1
|
Lin Y, Chen R, Jiang M, Hu B, Zheng P, Chen G. Comprehensive analysis of the expression, prognosis and biological significance of FSCN family in clear cell renal cell carcinoma. Oncol Lett 2023; 26:379. [PMID: 37559574 PMCID: PMC10407841 DOI: 10.3892/ol.2023.13965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
Fascin (FSCN) is an actin-binding protein that serves a critical role in cell migration and invasion, contributing to tumor metastasis. However, there is little known about the function of FSCN family in kidney renal clear cell carcinoma (KIRC). The present study used the UALCAN, gene expression profiling interactive analysis, The Cancer Genome Atlas, cBioPortal, STRING and The Tumor Immune Estimation Resource databases to investigate the transcription level, genetic alteration and biological function of FSCNs in KIRC and their association with the prognosis value and immune cell infiltration in patients with KIRC. Results showed that the expression of FSCN1 and FSCN3 was markedly upregulated in patients with KIRC, while the expression of FSCN2 showed an opposite trend, which was the same as the experiments. Furthermore, the expression levels of FSCNs were associated with pathological stage, molecular subtypes and tumor grade. The expression levels of FSCNs were statistically correlated with the immune cell infiltration in KIRC. Higher expression levels of FSCN1 and FSCN3 were associated with worse overall survival (OS) and progression-free interval of patients bearing KIRC. Univariate and multivariate analysis demonstrated that FSCN2 was an independent risk factor for OS time in KIRC. Furthermore, mutations in FSCNs were significantly associated with poor OS and progression-free survival in patients with KIRC. The FSCNs were involved in pathways including focal adhesion, endocytosis, hypertrophic cardiomyopathy, regulation of actin cytoskeleton. The results indicated that FSCN2 might serve as an independent prognostic factor for OS of KIRC and that FSCN1 and FSCN3 can be used as favorable biomarkers for predicting clinical outcomes in KIRC.
Collapse
Affiliation(s)
- Yongping Lin
- Department of Urology, The First Hospital of Putian City, Putian, Fujian 351100, P.R. China
| | - Ru Chen
- Department of Urology, The First Hospital of Putian City, Putian, Fujian 351100, P.R. China
| | - Ming Jiang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bing Hu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Zheng
- Department of Urology, Shangrao Municipal Hospital, Shangrao, Jiangxi 334000, P.R. China
| | - Guoxian Chen
- Department of Urology, The First Hospital of Putian City, Putian, Fujian 351100, P.R. China
| |
Collapse
|
2
|
Yamada Y, Kurata A, Fujita K, Kuroda M. Fascin as a useful marker for cancer-associated fibroblasts in invasive lung adenocarcinoma. Medicine (Baltimore) 2021; 100:e27162. [PMID: 34477172 PMCID: PMC8416015 DOI: 10.1097/md.0000000000027162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) have been attracting attention in recent years, but their nature has not been fully elucidated. Although CAFs have been recognized as an important therapeutic target, therapeutic agents have not been developed to date. CAFs are characterized by their high migration rate and involvement in epithelial-to-mesenchymal transition with some displaying a dendritic morphology that is reminiscent of fascin expression.The present study was designed to immunohistochemically investigate fascin expression in lung adenocarcinoma including CAFs and compare the results with existing CAF markers.We immunohistochemically investigated fascin expression in not only cancer tissue but also CAFs from 26 autopsy cases of lung adenocarcinoma. Immunohistochemistry of α-smooth muscle actin and fibroblast activation protein was also performed.Fascin-positive staining in CAFs was observed in all cases, with a strong correlation observed with existing CAF markers α-smooth muscle actin and fibroblast activation protein (P < .001). In addition, the proportion of tumor cells showing fascin-positive staining was found to correlate with its expression in CAFs (P < .05).We propose that CAFs express fascin, and that fascin may mediate crosstalk between cancer tissue and CAFs. Fascin might be a novel therapeutic target for treatments that target the cancer stroma.
Collapse
|
3
|
Liu H, Zhang Y, Li L, Cao J, Guo Y, Wu Y, Gao W. Fascin actin-bundling protein 1 in human cancer: promising biomarker or therapeutic target? Mol Ther Oncolytics 2021; 20:240-264. [PMID: 33614909 PMCID: PMC7873579 DOI: 10.1016/j.omto.2020.12.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fascin actin-bundling protein 1 (FSCN1) is a highly conserved actin-bundling protein that cross links F-actin microfilaments into tight, parallel bundles. Elevated FSCN1 levels have been reported in many types of human cancers and have been correlated with aggressive clinical progression, poor prognosis, and survival outcomes. The overexpression of FSCN1 in cancer cells has been associated with tumor growth, migration, invasion, and metastasis. Currently, FSCN1 is recognized as a candidate biomarker for multiple cancer types and as a potential therapeutic target. The aim of this study was to provide a brief overview of the FSCN1 gene and protein structure and elucidate on its actin-bundling activity and physiological functions. The main focus was on the role of FSCN1 and its upregulatory mechanisms and significance in cancer cells. Up-to-date studies on FSCN1 as a novel biomarker and therapeutic target for human cancers are reviewed. It is shown that FSCN1 is an unusual biomarker and a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| |
Collapse
|
4
|
Wijetunga I, McVeigh LE, Charalambous A, Antanaviciute A, Carr IM, Nair A, Prasad KR, Ingram N, Coletta PL. Translating Biomarkers of Cholangiocarcinoma for Theranosis: A Systematic Review. Cancers (Basel) 2020; 12:E2817. [PMID: 33007872 PMCID: PMC7601719 DOI: 10.3390/cancers12102817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare disease with poor outcomes and limited research efforts into novel treatment options. A systematic review of CCA biomarkers was undertaken to identify promising biomarkers that may be used for theranosis (therapy and diagnosis). MEDLINE/EMBASE databases (1996-2019) were systematically searched using two strategies to identify biomarker studies of CCA. The PANTHER Go-Slim classification system and STRING network version 11.0 were used to interrogate the identified biomarkers. The TArget Selection Criteria for Theranosis (TASC-T) score was used to rank identified proteins as potential targetable biomarkers for theranosis. The following proteins scored the highest, CA9, CLDN18, TNC, MMP9, and EGFR, and they were evaluated in detail. None of these biomarkers had high sensitivity or specificity for CCA but have potential for theranosis. This review is unique in that it describes the process of selecting suitable markers for theranosis, which is also applicable to other diseases. This has highlighted existing validated markers of CCA that can be used for active tumor targeting for the future development of targeted theranostic delivery systems. It also emphasizes the relevance of bioinformatics in aiding the search for validated biomarkers that could be repurposed for theranosis.
Collapse
Affiliation(s)
- Imeshi Wijetunga
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Laura E. McVeigh
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Antonia Charalambous
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Agne Antanaviciute
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Ian M. Carr
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - Amit Nair
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - K. Raj Prasad
- Department of Hepatobiliary and Transplant Surgery, St. James’s University Hospital, Leeds LS9 7TF, UK;
| | - Nicola Ingram
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| | - P. Louise Coletta
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, UK; (I.W.); (L.E.M.); (A.C.); (A.A.); (I.M.C.); (A.N.); (N.I.)
| |
Collapse
|
5
|
Ye Y, Zhang HW, Mei HX, Xu HR, Xiang SY, Yang Q, Zheng SX, Gao Smith F, Jin SW, Wang Q. PDX regulates inflammatory cell infiltration via resident macrophage in LPS-induced lung injury. J Cell Mol Med 2020; 24:10604-10614. [PMID: 32735065 PMCID: PMC7521295 DOI: 10.1111/jcmm.15679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory cell infiltration contributes to the pathogenesis of acute respiratory distress syndrome (ARDS). Protectin DX (PDX), an endogenous lipid mediator, shows anti‐inflammatory and proresolution bioactions. In vivo, the mice were intraperitoneally injected with PDX (0.1 µg/mouse) after intratracheal (1 mg/kg) or intraperitoneal (10 mg/kg) LPS administration. Flow cytometry was used to measure inflammatory cell numbers. Clodronate liposomes were used to deplete resident macrophages. RT‐PCR, and ELISA was used to measure MIP‐2, MCP‐1, TNF‐α and MMP9 levels. In vitro, sorted neutrophils, resident and recruited macrophages (1 × 106) were cultured with 1 μg/mL LPS and/or 100 nmol/L PDX to assess the chemokine receptor expression. PDX attenuated LPS‐induced lung injury via inhibiting recruited macrophage and neutrophil recruitment through repressing resident macrophage MCP‐1, MIP‐2 expression and release, respectively. Finally, PDX inhibition of neutrophil infiltration and transmembrane was associated with TNF‐α/MIP‐2/MMP9 signalling pathway. These data suggest that PDX attenuates LPS‐stimulated lung injury via reduction of the inflammatory cell recruitment mediated via resident macrophages.
Collapse
Affiliation(s)
- Yang Ye
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hua-Wei Zhang
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hong-Xia Mei
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hao-Ran Xu
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Shu-Yang Xiang
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qian Yang
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Sheng-Xing Zheng
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fang Gao Smith
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.,Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qian Wang
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
6
|
Chen L, Yang ZS, Zhou YZ, Deng Y, Jiang P, Tan SL. Dihydromyricetin inhibits cell proliferation, migration, invasion and promotes apoptosis via regulating miR-21 in Human Cholangiocarcinoma Cells. J Cancer 2020; 11:5689-5699. [PMID: 32913463 PMCID: PMC7477438 DOI: 10.7150/jca.45970] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Dihydromyricetin, the most abundant natural flavonoid isolated from Ampelopsis grossedentata, exhibits broad anti-tumor effects. However, the effects of dihydromyricetin on cholangiocarcinoma remain unclear. This study examined the anti-tumor effects of dihydromyricetin in two human cholangiocarcinoma cell lines HCCC9810 and TFK-1, and the underlying mechanism was also investigated. Our study was the first to show that dihydromyricetin significantly inhibited cell proliferation, migration, invasion and promoted apoptosis in cholangiocarcinoma cells. By analyzing the TCGA dataset, we found that expression of miR-21, an oncogene and a potential target of anticancer drugs for cholangiocarcinoma, was upregulated in cholangiocarcinoma tissues compared to paired control tissues. Moreover, dihydromyricetin significantly reduced the expression of miR-21 in a dose-dependent manner. Overexpression of miR-21 remarkably abolished the inhibitory effects of dihydromyricetin on cell proliferation, migration, invasion and abrogated its effect of promoting cell apoptosis in both HCCC9810 and TFK-1 cells. Dihydromyricetin remarkably increased the expression of PTEN and decreased the expression of phosphorylated Akt, while overexpression of miR-21 abrogated the modulation of PTEN/ Akt pathway by dihydromyricetin. Taken together, our study demonstrates that dihydromyricetin inhibits cell proliferation, migration, invasion and promotes apoptosis in cholangiocarcinoma cells via regulating miR-21.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China, 410011.,Institute of Clinical Pharmacy, Central South University, Changsha, China, 410011
| | - Zhou-Sheng Yang
- Department of Pharmacy, The People's Hopital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China, 530021
| | - Yang-Zhao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China, 410011
| | - Yang Deng
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China, 410015
| | - Pei Jiang
- Department of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China, 272000
| | - Sheng-Lan Tan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China, 410011.,Institute of Clinical Pharmacy, Central South University, Changsha, China, 410011
| |
Collapse
|
7
|
Intuyod K, Armartmuntree N, Jusakul A, Sakonsinsiri C, Thanan R, Pinlaor S. Current omics-based biomarkers for cholangiocarcinoma. Expert Rev Mol Diagn 2019; 19:997-1005. [PMID: 31566016 DOI: 10.1080/14737159.2019.1673162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a malignancy of the biliary tract. CCA generally has a low incidence worldwide but incidence is typically high in Southeast Asian countries, particularly in northeastern Thailand, where small liver-fluke (Opisthorchis viverrini) infection is endemic. CCA has a poor prognosis as most CCA patients present with advanced stages. Poor prognosis and worse outcomes are due to the lack of specific and early-stage CCA biomarkers. Areas covered: In this review, we discuss the use of CCA tissues, serum and bile samples as sources of diagnostic and prognostic markers by using -omics approaches, including genomics, epigenomics, transcriptomics and proteomics. The current state of the discovery of molecular candidates and their potential to be used as diagnostic and prognostic biomarkers for CCA are summarized and discussed. Expert opinion: Various potential molecules have been discovered, some of which have been verified as diagnostic biomarkers for CCA. However, most identified molecules require much further evaluation to help us find markers with high specificity, low cost and ease-of-use in routine diagnostic laboratories.
Collapse
Affiliation(s)
- Kitti Intuyod
- Department of Parasitology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Napat Armartmuntree
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Faculty of Associated Medical Sciences, Khon Kaen University , Khon Kaen , Thailand
| | - Chadamas Sakonsinsiri
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Raynoo Thanan
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| |
Collapse
|
8
|
FSCN‑1 increases doxorubicin resistance in hepatocellular carcinoma through promotion of epithelial-mesenchymal transition. Int J Oncol 2018; 52:1455-1464. [PMID: 29568938 PMCID: PMC5873898 DOI: 10.3892/ijo.2018.4327] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/20/2018] [Indexed: 01/25/2023] Open
Abstract
Resistance to chemotherapy drugs remains a significant problem for the treatment of many types of cancer. Fascin-1 (FSCN-1) is an actin-bundling protein involved in the invasion and metastasis of a variety of tumors. However, its involvement in drug resistance in hepatocellular carcinoma (HCC) remains unclear. The present study aimed to investigate the function of FSCN-1 in HCC resistance to doxorubicin (DOX). FSCN-1 expression was increased in DOX-resistant HCC cell lines (SNU449 and SNU387) compared with DOX-sensitive cell lines (Huh7 and Hep3B). The resistance of HCC cells to DOX was decreased following FSCN-1 knockdown with small interfering RNA. FSCN-1 knockdown also significantly altered the expression of key markers of epithelial-mesenchymal transition (EMT). Notably, vimentin expression was reduced and epithelial-cadherin expression was increased. Furthermore, when EMT was suppressed through knockdown of Twist, an essential pathway of DOX-induced EMT, the viability of HCC cells following treatment with DOX was not affected by FSCN-1 expression. Furthermore, FSCN-1 knockdown eliminated hypoxia-induced doxorubicin resistance and EMT. The results of the present study indicated that FSCN-1 expression increased DOX resistance in HCC cells via the promotion of EMT, and this phenomenon was maintained in a hypoxic environment. FSCN-1 potentially represents a novel target to overcome resistance to DOX in HCC.
Collapse
|
9
|
Høgdall D, Lewinska M, Andersen JB. Desmoplastic Tumor Microenvironment and Immunotherapy in Cholangiocarcinoma. Trends Cancer 2018; 4:239-255. [PMID: 29506673 DOI: 10.1016/j.trecan.2018.01.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is a dismal disease which often is diagnosed at a late stage where the tumor is locally advanced, metastatic, and, as a result, is associated with low resectability. The heterogeneity of this cancer type is a major reason why the majority of patients fail to respond to therapy, and surgery remains their only curative option. Among patients who undergo surgical intervention, such tumors typically recur in 50% of cases within 1year. Thus, CCA is among the most aggressive and chemoresistant malignancies. CCA is characterized by marked tumor reactive stroma, a fibrogenic connective tissue which surrounds and infiltrates the tumor epithelium. This desmoplastic environment presents a clinical challenge, limiting drug delivery and supporting the growth of the tumor mass. In this review we attempt to highlight key pathways involved in cell to cell communication between the tumor epithelium and stroma, the immune components, and opportunities for novel strategies to improve patient outcome.
Collapse
Affiliation(s)
- Dan Høgdall
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark; Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; These authors contributed equally
| | - Monika Lewinska
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark; These authors contributed equally
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
10
|
Butsri S, Kukongviriyapan V, Senggunprai L, Kongpetch S, Zeekpudsa P, Prawan A. Downregulation of NAD(P)H:quinone oxidoreductase 1 inhibits proliferation, cell cycle and migration of cholangiocarcinoma cells. Oncol Lett 2017; 13:4540-4548. [PMID: 28599455 PMCID: PMC5453172 DOI: 10.3892/ol.2017.5951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/13/2017] [Indexed: 01/20/2023] Open
Abstract
We previously reported that upregulation of NAD(P)H:quinone oxidoreductase 1 (NQO1) in cholangiocarcinoma (CCA; a fatal bile duct cancer) was associated with poor prognosis. It was also demonstrated that the suppression of NQO1 was able to enhance the chemosensitivity of CCA cells. In the present study, in order to elucidate the biological role of NQO1 in CCA, the effects of small interfering RNA (siRNA)-mediated knockdown of NQO1 on cell proliferation, cell cycle and migration were determined in KKU-100 CCA cells, which notably expressed NQO1. The cell proliferation ability and cell cycle distribution were identified by clonogenic cell survival assay and flow cytometric analysis, respectively. Wound healing and Transwell migration assays were performed to evaluate cell migration. The molecules involved in cell proliferation and migration were determined by western blot analysis and reverse transcription-quantitative polymerase chain reaction analysis. The results demonstrated that NQO1 siRNA-mediated knockdown effectively impaired colony formation capacity, induced cell cycle arrest at the G1 phase and suppressed migration of KKU-100 cells. CCA cells transfected with NQO1 siRNA exhibited increased expression levels of p21 and decreased cyclin D1 protein expression levels. Furthermore, the ratio of matrix metalloproteinase 9/tissue inhibitors of metalloproteinases 1 (TIMP1) mRNA expression level was decreased in the NQO1-knockdown cells. Therefore, the present study provided evidence supporting the biological role of NQO1 in the regulation of cell proliferation, cell cycle and migration of CCA cells. Therefore, NQO1 may prove to be a potential molecular target to enhance CCA treatment.
Collapse
Affiliation(s)
- Siriwoot Butsri
- Department of Pharmacology, Faculty of Medicine, Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ponsilp Zeekpudsa
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
11
|
Liu S, Jiang B, Li H, He Z, Lv P, Peng C, Wang Y, Cheng W, Xu Z, Chen W, Liu Z, Zhang B, Shen S, Xiang S. Wip1 is associated with tumorigenity and metastasis through MMP-2 in human intrahepatic cholangiocarcinoma. Oncotarget 2017; 8:56672-56683. [PMID: 28915621 PMCID: PMC5593592 DOI: 10.18632/oncotarget.18074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
Wip1 has been shown to correlate with the metastasis/invasion of several tumors. This study was designed to investigate the clinical significance and biological function of Wip1 in intrahepatic cholangiocarcinoma (ICC). The expression of Wip1 was investigated in sixty human ICC biopsy samples by immunohistochemistry. Transient and stable knockdown of Wip1 in two human ICC cells (ICC-9810 and SSP25) were established using short hairpin RNA expression vector. Immunohistochemistry revealed that Wip1 was up-regulated in human ICC tissues (47/60, 78.3%). High levels of Wip1 in human ICC correlated with metastasis to the lymph metastasis (P=0.022). Genetic depletion of Wip1 in ICC cells resulted in significantly inhibited proliferation and invasion compared with controls. Most importantly, Wip1 down-regulation impaired tumor migration capacity of ICC cells in vivo. Subsequent investigations revealed that matrix metalloproteinase-2 (MMP-2) is an important target of Wip1. Consistently, in human ICC tissues, Wip1 level was positively correlated with MMP-2 expression. Taken together, our founding indicates that Wip1 may be a crucial regulator in the tumorigenicity and invasion of human ICC, Wip1 exerts its pro-invasion function at least in part through the MMP-2 signaling pathway, suggesting Wip1 as a potential therapeutic target for ICC.
Collapse
Affiliation(s)
- Sulai Liu
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Bo Jiang
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Hao Li
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Zili He
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Pin Lv
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Chuang Peng
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Yonggang Wang
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Wei Cheng
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Zhengquan Xu
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Wei Chen
- Department of Thoracic, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Zhengkai Liu
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Bao Zhang
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Shengqian Shen
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
12
|
Mao X, Duan X, Jiang B. Fascin Induces Epithelial-Mesenchymal Transition of Cholangiocarcinoma Cells by Regulating Wnt/β-Catenin Signaling. Med Sci Monit 2016; 22:3479-3485. [PMID: 27680563 PMCID: PMC5045920 DOI: 10.12659/msm.897258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Our preliminary study suggested that the expression of Fascin was increased in cholangiocarcinoma, which indicating poor prognosis The present study aimed to explore the roles and mechanisms of Fascin during the progression of cholangiocarcinoma. Material/Methods We evaluated the knockdown effect of endogenous Fascin expression by Short hairpin RNA (shRNA) in QBC939 cells. Cell proliferation was confirmed by MTS assay. Migration and invasion assay was used to examine the cell invasive ability. Tumorigenesis abilities in vivo were analyzed with a xenograft tumor model. Western blot analysis was used to test epithelial-mesenchymal transition (EMT) biomarkers and critical proteins in the Wnt/β-catenin signaling pathway. Results shRNA-mediated gene knockdown of Fascin significantly inhibited cell proliferation, invasion, and EMT, and shRNA-Fascin markedly inhibited the xenograft tumor volume. Silencing of Fascin up-regulated phosphorylation of β-catenin and decreased its nuclear localization. Additionally, knockdown of Fascin led to the upregulation of β-catenin and E-cadherin expression in plasma membrane fraction of QBC939 cells. Conclusions Our data indicate a key role of Fascin in cell proliferation, migration, and invasion in cholangiocarcinoma. Fascin promotes EMT of cholangiocarcinoma cells, in part through regulating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xianhai Mao
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China (mainland)
| | - Xiaohui Duan
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China (mainland)
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China (mainland)
| |
Collapse
|
13
|
Mohr CF, Gross C, Bros M, Reske-Kunz AB, Biesinger B, Thoma-Kress AK. Regulation of the tumor marker Fascin by the viral oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) depends on promoter activation and on a promoter-independent mechanism. Virology 2015; 485:481-91. [PMID: 26363219 DOI: 10.1016/j.virol.2015.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 06/24/2015] [Accepted: 08/24/2015] [Indexed: 01/16/2023]
Abstract
Adult T-cell leukemia/lymphoma is a highly infiltrative neoplasia of CD4(+) T-lymphocytes that occurs in about 5% of carriers infected with the deltaretrovirus human T-cell leukemia virus type 1 (HTLV-1). The viral oncoprotein Tax perturbs cellular signaling pathways leading to upregulation of host cell factors, amongst them the actin-bundling protein Fascin, an invasion marker of several types of cancer. However, transcriptional regulation of Fascin by Tax is poorly understood. In this study, we identified a triple mode of transcriptional induction of Fascin by Tax, which requires (1) NF-κB-dependent promoter activation, (2) a Tax-responsive region in the Fascin promoter, and (3) a promoter-independent mechanism sensitive to the Src family kinase inhibitor PP2. Thus, Tax regulates Fascin by a multitude of signals. Beyond, using Tax-expressing and virus-transformed lymphocytes as a model system, our study is the first to identify the invasion marker Fascin as a novel target of PP2, an inhibitor of metastasis.
Collapse
Affiliation(s)
- Caroline F Mohr
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Christine Gross
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.
| | - Angelika B Reske-Kunz
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.
| | - Brigitte Biesinger
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
14
|
Jones RP, Bird NTE, Smith RA, Palmer DH, Fenwick SW, Poston GJ, Malik HZ. Prognostic molecular markers in resected extrahepatic biliary tract cancers; a systematic review and meta-analysis of immunohistochemically detected biomarkers. Biomark Med 2015. [PMID: 26223884 DOI: 10.2217/bmm.15.48] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Better prognostic information for resected extrahepatic cholangiocarcinoma could guide treatment strategies and potentially improve outcome. This study performed a systematic review and meta-analysis to identify prognostic biomarkers for further investigation. METHODS Relevant literature was identified using Medline, EMBASE and Web of Science. Primary end point was overall survival assessed on univariate analysis. Log hazard ratio and variance were calculated and pooled using a random effects inverse variance approach. Hazard ratio and 95% confidence intervals were calculated. RESULTS Thirty-seven studies, including 2371 patients, met the inclusion criteria. Subsequently nine biomarkers predictive of OS were identified (HR, 95% CI): VEGF (2.32, 1.57-3.44), COX-2 (1.94, 1.01-3.71), GLUT-1 (2.09, 1.52-2.89), Cyclin D1 (1.96, 1.02-3.76), p16 (0.68, 0.47-0.98), p27 (0.48, 0.3-0.78), E-Cadherin (0.47, 0.35-0.63), Fascin (2.19, 1.35-3.55), and Ki-67 (1.69, 1.02-2.79). CONCLUSION Meta-analysis has identified a number of prognostic biomarkers for resected extrahepatic cholangiocarcinoma. These markers warrant further investigation as potential therapeutic targets and validation in a prospective setting.
Collapse
Affiliation(s)
- Robert P Jones
- School of Cancer Studies, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 7ZK, UK.,Liverpool Hepatobiliary Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
| | - Nicholas T E Bird
- Liverpool Hepatobiliary Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
| | - Richard A Smith
- Liverpool Hepatobiliary Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
| | - Daniel H Palmer
- School of Cancer Studies, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 7ZK, UK.,Liverpool Hepatobiliary Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
| | - Steven W Fenwick
- Liverpool Hepatobiliary Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
| | - Graeme J Poston
- Liverpool Hepatobiliary Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
| | - Hassan Z Malik
- Liverpool Hepatobiliary Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
| |
Collapse
|
15
|
Luo A, Yin Y, Li X, Xu H, Mei Q, Feng D. The clinical significance of FSCN1 in non-small cell lung cancer. Biomed Pharmacother 2015. [DOI: 10.1016/j.biopha.2015.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
16
|
Zhao H, Yang F, Zhao W, Zhang C, Liu J. Fascin Overexpression Promotes Cholangiocarcinoma RBE Cell Proliferation, Migration, and Invasion. Technol Cancer Res Treat 2015; 15:322-33. [PMID: 25882880 DOI: 10.1177/1533034615580696] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/28/2015] [Indexed: 01/04/2023] Open
Abstract
Fascin is overexpressed in various tumor tissues and is closely related to tumor metastasis and invasion. However, the role of fascin in cholangiocarcinoma RBE cells has not been clearly reported. This study aimed to establish a cholangiocarcinoma cell line with stable and high expression of fascin to observe the effect of fascin on cell proliferation, migration, and invasion. A fascin overexpression vector, pcDNA3.1-Fascin, was constructed and transfected into the human cholangiocarcinoma RBE cell line. The results of real-time polymerase chain reaction, Western blot, and immunofluorescence indicated that fascin was steadily and highly expressed in RBE cells. The results of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and colony formation assay indicated that upregulated fascin expression could enhance cholangiocarcinoma cell proliferation. The results of wound healing assay and transwell assay indicated that fascin could promote cholangiocarcinoma cell migration and invasion, and a further study found that the nuclear factor-κB signaling pathway was activated after upregulation of fascin, whereas E-cadherin expression in these cells was significantly decreased. Additionally, E-cadherin expression was significantly increased after inhibiting nuclear factor-κB activity using inhibitor or small interfering RNA, and E-cadherin expression was decreased by fascin overexpression after nuclear factor-κB inhibition, suggesting that nuclear factor-κB signaling pathway was not involved in the regulation of E-cadherin by fascin. In summary, the results of this study demonstrated that fascin effectively promoted cholangiocarcinoma RBE cell proliferation, migration, and invasion. This study provides evidence for fascin as a potential target in the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Haiying Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Fuquan Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenyan Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunjv Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingang Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Wiggers JK, Ruys AT, Groot Koerkamp B, Beuers U, ten Kate FJ, van Gulik TM. Differences in immunohistochemical biomarkers between intra- and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J Gastroenterol Hepatol 2014; 29:1582-94. [PMID: 24787096 DOI: 10.1111/jgh.12620] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Cholangiocarcinomas of different locations differ in growth patterns, symptoms, treatment response, and survival. Still, they are regarded in many studies as a uniform malignancy. Because intra- (iCCA) and extrahepatic (eCCA) cholangiocarcinoma display such differences, we performed a systematic review and meta-analysis to analyze differences in the immunohistochemical profile of these tumors. METHODS In February 2014, we searched the two main medical literature databases MEDLINE and EMBASE. We extracted risk ratios and 95% confidence intervals from the identified studies and performed random-effects model meta-analyses in accordance with PRISMA and REMARK guidelines. RESULTS A total of 54 cohort studies, including 4458 patients and studying 102 individual markers met the inclusion criteria. Of the 57 markers that were evaluated in more than 30 iCCA and eCCA patients, 18 showed a statistically significant difference in expression between iCCA and eCCA. Biomarkers expressed differently between iCCA and eCCA included potential targets of therapy: EGFR, c-erbB-2 and VEGF-A. Several markers showed no statistical difference but large 95% confidence intervals, suggesting insufficient sample size. CONCLUSIONS This systematic review shows differences in marker expression between iCCA and eCCA. Consequently, patients with iCCA and eCCA may benefit from different treatment strategies.
Collapse
Affiliation(s)
- Jimme K Wiggers
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Youssef NS, Hakim SA. Association of Fascin and matrix metalloproteinase-9 expression with poor prognostic parameters in breast carcinoma of Egyptian women. Diagn Pathol 2014; 9:136. [PMID: 24993803 PMCID: PMC4099107 DOI: 10.1186/1746-1596-9-136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/24/2014] [Indexed: 12/27/2022] Open
Abstract
Abstract Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1421167695121127.
Collapse
Affiliation(s)
- Nermeen Salah Youssef
- Department of Pathology, Faculty of Medicine, Ain Shams University, Abbasseya square, Cairo, Egypt.
| | | |
Collapse
|
19
|
Kanda Y, Kawaguchi T, Kuramitsu Y, Kitagawa T, Kobayashi T, Takahashi N, Tazawa H, Habelhah H, Hamada JI, Kobayashi M, Hirahata M, Onuma K, Osaki M, Nakamura K, Kitagawa T, Hosokawa M, Okada F. Fascin regulates chronic inflammation-related human colon carcinogenesis by inhibiting cell anoikis. Proteomics 2014; 14:1031-41. [PMID: 24574163 DOI: 10.1002/pmic.201300414] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 01/21/2014] [Accepted: 02/21/2014] [Indexed: 12/31/2022]
Abstract
By a proteomics-based approach, we identified an overexpression of fascin in colon adenocarcinoma cells (FPCKpP-3) that developed from nontumorigenic human colonic adenoma cells (FPCK-1-1) and were converted to tumorigenic by foreign-body-induced chronic inflammation in nude mice. Fascin overexpression was also observed in the tumors arising from rat intestinal epithelial cells (IEC 6) converted to tumorigenic in chronic inflammation which was induced in the same manner. Upregulation of fascin expression in FPCK-1-1 cells by transfection with sense fascin cDNA converted the cells tumorigenic, whereas antisense fascin-cDNA-transfected FPCKpP-3 cells reduced fascin expression and lost their tumor-forming ability in vivo. The tumorigenic potential by fascin expression was consistent with their ability to survive and grow in the three-dimensional multicellular spheroids. We found that resistance to anoikis (apoptotic cell death as a consequence of insufficient cell-to-substrate interactions), which is represented by the three-dimensional growth of solid tumors in vivo, was regulated by fascin expression through caspase-dependent apoptotic signals. From these, we demonstrate that fascin is a potent suppressor to caspase-associated anoikis and accelerator of the conversion of colonic adenoma cells into adenocarcinoma cells by chronic inflammation.
Collapse
Affiliation(s)
- Yusuke Kanda
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Van Audenhove I, Boucherie C, Pieters L, Zwaenepoel O, Vanloo B, Martens E, Verbrugge C, Hassanzadeh-Ghassabeh G, Vandekerckhove J, Cornelissen M, De Ganck A, Gettemans J. Stratifying fascin and cortactin function in invadopodium formation using inhibitory nanobodies and targeted subcellular delocalization. FASEB J 2014; 28:1805-18. [PMID: 24414419 DOI: 10.1096/fj.13-242537] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Invadopodia are actin-rich protrusions arising through the orchestrated regulation of precursor assembly, stabilization, and maturation, endowing cancer cells with invasive properties. Using nanobodies (antigen-binding domains of Camelid heavy-chain antibodies) as perturbators of intracellular functions and/or protein domains at the level of the endogenous protein, we examined the specific contribution of fascin and cortactin during invadopodium formation in MDA-MB-231 breast and PC-3 prostate cancer cells. A nanobody (K(d)~35 nM, 1:1 stoichiometry) that disrupts fascin F-actin bundling emphasizes the importance of stable actin bundles in invadopodium array organization and turnover, matrix degradation, and cancer cell invasion. Cortactin-SH3 dependent WIP recruitment toward the plasma membrane was specifically inhibited by a cortactin nanobody (K(d)~75 nM, 1:1 stoichiometry). This functional domain is shown to be important for formation of properly organized invadopodia, MMP-9 secretion, matrix degradation, and cancer cell invasion. Notably, using a subcellular delocalization strategy to trigger protein loss of function, we uncovered a fascin-bundling-independent role in MMP-9 secretion. Hence, we demonstrate that nanobodies enable high resolution protein function mapping in cells.
Collapse
Affiliation(s)
- Isabel Van Audenhove
- 1Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fascin expression predicts lymph node metastasis and worse survival in small intestinal carcinoma. Pathology 2014; 46:21-4. [DOI: 10.1097/pat.0000000000000024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma. PLoS One 2013; 8:e81347. [PMID: 24312291 PMCID: PMC3842939 DOI: 10.1371/journal.pone.0081347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/11/2013] [Indexed: 01/04/2023] Open
Abstract
Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9.
Collapse
|
23
|
MicroRNA-133a regulates the mRNAs of two invadopodia-related proteins, FSCN1 and MMP14, in esophageal cancer. Br J Cancer 2013; 110:189-98. [PMID: 24196787 PMCID: PMC3887287 DOI: 10.1038/bjc.2013.676] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/13/2013] [Accepted: 10/04/2013] [Indexed: 01/01/2023] Open
Abstract
Background: FSCN1 and matrix metalloproteinase 14 (MMP14) are both invadopodia-related proteins. We herein elucidate the tumourigenicity of these proteins and identify novel therapeutic agents in esophageal squamous cell carcinoma (ESCC). Methods: FSCN1 and MMP14 were evaluated by immunohistochemistry and quantitative PCR, and microRNA (miR)-133a was also evaluated by PCR in surgical ESCC specimens. The roles of FSCN1, MMP14 and miR-133a were established in ESCC cells. Results: The expression of FSCN1 or MMP14 was an independent poor prognostic factor according to a multivariate analysis of immunohistochemistry, and their co-expression correlated with the poorest overall survival (OS) out of all the examined factors. Additionally, their mRNAs significantly correlated and both inversely correlated with miR-133a in surgical specimens. Transfection of a miR-133a mimic decreased the mRNA and protein levels of both FSCN1 and MMP14 in ESCC cells. The knockdown of FSCN1 or MMP14 and transfection of a miR-133a mimic inhibited the proliferation and invasion of ESCC cells. Patients with a lower miR-133a expression have a significantly poorer OS than those with a higher expression. Conclusion: The combined expression of FSCN1 and MMP14 is associated with a poor prognosis, and miR-133a, which regulates their mRNAs, can serve as a strong tumour suppressor of ESCC.
Collapse
|
24
|
Teng Y, Xu S, Yue W, Ma L, Zhang L, Zhao X, Guo Y, Zhang C, Gu M, Wang Y. Serological investigation of the clinical significance of fascin in non-small-cell lung cancer. Lung Cancer 2013; 82:346-52. [DOI: 10.1016/j.lungcan.2013.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 01/02/2023]
|
25
|
Ruys AT, Groot Koerkamp B, Wiggers JK, Klümpen HJ, ten Kate FJ, van Gulik TM. Prognostic Biomarkers in Patients with Resected Cholangiocarcinoma: A Systematic Review and Meta-analysis. Ann Surg Oncol 2013; 21:487-500. [DOI: 10.1245/s10434-013-3286-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Indexed: 12/11/2022]
|
26
|
Shi RY, Yang XR, Shen QJ, Yang LX, Xu Y, Qiu SJ, Sun YF, Zhang X, Wang Z, Zhu K, Qin WX, Tang ZY, Fan J, Zhou J. High expression of Dickkopf-related protein 1 is related to lymphatic metastasis and indicates poor prognosis in intrahepatic cholangiocarcinoma patients after surgery. Cancer 2013; 119:993-1003. [PMID: 23132676 DOI: 10.1002/cncr.27788] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/07/2012] [Accepted: 07/17/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Dickkopf-related protein 1 (DKK1) has been reported involved in metastasis and invasion in several tumors. This study sought to investigate the prognostic value of DKK1 in intrahepatic cholangiocarcinoma (ICC) and its role in promoting ICC metastasis. METHODS Tissue microarrays of 138 ICC patient samples were employed to detect DKK1, vascular endothelial growth factor C (VEGF-C), and matrix metalloproteinase 9 (MMP9) expression using immunohistochemistry. The prognostic significances were assessed by Kaplan-Meier survival estimates. DKK1 expression was measured in an ICC cell line (HCCC-9810) and ICC tissues by immunofluorescence assay, quantitative real-time polymerase chain reaction, and western blot. Serum levels of DKK1 from 37 ICC patients were tested by enzyme-linked immunosorbent assay. The role of DKK1 in proliferation, migration, invasion, and gene expression regulation was assessed by DKK1 depletion using small interfering RNA. RESULTS Multivariate analyses revealed that DKK1 was an unfavorable predictor for overall survival and time to recurrence. The prognostic significance was retained in ICC patients with low recurrence risk (P < .05). DKK1 expression was elevated in an ICC cell line, tumor samples, and patient sera. High levels of DKK1 in ICC tissues correlated with elevated MMP9, VEGF-C, and metastasis of hepatic hilar lymph nodes. DKK1 depletion caused a decrease in cell migration and invasiveness, and down-regulation of MMP9 and VEGF-C expression. CONCLUSIONS DKK1 is a novel prognostic biomarker for ICC, and it enhances tumor cell invasion and promotes lymph node metastasis of ICC through the induction of MMP9 and VEGF-C. DKK1 may be a potential therapeutic target for ICC.
Collapse
Affiliation(s)
- Ruo-Yu Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang WC, Kuo CY, Tzang BS, Chen HM, Kao SH. IL-6 augmented motility of airway epithelial cell BEAS-2B via Akt/GSK-3β signaling pathway. J Cell Biochem 2013; 113:3567-75. [PMID: 22740511 DOI: 10.1002/jcb.24235] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell migration plays a pivotal role in airway repair and remodeling involved in respiratory diseases such as asthma. Interleukin-6 (IL-6) and fascin-1 are involved in cell migration upon stimulation; however, the roles of IL-6 and fascin-1 in migration of airway epithelial cell remain sketchy. The present study was aimed to investigate influence of IL-6 on cell motility with emphasis on the association with fascin-1. Wound healing assay and transmigration assay were performed to examine effect of IL-6 on migration and invasiveness of human bronchial epithelial cell BEAS-2B. Level of mRNA expression was determined by RT-PCR and quantitative real-time RT-PCR (Q-PCR). Involvement of kinase and transcription factor signaling in IL-6-induced cell migration was investigated using immunoblot and specific inhibitors. IL-6 significantly augmented cell migration and invasiveness in parallel with elevated fascin-1 expression. Further investigation showed that IL-6 dose-dependently upregulated fascin-1 expression in both mRNA and protein levels. We showed that IL-6 activated Akt and inhibited glycogen synthase kinase-3β (GSK-3β), highly associating with fascin-1 mRNA expression. Additionally, IL-6-induced migration was significantly diminished by phosphatidyl inositol 3-phosphate kinase (PI3K) inhibitor (wortamannin) and β-catenin inhibitor FH535. Moreover, LiCl and SB216763, inhibitors of GSK-3β augmented cell migration as well as fascin-1 mRNA expression. Conclusively, these findings reveal that IL-6-induced migration of BEAS-2B cell may be attributed to activation of Akt, inhibition of GSK-3β, and the associated increase of β-catenin and fascin-1 expression, indicating an important role of Akt/GSK-3β signaling and β-catenin/fascin-1 in IL-6 associated airway remodeling.
Collapse
Affiliation(s)
- Wei-Chun Wang
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Abstract
In order to metastasize away from the primary tumor site and migrate into adjacent tissues, cancer cells will stimulate cellular motility through the regulation of their cytoskeletal structures. Through the coordinated polymerization of actin filaments, these cells will control the geometry of distinct structures, namely lamella, lamellipodia and filopodia, as well as the more recently characterized invadopodia. Because actin binding proteins play fundamental functions in regulating the dynamics of actin polymerization, they have been at the forefront of cancer research. This review focuses on a subset of actin binding proteins involved in the regulation of these cellular structures and protrusions, and presents some general principles summarizing how these proteins may remodel the structure of actin. The main body of this review aims to provide new insights into how the expression of these actin binding proteins is regulated during carcinogenesis and highlights new mechanisms that may be initiated by the metastatic cells to induce aberrant expression of such proteins.
Collapse
Affiliation(s)
- Stephane R Gross
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
29
|
Zen Y, Ishikawa A, Ogiso S, Heaton N, Portmann B. Follicular cholangitis and pancreatitis - clinicopathological features and differential diagnosis of an under-recognized entity. Histopathology 2012; 60:261-9. [PMID: 22211284 DOI: 10.1111/j.1365-2559.2011.04078.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS Biliary and pancreatic ductal systems can be involved in several lymphoplasmacytic inflammatory conditions, including primary sclerosing cholangitis, immunoglobulin G (IgG) 4-related cholangitis and autoimmune pancreatitis. Here in we describe an unusual pancreatocholangitis whose features suggest a distinct disease entity. METHODS AND RESULTS The study group consists of five adult patients, three with predominantly hilar bile duct stricture and two with a bulky pancreatic head. Four patients were treated surgically for suspected malignancy and one patient underwent liver transplantation with a clinical diagnosis of primary sclerosing cholangitis. Histological examination revealed extensive lymphoplasmacytic inflammation centred on large biliary or pancreatic ducts. Many lymphoid follicles with germinal centres were noted around the affected ducts. Whipple specimens from two patients with a pancreatic head mass showed similar follicular inflammation histologically around bile ducts. In contrast to autoimmune pancreatitis, diffuse infiltration of IgG4(+) plasma cells, granulocytic epithelial lesions and obliterative phlebitis were not identified. The postoperative course was uneventful, without evidence of recurrence (follow-up period 17-65 months). CONCLUSIONS This study suggests that a disease entity which can be named follicular cholangitis and pancreatitis exists and may be under-recognized. The disease mainly affects the hilar bile ducts and pancreatic head in adults.
Collapse
Affiliation(s)
- Yoh Zen
- Institute of Liver Studies, King's College Hospital, London, UK.
| | | | | | | | | |
Collapse
|
30
|
Al-Alwan M, Olabi S, Ghebeh H, Barhoush E, Tulbah A, Al-Tweigeri T, Ajarim D, Adra C. Fascin is a key regulator of breast cancer invasion that acts via the modification of metastasis-associated molecules. PLoS One 2011; 6:e27339. [PMID: 22076152 PMCID: PMC3208623 DOI: 10.1371/journal.pone.0027339] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 10/13/2011] [Indexed: 12/21/2022] Open
Abstract
The actin-bundling protein, fascin, is a member of the cytoskeletal protein family that has restricted expression in specialized normal cells. However, many studies have reported the induction of this protein in various transformed cells including breast cancer cells. While the role of fascin in the regulation of breast cancer cell migration has been previously shown, the underlying molecular mechanism remained poorly defined. We have used variety of immunological and functional assays to study whether fascin regulates breast cancer metastasis-associated molecules. In this report we found a direct relationship between fascin expression in breast cancer patients and; metastasis and shorter disease-free survival. Most importantly, in vitro interference with fascin expression by loss or gain of function demonstrates a central role for this protein in regulating the cell morphology, migration and invasion potential. Our results show that fascin regulation of invasion is mediated via modulating several metastasis-associated genes. We show for the first time that fascin down-regulates the expression and nuclear translocation of a key metastasis suppressor protein known as breast cancer metastasis suppressor-1 (BRMS1). In addition, fascin up-regulates NF-kappa B activity, which is essential for metastasis. Importantly, fascin up-regulates other proteins that are known to be critical for the execution of metastasis such as urokinase-type plasminogen activator (uPA) and the matrix metalloproteases (MMP)-2 and MMP-9. This study demonstrates that fascin expression in breast cancer cells establishes a gene expression profile consistent with metastatic tumors and offers a potential therapeutic intervention in metastatic breast cancer treatment through fascin targeting.
Collapse
Affiliation(s)
- Monther Al-Alwan
- Stem Cell Therapy Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sato J, Fujiwara M, Kawakami T, Sumiishi A, Sakata S, Sakamoto A, Kurata A. Fascin expression in dendritic cells and tumor epithelium in thymoma and thymic carcinoma. Oncol Lett 2011; 2:1025-1032. [PMID: 22848263 DOI: 10.3892/ol.2011.383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 08/05/2011] [Indexed: 11/06/2022] Open
Abstract
The majority of thymomas are histologically characterized by tumor-infiltrating lymphocytes. Mature dendritic cells (DCs) are known to assemble lymphocytes through antigen presentation to T lymphocytes. Fascin, a 55-kDa actin-binding protein and a known marker for mature DCs, regulates filaments necessary for the formation of filopodia in cell migration. Moreover, fascin expression in various epithelial neoplasms has recently been reported to be associated with invasion of tumor cells and clinically aggressive manifestations. In the present study, we investigated fascin expression immunohistochemically in tissues of thymomas and thymic carcinomas surgically resected at our institute. A total of 34 thymomas and 5 thymic carcinomas were included. The amount and immunohistochemical intensity of both fascin(+) DCs and tumor epithelium were counted and assessed, and the clinicopathological data were also scored. Statistical analyses revealed that the amount of fascin(+) DCs with the formation of clusters was associated with lymphocyte-rich variants (p=0.002) and cortical differentiation (p=0.037) of thymoma with complication from myasthenia gravis (p=0.002). The quantity of fascin(+) epithelium was associated with a strong intensity of fascin in infiltrating DCs (p=0.002) with the formation of clusters (p=0.002) and favorable prognosis, as assessed by the Masaoka staging system (p=0.001). The amount of infiltrating DCs (p=0.024) and fascin(+) epithelium were lower in thymic carcinoma. It was concluded that fascin(+) epithelium may induce tumor immunity through the surveillance activity of fascin(+) DCs in thymic neoplasms, thus improving prognosis.
Collapse
|
32
|
Hayashi Y, Osanai M, Lee GH. Fascin-1 expression correlates with repression of E-cadherin expression in hepatocellular carcinoma cells and augments their invasiveness in combination with matrix metalloproteinases. Cancer Sci 2011; 102:1228-35. [PMID: 21323792 PMCID: PMC11158138 DOI: 10.1111/j.1349-7006.2011.01910.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/03/2011] [Accepted: 02/10/2011] [Indexed: 12/01/2022] Open
Abstract
Expression of fascin-1, an actin bundling protein, is a poor prognostic factor in hepatocellular carcinoma (HCC). However, its biological role in HCC cells remains unclear. Using human HCC tissues and cell lines HLE, Hep3B, and Huh7, we investigated whether fascin-1 is involved in epithelial-mesenchymal transition (EMT) and increases invasiveness, thus serving as a promoter of cancer aggressiveness. Immunohistochemical analysis revealed that fascin-1 expression in 19% of primary HCCs was associated with repression of E-cadherin expression, indicating EMT. In vitro, HLE cells showed high fascin-1 expression, loss of E-cadherin, and efficient invasion through Matrigel. Knockdown of fascin-1 significantly repressed invasiveness of the HLE cells and slightly induced E-cadherin expression. In contrast, Huh7 cells had low fascin-1 levels, high E-cadherin expression, and were expectedly non-invasive. However, forced overexpression of fascin-1 conferred only modest invasiveness without E-cadherin repression, indicating that fascin-1 alone cannot effectively stimulate invasiveness or EMT. Furthermore, Hep3B cells were non-invasive despite high fascin-1 expression. Nevertheless, fascin-1 overexpression dramatically increased the migratory potential of Huh7 cells. We then evaluated matrix metalloproteinases (MMPs) 2 and 9 from the HCC cell lines. Significant MMP secretion was only found in HLE cells. Although MMP levels were not elevated in fascin-1-overexpressing Huh7 cells, their invasiveness was remarkably augmented by coculture with HLE cells, and was suppressed in the presence of an MMP inhibitor. In conclusion, we propose that fascin-1 primarily acts as a migration factor associated with EMT in HCC cells and facilitates their invasiveness in combination with MMPs.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Department of Pathology, Kochi University School of Medicine, Kohasu, Oko-cho, Nankoku, Japan
| | | | | |
Collapse
|
33
|
Nakanuma Y, Sato Y, Harada K, Sasaki M, Xu J, Ikeda H. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J Hepatol 2010; 2:419-27. [PMID: 21191517 PMCID: PMC3010511 DOI: 10.4254/wjh.v2.i12.419] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/28/2010] [Accepted: 11/04/2010] [Indexed: 02/06/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) arises from the lining epithelium and peribiliary glands of the intrahepatic biliary tree and shows variable cholangiocytic differentiation. To date, ICC was largely classified into adenocarcinoma and rare variants. Herein, we propose to subclassify the former, based on recent progress in the study of ICC including the gross classification and hepatic progenitor/stem cells and on the pathological similarities between biliary and pancreatic neoplasms. That is, ICC is classifiable into the conventional (bile duct) type, the bile ductular type, the intraductal neoplasm type and rare variants. The conventional type is further divided into the small duct type (peripheral type) and large bile duct type (perihilar type). The former is a tubular or micropapillary adenocarcinoma while the latter involves the intrahepatic large bile duct. Bile ductular type resembles proliferated bile ductules and shows a replacing growth of the hepatic parenchyma. Hepatic progenitor cell or stem cell phenotypes such as neural cell adhesion molecule expression are frequently expressed in the bile ductular type. Intraductal type includes papillary and tubular neoplasms of the bile duct (IPNBs and ITNBs) and a superficial spreading type. IPNB and ITNB show a spectrum from a preneoplastic borderline lesion to carcinoma and may have pancreatic counterparts. At invasive sites, IPNB is associated with the conventional bile duct ICC and mucinous carcinoma. Biliary mucinous cystic neoplasm with ovarian-like stroma in its wall is different from IPNB, particularly IPNB showing cystic dilatation of the affected ducts. Rare variants of ICC include squamous/adenosquamous cell carcinoma, mucinous/signet ring cell carcinoma, clear cell type, undifferentiated type, neuroendocrine carcinoma and so on. This classification of ICC may open up a new field of research of ICC and contribute to the clinical approach to ICC.
Collapse
Affiliation(s)
- Yasuni Nakanuma
- Yasuni Nakanuma, Yasunori Sato, Kenichi Harada, Mokoto Sasaski, Jing Xu, Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Han H, Du B, Pan X, Liu J, Zhao Q, Lian X, Qian M, Liu M. CADPE Inhibits PMA-Stimulated Gastric Carcinoma Cell Invasion and Matrix Metalloproteinase-9 Expression by FAK/MEK/ERK–Mediated AP-1 Activation. Mol Cancer Res 2010; 8:1477-88. [DOI: 10.1158/1541-7786.mcr-10-0114] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Fascin: a key regulator of cytoskeletal dynamics. Int J Biochem Cell Biol 2010; 42:1614-7. [PMID: 20601080 DOI: 10.1016/j.biocel.2010.06.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 01/02/2023]
Abstract
Fascin is a 55 kDa actin-bundling protein and is an important regulatory element in the maintenance and stability of parallel bundles of filamentous actin in a variety of cellular contexts. Regulation of fascin function is under the control of a number of different signalling pathways that act in concert to spatially regulate the actin-binding properties of this protein. The ability of fascin to bind and bundle actin plays a central role in the regulation of cell adhesion, migration and invasion. Fascin has received considerable attention recently as an emerging key prognostic marker of metastatic disease. Studies are now underway to better understand the precise regulation of this protein in the context of tumour progression and to investigate fascin as a potential therapeutic target for a number of forms of cancer.
Collapse
|