syndrome. Clin J Am Soc Nephrol 2022; 17:143-154. [PMID: 34930753 PMCID: PMC8763160 DOI: 10.2215/cjn.04230321] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic testing for pathogenic COL4A3-5 variants is usually undertaken to investigate the cause of persistent hematuria, especially with a family history of hematuria or kidney function impairment. Alport syndrome experts now advocate genetic testing for persistent hematuria, even when a heterozygous pathogenic COL4A3 or COL4A4 is suspected, and cascade testing of their first-degree family members because of their risk of impaired kidney function. The experts recommend too that COL4A3 or COL4A4 heterozygotes do not act as kidney donors. Testing for variants in the COL4A3-COL4A5 genes should also be performed for persistent proteinuria and steroid-resistant nephrotic syndrome due to suspected inherited FSGS and for familial IgA glomerulonephritis and kidney failure of unknown cause.
Collapse
Affiliation(s)
- Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, Victoria, Australia
| | | | - Elizabeth Watson
- South West Genetic Laboratory Hub, North Bristol Trust, Bristol, United Kingdom
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Constantinos Deltas
- Center of Excellence in Biobanking and Biomedical Research, University of Cyprus Medical School, Nicosia, Cyprus
| | - Francesca Mari
- Department of Medical Biotechnology, Medical Genetics, University of Siena, Siena, Italy
| | - Pascale Hilbert
- Departement de Biologie Moleculaire, Institute de Pathologie et de Genetique, Gosselies, Belgium
| | - Pavlina Plevova
- Department of Medical Genetics, University Hospital of Ostrava, Ostrava, Czech Republic
- Department of Biomedical Sciences, University Hospital of Ostrava, Ostrava, Czech Republic
| | - Peter Byers
- Department of Pathology, University of Washington, Seattle, Washington
- Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington
| | - Agne Cerkauskaite
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Martin Gregory
- Division of Nephrology, Department of Medicine, University of Utah Health, Salt Lake City, Utah
| | - Rimante Cerkauskiene
- Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Danica Galesic Ljubanovic
- Department of Pathology, University of Zagreb, School of Medicine, Dubrava University Hospital, Zagreb, Croatia
| | | | | | - Laura Massella
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital, Rome, Italy
| | - Valeria Aiello
- Department of Experimental Diagnostic and Specialty Medicine, Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Louise Hopkinson
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ania Koziell
- School of Immunology and Microbial Sciences, Faculty of Life Sciences, King's College London, London, United Kingdom
| | - Adrian Lungu
- Pediatric Nephrology Department, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Julia Hoefele
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | | | | | - Asheeta Gupta
- Birmingham Children’s Hospital, Birmingham, United Kingdom
| | | | | | - Samuela Landini
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Laith al-Rabadi
- Health Sciences Centre, University of Utah, Salt Lake City, Utah
| | - Kathleen Claes
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- Center for Human Genetics, University Hospitals and Katholieke Universiteit Leuven, Leuven, Belgium
| | - Evelien Van Hoof
- Center for Human Genetics, University Hospitals and Katholieke Universiteit Leuven, Leuven, Belgium
| | - Micheel van Geel
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maggie Williams
- Bristol Genetics Laboratory Pathology Sciences, Southmead Hospital, Southmead, United Kingdom
| | - Emma Ashton
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital, London, United Kingdom
| | - Hendica Belge
- Institut de Pathologie et de Génétique, Center for Human Genetics, Gosselies, Belgium
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundacio Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autonoma de Barcelona, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Agnieszka Bierzynska
- Bristol Renal Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Concetta Gangemi
- Division of Nephrology and Dialysis, University Hospital of Verona, Verona, Italy
| | - Alessandra Renieri
- Department of Medical Biotechnology, Medical Genetics, University of Siena, Siena, Italy
| | - Helen Storey
- Molecular Genetics, Viapath Laboratories, Guy’s Hospital, London, United Kingdom
| | - Frances Flinter
- Department of Clinical Genetics, Guy’s and St. Thomas’ National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
31
|
Jandl K, Mutgan AC, Eller K, Schaefer L, Kwapiszewska G. The basement membrane in the cross-roads between the lung and kidney. Matrix Biol 2021; 105:31-52. [PMID: 34839001 DOI: 10.1016/j.matbio.2021.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
The basement membrane (BM) is a specialized layer of extracellular matrix components that plays a central role in maintaining lung and kidney functions. Although the composition of the BM is usually tissue specific, the lung and the kidney preferentially use similar BM components. Unsurprisingly, diseases with BM defects often have severe pulmonary or renal manifestations, sometimes both. Excessive remodeling of the BM, which is a hallmark of both inflammatory and fibrosing diseases in the lung and the kidney, can lead to the release of BM-derived matrikines, proteolytic fragments with distinct biological functions. These matrikines can then influence disease activity at the site of liberation. However, they are also released to the circulation, where they can directly affect the vascular endothelium or target other organs, leading to extrapulmonary or extrarenal manifestations. In this review, we will summarize the current knowledge of the composition and function of the BM and its matrikines in health and disease, both in the lung and in the kidney. By comparison, we will highlight, why the BM and its matrikines may be central in establishing a renal-pulmonary interaction axis.
Collapse
Affiliation(s)
- Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Pharmacology, Medical University of Graz, Graz, Austria
| | - Ayse Ceren Mutgan
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Physiology, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Physiology, Medical University of Graz, Graz, Austria; Institute for Lung Health (ILH), Giessen, Germany..
| |
Collapse
|
32
|
Zhou X, Wang J, Mao J, Ye Q. Clinical Manifestations of Alport Syndrome-Diffuse Leiomyomatosis Patients With Contiguous Gene Deletions in COL4A6 and COL4A5. Front Med (Lausanne) 2021; 8:766224. [PMID: 34778325 PMCID: PMC8578185 DOI: 10.3389/fmed.2021.766224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/29/2021] [Indexed: 11/25/2022] Open
Abstract
Alport syndrome-diffuse leiomyomatosis is a rare type of X-linked Alport syndrome resulting from contiguous deletions of 5′ exons of COL4A5 and COL4A6. Studies have suggested that the occurrence of diffuse leiomyomatosis is associated with the characteristic localisation of the COL4A6 gene deletion break point. An electronic database was searched for all studies accessing AS-DL to analyze the clinical characteristics, gene deletion break points of patients with AS-DL, and the pathogenesis of AS-DL. It was found that the proportion of de novo mutations of AS-DL was significantly higher in female probands than male probands (78 vs. 44%). Female patients with AS-DL had a mild clinical presentation. The incidence of proteinuria and ocular abnormalities was much lower in female probands than in male probands, and there was generally no sensorineural hearing loss or chronic kidney disease (CKD), which progressed to Stage 3 in female probands. The contiguous deletion of the 5' exons of COL4A5 and COL4A6, with the break point within the intron 3 of COL4A6, was the critical genetic defect causing AS-DL. However, the pathogenesis of characteristic deletion of COL4A6 that contributes to diffuse leiomyomatosis is still unknown. In addition, characteristic contiguous deletion of COL4A5 and COL4A6 genes in AS-DL may be related to transposed elements (TEs).
Collapse
Affiliation(s)
- Xi Zhou
- The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingjing Wang
- The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qing Ye
- The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
33
|
Chen X, Ye N, Zhang L, Zheng W, Cheng J, Gong M. Functional assessment of a novel COL4A5 splicing site variant in a Chinese X-linked Alport syndrome family. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1420. [PMID: 34733972 PMCID: PMC8506736 DOI: 10.21037/atm-21-3523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023]
Abstract
Background Chronic kidney disease caused by X-linked Alport syndrome (XLAS) is relatively rare. However, due to the nonspecific pathologic and clinical manifestations of this disease, it is easily misdiagnosed. Genetic testing is crucial in identifying suspected cases. In addition, the results of genetic testing are an important indicator of patient prognosis. This study demonstrated a novel pathogenic COL4A5 splicing site variant in a Chinese family with XLAS. Methods Targeted next generation sequencing (NGS) was performed to identify the gene variant in the family members, and the gene mutation site was confirmed by Sanger sequencing. We then further analyzed the consequences of this gene mutation on the translated protein of this variant using in silico and in vitro approaches. Results A novel splice region variant, c.1033-2(IVS 18) A>G, in COL4A5 intron 18 was identified in the affected family members. Sanger sequencing confirmed that this variant is segregated with disease. In silico analysis, this variant led to frame-shift and premature termination on the translation of the nucleic acid, and this result was verified by RNA splicing analysis in a cell model. Unexpectedly, we still observed positive immunohistology staining of collagen IV α5 in the glomerular basement membrane (GBM) of the index patient, which implied that another potential transcription or translation mechanism skipping the mutated site might exist. Conclusions Our present finding expands the mutational spectrum for the COL4A5 gene associated with XLAS and highlights the genotype-phenotype correlations in this disease.
Collapse
Affiliation(s)
- Xiaolei Chen
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Ye
- Laboratory of Proteomics and Metabolomics for Diseases, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Laboratory of Proteomics and Metabolomics for Diseases, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Zheng
- Laboratory of Proteomics and Metabolomics for Diseases, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Laboratory of Proteomics and Metabolomics for Diseases, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- Laboratory of Proteomics and Metabolomics for Diseases, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Martínez-Pulleiro R, García-Murias M, Fidalgo-Díaz M, García-González MÁ. Molecular Basis, Diagnostic Challenges and Therapeutic Approaches of Alport Syndrome: A Primer for Clinicians. Int J Mol Sci 2021; 22:ijms222011063. [PMID: 34681722 PMCID: PMC8541626 DOI: 10.3390/ijms222011063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alport syndrome is a genetic and hereditary disease, caused by mutations in the type IV collagen genes COL4A3, COL4A4 and COL4A5, that affects the glomerular basement membrane of the kidney. It is a rare disease with an underestimated prevalence. Genetic analysis of population cohorts has revealed that it is the second most common inherited kidney disease after polycystic kidney disease. Renal involvement is the main manifestation, although it may have associated extrarenal manifestations such as hearing loss or ocular problems. The degree of expression of the disease changes according to the gene affected and other factors, known or yet to be known. The pathophysiology is not yet fully understood, although some receptors, pathways or molecules are known to be linked to the disease. There is also no specific treatment for Alport syndrome; the most commonly used are renin–angiotensin–aldosterone system inhibitors. In recent years, diagnosis has come a long way, thanks to advances in DNA sequencing technologies such as next-generation sequencing (NGS). Further research at the genetic and molecular levels in the future will complete the partial vision of the pathophysiological mechanism that we have, and will allow us to better understand what is happening and how to solve it.
Collapse
Affiliation(s)
- Raquel Martínez-Pulleiro
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (R.M.-P.); (M.G.-M.)
- Grupo de Medicina Xenómica (GMX), 15706 Santiago de Compostela, Spain
| | - María García-Murias
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (R.M.-P.); (M.G.-M.)
- Grupo de Medicina Xenómica (GMX), 15706 Santiago de Compostela, Spain
| | - Manuel Fidalgo-Díaz
- Departamento de Nefrología, Complexo Hospitalario Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain;
| | - Miguel Ángel García-González
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (R.M.-P.); (M.G.-M.)
- Grupo de Medicina Xenómica (GMX), 15706 Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-555-197
| |
Collapse
|
35
|
Savige J, Harraka P. Pathogenic Variants in the Genes Affected in Alport Syndrome (COL4A3-COL4A5) and Their Association With Other Kidney Conditions: A Review. Am J Kidney Dis 2021; 78:857-864. [PMID: 34245817 DOI: 10.1053/j.ajkd.2021.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/23/2021] [Indexed: 01/15/2023]
Abstract
Massively Parallel Sequencing identifies pathogenic variants in the genes affected in Alport syndrome (COL4A3 - COL4A5) in up to 30 % of individuals with focal and segmental glomerulosclerosis (FSGS), 10 % of those with kidney failure of unknown cause and 20 % with familial IgA glomerulonephritis. FSGS associated with COL4A3 - COL4A5 variants is usually present by kidney failure onset and may develop because the abnormal glomerular membranes result in podocyte loss and secondary hyperfiltration. The association of COL4A3 - COL4A5 variants with kidney failure or IgA glomerulonephritis may be coincidental and not pathogenic. However, since some of these variants occur more often than they should by chance, some may be pathogenic. COL4A3 - COL4A5 variants are sometimes also found in cystic kidney diseases after autosomal dominant polycystic kidney disease (ADPKD) has been excluded. COL4A3 - COL4A5 variants should be suspected in individuals with FSGS, kidney failure of unknown cause, or familial IgA glomerulonephritis, especially where there is persistent haematuria, and a family history of haematuria or kidney failure.
Collapse
Affiliation(s)
- Judy Savige
- The University of Melbourne Department of Medicine, Melbourne Health and Northern Health, Royal Melbourne Hospital, Parkville VIC 3050 AUSTRALIA.
| | - Philip Harraka
- The University of Melbourne Department of Medicine, Melbourne Health and Northern Health, Royal Melbourne Hospital, Parkville VIC 3050 AUSTRALIA
| |
Collapse
|
36
|
Kashtan C. Multidisciplinary Management of Alport Syndrome: Current Perspectives. J Multidiscip Healthc 2021; 14:1169-1180. [PMID: 34045864 PMCID: PMC8149282 DOI: 10.2147/jmdh.s284784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Alport syndrome is a multisystem disorder that universally affects the kidney and frequently involves the inner ear and the eye. Over the course of a lifetime, addressing the health care needs of a person with Alport syndrome and their family entails the services of primary providers, nephrologists, genetic counselors, audiologists, ophthalmologists, transplant physicians, kidney dieticians, and social workers as well as other healthcare professionals. This article attempts to provide context and guidance regarding the multidisciplinary care of Alport syndrome based on the natural history of the condition.
Collapse
Affiliation(s)
- Clifford Kashtan
- Department of Pediatrics, Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis, MN, 55454, USA
| |
Collapse
|
37
|
Furlano M, Martínez V, Pybus M, Arce Y, Crespí J, Venegas MDP, Bullich G, Domingo A, Ayasreh N, Benito S, Lorente L, Ruíz P, Gonzalez VL, Arlandis R, Cabello E, Torres F, Guirado L, Ars E, Torra R. Clinical and Genetic Features of Autosomal Dominant Alport Syndrome: A Cohort Study. Am J Kidney Dis 2021; 78:560-570.e1. [PMID: 33838161 DOI: 10.1053/j.ajkd.2021.02.326] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 02/14/2021] [Indexed: 12/15/2022]
Abstract
RATIONALE & OBJECTIVE Alport syndrome is a common genetic kidney disease accounting for approximately 2% of patients receiving kidney replacement therapy (KRT). It is caused by pathogenic variants in the gene COL4A3, COL4A4, or COL4A5. The aim of this study was to evaluate the clinical and genetic spectrum of patients with autosomal dominant Alport syndrome (ADAS). STUDY DESIGN Retrospective cohort study. SETTING & PARTICIPANTS 82 families (252 patients) with ADAS were studied. Clinical, genetic, laboratory, and pathology data were collected. OBSERVATIONS A pathogenic DNA variant in COL4A3 was identified in 107 patients (35 families), whereas 133 harbored a pathogenic variant in COL4A4 (43 families). Digenic/complex inheritance was observed in 12 patients. Overall, the median kidney survival was 67 (95% CI, 58-73) years, without significant differences across sex (P=0.8), causative genes (P=0.6), or type of variant (P=0.9). Microhematuria was the most common kidney manifestation (92.1%), and extrarenal features were rare. Findings on kidney biopsies ranged from normal to focal segmental glomerulosclerosis. The slope of estimated glomerular filtration rate change was-1.46 (-1.66 to-1.26) mL/min/1.73m2 per year for the overall group, with no significant differences between ADAS genes (P=0.2). LIMITATIONS The relatively small size of this series from a single country, potentially limiting generalizability. CONCLUSIONS Patients with ADAS have a wide spectrum of clinical presentations, ranging from asymptomatic to kidney failure, a pattern not clearly related to the causative gene or type of variant. The diversity of ADAS phenotypes contributes to its underdiagnosis in clinical practice.
Collapse
Affiliation(s)
- Mónica Furlano
- Inherited Kidney Diseases, Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Medicine Department-Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Victor Martínez
- Nephrology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Marc Pybus
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Yolanda Arce
- Department of Pathology, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Jaume Crespí
- Departments of Ophthalmology, Hospital de Sant Pau i la Santa Creu, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - María Del Prado Venegas
- Otolaryngology-Head and Neck Surgery, Hospital de Sant Pau i la Santa Creu, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Gemma Bullich
- Centre Nacional d'Anàlisi Genómica, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrea Domingo
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Nadia Ayasreh
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Medicine Department-Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Silvia Benito
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Medicine Department-Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Laura Lorente
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Patricia Ruíz
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Vanesa López Gonzalez
- Genetics Laboratory, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Rosa Arlandis
- Nephrology Department, Hospital General de la Palma, Islas Canarias, Spain
| | - Elisa Cabello
- Nephrology Department, Hospital General Universitario de Castellón, Castellón de la Plana, Spain
| | - Ferran Torres
- Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Medical Statistics Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Lluis Guirado
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Medicine Department-Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain.
| | - Roser Torra
- Inherited Kidney Diseases, Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Medicine Department-Universitat Autónoma de Barcelona, Red de Investigación Renal, Instituto de Investigación Carlos III, Barcelona, Spain.
| |
Collapse
|
38
|
Long-term outcome among females with Alport syndrome from a single pediatric center. Pediatr Nephrol 2021; 36:945-951. [PMID: 33048202 PMCID: PMC7914153 DOI: 10.1007/s00467-020-04748-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Alport syndrome (AS) is a multisystem condition which can result in progressive kidney disease, hearing loss, and ocular changes. X-linked inheritance is observed in 85% of affected individuals. As a result, most prior studies have focused on males. Girls with AS can also be symptomatic although historically thought to have few clinical manifestations in childhood. The objective of the study was to describe the clinical presentation and course of females with AS. METHODS A single-center retrospective study of all young females with AS between January 1, 1987, and May 20, 2019. Subjects were identified using ICD-9/10 diagnosis codes for AS, familial hematuria, or nephritis. Clinical data were extracted by retrospective chart review. RESULTS Thirty-six female patients were included in the analysis. Mean age at presentation was 5.58 ± 3.0 years, and mean follow-up was 5.9 ± 3.9 years. Twenty-nine patients (80%) had a family history of AS. At end of the follow-up period, gross hematuria was observed in 15 patients (42%), 20 (56%) developed proteinuria, and 2 (6.7%) had an estimated glomerular filtration rate (eGFR) < 90 ml/min/1.73m2 with one patient developing stage 5 chronic kidney disease. Four of the twenty-seven (14.8%) who underwent audiologic testing had an abnormal exam. CONCLUSIONS Known family histories of AS or gross hematuria were the most common reasons for the initial presentation in our cohort. Development of proteinuria, eGFR < 90 ml/min/1.73m2, and abnormal audiology exam are not exceptional findings, suggesting that close monitoring of young females into adulthood is warranted.
Collapse
|
39
|
Kashtan CE, Gross O. Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults-an update for 2020. Pediatr Nephrol 2021; 36:711-719. [PMID: 33159213 DOI: 10.1007/s00467-020-04819-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
In 2013, we published a set of clinical practice recommendations for the treatment of Alport syndrome in this journal. We recommended delaying the initiation of angiotensin-converting enzyme inhibition until the onset of overt proteinuria or, in some cases, microalbuminuria. Developments that have occurred over the past 7 years have prompted us to revise these recommendations. We now recommend the initiation of treatment at the time of diagnosis in males with X-linked Alport syndrome and in males and females with autosomal recessive Alport syndrome. We further recommend starting treatment at the onset of microalbuminuria in females with X-linked Alport syndrome and in males and females with autosomal dominant Alport syndrome. This article presents the rationale for these revisions as well as recommendations for diagnostic tactics intended to ensure the early diagnosis of Alport syndrome.
Collapse
Affiliation(s)
- Clifford E Kashtan
- Department of Pediatrics, Division of Pediatric Nephrology, University of Minnesota Medical School, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA.
| | - Oliver Gross
- Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
40
|
Genotype-phenotype correlations and nephroprotective effects of RAAS inhibition in patients with autosomal recessive Alport syndrome. Pediatr Nephrol 2021; 36:2719-2730. [PMID: 33772369 PMCID: PMC8370956 DOI: 10.1007/s00467-021-05040-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autosomal recessive Alport syndrome (ARAS) is caused by pathogenic variants in both alleles of either COL4A3 or COL4A4 genes. Reports on ARAS are rare due to small patient numbers and there are no reports on renin-angiotensin-aldosterone system (RAAS) inhibition therapy in ARAS. METHODS Retrospective study in 101 patients with ARAS from Chinese Registry Database of Hereditary Kidney Diseases and European Alport Registry. Genotype-phenotype correlations and nephroprotective effects of RAAS inhibition in ARAS were evaluated. RESULTS Median age was 15 years (range 1.5-46 years). Twelve patients progressed to stage 5 chronic kidney disease (CKD5) at median age 20.5 years. Patients without missense variants had both higher prevalence and earlier onset age of hearing loss, nephrotic-range proteinuria, more rapid decline of eGFR, and earlier onset age of CKD5 compared to patients with 1 or 2 missense variants. Most patients (79/101, 78%) currently are treated with RAAS inhibitors; median age at therapy initiation was 10 years and mean duration 6.5 ± 6.0 years. Median age at CKD5 for untreated patients was 24 years. RAAS inhibition therapy delayed CKD5 onset in those with impaired kidney function (T-III) to median age 35 years, but is undefined in treated patients with proteinuria (T-II) due to low number of events. No treated patients with microalbuminuria (T-I) progressed to CKD5. ARAS patients with 1 or 2 missense variants showed better response to treatment than patients with non-missense-variants. CONCLUSIONS Our study provides the first evidence for early use of RAAS inhibition therapy in patients with ARAS. Furthermore, genotype in ARAS correlates with response to therapy in favor of missense variants.
Collapse
|
41
|
Murray SL, Fennelly NK, Doyle B, Lynch SA, Conlon PJ. Integration of genetic and histopathology data in interpretation of kidney disease. Nephrol Dial Transplant 2020; 35:1113-1132. [PMID: 32777081 DOI: 10.1093/ndt/gfaa176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
For many years renal biopsy has been the gold standard for diagnosis in many forms of kidney disease. It provides rapid, accurate and clinically useful information in most individuals with kidney disease. However, in recent years, other diagnostic modalities have become available that may provide more detailed and specific diagnostic information in addition to, or instead of, renal biopsy. Genomics is one of these modalities. Previously prohibitively expensive and time consuming, it is now increasingly available and practical in a clinical setting for the diagnosis of inherited kidney disease. Inherited kidney disease is a significant cause of kidney disease, in both the adult and paediatric populations. While individual inherited kidney diseases are rare, together they represent a significant burden of disease. Because of the heterogenicity of inherited kidney disease, diagnosis and management can be a challenge and often multiple diagnostic modalities are needed to arrive at a diagnosis. We present updates in genomic medicine for renal disease, how genetic testing integrates with our knowledge of renal histopathology and how the two modalities may interact to enhance patient care.
Collapse
Affiliation(s)
- Susan L Murray
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| | | | - Brendan Doyle
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Sally Ann Lynch
- National Rare Disease Office Mater Hospital Dublin, Dublin, Ireland
| | - Peter J Conlon
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| |
Collapse
|
42
|
Groopman EE, Povysil G, Goldstein DB, Gharavi AG. Rare genetic causes of complex kidney and urological diseases. Nat Rev Nephrol 2020; 16:641-656. [PMID: 32807983 PMCID: PMC7772719 DOI: 10.1038/s41581-020-0325-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/08/2023]
Abstract
Although often considered a single-entity, chronic kidney disease (CKD) comprises many pathophysiologically distinct disorders that result in persistently abnormal kidney structure and/or function, and encompass both monogenic and polygenic aetiologies. Rare inherited forms of CKD frequently span diverse phenotypes, reflecting genetic phenomena including pleiotropy, incomplete penetrance and variable expressivity. Use of chromosomal microarray and massively parallel sequencing technologies has revealed that genomic disorders and monogenic aetiologies contribute meaningfully to seemingly complex forms of CKD across different clinically defined subgroups and are characterized by high genetic and phenotypic heterogeneity. Investigations of prevalent genomic disorders in CKD have integrated genetic, bioinformatic and functional studies to pinpoint the genetic drivers underlying their renal and extra-renal manifestations, revealing both monogenic and polygenic mechanisms. Similarly, massively parallel sequencing-based analyses have identified gene- and allele-level variation that contribute to the clinically diverse phenotypes observed for many monogenic forms of nephropathy. Genome-wide sequencing studies suggest that dual genetic diagnoses are found in at least 5% of patients in whom a genetic cause of disease is identified, highlighting the fact that complex phenotypes can also arise from multilocus variation. A multifaceted approach that incorporates genetic and phenotypic data from large, diverse cohorts will help to elucidate the complex relationships between genotype and phenotype for different forms of CKD, supporting personalized medicine for individuals with kidney disease.
Collapse
Affiliation(s)
- Emily E Groopman
- Division of Nephrology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Gundula Povysil
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Ali G Gharavi
- Division of Nephrology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
- Institute for Genomic Medicine, Columbia University, New York, NY, USA.
- Center for Precision Medicine and Genomics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
43
|
Cocchi E, Nestor JG, Gharavi AG. Clinical Genetic Screening in Adult Patients with Kidney Disease. Clin J Am Soc Nephrol 2020; 15:1497-1510. [PMID: 32646915 PMCID: PMC7536756 DOI: 10.2215/cjn.15141219] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Expanded accessibility of genetic sequencing technologies, such as chromosomal microarray and massively parallel sequencing approaches, is changing the management of hereditary kidney diseases. Genetic causes account for a substantial proportion of pediatric kidney disease cases, and with increased utilization of diagnostic genetic testing in nephrology, they are now also detected at appreciable frequencies in adult populations. Establishing a molecular diagnosis can have many potential benefits for patient care, such as guiding treatment, familial testing, and providing deeper insights on the molecular pathogenesis of kidney diseases. Today, with wider clinical use of genetic testing as part of the diagnostic evaluation, nephrologists have the challenging task of selecting the most suitable genetic test for each patient, and then applying the results into the appropriate clinical contexts. This review is intended to familiarize nephrologists with the various technical, logistical, and ethical considerations accompanying the increasing utilization of genetic testing in nephrology care.
Collapse
Affiliation(s)
- Enrico Cocchi
- Division of Nephrology and Center for Precision Medicine and Genomics, Department of Medicine, Columbia University, New York, New York
- Department of Pediatrics, Universita' degli Studi di Torino, Torino, Italy
| | - Jordan Gabriela Nestor
- Division of Nephrology and Center for Precision Medicine and Genomics, Department of Medicine, Columbia University, New York, New York
| | - Ali G Gharavi
- Division of Nephrology and Center for Precision Medicine and Genomics, Department of Medicine, Columbia University, New York, New York
- Insititute of Genomic Medicine, Columbia University, New York, New York
| |
Collapse
|
44
|
Zhu Q, Zhou C, Wang J. A novel frameshift mutation of COL4A5 in a Chinese family with presumed IgA nephropathy and chronic glomerulonephritis. J Clin Lab Anal 2020; 34:e23558. [PMID: 32893410 PMCID: PMC7755774 DOI: 10.1002/jcla.23558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/17/2020] [Accepted: 08/15/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Alport syndrome (ATS) is a hereditary nephritis with hereditary and clinical heterogeneity; the early clinical symptoms are atypical, which can easily lead to misdiagnosis. The proband, a 6-year-old girl, was found to have microscopic hematuria, proteinuria, and visual impairment at about 5 years old; the results of renal pathological examination revealed mesangial hyperplasia and IgA deposition. The proband's father exhibited gross hematuria, eye swelling, and bilateral hearing loss after the age of 5, renal function progressively decreased, and he underwent right renal allograft at the age of 23 due to renal failure. The proband and her father were clinically diagnosed as IgA nephropathy and chronic glomerulonephritis, respectively. METHODS For proband, targeted exome capture sequencing was performed using the Targeted Exome Capture Kit; this kit targets 162 genes known to cause renal diseases. The identified mutation was confirmed and analyzed for cosegregation by Sanger sequencing in other family members whose gDNA was available. RESULTS Targeted exome capture sequencing revealed a novel heterozygous variant (NM_000495, c.697delG, p.G233fs) in the COL4A5 gene of the proband; the variant was inherited from her father. The variant was likely pathogenic according to the criteria of the American College of Medical Genetics and Genomics. CONCLUSION In this study, we first report a c.697delG mutation of COL4A5 in two patients presumed IgA nephropathy and chronic glomerulonephritis. This study emphasizes on the diagnostic value of next-generation sequencing for hereditary kidney diseases to help in their timely and cost-effective diagnosis, determine appropriate treatments, and promote genetic counseling.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Cong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Warady BA, Agarwal R, Bangalore S, Chapman A, Levin A, Stenvinkel P, Toto RD, Chertow GM. Alport Syndrome Classification and Management. Kidney Med 2020; 2:639-649. [PMID: 33094278 PMCID: PMC7568086 DOI: 10.1016/j.xkme.2020.05.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alport syndrome affects up to 60,000 people in the United States. The proposed reclassification of thin basement membrane nephropathy and some cases of focal segmental glomerulosclerosis as Alport syndrome could substantially increase the affected population. The reclassification scheme categorizes Alport syndrome as 3 distinct diseases of type IV collagen α3/4/5 based on a genetic evaluation: X-linked, autosomal, and digenic. This approach has the advantage of identifying patients at risk for progressive loss of kidney function. Furthermore, the shared molecular cause of Alport syndrome and thin basement membrane nephropathy arises from mutations in the COL4A3, COL4A4, and COL4A5 genes, which contribute to downstream pathophysiologic consequences, including chronic kidney inflammation. Recent evidence indicates that chronic inflammation and its regulation through anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2) and proinflammatory nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) transcription factors plays a central role in renal tubular and glomerular cell responses to injury. Crosstalk between the Nrf2 and NF-κB pathways is important in the regulation of inflammation in patients with chronic kidney disease; moreover, there is evidence that an insufficient Nrf2 response to inflammation contributes to disease progression. Given the association between type IV collagen abnormalities and chronic inflammation, there is renewed interest in targeted anti-inflammatory therapies in Alport syndrome and other forms of progressive chronic kidney disease.
Collapse
Affiliation(s)
- Bradley A Warady
- Division of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, MO
| | - Rajiv Agarwal
- Division of Nephrology, Indiana University, Indianapolis, IN
| | | | - Arlene Chapman
- Division of Nephrology, University of Chicago, Chicago, IL
| | - Adeera Levin
- Division of Nephrology, University of British Columbia, Vancouver, BC, Canada
| | | | - Robert D Toto
- Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
46
|
Kashtan CE. An update on current and potential genetic insights and diagnosis of Alport syndrome. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1784722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Yamamura T, Horinouchi T, Nagano C, Omori T, Sakakibara N, Aoto Y, Ishiko S, Nakanishi K, Shima Y, Nagase H, Takeda H, Rossanti R, Ye MJ, Nozu Y, Ishimori S, Ninchoji T, Kaito H, Morisada N, Iijima K, Nozu K. Genotype-phenotype correlations influence the response to angiotensin-targeting drugs in Japanese patients with male X-linked Alport syndrome. Kidney Int 2020; 98:1605-1614. [PMID: 32712167 DOI: 10.1016/j.kint.2020.06.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/03/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
Early kidney failure in the hereditary type IV collagen disease, Alport syndrome, can be delayed by renin-angiotensin inhibitors. However, whether all patients and all different genotypes respond equally well to this kidney-protective therapy remains unclear. Here, we performed a retrospective study on 430 patients with male X-linked Alport syndrome to examine the relationships among kidney prognosis, genotype, and treatment effect in a large cohort of Japanese patients. We analyzed the clinical features, genotype-phenotype correlation, and kidney survival period for patients treated with or without renin-angiotensin inhibitors. As a result, the median kidney survival period of patients in this cohort was found to be at 35 years with a strong genotype-phenotype correlation. The median age at the onset of end stage kidney disease (ESKD) significantly differed between patients treated with and without renin-angiotensin inhibitors (over 50 years versus 28 years, respectively). Moreover, these drugs delayed the onset of ESKD in patients with truncating variants for 12 years, extending the median age from 16 years to 28 years. Thus, our results confirmed a strong genotype-phenotype correlation in patients with male X-linked Alport syndrome. Additionally, it was suggested that renin-angiotensin inhibitors could significantly delay ESKD progression. Despite these therapies, patients with truncating variants developed ESKD at the median age of 28 years.
Collapse
Affiliation(s)
- Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takashi Omori
- Clinical and Translational Research Center, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroki Takeda
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ming Juan Ye
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshimi Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shingo Ishimori
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takeshi Ninchoji
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroshi Kaito
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| |
Collapse
|
48
|
Kashtan CE. Alport Syndrome: Achieving Early Diagnosis and Treatment. Am J Kidney Dis 2020; 77:272-279. [PMID: 32712016 DOI: 10.1053/j.ajkd.2020.03.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Alport syndrome is a genetically and phenotypically heterogeneous disorder of glomerular, cochlear, and ocular basement membranes resulting from mutations in the collagen IV genes COL4A3, COL4A4, and COL4A5. Alport syndrome can be transmitted as an X-linked, autosomal recessive, or autosomal dominant disorder. Individuals with Alport syndrome have a significant lifetime risk for kidney failure, as well as sensorineural deafness and ocular abnormalities. The availability of effective intervention for Alport syndrome-related kidney disease makes early diagnosis crucial, but this can be impeded by the genotypic and phenotypic complexity of the disorder. This review presents an approach to enhancing early diagnosis and achieving optimal outcomes.
Collapse
Affiliation(s)
- Clifford E Kashtan
- Pediatric Nephrology, University of Minnesota Medical School, Minneapolis, MN.
| |
Collapse
|
49
|
SGLT2 inhibitors - a potential treatment for Alport syndrome. Clin Sci (Lond) 2020; 134:379-388. [PMID: 32064497 DOI: 10.1042/cs20191276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Alport syndrome is a rare genetic disease that results in disordered basement membrane type IV collagen resulting in occular and auditory defects as well of progressive kidney disease. Although no 'cure' currently exists, therapeutic blockade of the renin-angiotensin-aldosterone system can slow the progression to end-stage kidney disease (ESKD). Clinical trials for treatments in preventing chronic kidney disease have largely been negative over the last two decades until recent trials have shown positive cardiovascular and renal outcomes of sodium-glucose co-transporter-2 (SGLT2) inhibitors in patients with diabetes mellitus. Although marketed as medications for Type 2 diabetes, SGLT2 inhibitors have been found to have additional properties that are nephroprotective which makes them a potential candidate for treatment for those with other forms of progressive kidney disease. This review discusses the evidence for the use of SGLT2 inhibitors as a potential treatment in Alport syndrome that may slow the progression of chronic kidney disease and prevent patients reaching ESKD.
Collapse
|
50
|
Torra R, Furlano M. New therapeutic options for Alport syndrome. Nephrol Dial Transplant 2020; 34:1272-1279. [PMID: 31190059 DOI: 10.1093/ndt/gfz131] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Alport syndrome (AS) is the most frequent inherited kidney disease after autosomal dominant polycystic kidney disease. It has three different patterns of inheritance-autosomal dominant, autosomal recessive and X-linked-which in part explains the wide spectrum of disease, ranging from isolated microhaematuria to end-stage renal disease early in life. The search for a treatment for AS is being pursued vigorously, not only because of the obvious unmet need but also because AS is a rare disease and any drug approved will have an orphan drug designation with its various benefits. Moreover, AS patients are quite young with very few comorbidities, which facilitates clinical trials. This review identifies the particularities of each pattern of inheritance but focuses mainly on new drugs or therapeutic targets for the disease. Most treatment-related investigations are directed not at the main abnormality in AS, namely collagen IV composition, but rather at the associated inflammation and fibrosis. Thus, AS may serve as a proof of concept for numerous drugs of potential value in many diseases that cause chronic kidney disease.
Collapse
Affiliation(s)
- Roser Torra
- Inherited Renal Disorders, Nephrology Department, Fundació Puigvert, REDINREN, IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mónica Furlano
- Inherited Renal Disorders, Nephrology Department, Fundació Puigvert, REDINREN, IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|