1
|
Shadid ILC, Guchelaar HJ, Weiss ST, Mirzakhani H. Vitamin D beyond the blood: Tissue distribution of vitamin D metabolites after supplementation. Life Sci 2024; 355:122942. [PMID: 39134205 PMCID: PMC11371480 DOI: 10.1016/j.lfs.2024.122942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/25/2024]
Abstract
Vitamin D3's role in mineral homeostasis through its endocrine function, associated with the main circulating metabolite 25-hydroxyvitamin D3, is well characterized. However, the increasing recognition of vitamin D3's paracrine and autocrine functions-such as cell growth, immune function, and hormone regulation-necessitates examining vitamin D3 levels across different tissues post-supplementation. Hence, this review explores the biodistribution of vitamin D3 in blood and key tissues following oral supplementation in humans and animal models, highlighting the biologically active metabolite, 1,25-dihydroxyvitamin D3, and the primary clearance metabolite, 24,25-dihydroxyvitamin D3. While our findings indicate significant progress in understanding how circulating metabolite levels respond to supplementation, comprehensive insight into their tissue concentrations remains limited. The gap is particularly significant during pregnancy, a period of drastically increased vitamin D3 needs and metabolic alterations, where data remains sparse. Within the examined dosage ranges, both human and animal studies indicate that vitamin D3 and its metabolites are retained in tissues selectively. Notably, vitamin D3 concentrations in tissues show greater variability in response to administered doses. In contrast, its metabolites maintain a more consistent concentration range, albeit different among tissues, reflecting their tighter regulatory mechanisms following supplementation. These observations suggest that serum 25-hydroxyvitamin D3 levels may not adequately reflect vitamin D3 and its metabolite concentrations in different tissues. Therefore, future research should aim to generate robust human data on the tissue distribution of vitamin D3 and its principal metabolites post-supplementation. Relating this data to clinically appropriate exposure metrics will enhance our understanding of vitamin D3's cellular effects and guide refinement of clinical trial methodologies.
Collapse
Affiliation(s)
- Iskander L C Shadid
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hooman Mirzakhani
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Al-Shebel A, Michel G, Breiderhoff T, Müller D. Urinary Acidification Does Not Explain the Absence of Nephrocalcinosis in a Mouse Model of Familial Hypomagnesaemia with Hypercalciuria and Nephrocalcinosis (FHHNC). Int J Mol Sci 2024; 25:1779. [PMID: 38339056 PMCID: PMC10855382 DOI: 10.3390/ijms25031779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Patients with mutations in Cldn16 suffer from familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC) which can lead to renal insufficiency. Mice lacking claudin-16 show hypomagnesemia and hypercalciuria, but no nephrocalcinosis. Calcium oxalate and calcium phosphate are the most common insoluble calcium salts that accumulate in the kidney in the case of nephrocalcinosis, however, the formation of these salts is less favored in acidic conditions. Therefore, urine acidification has been suggested to limit the formation of calcium deposits in the kidney. Assuming that urine acidification is causative for the absence of nephrocalcinosis in the claudin-16-deficient mouse model, we aimed to alkalinize the urine of these mice by the ablation of the subunit B1 of the vesicular ATPase in addition to claudin-16. In spite of an increased urinary pH in mice lacking claudin-16 and the B1 subunit, nephrocalcinosis did not develop. Thus, urinary acidification is not the only factor preventing nephrocalcinosis in claudin-16 deficient mice.
Collapse
Affiliation(s)
- Amr Al-Shebel
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Augustenburger Platz 1, 13353 Berlin, Germany; (T.B.); (D.M.)
| | - Geert Michel
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Research Institutes for Experimental Medicine, Transgenic Technologies, Robert Rössle Str. 10, 13125 Berlin, Germany;
| | - Tilman Breiderhoff
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Augustenburger Platz 1, 13353 Berlin, Germany; (T.B.); (D.M.)
| | - Dominik Müller
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Augustenburger Platz 1, 13353 Berlin, Germany; (T.B.); (D.M.)
| |
Collapse
|
3
|
Meimetis N, Pullen KM, Zhu DY, Nilsson A, Hoang TN, Magliacane S, Lauffenburger DA. AutoTransOP: translating omics signatures without orthologue requirements using deep learning. NPJ Syst Biol Appl 2024; 10:13. [PMID: 38287079 PMCID: PMC10825146 DOI: 10.1038/s41540-024-00341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
The development of therapeutics and vaccines for human diseases requires a systematic understanding of human biology. Although animal and in vitro culture models can elucidate some disease mechanisms, they typically fail to adequately recapitulate human biology as evidenced by the predominant likelihood of clinical trial failure. To address this problem, we developed AutoTransOP, a neural network autoencoder framework, to map omics profiles from designated species or cellular contexts into a global latent space, from which germane information for different contexts can be identified without the typically imposed requirement of matched orthologues. This approach was found in general to perform at least as well as current alternative methods in identifying animal/culture-specific molecular features predictive of other contexts-most importantly without requiring homology matching. For an especially challenging test case, we successfully applied our framework to a set of inter-species vaccine serology studies, where 1-to-1 mapping between human and non-human primate features does not exist.
Collapse
Affiliation(s)
- Nikolaos Meimetis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Krista M Pullen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Y Zhu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Avlant Nilsson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
| | - Trong Nghia Hoang
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99164-236, USA
| | - Sara Magliacane
- Institute of Informatics, University of Amsterdam, Amsterdam, The Netherlands
- MIT-IBM Watson AI Lab, Cambridge, MA, 02139, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
4
|
Obaid AA, Farrash WF, Mujalli A, Singh SK. A Quest for Potential Role of Vitamin D in Type II Diabetes Mellitus Induced Diabetic Kidney Disease. Curr Pharm Des 2024; 30:2505-2512. [PMID: 38963115 DOI: 10.2174/0113816128296168240614071821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024]
Abstract
Diabetes mellitus is a metabolic disorder characterized by high blood sugar levels. In recent years, T2DM has become a worldwide health issue due to an increase in incidence and prevalence. Diabetic kidney disease (DKD) is one of the devastating consequences of diabetes, especially owing to T2DM and the key clinical manifestation of DKD is weakened renal function and progressive proteinuria. DKD affects approximately 1/3rd of patients with diabetes mellitus, and T2DM is the predominant cause of end-stage kidney disease (ESKD). Several lines of studies have observed the association between vitamin D deficiency and the progression and etiology of type II diabetes mellitus. Emerging experimental evidence has shown that T2DM is associated with various kinds of kidney diseases. Recent evidence has also shown that an alteration in VDR (vitamin D receptor) signaling in podocytes leads to DKD. The present review aims to examine vitamin D metabolism and its correlation with T2DM. Furthermore, we discuss the potential role of vitamin D and VDR in diabetic kidney disease.
Collapse
Affiliation(s)
- Ahmad A Obaid
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wesam F Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulrahman Mujalli
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sandeep Kumar Singh
- Department of Biomedical, Indian Scientific Education and Technology Foundation, Lucknow 221005, India
| |
Collapse
|
5
|
Ruggiero C, Baroni M, Xenos D, Parretti L, Macchione IG, Bubba V, Laudisio A, Pedone C, Ferracci M, Magierski R, Boccardi V, Antonelli-Incalzi R, Mecocci P. Dementia, osteoporosis and fragility fractures: Intricate epidemiological relationships, plausible biological connections, and twisted clinical practices. Ageing Res Rev 2024; 93:102130. [PMID: 38030092 DOI: 10.1016/j.arr.2023.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Dementia, osteoporosis, and fragility fractures are chronic diseases, often co-existing in older adults. These conditions pose severe morbidity, long-term disability, and mortality, with relevant socioeconomic implications. While in the research arena, the discussion remains on whether dementia is the cause or the consequence of fragility fractures, healthcare professionals need a better understanding of the interplay between such conditions from epidemiological and physiological standpoints. With this review, we summarized the available literature surrounding the relationship between cognitive impairment, dementia, and both low bone mineral density (BMD) and fragility fractures. Given the strength of the bi-directional associations and their impact on the quality of life, we shed light on the biological connections between brain and bone systems, presenting the main mediators, including gut microbioma, and pathological pathways leading to the dysregulation of bone and brain metabolism. Ultimately, we synthesized the evidence about the impact of available pharmacological treatments for the prevention of fragility fractures on cognitive functions and individuals' outcomes when dementia coexists. Vice versa, the effects of symptomatic treatments for dementia on the risk of falls and fragility fractures are explored. Combining evidence alongside clinical practice, we discuss challenges and opportunities related to the management of older adults affected by cognitive impairment or dementia and at high risk for fragility fracture prevention, which leads to not only an improvement in patient health-related outcomes and survival but also a reduction in healthcare cost and socio-economic burden.
Collapse
Affiliation(s)
- C Ruggiero
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy.
| | - M Baroni
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - D Xenos
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - L Parretti
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - I G Macchione
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - V Bubba
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - A Laudisio
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - C Pedone
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - M Ferracci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Magierski
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - V Boccardi
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Antonelli-Incalzi
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - P Mecocci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| |
Collapse
|
6
|
Gonçalves LED, Andrade-Silva M, Basso PJ, Câmara NOS. Vitamin D and chronic kidney disease: Insights on lipid metabolism of tubular epithelial cell and macrophages in tubulointerstitial fibrosis. Front Physiol 2023; 14:1145233. [PMID: 37064892 PMCID: PMC10090472 DOI: 10.3389/fphys.2023.1145233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Chronic kidney disease (CKD) has been recognized as a significant global health problem due to being an important contributor to morbidity and mortality. Inflammation is the critical event that leads to CKD development orchestrated by a complex interaction between renal parenchyma and immune cells. Particularly, the crosstalk between tubular epithelial cells (TECs) and macrophages is an example of the critical cell communication in the kidney that drives kidney fibrosis, a pathological feature in CKD. Metabolism dysregulation of TECs and macrophages can be a bridge that connects inflammation and fibrogenesis. Currently, some evidence has reported how cellular lipid disturbances can affect kidney disease and cause tubulointerstitial fibrosis highlighting the importance of investigating potential molecules that can restore metabolic parameters. Vitamin D (VitD) is a hormone naturally produced by mammalian cells in a coordinated manner by the skin, liver, and kidneys. VitD deficiency or insufficiency is prevalent in patients with CKD, and serum levels of VitD are inversely correlated with the degree of kidney inflammation and renal function. Proximal TECs and macrophages produce the active form of VitD, and both express the VitD receptor (VDR) that evidence the importance of this nutrient in regulating their functions. However, whether VitD signaling drives physiological and metabolism improvement of TECs and macrophages during kidney injury is an open issue to be debated. In this review, we brought to light VitD as an important metabolic modulator of lipid metabolism in TECs and macrophages. New scientific approaches targeting VitD e VDR signaling at the cellular metabolic level can provide a better comprehension of its role in renal physiology and CKD progression.
Collapse
Affiliation(s)
- Luís Eduardo D. Gonçalves
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Magaiver Andrade-Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental e Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Paulo José Basso
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Paulo José Basso, ; Niels O. S. Câmara,
| | - Niels O. S. Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental e Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Paulo José Basso, ; Niels O. S. Câmara,
| |
Collapse
|
7
|
Li ZH, Guo XY, Quan XY, Yang C, Liu ZJ, Su HY, An N, Liu HF. The Role of Parietal Epithelial Cells in the Pathogenesis of Podocytopathy. Front Physiol 2022; 13:832772. [PMID: 35360248 PMCID: PMC8963495 DOI: 10.3389/fphys.2022.832772] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Podocytopathy is the most common feature of glomerular disorder characterized by podocyte injury- or dysfunction-induced excessive proteinuria, which ultimately develops into glomerulosclerosis and results in persistent loss of renal function. Due to the lack of self-renewal ability of podocytes, mild podocyte depletion triggers replacement and repair processes mostly driven by stem cells or resident parietal epithelial cells (PECs). In contrast, when podocyte recovery fails, activated PECs contribute to the establishment of glomerular lesions. Increasing evidence suggests that PECs, more than just bystanders, have a crucial role in various podocytopathies, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, diabetic nephropathy, IgA nephropathy, and lupus podocytopathy. In this review, we attempt to dissect the diverse role of PECs in the pathogenesis of podocytopathy based on currently available information.
Collapse
|
8
|
Regulatory domains controlling high intestinal vitamin D receptor gene expression are conserved in mouse and human. J Biol Chem 2022; 298:101616. [PMID: 35065959 PMCID: PMC8891975 DOI: 10.1016/j.jbc.2022.101616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin D receptor (VDR) levels are highest in the intestine where it mediates 1,25 dihydroxyvitamin D-induced gene expression. However, the mechanisms controlling high intestinal VDR gene expression are unknown. Here, we used Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq) to identify the regulatory sites controlling intestine-specific Vdr gene expression in the small intestine (villi and crypts) and colon of developing, adult, and aged mice. We identified 17 ATAC peaks in a 125 kb region from intron 3 to −55.8 kb from exon 1 of the Vdr gene. Interestingly, many of these peaks were missing/reduced in the developing intestine. Chromatin ImmunoPrecipitation-Sequencing (ChIP-Seq) peaks for intestinal transcription factors (TFs) were present within the ATAC peaks and at HiChIP looping attachments that connected the ATAC/TF ChIP peaks to the transcription start site and CCCTF-binding factor sites at the borders of the Vdr gene regulatory domain. Intestine-specific regulatory sites were identified by comparing ATAC peaks to DNAse-Seq data from other tissues that revealed tissue-specific, evolutionary conserved, and species-specific peaks. Bioinformatics analysis of human DNAse-Seq peaks revealed polymorphisms that disrupt TF-binding sites. Our analysis shows that mouse intestinal Vdr gene regulation requires a complex interaction of multiple distal regulatory regions and is controlled by a combination of intestinal TFs. These intestinal regulatory sites are well conserved in humans suggesting that they may be key components of VDR regulation in both mouse and human intestines.
Collapse
|
9
|
Jones BA, Wang XX, Myakala K, Levi M. Nuclear Receptors and Transcription Factors in Obesity-Related Kidney Disease. Semin Nephrol 2021; 41:318-330. [PMID: 34715962 PMCID: PMC10187996 DOI: 10.1016/j.semnephrol.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Both obesity and chronic kidney disease are increasingly common causes of morbidity and mortality worldwide. Although obesity often co-exists with diabetes and hypertension, it has become clear over the past several decades that obesity is an independent cause of chronic kidney disease, termed obesity-related glomerulopathy. This review defines the attributes of obesity-related glomerulopathy and describes potential pharmacologic interventions. Interventions discussed include peroxisome proliferator-activated receptors, the farnesoid X receptor, the Takeda G-protein-coupled receptor 5, and the vitamin D receptor.
Collapse
Affiliation(s)
- Bryce A Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC.
| |
Collapse
|
10
|
Ni L, Yuan C, Wu X. The recruitment mechanisms and potential therapeutic targets of podocytes from parietal epithelial cells. J Transl Med 2021; 19:441. [PMID: 34674704 PMCID: PMC8529729 DOI: 10.1186/s12967-021-03101-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/01/2021] [Indexed: 01/02/2023] Open
Abstract
Podocytes are differentiated postmitotic cells which cannot be replaced after podocyte injury. The mechanism of podocyte repopulation after injury has aroused wide concern. Parietal epithelial cells (PECs) are heterogeneous and only a specific subpopulation of PECs has the capacity to replace podocytes. Major progress has been achieved in recent years regarding the role and function of a subset of PECs which could transdifferentiate toward podocytes. Additionally, several factors, such as Notch, Wnt/ß-catenin, Wilms’ tumor-1, miR-193a and growth arrest-specific protein 1, have been shown to be involved in these processes. Finally, PECs serve as a potential therapeutic target in the conditions of podocyte loss. In this review, we discuss the latest observations and concepts about the recruitment of podocytes from PECs in glomerular diseases as well as newly identified mechanisms and the most recent treatments for this process.
Collapse
Affiliation(s)
- Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Cheng Yuan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
11
|
Expression of renal vitamin D receptors and metabolizing enzymes in IgA nephropathy. Acta Histochem 2021; 123:151740. [PMID: 34111685 DOI: 10.1016/j.acthis.2021.151740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
AIM One of the main causes of end-stage renal disease (ESRD) in the world is IgA nephropathy (IgAN). Since kidney is a key player in vitamin D metabolism, we investigated the expression of renal vitamin D receptors (VDR) and metabolizing enzymes in IgA nephropathy patients (IgAN-P). METHODS The sample included twelve IgAN-P who underwent ultrasound-guided renal biopsies and five controls who underwent nephrectomy due to clear renal carcinoma. Immunofluorescent staining was used to determine the expression of VDR, 25-hydroxyvitamin D3 -alpha-hydroxylase (1alpha-OHase) and vitamin D3 24-hydroxylase (CYP24A1). RESULTS Significant increase in expression of VDR, which was prominent in distal tubular cells (DTCs) in tissues from IgAN-P, was found in comparison to the controls (p = 0.0368). The expression of 1alpha-OHase, calcitriol synthesizing enzyme, was significantly lower in IgAN-P, in comparison with controls (p < 0.0001). The opposite, expression of CYP24A1 (vitamin D degrading enzyme), was significantly higher in IgAN-P in comparison with controls (p = 0.0003). Additionally, we found significant negative correlation between percentage of CYP24A1 immunoreactive nuclei in proximal tubular cells (PTCs) and estimated glomerular filtration rate (eGFR) in IgAN-P (r = -0.6139; p = 0.0337). CONCLUSIONS Our research indicates substantially decreased renal calcitriol production and increased vitamin D degradation in kidneys of IgAN-P, but larger studies are needed to confirm our results.
Collapse
|
12
|
Campolina-Silva GH, Barata MC, Werneck-Gomes H, Maria BT, Mahecha GAB, Belleannée C, Oliveira CA. Altered expression of the vitamin D metabolizing enzymes CYP27B1 and CYP24A1 under the context of prostate aging and pathologies. J Steroid Biochem Mol Biol 2021; 209:105832. [PMID: 33596463 DOI: 10.1016/j.jsbmb.2021.105832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/20/2022]
Abstract
Low circulating levels of vitamin D are common at older ages and have been linked to an increased risk of prostate disease, including cancer. However, it has not yet been determined whether aging affects the ability of prostate cells to locally metabolize vitamin D into its active metabolite calcitriol and thus mediate the vitamin D signaling in autocrine and paracrine ways. By using a suitable rat model to interrogate spontaneous prostatic modifications over the course of aging, here we showed that both CYP27B1 and CYP24A1 enzymes, which are key players respectively involved with calcitriol synthesis and deactivation, were highly expressed in the prostate epithelium. Furthermore, as the animals aged, a drastic reduction of CYP27B1 levels was detected in total protein extracts and especially in epithelial areas of lesions, including tumors. On the other hand, CYP24A1 expression significantly increased with aging and remained elevated even in altered epithelia. Such intricate unbalance in regard to vitamin D metabolizing enzymes was strongly associated with reduced bioavailability of calcitriol in the senile prostate, which in addition to decreased expression of the vitamin D receptor, further limits the protective actions mediated by vitamin D signaling. This evidence was corroborated by the increased proliferative activity exactly at sites of lesions where the factors implicated with calcitriol synthesis and responsiveness had its expression inhibited. Taken together, our results emphasize a set of modifications over the course of aging with a high potential to hamper vitamin D signaling on the prostate. These findings highlight a crosstalk between vitamin D, aging, and prostate carcinogenesis, offering new potential targets in the prevention of malignancies and other aging-related disorders arising in the gland.
Collapse
Affiliation(s)
| | - Maria Clara Barata
- Department of Morphology, Universidade Federal De Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | - Hipácia Werneck-Gomes
- Department of Morphology, Universidade Federal De Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | - Bruna Toledo Maria
- Department of Morphology, Universidade Federal De Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | | | - Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU De Québec Research Center (CHUL), Quebec City, QC, Canada
| | - Cleida Aparecida Oliveira
- Department of Morphology, Universidade Federal De Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Zhang Q, Yang M, Xiao Y, Han Y, Yang S, Sun L. Towards Better Drug Repositioning: Targeted Immunoinflammatory Therapy for Diabetic Nephropathy. Curr Med Chem 2021; 28:1003-1024. [PMID: 31701843 DOI: 10.2174/0929867326666191108160643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common and important microvascular complications of diabetes mellitus (DM). The main clinical features of DN are proteinuria and a progressive decline in renal function, which are associated with structural and functional changes in the kidney. The pathogenesis of DN is multifactorial, including genetic, metabolic, and haemodynamic factors, which can trigger a sequence of events. Controlling metabolic risks such as hyperglycaemia, hypertension, and dyslipidaemia is not enough to slow the progression of DN. Recent studies emphasized immunoinflammation as a critical pathogenic factor in the progression of DN. Therefore, targeting inflammation is considered a potential and novel treatment strategy for DN. In this review, we will briefly introduce the inflammatory process of DN and discuss the anti-inflammatory effects of antidiabetic drugs when treating DN.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Fleet JC, Reyes-Fernandez P. Intestinal responses to 1,25 dihydroxyvitamin D are not improved by higher intestinal VDR levels resulting from intestine-specific transgenic expression of VDR in mice. J Steroid Biochem Mol Biol 2020; 200:105670. [PMID: 32283207 DOI: 10.1016/j.jsbmb.2020.105670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/28/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
Abstract
Intestinal calcium (Ca) absorption depends upon vitamin D signaling through the vitamin D receptor (VDR) in the proximal and distal intestine while lower VDR content causes intestinal resistance to 1,25 dihydroxyvitamin D (1,25(OH)2 D) action. We tested whether intestinal responsiveness to 1,25(OH)2 D is increased in mice with higher than normal VDR levels resulting from transgenic VDR expression in the whole intestine (villin promoter-human VDR transgene, HV2). Wild type (WT) and HV2 mice were treated with 0, 0.15, or 0.3 ng 1,25(OH)2 D/g body weight (BW) (n = 6/dose) for 6 h. 1,25(OH)2 D significantly induced Cyp24a1, Trpv6, and S100 g mRNA in duodenum (Dd) of WT mice but induction was not higher in HV2 mice. We next tested whether higher intestinal VDR could protect mice from the consequences of low dietary Ca intake. WT and HV2 mice were fed diets with 0.125, 0.25, 0.5 (reference), or 1% Ca from weaning to 3 months of age (n = 9/diet/genotype). Dietary Ca restriction caused a dose dependent increase in serum 1,25(OH)2 D, Dd TRPV6, and Dd S100 g mRNA in WT mice and the effect was greater in HV2 mice. While Ca absorption was increased by low Ca intake, there was no difference in Ca absorption between HV2 and WT mice. Similarly, while bone density and microstructure were reduced by low Ca intake in WT mice, high intestinal VDR in HV2 mice did not protect bone in mice fed low Ca diets. Thus, while intestinal VDR and vitamin D signaling are essential for normal Ca metabolism during growth, our data demonstrate that higher than normal intestinal VDR levels do not improve the intestinal response to either 1,25(OH)2 D injection or to elevated 1,25(OH)2 D levels resulting from the physiologic adaptation to low Ca diets.
Collapse
Affiliation(s)
- James C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47906-2059, United States.
| | - Perla Reyes-Fernandez
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47906-2059, United States
| |
Collapse
|
15
|
Wu CC, Liao MT, Hsiao PJ, Lu CL, Hsu YJ, Lu KC, Chu P. Antiproteinuria Effect of Calcitriol in Patients With Chronic Kidney Disease and Vitamin D Deficiency: A Randomized Controlled Study. J Ren Nutr 2020; 30:200-207. [PMID: 31704188 DOI: 10.1053/j.jrn.2019.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/27/2019] [Accepted: 09/01/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Vitamin D has been demonstrated to lessen proteinuria severity in chronic kidney disease (CKD). Compared with healthy populations, patients with CKD may have lower serum levels of 1,25-dihydroxy vitamin D (1,25-(OH)2 D) and 25-hydroxy vitamin D (25-(OH) D). We investigated the effect of oral low-dose active vitamin D (calcitriol at 0.25 μg, 3 times weekly) on urinary protein excretion. DESIGN AND METHODS We conducted a nonblinded and non-placebo-controlled study. In total, 60 patients with CKD (average estimated glomerular filtration rate of >15 mL/min) who received a stable dose of angiotensin receptor blocker (ARB) or angiotensin-converting enzyme inhibitor (ACEI) were enrolled in this 24-week study. We randomly assigned these patients to the vitamin D group (oral calcitriol at 0.25 μg 3 times weekly with an ACEI or ARB) or the control group (ACEI or ARB). Change in the urine protein/creatinine ratio (uPCR) was the primary endpoint in this study. RESULTS The mean baseline uPCRs of the 2 groups were comparable (1.84 ± 0.83 g/g vs. 2.02 ± 0.97 g/g, control vs. vitamin D group; P = .46). After the 24-week treatment, the uPCRs were significantly lower than the baseline values in the vitamin D group (1.35 ± 0.64 g/g; P < .05) but not in the control group. The values of uPCR decreased significantly at 8, 16, and 24 weeks (P < .05 vs. baseline) in the vitamin D group. The values of uPCRs were significantly lower in the vitamin D group than in the control group at 8, 16, and 24 weeks (P < .05). A positive correlation was discovered between reduction in uPCRs at 24-week and baseline 25-(OH) D serum level in the vitamin D group (r = 0.738, P < .001). CONCLUSION Supplementary low-dose active vitamin D could reduce proteinuria in CKD patients with low serum 25-(OH) D levels.
Collapse
Affiliation(s)
- Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan; Division of Pediatrics, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Jen Hsiao
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan; Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan; Department of Life Sciences, National Central University, Taoyuan City, Taiwan
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Pauling Chu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
16
|
Almeida YE, Fessel MR, do Carmo LS, Jorgetti V, Farias-Silva E, Pescatore LA, Gamarra LF, Andrade MC, Simplicio-Filho A, Mangueira CLP, Rangel ÉB, Liberman M. Excessive cholecalciferol supplementation increases kidney dysfunction associated with intrarenal artery calcification in obese insulin-resistant mice. Sci Rep 2020; 10:87. [PMID: 31919470 PMCID: PMC6952360 DOI: 10.1038/s41598-019-55501-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus accelerates vascular calcification (VC) and increases the risk of end-stage renal disease (ESRD). Nevertheless, the impact of VC in renal disease progression in type 2 diabetes mellitus (T2DM) is poorly understood. We addressed the effect of VC and mechanisms involved in renal dysfunction in a murine model of insulin resistance and obesity (ob/ob), comparing with their healthy littermates (C57BL/6). We analyzed VC and renal function in both mouse strains after challenging them with Vitamin D3 (VitD3). Although VitD3 similarly increased serum calcium and induced bone disease in both strains, 24-hour urine volume and creatinine pronouncedly decreased only in ob/ob mice. Moreover, ob/ob increased urinary albumin/creatinine ratio (ACR), indicating kidney dysfunction. In parallel, ob/ob developed extensive intrarenal VC after VitD3. Coincidently with increased intrarenal vascular mineralization, our results demonstrated that Bone Morphogenetic Protein-2 (BMP-2) was highly expressed in these arteries exclusively in ob/ob. These data depict a greater susceptibility of ob/ob mice to develop renal disease after VitD3 in comparison to paired C57BL/6. In conclusion, this study unfolds novel mechanisms of progressive renal dysfunction in diabetes mellitus (DM) after VitD3 in vivo associated with increased intrarenal VC and highlights possible harmful effects of long-term supplementation of VitD3 in this population.
Collapse
Affiliation(s)
- Youri E Almeida
- Hospital Israelita Albert Einstein, São Paulo/SP, 01425001, Brazil
| | - Melissa R Fessel
- Hospital Israelita Albert Einstein, São Paulo/SP, 01425001, Brazil
| | | | - Vanda Jorgetti
- Department of Nephrology, Medical School, Universidade de São Paulo, São Paulo/SP, 01246000, Brazil
| | | | - Luciana Alves Pescatore
- Hospital Israelita Albert Einstein, São Paulo/SP, 01425001, Brazil
- Laboratório de Biologia Vascular, LIM-64, InCor, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo/SP, Brazil
| | - Lionel F Gamarra
- Hospital Israelita Albert Einstein, São Paulo/SP, 01425001, Brazil
| | | | | | | | - Érika B Rangel
- Hospital Israelita Albert Einstein, São Paulo/SP, 01425001, Brazil
| | - Marcel Liberman
- Hospital Israelita Albert Einstein, São Paulo/SP, 01425001, Brazil.
- Laboratório de Biologia Vascular, LIM-64, InCor, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo/SP, Brazil.
| |
Collapse
|
17
|
Vitamin D3 increases the Caspase-3 p12, MTHFR, and P-glycoprotein reducing amyloid-β42 in the kidney of a mouse model for Down syndrome. Life Sci 2019; 231:116537. [DOI: 10.1016/j.lfs.2019.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
|
18
|
Nyrén R, Makoveichuk E, Malla S, Kersten S, Nilsson SK, Ericsson M, Olivecrona G. Lipoprotein lipase in mouse kidney: effects of nutritional status and high-fat diet. Am J Physiol Renal Physiol 2019; 316:F558-F571. [PMID: 30698048 DOI: 10.1152/ajprenal.00474.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Activity of lipoprotein lipase (LPL) is high in mouse kidney, but the reason is poorly understood. The aim was to characterize localization, regulation, and function of LPL in kidney of C57BL/6J mice. We found LPL mainly in proximal tubules, localized inside the tubular epithelial cells, under all conditions studied. In fed mice, some LPL colocalized with the endothelial markers CD31 and GPIHBP1 and could be removed by perfusion with heparin, indicating a vascular location. The role of angiopoietin-like protein 4 (ANGPTL4) for nutritional modulation of LPL activity was studied in wild-type and Angptl4-/- mice. In Angptl4-/- mice, kidney LPL activity remained high in fasted animals, indicating that ANGPTL4 is involved in suppression of LPL activity on fasting, like in adipose tissue. The amount of ANGPTL4 protein in kidney was low, and the protein appeared smaller in size, compared with ANGPTL4 in heart and adipose tissue. To study the influence of obesity, mice were challenged with high-fat diet for 22 wk, and LPL was studied after an overnight fast compared with fasted mice given food for 3 h. High-fat diet caused blunting of the normal adaptation of LPL activity to feeding/fasting in adipose tissue, but in kidneys this adaptation was lost only in male mice. LPL activity increases to high levels in mouse kidney after feeding, but as no difference in uptake of chylomicron triglycerides in kidneys is found between fasted and fed states, our data confirm that LPL appears to have a minor role for lipid uptake in this organ.
Collapse
Affiliation(s)
- Rakel Nyrén
- Department of Medical Biosciences/Physiological Chemistry, Umeå University , Umeå , Sweden
| | - Elena Makoveichuk
- Department of Medical Biosciences/Physiological Chemistry, Umeå University , Umeå , Sweden
| | - Sandhya Malla
- Department of Medical Biosciences/Physiological Chemistry, Umeå University , Umeå , Sweden.,Wallenberg Center for Molecular Medicine, Umeå University , Umeå , Sweden
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University , Wageningen , The Netherlands
| | - Stefan K Nilsson
- Department of Medical Biosciences/Physiological Chemistry, Umeå University , Umeå , Sweden
| | - Madelene Ericsson
- Department of Medical Biosciences/Physiological Chemistry, Umeå University , Umeå , Sweden
| | - Gunilla Olivecrona
- Department of Medical Biosciences/Physiological Chemistry, Umeå University , Umeå , Sweden
| |
Collapse
|
19
|
Hu X, Liu W, Yan Y, Liu H, Huang Q, Xiao Y, Gong Z, Du J. Vitamin D protects against diabetic nephropathy: Evidence-based effectiveness and mechanism. Eur J Pharmacol 2019; 845:91-98. [PMID: 30287151 DOI: 10.1016/j.ejphar.2018.09.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 02/08/2023]
Abstract
Vitamin D has been suggested to harbor multiple biological activities, among them the potential of vitamin D in the protection of diabetic nephropathy (DN) has attracted special attention. Both animal studies and clinical trials have documented an inverse correlation between low vitamin D levels and DN risk, and supplementation with vitamin D or its active derivatives has been demonstrated to improve endothelial cell injury, reduce proteinuria, attenuate renal fibrosis, and resultantly retard DN progression. Vitamin D exerts its pharmacological effects primarily via vitamin D receptor, whose activation inhibits the renin-angiotensin system, a key culprit for DN under hyperglycemia. The anti-DN benefit of vitamin D can be enhanced when administrated in combination with angiotensin converting enzyme inhibitors or angiotensin II receptor blockers. Mechanistic studies reveal that pathways relevant to inflammation participate in the pathogenesis of DN, however, consumption of vitamin D-related products negatively regulates inflammatory response at multiple levels, indicated by inhibiting macrophage infiltration, nuclear factor-kappa B (NF-κB) activation, and production of such inflammatory mediators as transforming growth factor-β(TGF-β), monocyte chemoattractant protein 1(MCP-1), and regulated upon activation normal T cell expressed and secreted protein(RANTES). The robust anti-inflammatory property of vitamin D-related products allows them with a promising renoprotective therapeutic option for DN. This review summarizes new advances in our understanding of vitamin D-related products in the DN management.
Collapse
Affiliation(s)
- Xiaofang Hu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wanli Liu
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Nursing, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hengdao Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 410013, Henan, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yi Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
20
|
Dahan I, Thawho N, Farber E, Nakhoul N, Asleh R, Levy AP, Li YC, Ben-Izhak O, Nakhoul F. The Iron-Klotho-VDR Axis Is a Major Determinant of Proximal Convoluted Tubule Injury in Haptoglobin 2-2 Genotype Diabetic Nephropathy Patients and Mice. J Diabetes Res 2018; 2018:7163652. [PMID: 30250850 PMCID: PMC6140001 DOI: 10.1155/2018/7163652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 01/02/2023] Open
Abstract
The haptoglobin (Hp) genotype (1-1 and 2-2) is a major determinant of nephropathy progression in diabetes mellitus patients. Hp 2-2 diabetic mice have impaired Hb clearance and increased iron deposits and oxidative stress in the proximal tubules (PCT), leading to increased renal injury. However, the precise mechanism of the PCT injury in diabetic nephropathy (DN) remains elusive. In the kidney, 1,25(OH)2D3 suppresses the inflammatory response to renal tubular injury and requires normal renal expression of the α-klotho protein. In this study, we set out to test the hypothesis that the increased renal iron deposits in the PCT of Hp 2-2 DN affect the α-klotho-vitamin D receptor (VDR) axis and thereby exacerbates the PCT injury generated by the iron deposits. Immunohistochemical analysis of human and mouse kidney biopsies along with western blot analysis showed that the increased iron deposits in the PCT of the Hp 2-2 genotype were accompanied with significantly decreased α-klotho and VDR renal expression but significantly increased 1-α-hydroxylase renal expression. In conclusion, the iron-klotho-VDR axis is a major player in the mechanism contributing to iron-mediated PCT injury in diabetic Hp 2-2 mice and patients. Targeting this axis may open the way for new ideas regarding the pathogenesis and treatment of DN.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Disease Models, Animal
- Female
- Genotype
- Glucuronidase/metabolism
- Haptoglobins/genetics
- Haptoglobins/metabolism
- Humans
- Iron/metabolism
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Klotho Proteins
- Male
- Mice
- Middle Aged
- Oxidative Stress
- Receptors, Calcitriol/metabolism
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Young Adult
Collapse
Affiliation(s)
- Inbal Dahan
- Diabetes and Metabolism Lab, The Baruch Padeh Medical Center, Poriya, Lower Galilee, Israel
| | - Nadia Thawho
- Diabetes and Metabolism Lab, The Baruch Padeh Medical Center, Poriya, Lower Galilee, Israel
| | - Evgeny Farber
- Nephrology and Hypertension Division, The Baruch Padeh Medical Center, Poriya, Lower Galilee, Israel
| | - Nakhoul Nakhoul
- The Azrieli Faculty of Medicine in Zfat in the Galilee, Bar-Ilan University, Ramat-Gan, Israel
| | - Rabea Asleh
- The Vascular Medicine Lab, Technion, Faculty of Medicine, Rappaport Institute, Haifa, Israel
| | - Andrew P. Levy
- The Vascular Medicine Lab, Technion, Faculty of Medicine, Rappaport Institute, Haifa, Israel
| | - Yan Chun Li
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Ofer Ben-Izhak
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
- Technion, Haifa, Israel
| | - Farid Nakhoul
- Diabetes and Metabolism Lab, The Baruch Padeh Medical Center, Poriya, Lower Galilee, Israel
- Nephrology and Hypertension Division, The Baruch Padeh Medical Center, Poriya, Lower Galilee, Israel
- The Azrieli Faculty of Medicine in Zfat in the Galilee, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
21
|
Campolina-Silva GH, Maria BT, Mahecha GAB, Oliveira CA. Reduced vitamin D receptor (VDR) expression and plasma vitamin D levels are associated with aging-related prostate lesions. Prostate 2018; 78:532-546. [PMID: 29508414 DOI: 10.1002/pros.23498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/05/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Protective roles have been proposed for vitamin D in prostate cancer, which has the advanced age as the major risk factor. However, little is known about the expression of the vitamin D receptor (VDR) in the aging prostate and its association with the development of epithelial lesions that affect tissue homeostasis and may precede prostate tumors. METHODS VDR expression in the prostatic complex of young adults to senile Wistar rats, a natural model to study age-related prostatic disorders, was evaluated by immunohistochemical, Western blotting, and image-assisted analyzes. Results were correlated with the plasma levels of vitamin D and testosterone, the occurrence of punctual histopathological changes in the aging prostate, and the expression of retinoid X receptors (RXR). RESULTS VDR was widely distributed in the prostatic complex at all ages analyzed, with the highest immunoexpression found in basal epithelial cells. As the animals aged, VDR levels increased, except in punctual areas with intraepithelial proliferation, metaplasia, or proliferative inflammatory atrophy, which had reduced expression of this receptor concomitantly with increased cell proliferation. Interestingly, RXR expression in the aging prostate was similar to that found for its partner VDR, indicating that components of the VDR/RXR complex required for vitamin D signaling are affected in aging-related prostatic lesions. Moreover, plasma vitamin D levels declined at the same ages when prostatic alterations appeared. Although circulating levels of testosterone also decreased with aging, the changes observed in the components of the vitamin D system were not correlated with androgens. CONCLUSIONS Our data indicate that the aging prostate suffers from an imbalance on the intricate mechanism of tissue regulation by the vitamin D responsive system. We argue that the status of VDR expression might be determinant for the development of histopathological alterations in the aging prostate, which include premalignant lesions.
Collapse
Affiliation(s)
- Gabriel H Campolina-Silva
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna T Maria
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Germán A B Mahecha
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cleida A Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
22
|
Yang S, Li A, Wang J, Liu J, Han Y, Zhang W, Li YC, Zhang H. Vitamin D Receptor: A Novel Therapeutic Target for Kidney Diseases. Curr Med Chem 2018; 25:3256-3271. [PMID: 29446731 PMCID: PMC6142412 DOI: 10.2174/0929867325666180214122352] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Kidney disease is a serious problem that adversely affects human health, but critical knowledge is lacking on how to effectively treat established chronic kidney disease. Mounting evidence from animal and clinical studies has suggested that Vitamin D Receptor (VDR) activation has beneficial effects on various renal diseases. METHODS A structured search of published research literature regarding VDR structure and function, VDR in various renal diseases (e.g., IgA nephropathy, idiopathic nephrotic syndrome, renal cell carcinoma, diabetic nephropathy, lupus nephritis) and therapies targeting VDR was performed for several databases. RESULT Included in this study are the results from 177 published research articles. Evidence from these papers indicates that VDR activation is involved in the protection against renal injury in kidney diseases by a variety of mechanisms, including suppression of RAS activation, anti-inflammation, inhibiting renal fibrogenesis, restoring mitochondrial function, suppression of autoimmunity and renal cell apoptosis. CONCLUSION VDR offers an attractive druggable target for renal diseases. Increasing our understanding of VDR in the kidney is a fertile area of research and may provide effective weapons in the fight against kidney diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Zhang
- Address correspondence to this author is at the Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Tel: 86-731-88638238; E-mail:
| |
Collapse
|
23
|
Han Q, Zhu H, Chen X, Liu Z. Non-genetic mechanisms of diabetic nephropathy. Front Med 2017; 11:319-332. [PMID: 28871454 DOI: 10.1007/s11684-017-0569-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes mellitus patients and is characterized by thickened glomerular basement membrane, increased extracellular matrix formation, and podocyte loss. These phenomena lead to proteinuria and altered glomerular filtration rate, that is, the rate initially increases but progressively decreases. DN has become the leading cause of end-stage renal disease. Its prevalence shows a rapid growth trend and causes heavy social and economic burden in many countries. However, this disease is multifactorial, and its mechanism is poorly understood due to the complex pathogenesis of DN. In this review, we highlight the new molecular insights about the pathogenesis of DN from the aspects of immune inflammation response, epithelial-mesenchymal transition, apoptosis and mitochondrial damage, epigenetics, and podocyte-endothelial communication. This work offers groundwork for understanding the initiation and progression of DN, as well as provides ideas for developing new prevention and treatment measures.
Collapse
Affiliation(s)
- Qiuxia Han
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hanyu Zhu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
24
|
Trohatou O, Tsilibary EF, Charonis A, Iatrou C, Drossopoulou G. Vitamin D3 ameliorates podocyte injury through the nephrin signalling pathway. J Cell Mol Med 2017; 21:2599-2609. [PMID: 28664547 PMCID: PMC5618699 DOI: 10.1111/jcmm.13180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/24/2017] [Indexed: 12/19/2022] Open
Abstract
Renal podocytes form the main filtration barrier possessing unique phenotype maintained by proteins including podocalyxin and nephrin, which are modulated in pathological conditions. In diabetic nephropathy (DN), podocytes become structurally and functionally compromised. Nephrin, a structural backbone protein of the slit diaphragm, acts as regulator of podocyte intracellular signalling with renoprotective role. Vitamin D3 through its receptor, VDR, provides renal protection in DN but limited data exist about its effect on podocytes. In this study, we used isolated rat glomeruli to assess podocalyxin and nephrin expression after treatment with the 1,25‐dihydroxyvitamin D3 analogue paricalcitol in the presence of normal and diabetic glucose levels. The role of 1,25‐dihydroxyvitamin D3 (calcitriol) and its analogue, paricalcitol, on podocyte morphology and survival was also investigated in the streptozotocin (STZ)‐diabetic animal model. In our ex vivo model, glomeruli exhibited high glucose‐mediated down‐regulation of podocalyxin, and nephrin, while paricalcitol reversed the high glucose‐induced decrease of nephrin and podocalyxin expression. Paricalcitol treatment enhanced VDR expression and promoted VDR and RXR co‐localization in the nucleus. Our data also indicated that hyperglycaemia impaired survival of cultured glomeruli and suggested that the implemented nephrin down‐regulation was reversed by paricalcitol treatment, initiating Akt signal transduction which may be involved in glomerular survival. Our findings were further verified in vivo, as in the STZ‐diabetic animal model, calcitriol and paricalcitol treatment resulted in significant amelioration of hyperglycaemia and restoration of nephrin signalling, suggesting that calcitriol and paricalcitol may provide molecular bases for protection against loss of the permselective renal barrier in DN.
Collapse
Affiliation(s)
- Ourania Trohatou
- Institute of Biosciences and Applications, NCSR 'Demokritos', Athens, Greece
| | | | - Aristidis Charonis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Christos Iatrou
- Center for Nephrology, G. Papadakis General Hospital of Nikea-Pireaus, Athens, Greece
| | | |
Collapse
|
25
|
Yazdani S, Poosti F, Toro L, Wedel J, Mencke R, Mirković K, de Borst MH, Alexander JS, Navis G, van Goor H, van den Born J, Hillebrands JL. Vitamin D inhibits lymphangiogenesis through VDR-dependent mechanisms. Sci Rep 2017; 7:44403. [PMID: 28303937 PMCID: PMC5355885 DOI: 10.1038/srep44403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/07/2017] [Indexed: 12/25/2022] Open
Abstract
Excessive lymphangiogenesis is associated with cancer progression and renal disease. Attenuation of lymphangiogenesis might represent a novel strategy to target disease progression although clinically approved anti-lymphangiogenic drugs are not available yet. VitaminD(VitD)-deficiency is associated with increased cancer risk and chronic kidney disease. Presently, effects of VitD on lymphangiogenesis are unknown. Given the apparently protective effects of VitD and the deleterious associations of lymphangiogenesis with renal disease, we here tested the hypothesis that VitD has direct anti-lymphangiogenic effects in vitro and is able to attenuate lymphangiogenesis in vivo. In vitro cultured mouse lymphatic endothelial cells (LECs) expressed VitD Receptor (VDR), both on mRNA and protein levels. Active VitD (calcitriol) blocked LEC tube formation, reduced LEC proliferation, and induced LEC apoptosis. siRNA-mediated VDR knock-down reversed the inhibitory effect of calcitriol on LEC tube formation, demonstrating how such inhibition is VDR-dependent. In vivo, proteinuric rats were treated with vehicle or paricalcitol for 6 consecutive weeks. Compared with vehicle-treated proteinuric rats, paricalcitol showed markedly reduced renal lymphangiogenesis. In conclusion, our data show that VitD is anti-lymphangiogenic through VDR-dependent anti-proliferative and pro-apoptotic mechanisms. Our findings highlight an important novel function of VitD demonstrating how it may have therapeutic value in diseases accompanied by pathological lymphangiogenesis.
Collapse
Affiliation(s)
- Saleh Yazdani
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fariba Poosti
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luis Toro
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Seccion de Nefrologia, Departamento de Medicina, Hospital Clinico Universidad de Chile, Santiago, Chile.,Centro de Investigacion Clinica Avanzada, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Johannes Wedel
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rik Mencke
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katarina Mirković
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Louisiana, USA
| | - Gerjan Navis
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Hu H, Xu S, Hu S, Gao Y, Shui H. Effect of 1,25(OH) 2D 3 on transdifferentiation of rat renal tubular epithelial cells induced by high glucose. Biomed Rep 2016; 5:699-704. [PMID: 28101343 DOI: 10.3892/br.2016.800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022] Open
Abstract
Deficiency in vitamin D and its active metabolite is a characteristic of chronic kidney diseases (CKDs). Previous studies have reported that 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], the active form of vitamin D, can attenuate renal interstitial fibrosis. The present study aimed to explore the effect of 1,25(OH)2D3 on the transdifferentiation of NRK-52E rat renal tubular epithelial cells (RTECs) induced by high glucose, as well as the expression of vitamin D receptor (VDR) and production of angiotensin (Ang) II. Western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses were performed to detect the protein and mRNA expression of α-smooth muscle actin (α-SMA), E-cadherin and VDR. Furthermore, the production of Ang II was analyzed by enzyme-linked immunosorbent assay (ELISA). Treatment with high glucose decreased E-cadherin and VDR, while increasing α-SMA and Ang II, and of note, these changes were attenuated by 1,25(OH)2D3 in a dose-dependent manner. In conclusion, the present study revealed that 1,25(OH)2D3 inhibits high glucose-induced transdifferentiation of rat RTECs in a dose-dependent manner, which may be associated with the downregulation of Ang II and upregulation of VDR.
Collapse
Affiliation(s)
- Hongtao Hu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shen Xu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shuang Hu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yue Gao
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hua Shui
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
27
|
Rüster C, Franke S, Reuter S, Mrowka R, Bondeva T, Wolf G. Vitamin D3 Partly Antagonizes Advanced-Glycation Endproducts-Induced NFκB Activation in Mouse Podocytes. Nephron Clin Pract 2016; 134:105-116. [PMID: 27505422 DOI: 10.1159/000448106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS We have previously shown that advanced glycation-endproducts (AGEs) induced NFκB activation in differentiated mouse podocytes. This NFκB activation may contribute to the progression of renal disease and mediation of fibrosis by various mechanisms. This study was undertaken to test whether this detrimental response may be reversed by vitamin D3 or its analogue paricalcitol. METHODS Differentiated mouse podocytes were challenged with glycated bovine serum albumin (AGE-BSA), or non-glycated control BSA (in the presence or absence of various concentrations of vitamin D3 (decostriol, 1α,25-dihydroxyvitamin D3)) or its active analog paricalcitol. Quantitative mRNA expressions were measured by real-time PCR, whereas protein expressions were determined by Western blotting followed by densitometry. Cytoplasmic and nuclear protein expression of the NFκB subunit p65 (Rel A) were determined by Western blotting. Furthermore, the ratio of phosphorylated to non-phosphorylated IκB-α was measured using specific antibodies. Electrophoretic mobility shift assays and a capture ELISA assay were used to assess NFκB transactivation in vitro. In addition, NFκB transactivation was also monitored in HEK-NFκBIA reporter cells using live cell luminometry. RESULTS Podocytes expressed the receptor for vitamin D. The vitamins did not suppress receptor for AGEs (RAGE) expression; instead, they rather upregulated RAGE. Although vitamin D3 and paricalcitol partly and differentially modified some of the studied parameters, both hormones inhibited AGE-BSA-induced NFκB transactivation, presumably by various mechanisms including the upregulation of IκB-α protein, keeping NFκB sequestered in an inactive state in the cytoplasm. CONCLUSION Vitamin D3 or its analog paricalcitol partly prevented AGE-mediated NFκB activation, an important feature of diabetic nephropathy (DN). Whether this in vitro finding is of clinical relevance to prevent/treat DN requires further studies.
Collapse
Affiliation(s)
- Christiane Rüster
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Sonneveld R, Hoenderop JG, Stavenuiter AW, Ferrantelli E, Baltissen MP, Dijkman HB, Florquin S, Rops AL, Wetzels JF, Berden JH, van der Vlag J, Nijenhuis T. 1,25-Vitamin D3 Deficiency Induces Albuminuria. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:794-804. [DOI: 10.1016/j.ajpath.2015.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 10/22/2015] [Accepted: 11/19/2015] [Indexed: 12/19/2022]
|
29
|
Abstract
PTH and Vitamin D are two major regulators of mineral metabolism. They play critical roles in the maintenance of calcium and phosphate homeostasis as well as the development and maintenance of bone health. PTH and Vitamin D form a tightly controlled feedback cycle, PTH being a major stimulator of vitamin D synthesis in the kidney while vitamin D exerts negative feedback on PTH secretion. The major function of PTH and major physiologic regulator is circulating ionized calcium. The effects of PTH on gut, kidney, and bone serve to maintain serum calcium within a tight range. PTH has a reciprocal effect on phosphate metabolism. In contrast, vitamin D has a stimulatory effect on both calcium and phosphate homeostasis, playing a key role in providing adequate mineral for normal bone formation. Both hormones act in concert with the more recently discovered FGF23 and klotho, hormones involved predominantly in phosphate metabolism, which also participate in this closely knit feedback circuit. Of great interest are recent studies demonstrating effects of both PTH and vitamin D on the cardiovascular system. Hyperparathyroidism and vitamin D deficiency have been implicated in a variety of cardiovascular disorders including hypertension, atherosclerosis, vascular calcification, and kidney failure. Both hormones have direct effects on the endothelium, heart, and other vascular structures. How these effects of PTH and vitamin D interface with the regulation of bone formation are the subject of intense investigation.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Rebecca D. Murray
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Eleanor Lederer
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
- Robley Rex VA Medical Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
30
|
Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury. Sci Rep 2015; 5:18687. [PMID: 26691774 PMCID: PMC4686931 DOI: 10.1038/srep18687] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/23/2015] [Indexed: 01/19/2023] Open
Abstract
Vitamin D receptor (VDR) is highly expressed in human and mouse kidneys. Nevertheless, its functions remain obscure. This study investigated the effects of vitamin D3 (VitD3) pretreatment on renal inflammation during lipopolysaccharide (LPS)-induced acute kidney injury. Mice were intraperitoneally injected with LPS. In VitD3 + LPS group, mice were pretreated with VitD3 (25 μg/kg) at 48, 24 and 1 h before LPS injection. As expected, an obvious reduction of renal function and pathological damage was observed in LPS-treated mice. VitD3 pretreatment significantly alleviated LPS-induced reduction of renal function and pathological damage. Moreover, VitD3 pretreatment attenuated LPS-induced renal inflammatory cytokines, chemokines and adhesion molecules. In addition, pretreatment with 1,25(OH)2D3, the active form of VitD3, alleviated LPS-induced up-regulation of inflammatory cytokines and chemokines in human HK-2 cells, a renal tubular epithelial cell line, in a VDR-dependent manner. Further analysis showed that VitD3, which activated renal VDR, specifically repressed LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit in the renal tubules. LPS, which activated renal NF-κB, reciprocally suppressed renal VDR and its target gene. Moreover, VitD3 reinforced the physical interaction between renal VDR and NF-κB p65 subunit. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity during LPS-induced acute kidney injury.
Collapse
|
31
|
Garsen M, Sonneveld R, Rops ALWMM, Huntink S, van Kuppevelt TH, Rabelink TJ, Hoenderop JGJ, Berden JHM, Nijenhuis T, van der Vlag J. Vitamin D attenuates proteinuria by inhibition of heparanase expression in the podocyte. J Pathol 2015. [DOI: 10.1002/path.4593] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Marjolein Garsen
- Department of Nephrology; Radboud University Medical Center; Nijmegen The Netherlands
| | - Ramon Sonneveld
- Department of Nephrology; Radboud University Medical Center; Nijmegen The Netherlands
| | - Angelique LWMM Rops
- Department of Nephrology; Radboud University Medical Center; Nijmegen The Netherlands
| | - Suzanne Huntink
- Department of Nephrology; Radboud University Medical Center; Nijmegen The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry; Radboud University Medical Center; Nijmegen The Netherlands
| | - Ton J Rabelink
- Department of Nephrology, Einthoven Laboratory for Vascular Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Joost GJ Hoenderop
- Department of Physiology; Radboud University Medical Center; Nijmegen The Netherlands
| | - Jo HM Berden
- Department of Nephrology; Radboud University Medical Center; Nijmegen The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology; Radboud University Medical Center; Nijmegen The Netherlands
| | - Johan van der Vlag
- Department of Nephrology; Radboud University Medical Center; Nijmegen The Netherlands
| |
Collapse
|
32
|
Kim CH. A functional relay from progesterone to vitamin D in the immune system. DNA Cell Biol 2015; 34:379-82. [PMID: 25826095 DOI: 10.1089/dna.2015.2857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Progesterone is a steroid hormone that promotes and maintains pregnancy. Vitamin D (vit. D), another steroid hormone, regulates calcium levels and bone health among many of its functions. The two hormones play important roles also in regulating the immune system. Recently, we discovered that the vitamin D receptor (VDR) is induced in T cells by progesterone. This finding connects the function of progesterone to that of vit. D and suggests that the two steroid hormones cooperate with each other for sequential and effective regulation of the immune system. Potential implications of the regulation in health and disease are discussed.
Collapse
Affiliation(s)
- Chang H Kim
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
33
|
Vitamin D deficiency in the pathogenesis of hypertension: still an unsettled question. Curr Hypertens Rep 2015; 16:464. [PMID: 24929953 DOI: 10.1007/s11906-014-0464-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vitamin D deficiency is inversely associated with blood pressure and is felt to contribute to the genesis and maintenance of hypertension. Although well demonstrated in animal studies, in many clinical studies the association between vitamin D status and blood pressure has not been consistently observed or else has been quite small. These discrepancies may relate in part to methodological differences including: patient selection, study size and duration, and, in the case of vitamin D repletion studies, differences in the vitamin D supplement used, its dose, and dosing intervals. Polymorphisms in genes regulating vitamin D activation and function may explain some of the observed inconsistencies as suggested by recent studies. The present review examines experimental and clinical studies bearing on the inverse association between blood pressure and vitamin D status and concludes that a new definition of vitamin D deficiency using additional biomarkers may better select patients with hypertension who will respond to vitamin D supplementation.
Collapse
|
34
|
Wang Y, Zhu J, DeLuca HF. The vitamin D receptor in the proximal renal tubule is a key regulator of serum 1α,25-dihydroxyvitamin D₃. Am J Physiol Endocrinol Metab 2015; 308:E201-5. [PMID: 25425001 DOI: 10.1152/ajpendo.00422.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well established that the mitochondria of proximal convoluted tubule cells of the kidney are the site of production of circulating 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The production of 1,25(OH)2D3 at this site is tightly regulated. Parathyroid hormone markedly stimulates 1,25(OH)2D3 production, whereas 1,25(OH)2D3 itself suppresses production. The mechanism of suppression by 1,25(OH)2D3 has not yet been elucidated. We have now found that in the absence of vitamin D (vitamin D deficiency), the vitamin D receptor (VDR) is found in the interior of the apical brush border of the proximal tubule cells. This is unique for the proximal tubule cells, since this has not been observed in the distal tubule cells or in other epithelial cells, such as intestinal mucosa. Administration of 1,25(OH)2D3 to vitamin D-deficient rats results in the movement of VDR from the brush border to the cytoplasm and nucleus presumably bound to reabsorbed 1,25(OH)2D3. The VDR bound to 1,25(OH)2D3 suppresses expression of 25-hydroxyvitamin D3 1α-hydroxylase and stimulates the 25-hydroxyvitamin D3 24-hydroxylase. Thus, VDR in the apical brush border of the proximal convoluted tubule cells serves to "sense" the level of circulating 1,25(OH)2D3 and modulates the activity of the 1α-hydroxylase and the 24-hydroxylase accordingly.
Collapse
Affiliation(s)
- Yongji Wang
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin; and Vitamin D Research Institute, Shaanxi University of Technology, Shaanxi Province, China
| | - Jinge Zhu
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin; and
| | - Hector F DeLuca
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin; and
| |
Collapse
|
35
|
Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, Bhatnagar V, Wu W. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev 2015; 95:83-123. [PMID: 25540139 PMCID: PMC4281586 DOI: 10.1152/physrev.00025.2013] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the "Remote Sensing and Signaling Hypothesis," which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Kevin T Bush
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Gleb Martovetsky
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Sun-Young Ahn
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Henry C Liu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Erin Richard
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Vibha Bhatnagar
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Wei Wu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
36
|
Glomerular parietal epithelial cells in kidney physiology, pathology, and repair. Curr Opin Nephrol Hypertens 2014; 22:302-9. [PMID: 23518463 DOI: 10.1097/mnh.0b013e32835fefd4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW We have summarized recently published glomerular parietal epithelial cell (PEC) research, focusing on their roles in glomerular development and physiology, and in certain glomerular diseases. The rationale is that PECs have been largely ignored until the recent availability of cell lineage tracing studies, human and murine PEC culture systems, and potential therapeutic interventions of PECs. RECENT FINDINGS Several new paradigms involving PECs have emerged demonstrating their significant contribution to glomerular physiology and numerous glomerular diseases. A subset of PECs serving as podocyte progenitors have been identified in normal human glomeruli. They provide a source for podocytes in adolescent mice, and their numbers increase in states of podocyte depletion. PEC progenitor number is increased by retinoids and angiotensin-converting enzyme inhibition. However, dysregulated growth of PEC progenitors leads to pseudo-crescent and crescent formation. In focal segmental glomerulosclerosis, considered a podocyte disease, activated PECs increase extracellular matrix production, which leads to synechial attachment and, when they move to the glomerular tuft, to segmental glomerulosclerosis. Finally, PECs might be adversely affected in proteinuric states by undergoing apoptosis. SUMMARY PECs play a critical role in glomerular repair through their progenitor function, but under certain circumstances paradoxically contribute to deterioration by augmenting scarring and crescent formation.
Collapse
|
37
|
Wang Y, Zhu J, DeLuca HF. Identification of the vitamin D receptor in osteoblasts and chondrocytes but not osteoclasts in mouse bone. J Bone Miner Res 2014; 29:685-92. [PMID: 24038189 DOI: 10.1002/jbmr.2081] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/30/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
Abstract
Bone is clearly a target of vitamin D and as expected, the vitamin D receptor (VDR) is expressed in osteoblasts. However, the presence of VDR in other cells such as osteocytes, osteoclasts, chondroclasts, and chondrocytes is uncertain. Because of difficulties in obtaining sections of undecalcified adult bone, identification of the site of VDR expression in adult bone tissue has been problematic. In addition, the antibodies to VDR used in previous studies lacked specificity, a property crucial for unambiguous conclusions. In the present study, VDR in the various cells from neonatal and adult mouse bone tissues was identified by a highly specific and sensitive immunohistochemistry method following bone decalcification with EGTA. For accurate evaluation of weak immunosignals, samples from Demay VDR knockout mice were used as negative control. Molecular markers were used to identify cell types. Our results showed that EGTA-decalcification of bone tissue had no detectable effect on the immunoreactivity of VDR. VDR was found in osteoblasts and hypertrophic chondrocytes but not in the multinucleated osteoclasts, chondroclasts, and bone marrow stromal cells. Of interest is the finding that immature osteoblasts contain large amounts of VDR, whereas the levels are low or undetectable in mature osteoblasts including bone lining cells and osteocytes. Proliferating chondrocytes appear devoid of VDR, although low levels were found in the hypertrophic chondrocytes. These data demonstrate that osteoblasts and chondrocytes are major targets of 1α,25-dihydroxyvitamin D, but osteoclasts and chondroclasts are minor targets or not at all. A high level of VDR was found in the immature osteoblasts located in the cancellous bone, indicating that they are major targets of 1α,25-dihydroxyvitamin D. Thus, the immature osteoblasts are perhaps responsible for the vitamin D hormone signaling resulting in calcium mobilization and in osteogenesis.
Collapse
Affiliation(s)
- Yongji Wang
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
38
|
Atchison DK, Harding P, Beierwaltes WH. Vitamin D increases plasma renin activity independently of plasma Ca2+ via hypovolemia and β-adrenergic activity. Am J Physiol Renal Physiol 2013; 305:F1109-17. [PMID: 23926179 DOI: 10.1152/ajprenal.00010.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1, 25-Dihydroxycholechalciferol (calcitriol) and 19-nor-1, 25-dihydroxyvitamin D2 (paricalcitol) are vitamin D receptor (VDR) agonists. Previous data suggest VDR agonists may actually increase renin-angiotensin activity, and this has always been assumed to be mediated by hypercalcemia. We hypothesized that calcitriol and paricalcitol would increase plasma renin activity (PRA) independently of plasma Ca(2+) via hypercalciuria-mediated polyuria, hypovolemia, and subsequent increased β-adrenergic sympathetic activity. We found that both calcitriol and paricalcitol increased PRA threefold (P < 0.01). Calcitriol caused hypercalcemia, but paricalcitol did not. Both calcitriol and paricalcitol caused hypercalciuria (9- and 7-fold vs. control, P < 0.01) and polyuria (increasing 2.6- and 2.2-fold vs. control, P < 0.01). Paricalcitol increased renal calcium-sensing receptor (CaSR) expression, suggesting a potential cause of paricalcitol-mediated hypercalciuria and polyuria. Volume replacement completely normalized calcitriol-stimulated PRA and lowered plasma epinephrine by 43% (P < 0.05). β-Adrenergic blockade also normalized calcitriol-stimulated PRA. Cyclooxygenase-2 inhibition had no effect on calcitriol-stimulated PRA. Our data demonstrate that vitamin D increases PRA independently of plasma Ca(2+) via hypercalciuria, polyuria, hypovolemia, and increased β-adrenergic activity.
Collapse
Affiliation(s)
- Douglas K Atchison
- Dept. of Internal Medicine, Hypertension and Vascular Research Div., Henry Ford Hospital, 7121 E&R Bldg., 2799 W. Grand Blvd., Detroit, MI 48202.
| | | | | |
Collapse
|
39
|
Gut N, Piecha G, Pradel A, Geldyyev A, Potemkina A, Ritz E, Regele H, Schmitt CP, Gross-Weissmann ML. The calcimimetic R-568 prevents podocyte loss in uninephrectomized ApoE-/- mice. Am J Physiol Renal Physiol 2013; 305:F277-85. [PMID: 23698122 DOI: 10.1152/ajprenal.00514.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Calcimimetics are indicated for secondary hyperparathyroidism in chronic kidney disease, and some data have suggested their protective role for progression of renal damage. We aimed to evaluate whether a calcimimetic can slow the progression of kidney damage in uninephrectomized apolipoprotein E (ApoE)-deficient (ApoE-/-) mice. To this end, we compared its effect with that of calcitriol. Male ApoE-/- mice (12 wk old) were randomized to undergo sham operation (sham) or unilateral nephrectomy (UNX) and subsequently received the calcimimetic R-568 (4 μg·kg⁻¹·day⁻¹), calcitriol (0.03 μg·kg⁻¹·day⁻¹), or vehicle intraperitoneally. Glomerular number and volume, damage indexes (glomerular, vascular, and interstitial), and glomerular (podocytes, mesangial, and endothelial) cell number and volume were assessed in perfused kidneys after a 12-wk treatment period. Lower numbers of podocytes per glomerulus were observed in the UNX + vehicle group compared with the sham group, and this was prevented in the UNX + R-568 group but not in the UNX + calcitriol group. In parallel, albuminuria was higher in the untreated UNX group compared with the sham group, and the increase was prevented in the UNX + R-568 group. Interstitial fibrosis was more prevalent in the vehicle-treated UNX group compared with the sham group, and this was prevented in the UNX group treated with R-568 and less effectively with calcitriol treatment. In all UNX groups, the weight of the residual kidney was significantly higher compared with all sham groups. No differences were observed in serum ionized calcium and systolic blood pressure between the groups. The calcimimetic R-568 prevented interstial fibrosis and podocyte loss after uninephrectomy in ApoE-/- mice. Minor renal dysfunction, lack of secondary hyperparathyroidism, and hypertension in this model support the hypothesis of direct effects of this compound on glomerular cells.
Collapse
Affiliation(s)
- Nadezda Gut
- Department of Pathology, Medical University of Innsbruck, Müllerstrasse 44, Innsbruck A-6020, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Verouti SN, Tsilibary EC, Fragopoulou E, Iatrou C, Demopoulos CA, Charonis AS, Charonis SA, Drossopoulou GI. Vitamin D receptor activators upregulate and rescue podocalyxin expression in high glucose-treated human podocytes. Nephron Clin Pract 2013; 122:36-50. [PMID: 23548800 DOI: 10.1159/000346562] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 12/11/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Vitamin D is beneficial in human and experimental chronic kidney disease, the leading cause of which is diabetic nephropathy. Vitamin D through its receptor, VDR, provides renal protection in diabetic nephropathy, but limited data exist about its effect on podocytes. Renal podocytes form the main filtration barrier possessing a unique phenotype maintained by proteins including podocalyxin and nephrin, the expression of which is suppressed in pathological conditions. METHODS We used immortalized human podocytes (human glomerular epithelial cells, HGEC) to assess podocalyxin and nephrin expression after treatment with 1,25-dihydroxyvitamin D3 (calcitriol) and its analogue paricalcitol. The involvement of VDR was investigated by silencing with hVDR-siRNA and ChIP analysis. RESULTS HGEC exhibit high glucose-mediated downregulation of podocalyxin and nephrin, loss of which has been linked with loss of the permselective renal barrier and proteinuria. Calcitriol and paricalcitol reversed high glucose-induced decrease of nephrin and significantly enhanced podocalyxin expression in podocytes cultured in high glucose. HGEC express VDR and retinoid X receptor (RXR). In the presence of calcitriol and paricalcitol, VDR expression was upregulated and VDR colocalized with RXR in the nucleus. VDR knockdown abolished the protective action of calcitriol and paricalcitol on podocalyxin expression indicating that podocalyxin activation of expression is partly mediated by VDR. Furthermore, VDR specifically regulates podocalyxin expression by bounding to a site upstream of the podocalyxin promoter. CONCLUSION Vitamin D analogues maintain and, furthermore, re-activate the expression of specialized components of podocytes including podocalyxin, hence they provide protection against loss of the permselective renal barrier, with molecular mechanisms elucidated herein.
Collapse
Affiliation(s)
- S N Verouti
- Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lu'o'ng KVQ, Nguyen LTH. The role of vitamin D in Alzheimer's disease: possible genetic and cell signaling mechanisms. Am J Alzheimers Dis Other Demen 2013; 28:126-36. [PMID: 23322908 PMCID: PMC10852937 DOI: 10.1177/1533317512473196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly individuals and is associated with progressive memory loss and cognitive dysfunction. A significant association between AD and low levels of vitamin D has been demonstrated. Furthermore, vitamin D supplements appear to have a beneficial clinical effect on AD by regulating micro-RNA, enhancing toll-like receptors, modulating vascular endothelial factor expression, modulating angiogenin, and advanced glycation end products. Vitamin D also exerts its effects on AD by regulating calcium-sensing receptor expression, enhancing amyloid-β peptides clearance, interleukin 10, downregulating matrix metalloproteinases, upregulating heme oxygenase 1, and suppressing the reduced form of nicotinamide adenine dinucleotide phosphate expression. In conclusion, vitamin D may play a beneficial role in AD. Calcitriol is the best vitamin D supplement for AD, because it is the active form of the vitamin D3 metabolite and modulates inflammatory cytokine expression. Therefore, further investigation of the role of calcitriol in AD is needed.
Collapse
Affiliation(s)
- Khanh Vinh Quoc Lu'o'ng
- Vietnamese American Medical Research Foundation, 14971 Brookhurst St. Westminster, CA 92683, USA.
| | | |
Collapse
|
42
|
Sonneveld R, Ferrè S, Hoenderop JGJ, Dijkman HB, Berden JHM, Bindels RJM, Wetzels JFM, van der Vlag J, Nijenhuis T. Vitamin D down-regulates TRPC6 expression in podocyte injury and proteinuric glomerular disease. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1196-204. [PMID: 23385000 DOI: 10.1016/j.ajpath.2012.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/14/2012] [Accepted: 12/12/2012] [Indexed: 12/20/2022]
Abstract
The transient receptor potential cation channel C6 (TRPC6) is a slit diaphragm protein expressed by podocytes. TRPC6 gain-of-function mutations cause autosomal dominant focal segmental glomerulosclerosis. In acquired proteinuric renal disease, glomerular TRPC6 expression is increased. We previously demonstrated that acquired increased TRPC6 expression is ameliorated by antiproteinuric angiotensin receptor blockers and angiotensin-converting enzyme inhibitors. Vitamin D also has an antiproteinuric effect. We hypothesized that vitamin D reduces proteinuria by affecting TRPC6 expression in podocytes. Adriamycin-induced nephropathy increased TRPC6 mRNA and protein expression and induced proteinuria in rats. Treatment with 1,25-dihydroxyvitamin D3 (1,25-D3) normalized TRPC6 expression and reduced proteinuria. In vitro, podocyte injury induced by adriamycin exposure in cultured podocytes increased TRPC6 expression. Treatment of injured podocytes with 1,25-D3 dose dependently reduced adriamycin-induced TRPC6 expression. Chromatin immunoprecipitation analysis demonstrated that the vitamin D receptor directly binds to the TRPC6 promoter. Moreover, 1,25-D3 reduced TRPC6 promoter activity in a luciferase reporter assay. In 1,25-D3-deficient 25-hydroxy-1α-hydroxylase knockout mice, TRPC6 expression was increased, accompanied by podocyte foot process effacement and proteinuria. 1,25-D3 supplementation normalized TRPC6 expression, podocyte morphology, and proteinuria in these mice. These results demonstrate that vitamin D down-regulates the enhanced TRPC6 expression in in vivo and in vitro podocyte injury, possibly through a direct effect on TRPC6 promoter activity. This TRPC6 down-regulation could contribute to the antiproteinuric effect of vitamin D.
Collapse
Affiliation(s)
- Ramon Sonneveld
- Department of Nephrology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Inhibition of the RAAS (renin–angiotensin–aldosterone system) plays a pivotal role in the prevention and treatment of diabetic nephropathy and a spectrum of other proteinuric kidney diseases. Despite documented beneficial effects of RAAS inhibitors in diabetic patients with nephropathy, reversal of the progressive course of this disorder or at least long-term stabilization of renal function are often difficult to achieve, and many patients still progress to end-stage renal disease. Incomplete inhibition of the RAAS has been postulated as one of reasons for unsatisfactory therapeutic responses to RAAS inhibition in some patients. Inhibition of renin, a rate-limiting step in the RAAS activation cascade, could overcome at least some of the abovementioned problems associated with the treatment with traditional RAAS inhibitors. The present review focuses on experimental and clinical studies evaluating the two principal approaches to renin inhibition, namely direct renin inhibition with aliskiren and inhibition of the (pro)renin receptor. Moreover, the possibilities of renin inhibition and nephroprotection by interventions primarily aiming at non-RAAS targets, such as vitamin D, urocortins or inhibition of the succinate receptor GPR91 and cyclo-oxygenase-2, are also discussed.
Collapse
|
44
|
Dusso AS. Renal vitamin D receptor expression and vitamin D renoprotection. Kidney Int 2012; 81:937-939. [DOI: 10.1038/ki.2012.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Where is the vitamin D receptor? Arch Biochem Biophys 2012; 523:123-33. [PMID: 22503810 DOI: 10.1016/j.abb.2012.04.001] [Citation(s) in RCA: 441] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/30/2012] [Accepted: 04/01/2012] [Indexed: 02/08/2023]
Abstract
The vitamin D receptor (VDR) is a member of the nuclear receptor superfamily and plays a central role in the biological actions of vitamin D. VDR regulates the expression of numerous genes involved in calcium/phosphate homeostasis, cellular proliferation and differentiation, and immune response, largely in a ligand-dependent manner. To understand the global function of the vitamin D system in physiopathological processes, great effort has been devoted to the detection of VDR in various tissues and cells, many of which have been identified as vitamin D targets. This review focuses on the tissue- and cell type-specific distribution of VDR throughout the body.
Collapse
|