1
|
Hurt SC, Vera MU, Le SQ, Kan SH, Bui Q, Dickson PI. Combining angiotensin receptor blockade and enzyme replacement therapy for vascular disease in mucopolysaccharidosis type I. Mol Genet Metab Rep 2024; 38:101036. [PMID: 38173710 PMCID: PMC10761904 DOI: 10.1016/j.ymgmr.2023.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Vascular involvement in the genetic disorder mucopolysaccharidosis type I (MPS I) has features of atherosclerotic disease near branch points of arterial vasculature, such as intimal thickening with disruption of the internal elastic lamina, and proliferation of macrophages and myofibroblasts. Inflammatory pathways are implicated in the pathogenesis of vascular disease in MPS I animal models, evidenced by cytokines like CD18 and TGF-β within arterial plaques. The angiotensin II-mediated inflammatory pathway is well studied in human atherosclerotic coronary artery disease. Recent work indicates treatment with the angiotensin receptor blocker losartan may improve vascular MPS I disease in mouse models. Here, we combined losartan with the standard therapy for MPS I, enzyme replacement therapy (ERT), to measure effects on cytokines in serum and aortic vasculature. Each treatment group (losartan, ERT, and their combination) equally normalized levels of cytokines that were largely differential between normal and mutant mice. Some cytokines, notably CD30 ligand, Eotaxin-2, LIX, IL-13, IL-15, GM-CSF, MCP-5, MIG, and CCL3 showed elevations in mice treated with ERT above normal or mutant levels; these elevations were reduced or absent in mice that received losartan or combination therapy. The observations suggest that losartan may impact inflammatory cascades due to MPS I and may also blunt inflammation in combination with ERT.
Collapse
Affiliation(s)
- Sarah C. Hurt
- Washington University School of Medicine in St. Louis, MO, USA
| | - Moin U. Vera
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Southern California Permanente Medical Group, Los Angeles, CA, USA
| | - Steven Q. Le
- Washington University School of Medicine in St. Louis, MO, USA
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Shih-hsin Kan
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- CHOC Research Institute, Orange, CA, USA
| | - Quang Bui
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Patricia I. Dickson
- Washington University School of Medicine in St. Louis, MO, USA
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
2
|
Enokizono M, Kurokawa R, Yagishita A, Nakata Y, Koyasu S, Nihira H, Kuwashima S, Aida N, Kono T, Mori H. Clinical and neuroimaging review of monogenic cerebral small vessel disease from the prenatal to adolescent developmental stage. Jpn J Radiol 2024; 42:109-125. [PMID: 37847489 PMCID: PMC10810974 DOI: 10.1007/s11604-023-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Cerebral small vessel disease (cSVD) refers to a group of pathological processes with various etiologies affecting the small vessels of the brain. Most cases are sporadic, with age-related and hypertension-related sSVD and cerebral amyloid angiopathy being the most prevalent forms. Monogenic cSVD accounts for up to 5% of causes of stroke. Several causative genes have been identified. Sporadic cSVD has been widely studied whereas monogenic cSVD is still poorly characterized and understood. The majority of cases of both the sporadic and monogenic types, including cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), typically have their onset in adulthood. Types of cSVD with infantile and childhood onset are rare, and their diagnosis is often challenging. The present review discusses the clinical and neuroimaging findings of monogenic cSVD from the prenatal to adolescent period of development. Early diagnosis is crucial to enabling timely interventions and family counseling.
Collapse
Affiliation(s)
- Mikako Enokizono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan.
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akira Yagishita
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Sho Koyasu
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shigeko Kuwashima
- Department of Radiology, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Noriko Aida
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Tatsuo Kono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Harushi Mori
- Department of Radiology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
3
|
Bhat OM, Li PL. Lysosome Function in Cardiovascular Diseases. Cell Physiol Biochem 2021; 55:277-300. [PMID: 34019755 PMCID: PMC8743031 DOI: 10.33594/000000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
The lysosome is a single ubiquitous membrane-enclosed intracellular organelle with an acidic pH present in all eukaryotic cells, which contains large numbers of hydrolytic enzymes with their maximal enzymatic activity at a low pH (pH ≤ 5) such as proteases, nucleases, and phosphatases that are able to degrade extracellular and intracellular components. It is well known that lysosomes act as a center for degradation and recycling of large numbers of macromolecules delivered by endocytosis, phagocytosis, and autophagy. Lysosomes are recognized as key organelles for cellular clearance and are involved in many cellular processes and maintain cellular homeostasis. Recently, it has been shown that lysosome function and its related pathways are of particular importance in vascular regulation and related diseases. In this review, we highlighted studies that have improved our understanding of the connection between lysosome function and vascular physiological and pathophysiological activities in arterial smooth muscle cells (SMCs) and endothelial cells (ECs). Sphingolipids-metabolizingenzymes in lysosomes play critical roles in intracellular signaling events that influence cellular behavior and function in SMCs and ECs. The focus of this review will be to define the mechanism by which the lysosome contributes to cardiovascular regulation and diseases. It is believed that exploring the role of lysosomal function and its sphingolipid metabolism in the initiation and progression of vascular disease and regulation may provide novel insights into the understanding of vascular pathobiology and helps develop more effective therapeutic strategies for vascular diseases.
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA,
| |
Collapse
|
4
|
Pathological Study of Facial Eczema (Pithomycotoxicosis) in Sheep. Animals (Basel) 2021; 11:ani11041070. [PMID: 33918904 PMCID: PMC8070102 DOI: 10.3390/ani11041070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Facial eczema (FE) is a secondary photosensitization disease of farm ruminants caused by the sporidesmin A, present in the spores of the saprophytic fungus Pithomyces chartarum. This study communicates an outbreak of ovine FE in Asturias (Spain) and characterizes the local immune response that may contribute to liver damage promoting cholestasis and progression towards fibrosis and cirrhosis. Animals showed clinical signs of photosensitivity and lower gain of weight, loss of wool and crusting in the head for at least 6 months after the FE outbreak. Some sheep presented acute lesions characterized by subcutaneous edema in the head, cholestasis and nephrosis with macrophages and neutrophils present in areas of canalicular cholestasis. In chronic cases, alopecia and crusting, hepatic atrophy with regenerative nodules, fibrosis and gallstones were seen. The surviving parenchyma persisted with a jigsaw pattern characteristic of biliary cirrhosis. Concentric and eccentric myointimal proliferation was found in arteries near damaged bile ducts, where macrophages and lymphocytes were also observed. Abstract Facial eczema (FE) is a secondary photosensitization disease of farm ruminants caused by the sporidesmin A, produced in the spores of the saprophytic fungus Pithomyces chartarum. This study communicates an outbreak of ovine FE in Asturias (Spain) and characterizes the serum biochemical pattern and the immune response that may contribute to liver damage, favoring cholestasis and the progression to fibrosis and cirrhosis. Animals showed clinical signs of photosensitivity, with decrease of daily weight gain and loss of wool and crusting for at least 6 months after the FE outbreak. Serum activity of γ-glutamyltransferase and alkaline phosphatase were significantly increased in sheep with skin lesions. In the acute phase, edematous skin lesions in the head, hepatocytic and canalicular cholestasis in centrilobular regions, presence of neutrophils in small clumps surrounding deposits of bile pigment, ductular proliferation, as well as cholemic nephrosis, were observed. Macrophages, stained positively for MAC387, were found in areas of canalicular cholestasis. In the chronic phase, areas of alopecia and crusting were seen in the head, and the liver was atrophic with large regeneration nodules and gallstones. Fibrosis around dilated bile ducts, “typical” and “atypical” ductular reaction and an inflammatory infiltrate composed of lymphocytes and pigmented macrophages, with iron deposits and lipofuscin, were found. The surviving parenchyma persisted with a jigsaw pattern characteristic of biliary cirrhosis. Concentric and eccentric myointimal proliferation was found in arteries near damaged bile ducts. In cirrhotic livers, stellated cells, ductular reaction, ectatic bile ducts and presence of M2 macrophages and lymphocytes, were observed in areas of bile ductular reaction.
Collapse
|
5
|
Rintz E, Gaffke L, Podlacha M, Brokowska J, Cyske Z, Węgrzyn G, Pierzynowska K. Transcriptomic Changes Related to Cellular Processes with Particular Emphasis on Cell Activation in Lysosomal Storage Diseases from the Group of Mucopolysaccharidoses. Int J Mol Sci 2020; 21:ijms21093194. [PMID: 32366041 PMCID: PMC7246638 DOI: 10.3390/ijms21093194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Although mucopolysaccharidoses (MPS), inherited metabolic diseases from the group of lysosomal storage diseases (LSD), are monogenic disorders, recent studies indicated that their molecular mechanisms are complicated. Storage of glycosaminoglycans (GAGs), arising from a deficiency in one of the enzymes involved in the degradation of these compounds, is the primary cause of each MPS type. However, dysfunctions of various cellular organelles and disturbance of cellular processes have been reported which contribute considerably to pathomechanisms of the disease. Here, we present a complex transcriptomic analysis in which all types and subtypes of MPS were investigated, with special emphasis on genes related to cell activation processes. Complex changes in expression of these genes were found in fibroblasts of all MPS types, with number of transcripts revealing higher or lower levels (relative to control fibroblasts) between 19 and over 50, depending on MPS type. Genes in which expression was significantly affected in most MPS types code for proteins involved in following processes, classified according to Gene Ontology knowledge database: cell activation, cell growth, cell recognition, and cell division. Levels of some transcripts (including CD9, CLU, MME and others) were especially significantly changed (over five times relative to controls). Our results are discussed in the light of molecular pathomechanisms of MPS, indicating that secondary and/or tertiary changes, relative to GAG storage, might significantly modulate cellular dysfunctions and contribute to molecular mechanisms of the disease. This may influence the efficacy of various therapies and suggests why various treatments are not fully effective in improving the complex symptoms of MPS.
Collapse
|
6
|
Story BD, Miller ME, Bradbury AM, Million ED, Duan D, Taghian T, Faissler D, Fernau D, Beecy SJ, Gray-Edwards HL. Canine Models of Inherited Musculoskeletal and Neurodegenerative Diseases. Front Vet Sci 2020; 7:80. [PMID: 32219101 PMCID: PMC7078110 DOI: 10.3389/fvets.2020.00080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Mouse models of human disease remain the bread and butter of modern biology and therapeutic discovery. Nonetheless, more often than not mouse models do not reproduce the pathophysiology of the human conditions they are designed to mimic. Naturally occurring large animal models have predominantly been found in companion animals or livestock because of their emotional or economic value to modern society and, unlike mice, often recapitulate the human disease state. In particular, numerous models have been discovered in dogs and have a fundamental role in bridging proof of concept studies in mice to human clinical trials. The present article is a review that highlights current canine models of human diseases, including Alzheimer's disease, degenerative myelopathy, neuronal ceroid lipofuscinosis, globoid cell leukodystrophy, Duchenne muscular dystrophy, mucopolysaccharidosis, and fucosidosis. The goal of the review is to discuss canine and human neurodegenerative pathophysiologic similarities, introduce the animal models, and shed light on the ability of canine models to facilitate current and future treatment trials.
Collapse
Affiliation(s)
- Brett D. Story
- Auburn University College of Veterinary Medicine, Auburn, AL, United States
- University of Florida College of Veterinary Medicine, Gainesville, FL, United States
| | - Matthew E. Miller
- Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Allison M. Bradbury
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily D. Million
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dominik Faissler
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States
| | - Deborah Fernau
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sidney J. Beecy
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, United States
| | - Heather L. Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
7
|
Jäger MA, De La Torre C, Arnold C, Kohlhaas J, Kappert L, Hecker M, Feldner A, Korff T. Assembly of vascular smooth muscle cells in 3D aggregates provokes cellular quiescence. Exp Cell Res 2019; 388:111782. [PMID: 31857114 DOI: 10.1016/j.yexcr.2019.111782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 12/15/2019] [Indexed: 11/25/2022]
Abstract
Three-dimensional (3D) cell culture conditions are often used to promote the differentiation of human cells as a prerequisite for the study of organotypic functions and environment-specific cellular responses. Here, we assessed the molecular and functional phenotype of vascular smooth muscle cells (VSMCs) cultured as 3D multilayered aggregates. Microarray studies revealed that these conditions decrease the expression of genes associated with cell cycle control and DNA replication and cease proliferation of VSMCs. This was accompanied by a lower activity level of the mitogen-activated protein kinase ERK1/2 and an increase in autocrine TGFβ/SMAD2/3-mediated signaling - a determinant of VSMC differentiation. However, inhibition of TGFβ signaling did not affect markers of VSMC differentiation such as smooth muscle myosin heavy chain (MYH11) but stimulated pro-inflammatory NFκB-associated gene expression in the first place while decreasing the protein level of NFKB1/p105 and NFKB2/p100 - inhibitors of NFκB transcriptional activity. Moreover, loss of TGFβ signaling also revived VSMC proliferation in 3D aggregates. In conclusion, assembly of VSMCs in multilayered aggregates alters their transcriptome to translate the cellular organization into a resting phenotype. In this context, TGFβ signaling appears to attenuate cell growth and NFκB-controlled gene expression representing important aspects of VSMC quiescence.
Collapse
Affiliation(s)
- Marius Andreas Jäger
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Carolina De La Torre
- Center of Medical Research, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Caroline Arnold
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Johanna Kohlhaas
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Lena Kappert
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Anja Feldner
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Germany.
| |
Collapse
|
8
|
Wang RY, Rudser KD, Dengel DR, Braunlin EA, Steinberger J, Jacobs DR, Sinaiko AR, Kelly AS. The Carotid Intima-Media Thickness and Arterial Stiffness of Pediatric Mucopolysaccharidosis Patients Are Increased Compared to Both Pediatric and Adult Controls. Int J Mol Sci 2017; 18:ijms18030637. [PMID: 28294991 PMCID: PMC5372650 DOI: 10.3390/ijms18030637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/25/2017] [Accepted: 03/08/2017] [Indexed: 12/12/2022] Open
Abstract
Treatments for mucopolysaccharidoses (MPSs) have increased longevity, but cardiovascular disease causes mortality in a significant percentage of survivors. Markers must be developed to predict MPS cardiac risk and monitor efficacy of investigational therapies.MPS patients underwent carotid artery ultrasonography from which carotid intima-media thickness (cIMT) and three measures of arterial stiffness were calculated: carotid artery distensibility (cCSD), compliance (cCSC), and incremental elastic modulus (cIEM). MPS carotid measurements were compared to corresponding data from pediatric and adult healthy cohorts. 33 MPS patients (17 MPS I, 9 MPS II, 4 MPS IIIA, and 3 MPS VI; mean age 12.5 ± 4.7 years), 560 pediatric controls (age 13.1 ± 4.0 years), and 554 adult controls (age 39.2 ± 2.2 years) were studied. Age and sex-adjusted aggregate MPS cIMT (0.56 ± 0.05 mm) was significantly greater than both pediatric (+0.12 mm; 95% CI +0.10 to +0.14 mm) and adult (+0.10 mm; 95% CI +0.06 to +0.14 mm) control cohorts; similar findings were observed for all MPS subtypes. Mean MPS cIMT approximated the 80th percentile of the adult cohort cIMT. MPS patients also demonstrated significantly increased adjusted arterial stiffness measurements, evidenced by reduced cCSD, cCSC, and increased cIEM, compared to pediatric and adult control cohorts. Regardless of treatment, MPS patients demonstrate increased cIMT and arterial stiffness compared to healthy pediatric and adult controls. These data suggest that relatively young MPS patients demonstrate a “structural vascular age” of at least 40 years old.
Collapse
Affiliation(s)
- Raymond Y Wang
- Division of Metabolic Disorders, CHOC Children's Specialists, Orange, CA 92868, USA.
- Department of Pediatrics, University of California-Irvine School of Medicine, Orange, CA 92868, USA.
| | - Kyle D Rudser
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA.
| | - Donald R Dengel
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Elizabeth A Braunlin
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Julia Steinberger
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - David R Jacobs
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA.
| | - Alan R Sinaiko
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Aaron S Kelly
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Pentosan Polysulfate: Oral Versus Subcutaneous Injection in Mucopolysaccharidosis Type I Dogs. PLoS One 2016; 11:e0153136. [PMID: 27064989 PMCID: PMC4827827 DOI: 10.1371/journal.pone.0153136] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/08/2016] [Indexed: 12/04/2022] Open
Abstract
Background We previously demonstrated the therapeutic benefits of pentosan polysulfate (PPS) in a rat model of mucopolysaccharidosis (MPS) type VI. Reduction of inflammation, reduction of glycosaminoglycan (GAG) storage, and improvement in the skeletal phenotype were shown. Herein, we evaluate the long-term safety and therapeutic effects of PPS in a large animal model of a different MPS type, MPS I dogs. We focused on the arterial phenotype since this is one of the most consistent and clinically significant features of the model. Methodology/Principal Findings MPS I dogs were treated with daily oral or biweekly subcutaneous (subQ) PPS at a human equivalent dose of 1.6 mg/kg for 17 and 12 months, respectively. Safety parameters were assessed at 6 months and at the end of the study. Following treatment, cytokine and GAG levels were determined in fluids and tissues. Assessments of the aorta and carotid arteries also were performed. No drug-related increases in liver enzymes, coagulation factors, or other adverse effects were observed. Significantly reduced IL-8 and TNF-alpha were found in urine and cerebrospinal fluid (CSF). GAG reduction was observed in urine and tissues. Increases in the luminal openings and reduction of the intimal media thickening occurred in the carotids and aortas of PPS-treated animals, along with a reduction of storage vacuoles. These results were correlated with a reduction of GAG storage, reduction of clusterin 1 staining, and improved elastin integrity. No significant changes in the spines of the treated animals were observed. Conclusions PPS treatment led to reductions of pro-inflammatory cytokines and GAG storage in urine and tissues of MPS I dogs, which were most evident after subQ administration. SubQ administration also led to significant cytokine reductions in the CSF. Both treatment groups exhibited markedly reduced carotid and aortic inflammation, increased vessel integrity, and improved histopathology. We conclude that PPS may be a safe and useful therapy for MPS I, either as an adjunct or as a stand-alone treatment that reduces inflammation and GAG storage.
Collapse
|
10
|
Polgreen LE, Vehe RK, Rudser K, Kunin-Batson A, Utz JJ, Dickson P, Shapiro E, Whitley CB. Elevated TNF-α is associated with pain and physical disability in mucopolysaccharidosis types I, II, and VI. Mol Genet Metab 2016; 117:427-30. [PMID: 26873528 PMCID: PMC4851859 DOI: 10.1016/j.ymgme.2016.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Children and adults with the lysosomal storage diseases mucopolysaccharidosis (MPS) types I, II and VI live shortened lives permeated by chronic pain and physical disability. Current treatments do not alleviate these problems. Thus there is a critical need to understand the mechanism of chronic pain and disability in MPS in order to improve the way we treat patients. A potential target is inflammation. HYPOTHESIS We hypothesized that excessive inflammation mediated by the tumor necrosis factor-α (TNF-α) inflammatory pathway is the fundamental cause of much of the chronic pain and physical disability in MPS. METHODS 55 patients with MPS I, II, or VI were enrolled over the course of a 5-year prospective longitudinal natural history study and evaluated annually for 2-5years. 51 healthy controls were enrolled in a separate cross-sectional study of bone and energy metabolism. TNF-α was measured by ELISA. Pain and physical disability were measured by the Children's Health Questionnaire - Parent Form 50 (CHQ-PF50). Differences in log-transformed TNF-α levels and associations with CHQ domains were evaluated using a linear mixed effects model with random intercept. RESULTS TNF-α levels were measured in 48 MPS (age: 5-17years; 35% female) and 51 controls (age: 8-17years; 53% female). Among MPS, 22 (46%) were treated with hematopoietic cell transplantation (HCT) alone, 24 (50%) with enzyme replacement therapy (ERT) alone, and 2 (4%) with both HCT and ERT. TNF-α levels are higher in MPS compared to healthy controls (p<0.001). Higher TNF-α levels are associated with increased pain and decreased physical function, social limitations due to physical health, and physical summary score (all p<0.05). TNF-α levels were not significantly associated with the general health score. TNF-α levels did not change significantly over time in MPS. CONCLUSIONS Higher TNF-α levels are implicated in the pain and decreased physical function present in individuals with MPS despite treatment with ERT and/or HCT, suggesting that TNF-a inhibition could potentially be a useful adjunctive therapy. Further investigation into the role of TNF-α inhibition in MPS to decrease pain and improve physical function is indicated.
Collapse
Affiliation(s)
- Lynda E Polgreen
- David Geffen School of Medicine - UCLA, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, United States.
| | - Richard K Vehe
- University of Minnesota, 2450 Riverside Ave, Minneapolis, MN 55454, United States
| | - Kyle Rudser
- University of Minnesota, 717 Delaware Street SE, Minneapolis, MN 55414, United States
| | - Alicia Kunin-Batson
- University of Minnesota, 2450 Riverside Ave, Minneapolis, MN 55454, United States; HealthPartners Institute for Education and Research, 3311 Old Shakopee Road E. Minneapolis, MN 55425, United States
| | - Jeanine Jarnes Utz
- University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55414, United States
| | - Patricia Dickson
- David Geffen School of Medicine - UCLA, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, United States
| | - Elsa Shapiro
- University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55414, United States
| | - Chester B Whitley
- University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55414, United States
| |
Collapse
|
11
|
Immune-Mediated Inflammation May Contribute to the Pathogenesis of Cardiovascular Disease in Mucopolysaccharidosis Type I. PLoS One 2016; 11:e0150850. [PMID: 26986213 PMCID: PMC4795702 DOI: 10.1371/journal.pone.0150850] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/19/2016] [Indexed: 01/12/2023] Open
Abstract
Background Cardiovascular disease, a progressive manifestation of α-L-iduronidase deficiency or mucopolysaccharidosis type I, continues in patients both untreated and treated with hematopoietic stem cell transplantation or intravenous enzyme replacement. Few studies have examined the effects of α-L-iduronidase deficiency and subsequent glycosaminoglycan storage upon arterial gene expression to understand the pathogenesis of cardiovascular disease. Methods Gene expression in carotid artery, ascending, and descending aortas from four non-tolerized, non-enzyme treated 19 month-old mucopolysaccharidosis type I dogs was compared with expression in corresponding vascular segments from three normal, age-matched dogs. Data were analyzed using R and whole genome network correlation analysis, a bias-free method of categorizing expression level and significance into discrete modules. Genes were further categorized based on module-trait relationships. Expression of clusterin, a protein implicated in other etiologies of cardiovascular disease, was assessed in canine and murine mucopolysaccharidosis type I aortas via Western blot and in situ immunohistochemistry. Results Gene families with more than two-fold, significant increased expression involved lysosomal function, proteasome function, and immune regulation. Significantly downregulated genes were related to cellular adhesion, cytoskeletal elements, and calcium regulation. Clusterin gene overexpression (9-fold) and protein overexpression (1.3 to 1.62-fold) was confirmed and located specifically in arterial plaques of mucopolysaccharidosis-affected dogs and mice. Conclusions Overexpression of lysosomal and proteasomal-related genes are expected responses to cellular stress induced by lysosomal storage in mucopolysaccharidosis type I. Upregulation of immunity-related genes implicates the potential involvement of glycosaminoglycan-induced inflammation in the pathogenesis of mucopolysaccharidosis-related arterial disease, for which clusterin represents a potential biomarker.
Collapse
|
12
|
Pasqualim G, Baldo G, de Carvalho TG, Tavares AMV, Giugliani R, Matte U. Effects of enzyme replacement therapy started late in a murine model of mucopolysaccharidosis type I. PLoS One 2015; 10:e0117271. [PMID: 25646802 PMCID: PMC4315431 DOI: 10.1371/journal.pone.0117271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/22/2014] [Indexed: 11/24/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a progressive disorder caused by deficiency of α-L-iduronidase (IDUA), which leads to storage of heparan and dermatan sulphate. It is suggested that early enzyme replacement therapy (ERT) leads to better outcomes, although many patients are diagnosed late and don’t receive immediate treatment. This study aims to evaluate the effects of late onset ERT in a MPS I murine model. MPS I mice received treatment from 6 to 8 months of age (ERT 6–8mo) with 1.2mg laronidase/kg every 2 weeks and were compared to 8 months-old wild-type (Normal) and untreated animals (MPS I). ERT was effective in reducing urinary and visceral GAG to normal levels. Heart GAG levels and left ventricular (LV) shortening fraction were normalized but cardiac function was not completely improved. While no significant improvements were found on aortic wall width, treatment was able to significantly reduce heart valves thickening. High variability was found in behavior tests, with treated animals presenting intermediate results between normal and affected mice, without correlation with cerebral cortex GAG levels. Cathepsin D activity in cerebral cortex also did not correlate with behavior heterogeneity. All treated animals developed anti-laronidase antibodies but no correlation was found with any parameters analyzed. However, intermediary results from locomotion parameters analyzed are in accordance with intermediary levels of heart function, cathepsin D, activated glia and reduction of TNF-α expression in the cerebral cortex. In conclusion, even if started late, ERT can have beneficial effects on many aspects of the disease and should be considered whenever possible.
Collapse
Affiliation(s)
- Gabriela Pasqualim
- Post-Graduation Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Talita Giacomet de Carvalho
- Post-Graduation Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Roberto Giugliani
- Post-Graduation Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- INAGEMP, Porto Alegre, Porto Alegre, Brazil
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ursula Matte
- Post-Graduation Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- INAGEMP, Porto Alegre, Porto Alegre, Brazil
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- * E-mail:
| |
Collapse
|
13
|
Clinical, confocal, and morphological investigations on the cornea in human mucopolysaccharidosis IH-S. Cornea 2014; 33:35-42. [PMID: 24212765 DOI: 10.1097/ico.0000000000000005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim was to describe the confocal and histological findings of 2 corneas from a patient with an advanced case of type I mucopolysaccharidoses Hurler-Scheie disease (MPS IH-S). METHODS Both corneas from an MPS IH-S-affected patient were examined in vivo using confocal microscopy and then removed and processed for evaluation using light microscopy and transmission and scanning electron microscopy. RESULTS Confocal microscopy evaluation showed basal epithelial cells with either diffuse or granular hyperreflectivity. Keratocytes were highly reflective determining a web-shaped stromal appearance. Endothelial cells were barely visible. The histopathological study demonstrated superficial cells with apical microfolds, small vesicles, and evident intercellular junctions. The wing cells showed either well-evident tonofilaments and small peripheral vesicles, or large paranuclear vesicles. The basal cells showed polygonal shapes, many small vesicles, and enlarged intercellular spaces. The Bowman layer was either normal or thinner and was formed by variably electron dense material. In the stroma, irregularly oriented lamellae, many vesicle-filled keratocytes, and intercellular granular material were present. The Descemet membrane was normal, whereas the corneal endothelium showed marked degenerative changes. CONCLUSIONS The confocal alterations appeared consequent to the anomalous accumulation of material. The histopathological images gave a clue to better understand the corneal changes demonstrated by the confocal studies in MPS IH-S.
Collapse
|
14
|
Yano S, Moseley K, Wong L, Castelnovi C, Azen C, Pavlova Z. Glycosaminoglycan metabolism defects and atherosclerosis: frequent association of endothelial dysfunction in patients with Mucopolysaccharidosis. J Inherit Metab Dis 2014; 37:255-61. [PMID: 23893050 PMCID: PMC8889886 DOI: 10.1007/s10545-013-9642-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022]
Abstract
Cardiovascular lesions, including coronary artery stenosis, are frequently associated and can cause sudden death in patients with genetic defects of glycosaminoglycan (GAG) metabolism. Early diagnosis of coronary artery lesions is difficult, although potentially lifesaving. Histopathological similarities between atherosclerotic changes in adults and in patients with genetic GAG metabolism defects have been known. Atherosclerosis is the result of a complex process involving metabolism of GAGs and proteoglycans preceded by endothelial dysfunction as a key event. Decreased nitric oxide (NO) bioavailability is considered the hallmark of endothelial dysfunction. Reduced NO synthase (NOS) has been reported in atherosclerotic arteries. Impairment in reactive hyperemia-digital peripheral arterial tonometry (RH-PAT) with EndoPAT has been validated to correlate coronary microvascular function in patients with atherosclerosis. RH-PAT is thought to reflect endothelial NO production. Immunohistological staining of endothelial NOS was performed in the stenotic lesions in the coronary artery of a 3-year-old patient with Mucopolysaccharidosis-I, showing decreased activities. This prompted a study to measure endothelial function in patients with GAG metabolism defects for early diagnosis of endothelial dysfunction in the coronary arteries as an early sign of coronary artery changes. Evaluation by RH-PAT in 30 patients with variable genetic defects in GAG metabolism revealed significantly decreased Reactive Hyperemia Indexes compared with 12 controls. Evaluation of endothelial function with RH-PAT in patients with GAG metabolism defects may detect coronary artery lesions that can be underdiagnosed by the other measures such as coronary angiography. Use of this method may prove vital in the management of patients with GAG metabolism defects.
Collapse
Affiliation(s)
- Shoji Yano
- Genetics Division, Department of Pediatrics, LAC+USC Medical Center, Keck School of Medicine, University of Southern California, 1801 Marengo Street General Laboratory Building, Room 1G-24, Los Angeles, CA, 90033, USA,
| | | | | | | | | | | |
Collapse
|
15
|
Wang RY, Braunlin EA, Rudser KD, Dengel DR, Metzig AM, Covault KK, Polgreen LE, Shapiro E, Steinberger J, Kelly AS. Carotid intima-media thickness is increased in patients with treated mucopolysaccharidosis types I and II, and correlates with arterial stiffness. Mol Genet Metab 2014; 111:128-32. [PMID: 24268528 PMCID: PMC3946737 DOI: 10.1016/j.ymgme.2013.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Treatments for mucopolysaccharidoses (MPSs) have increased longevity, but coronary artery disease (CAD) and cardiovascular complications cause mortality in a high percentage of patients. Non-invasive measures of sub-clinical atherosclerosis, such as carotid intima-media thickness (cIMT) and arterial stiffness, may be useful for prediction of CAD outcomes in MPS patients. OBJECTIVES The aim of the study was to determine if cIMT and arterial stiffness are abnormal in MPS I and II patients compared to healthy controls. METHODS MPS patients underwent carotid artery ultrasonography, and electronic wall-tracking software was used to measure cIMT, carotid artery cross-sectional compliance (cCSC), cross-sectional distensibility (cCSD), and incremental elastic modulus (cIEM). Control data from healthy subjects were obtained from a different study that utilized identical testing within the same laboratory. RESULTS A total of 406 healthy controls and 25 MPS patients (16 MPS I, 9 MPS II) were studied. All MPS patients had or were receiving treatment: 15 patients (6 MPS I, 9 MPS II) were receiving enzyme replacement therapy (ERT), 9 patients (all MPS I) had received hematopoietic stem cell transplant (HSCT), and 1 patient with MPS I had received HSCT and was receiving enzyme replacement therapy (ERT). MPS patients had significantly higher mean (± SD) cIMT (0.56 ± 0.05 mm) compared to controls (0.44 ± 0.04 mm; adjusted p<0.001). MPS patients also had increased stiffness compared to controls, showing significantly lower cCSC (0.14 ± 0.09 mm(2)/mmHg versus 0.16 ± 0.05 mm(2)/mmHg; adjusted p=0.019), and higher cIEM (1362 ± 877 mmHg versus 942 ± 396 mmHg; adjusted p<0.001). cCSD in MPS patients was lower than that of controls (29.7 ± 16.4% versus 32.0 ± 8.2%) but was not statistically significant; p=0.12. Among MPS patients, cCSD showed a significant association with cIMT (p=0.047), while the association between cIEM and cIMT approached significance (p=0.077). No significant differences were observed in cIMT, cCSD, cCSC, and cIEM between MPS I and MPS II patients. CONCLUSIONS Despite treatment, MPS patients had higher cIMT compared to healthy controls, indicating this marker of sub-clinical atherosclerosis may be a useful predictor of CAD outcomes. The association of arterial stiffness measures with cIMT suggests that mechanical and structural changes may occur in concert among MPS patients. Although yet to be confirmed, increased cIMT and arterial stiffness in MPS I and II patients may be a consequence of inflammatory signaling pathways triggered by heparan or dermatan sulfate-derived oligosaccharides. Prospective, longitudinal studies will need to be performed in order to evaluate the usefulness of these carotid measurements as predictors of adverse CAD outcomes in MPS patients.
Collapse
Affiliation(s)
- Raymond Y Wang
- Division of Metabolic Disorders, CHOC Children's Specialists, Orange, CA, USA.
| | - Elizabeth A Braunlin
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kyle D Rudser
- Division of Biostatistics, University of Minnesota, School of Public Health, Minneapolis, MN, USA
| | - Donald R Dengel
- School of Kinesiology, University of Minnesota, Minneapolis, MN, USA
| | - Andrea M Metzig
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kelly K Covault
- Division of Metabolic Disorders, CHOC Children's Specialists, Orange, CA, USA
| | - Lynda E Polgreen
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Elsa Shapiro
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Julia Steinberger
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Aaron S Kelly
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
16
|
Considering Fabry, but Diagnosing MPS I: Difficulties in the Diagnostic Process. JIMD Rep 2012; 9:117-120. [PMID: 23430557 DOI: 10.1007/8904_2012_189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION Recent studies have indicated that a proportion of patients with renal failure, left ventricular hypertrophy, or cryptogenic stroke have sequence variants in their aGal A gene (Fabry disease), which has resulted in an increase in diagnostic activities for this disorder. The diagnostic process for lysosomal storage disorders may result in findings of unknown clinical significance. Here we report such an unexpected outcome. CASE A 32-year-old male presented at the emergency department because of a transient ischemic attack. Extensive investigations revealed no cause and an initial diagnosis of cryptogenic stroke was made. Subsequently, aGal A activity was measured in a bloodspot and was shown to be normal, but the activity of alpha-L-iduronidase (IDUA), used as reference enzyme, was unexpectedly low: 0.5 umol/L (ref = 1.7-14.3). A diagnosis of IDUA deficiency, mucopolysaccharidosis type 1S or Scheie disease was considered. IDUA gene analysis revealed two homozygous sequence alterations: a silent sequence change (979C > T) in exon 7 (N297N) and an unknown missense mutation 875A > T (R263W). Physical examination was completely normal, without clinical signs of mucopolysaccharidosis type I (MPS I). Leukocyte IDUA activity was also low: 2.1 nmol/mg prot/h (ref = 14-40 nmol prot/h), but higher than the patient range of <0.1 nmol/mg prot/h. Urinary glycosaminoglycan levels were normal both quantitatively and qualitatively. It was concluded that there was low IDUA activity without clinical symptoms and the diagnosis of mucopolysaccharidosis I was discarded. CONCLUSION The diagnostic process for lysosomal storage disorders may result in biochemical abnormalities of unknown clinical significance. Early evaluation by a specialist in inborn errors of metabolism may help to avoid anxiety in patients and unnecessary additional analyses.
Collapse
|
17
|
The transforming growth factor-Beta signaling pathway involvement in cardiovascular lesions in mucopolysaccharidosis-I. JIMD Rep 2012; 7:55-8. [PMID: 23430495 DOI: 10.1007/8904_2012_141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 02/27/2012] [Accepted: 03/06/2012] [Indexed: 03/12/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of genetic disorders due to deficiency of lysosomal enzymes resulting in impaired glycosaminoglycan metabolism. All types of MPS can present with cardiovascular manifestation, although MPS-I, II, and VI seem to have more severe involvement than the other types. Enzyme replacement therapy (ERT) is available for MPS-I, II, and VI. Cardiovascular changes including hypertrophic cardiomyopathy, thickened valvular lesions, and coronary artery lesions often poorly respond to ERT and are well known as leading causes of death in patients with MPS-I. The mechanisms to cause these changes in MPS-I have not been well characterized. Immunohistopathological studies were conducted on the cardiac specimens from a patient with MPS-I who died due to sudden cardiac failure. Phosphorylated Smad2 staining showed hyperactive transforming growth factor-beta (TGF-β) signals in the intimal layer with myointimal proliferation causing stenosis in the coronary arteries as well as in the thickened endocardium and in the myocardial cells. TGF-β is involved in the pathogenesis of cardiovascular diseases including hypertrophic cardiomyopathy and vascular atherosclerosis. The primary mechanisms to cause hyperactive TGF-β signals in MPS-I are unknown. The similar mechanisms leading to hyperactive TGF-β signals may exist in the other types of MPS. The findings of TGF-β hyperactivity in the cardiovascular lesions in a patient with MPS-I may lead to a new therapeutic approach. Further studies are warranted to evaluate the effectiveness of the medications that suppress TGF-β signals, such as losartan, in preventing or improving cardiaovascular lesions in patients with MPS.
Collapse
|