1
|
Kim K, Kim JH, Kim I, Seong S, Kook H, Koh JT, Kim N. Tripartite motif-containing 27 negatively regulates NF-κB activation in bone remodeling. Mol Med 2025; 31:141. [PMID: 40251491 PMCID: PMC12008848 DOI: 10.1186/s10020-025-01204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Tripartite motif-containing 27 (TRIM27) is highly expressed in the mouse thymus, spleen, and hematopoietic compartment cells and regulates cell proliferation, apoptosis, and innate immune responses. However, the role of TRIM27 in bone remodeling remains unknown. This study aimed to investigate the role of TRIM27 in the differentiation of osteoclasts and osteoblasts. METHODS We measured the effects of overexpression or knockdown of TRIM27 in osteoclasts and osteoblasts using real-time PCR and Western blot analysis to quantify the mRNA and protein levels of marker genes. Additionally, we performed an in vivo analysis of TRIM27 knockout mice through bone mineral density analysis and histological analysis. RESULTS TRIM27 deficiency decreased bone mineral density by enhancing osteoclast differentiation and inhibiting osteoblast differentiation. Overexpression of TRIM27 in osteoclast precursors suppressed osteoclast formation and resorption activity, and ectopic expression of TRIM27 in osteoblast precursors induced osteoblast differentiation and mineralization. Additionally, we found that TRIM27 attenuated NF-κB activation in both osteoclasts and osteoblasts by interacting with TAB2 and promoting TAB2 degradation through lysosomal-dependent pathways, thereby inhibiting NF-κB signaling. CONCLUSIONS Our results identify TRIM27 as a novel negative regulator of NF-κB in bone remodeling, suggesting that regulating TRIM27 may be useful in developing treatments for musculoskeletal diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Wang Y, Armendariz DA, Wang L, Zhao H, Xie S, Hon GC. Enhancer regulatory networks globally connect non-coding breast cancer loci to cancer genes. Genome Biol 2025; 26:10. [PMID: 39825430 PMCID: PMC11740497 DOI: 10.1186/s13059-025-03474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Genetic studies have associated thousands of enhancers with breast cancer (BC). However, the vast majority have not been functionally characterized. Thus, it remains unclear how BC-associated enhancers contribute to cancer. RESULTS Here, we perform single-cell CRISPRi screens of 3513 regulatory elements associated with breast cancer to measure the impact of these regions on transcriptional phenotypes. Analysis of > 500,000 single-cell transcriptomes in two breast cancer cell lines shows that perturbation of BC-associated enhancers disrupts breast cancer gene programs. We observe BC-associated enhancers that directly or indirectly regulate the expression of cancer genes. We also find one-to-multiple and multiple-to-one network motifs where enhancers indirectly regulate cancer genes. Notably, multiple BC-associated enhancers indirectly regulate TP53. Comparative studies illustrate subtype specific functions between enhancers in ER + and ER - cells. Finally, we develop the pySpade package to facilitate analysis of single-cell enhancer screens. CONCLUSIONS Overall, we demonstrate that enhancers form regulatory networks that link cancer genes in the genome, providing a more comprehensive understanding of the contribution of enhancers to breast cancer development.
Collapse
Affiliation(s)
- Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel A Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Huan Zhao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Li L, Zhou H, Cui Y, Xu K. Trim13-induced ubiquitination of RPS27A inhibits the progression of lung cancer by depending on the inactivation of NF-κB signaling pathway. Physiol Rep 2024; 12:e70157. [PMID: 39667820 PMCID: PMC11637613 DOI: 10.14814/phy2.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide. Recent studies have shown that tripartite motif 13 (TRIM13) play important regulatory roles in the progression of different tumors. In this study, we focused on the role of TRIM13 in LC tumorigenesis and its underlying molecular mechanisms. The study demonstrated TRIM13 was identified as a novel tumor suppressor gene of LC and its overexpression suppressed LC progression in vitro and in vivo. Mechanistically, TRIM13 interacted with RPS27A, increasing RPS27A ubiquitination and degradation. Furthermore, RPS27A overexpression reversed the inhibitory effect of TRIM13 overexpression on LC progression. By binding to RPS27A and encouraging its ubiquitination and degradation, TRIM13 hindered LC advancement. We also found that RPS27A overexpression reversed the inhibitory effect of TRIM13 overexpression on NF-κB signaling, thereby further promoting the proliferation and metastasis of LC cell lines. Therefore, targeting the TRIM13/RPS27A/NF-κB signaling axis may be a promising target for LC treatment.
Collapse
Affiliation(s)
- Lailing Li
- Division of Life Sciences and Medicine, Department of Respiratory Medicine, the First Affiliated Hospital of USTCUniversity of Science and Technology of China (Anhui Provincial Cancer Hospital)HefeiAnhuiChina
| | - Hui Zhou
- Division of Life Sciences and Medicine, Department of Respiratory Medicine, the First Affiliated Hospital of USTCUniversity of Science and Technology of China (Anhui Provincial Cancer Hospital)HefeiAnhuiChina
| | - Yayun Cui
- Division of Life Sciences and Medicine, Department of Cancer Radiotherapy, the First Affiliated Hospital of USTCUniversity of Science and Technology of China (Anhui Provincial Cancer Hospital)HefeiAnhuiChina
| | - Ke Xu
- Division of Life Sciences and Medicine, Department of Respiratory Medicine, the First Affiliated Hospital of USTCUniversity of Science and Technology of China (Anhui Provincial Cancer Hospital)HefeiAnhuiChina
| |
Collapse
|
4
|
Liu B, Wang H, Xie W, Gong T. TRIM27 Promotes Endothelial Progenitor Cell Apoptosis in Patients with In-Stent Restenosis by Ubiquitinating TBK1. Appl Biochem Biotechnol 2024; 196:7792-7804. [PMID: 38558276 DOI: 10.1007/s12010-024-04933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Approximately 2-10% in-stent restenosis (ISR) may occur following percutaneous coronary intervention (PCI) despite the use of modern drug-eluting stents (DES); thus, our study aimed to explore the effects of tripartite motif-containing (TRIM) 27 on ISR and the underlying mechanism. For this purpose, a total of 42 patients undergoing coronary angiography who had prior coronary angiography with DES implantation were recruited. Endothelial progenitor cells (EPCs) markers (defined as CD34 and vascular endothelial growth factoreceptor-2 (VEGFR-2)) in peripheral blood were measured to asses the circulating EPC level. The TRIM family-related gene expressions were detected by reverse transcription-quantitative polymerase chain reaction. Results suggested that ISR patients had reduced CD34+VEGFR-2+ and increased apoptosis rate of EPCs, along with upregulated TRIM27 and TRIM37 and downregulated TRIM28. TRIM27 promoted and TBK1 inhibited the apoptosis rate of EPCs. Mechanically, TRIM27 interacted with TBK1 to ubiquitinate TBK1 in in vitro study. In summary, TRIM27 promoted the progression of ISR in patients after PCI by ubiquitinating TBK1, which might provide novel ideas for the clinical treatment of ISR.
Collapse
Affiliation(s)
- Bo Liu
- Department of Cardiovascular Medicine, Jingshan People's Hospital, Jingshan, 431800, Hubei, China
| | - Huai Wang
- Department of Cardiovascular Medicine, Jingshan People's Hospital, Jingshan, 431800, Hubei, China
| | - Wenhao Xie
- Department of Cardiovascular Medicine, Jingshan People's Hospital, Jingshan, 431800, Hubei, China
| | - Ting Gong
- Department of Cardiovascular Medicine, Jingshan People's Hospital, Jingshan, 431800, Hubei, China.
| |
Collapse
|
5
|
Wei X, Zhang T, Ma C, Zhang M, Jin L, Ma X, Zhang Z. TRIM27 ameliorates ischemic stroke by regulating NLRP3 inflammasome-mediated pyroptosis via the Akt/Nrf2/HO-1 signaling. Exp Neurol 2024; 371:114599. [PMID: 37914066 DOI: 10.1016/j.expneurol.2023.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Tripartite motif-containing 27 (TRIM27) is a member of TRIM family that exerts a protective effect against cardiac and hepatic ischemia/reperfusion (I/R) injury; however, little is known about its role in ischemic stroke. In our experiment, mice were intracerebroventricular injected with recombinant lentiviruses carrying TRIM27 or empty vector, and then they were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) 2 weeks after the injection. Mouse microglial BV-2 cells were infected with lentiviruses carrying TRIM27 or empty vector before exposure to oxygen-glucose deprivation/reoxygenation (OGD/R). TRIM27's role was assessed in vivo and in vitro. TRIM27 overexpression reduced infarct size, improved neurological function, inhibited activation of NLRP3 inflammasome, and activated the Akt/Nrf2/HO-1 pathway in mice subjected to MCAO/R. Furthermore, TRIM27 overexpression suppressed activation of NLRP3 inflammasome and activated this signaling pathway in OGD/R-exposed microglial cells. GSK690693 or ML385 treatment partially reversed the effect of TRIM27 overexpression in vitro. These findings indicate that TRIM27 overexpression ameliorates ischemic stroke by regulating NLRP3 inflammasome and Akt/Nrf2/HO-1 signaling. This study provides a novel target for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xinya Wei
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianqi Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chi Ma
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minxue Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liwei Jin
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Ma
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zhuobo Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Wang Y, Armendariz D, Wang L, Zhao H, Xie S, Hon GC. Enhancer regulatory networks globally connect non-coding breast cancer loci to cancer genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567880. [PMID: 38045327 PMCID: PMC10690208 DOI: 10.1101/2023.11.20.567880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Genetic studies have associated thousands of enhancers with breast cancer. However, the vast majority have not been functionally characterized. Thus, it remains unclear how variant-associated enhancers contribute to cancer. Here, we perform single-cell CRISPRi screens of 3,512 regulatory elements associated with breast cancer to measure the impact of these regions on transcriptional phenotypes. Analysis of >500,000 single-cell transcriptomes in two breast cancer cell lines shows that perturbation of variant-associated enhancers disrupts breast cancer gene programs. We observe variant-associated enhancers that directly or indirectly regulate the expression of cancer genes. We also find one-to-multiple and multiple-to-one network motifs where enhancers indirectly regulate cancer genes. Notably, multiple variant-associated enhancers indirectly regulate TP53. Comparative studies illustrate sub-type specific functions between enhancers in ER+ and ER- cells. Finally, we developed the pySpade package to facilitate analysis of single-cell enhancer screens. Overall, we demonstrate that enhancers form regulatory networks that link cancer genes in the genome, providing a more comprehensive understanding of the contribution of enhancers to breast cancer development.
Collapse
Affiliation(s)
- Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | | | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | - Huan Zhao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | - Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
- Current address: Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
- Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
8
|
Liu T, Chen J, Wu J, Du Q, Liu J, Tan S, Pan Y, Yao S. Role of the tripartite motif (TRIM) family in female genital neoplasms. Pathol Res Pract 2023; 250:154811. [PMID: 37713735 DOI: 10.1016/j.prp.2023.154811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The tripartite motif proteins (TRIMs) family represents a class of highly conservative proteins which play a large regulatory role in molecular processes. Recently, increasing evidence has demonstrated a role of TRIMs in female genital neoplasms. Our review thereby aimed to provide an overview of the biological involvement of TRIMs in female genital neoplasms, to provide a better understanding of its role in the development and progression of such diseases, and emphasize its potential as targeted cancer therapy. Overall, our review highlighted that the wide-ranging roles of TRIMs, in not only target protein ubiquitination, tumor migration and/or invasion, epithelial-mesenchymal transition, stemness, cell adhesion, proliferation, cell cycle regulation, and apoptosis, but also in influencing estrogenic, and chemotherapy response.
Collapse
Affiliation(s)
- Tianyu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Jian Chen
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jinjie Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Silu Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Wang S, Fu J, Fang X. A novel DNA methylation-related gene signature for the prediction of overall survival and immune characteristics of ovarian cancer patients. J Ovarian Res 2023; 16:62. [PMID: 36978087 PMCID: PMC10053775 DOI: 10.1186/s13048-023-01142-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most life-threatening cancers affecting women worldwide. Recent studies have shown that the DNA methylation state can be used in the diagnosis, treatment and prognosis prediction of diseases. Meanwhile, it has been reported that the DNA methylation state can affect the function of immune cells. However, whether DNA methylation-related genes can be used for prognosis and immune response prediction in OC remains unclear. METHODS In this study, DNA methylation-related genes in OC were identified by an integrated analysis of DNA methylation and transcriptome data. Prognostic values of the DNA methylation-related genes were investigated through least absolute shrinkage and selection operator (LASSO) and Cox progression analyses. Immune characteristics were investigated by CIBERSORT, correlation analysis and weighted gene co-expression network analysis (WGCNA). RESULTS Twelve prognostic genes (CA2, CD3G, HABP2, KCTD14, PI3, SERPINB5, SLAMF7, SLC9A2, STC2, TBP, TREML2 and TRIM27) were identified and a risk score signature and a nomogram based on prognostic genes and clinicopathological features were constructed for the survival prediction of OC patients in the training and two validation cohorts. Subsequently, the differences in the immune landscape between the high- and low-risk score groups were systematically investigated. CONCLUSIONS Taken together, our study explored a novel efficient risk score signature and a nomogram for the survival prediction of OC patients. In addition, the differences of the immune characteristics between the two risk groups were clarified preliminarily, which will guide the further exploration of synergistic targets to improve the efficacy of immunotherapy in OC patients.
Collapse
Affiliation(s)
- Sixue Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jie Fu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
10
|
Garcia-Garcia J, Berge AKM, Overå KS, Larsen KB, Bhujabal Z, Brech A, Abudu YP, Lamark T, Johansen T, Sjøttem E. TRIM27 is an autophagy substrate facilitating mitochondria clustering and mitophagy via phosphorylated TBK1. FEBS J 2023; 290:1096-1116. [PMID: 36111389 DOI: 10.1111/febs.16628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/02/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
Tripartite motif-containing protein 27 (TRIM27/also called RFP) is a multifunctional ubiquitin E3 ligase involved in numerous cellular functions, such as proliferation, apoptosis, regulation of the NF-kB pathway, endosomal recycling and the innate immune response. TRIM27 interacts directly with TANK-binding kinase 1 (TBK1) and regulates its stability. TBK1 in complex with autophagy receptors is recruited to ubiquitin chains assembled on the mitochondrial outer membrane promoting mitophagy. Here, we identify TRIM27 as an autophagy substrate, depending on ATG7, ATG9 and autophagy receptors for its lysosomal degradation. We show that TRIM27 forms ubiquitylated cytoplasmic bodies that co-localize with autophagy receptors. Surprisingly, we observed that induced expression of EGFP-TRIM27 in HEK293 FlpIn TRIM27 knockout cells mediates mitochondrial clustering. TRIM27 interacts with autophagy receptor SQSTM1/p62, and the TRIM27-mediated mitochondrial clustering is facilitated by SQSTM/p62. We show that phosphorylated TBK1 is recruited to the clustered mitochondria. Moreover, induced mitophagy activity is reduced in HEK293 FlpIn TRIM27 knockout cells, while re-introduction of EGFP-TRIM27 completely restores the mitophagy activity. Inhibition of TBK1 reduces mitophagy in HEK293 FlpIn cells and in the reconstituted EGFP-TRIM27-expressing cells, but not in HEK293 FlpIn TRIM27 knockout cells. Altogether, these data reveal novel roles for TRIM27 in mitophagy, facilitating mitochondrial clustering via SQSTM1/p62 and mitophagy via stabilization of phosphorylated TBK1 on mitochondria.
Collapse
Affiliation(s)
- Juncal Garcia-Garcia
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Anne Kristin McLaren Berge
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Katrine Stange Overå
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Kenneth Bowitz Larsen
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Zambarlal Bhujabal
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Yakubu Princely Abudu
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Trond Lamark
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Terje Johansen
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| | - Eva Sjøttem
- Department of Medical Biology, Autophagy Research Group, University of Tromsø -The Arctic University of Norway, Norway
| |
Collapse
|
11
|
Ray SK, Mukherjee S. Altered Expression of TRIM Proteins - Inimical Outcome and Inimitable Oncogenic Function in Breast Cancer with Diverse Carcinogenic Hallmarks. Curr Mol Med 2023; 23:44-53. [PMID: 35021972 DOI: 10.2174/1566524022666220111122450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
Deregulation of ubiquitin-mediated degradation of oncogene products or tumor suppressors appears to be implicated in the genesis of carcinomas, according to new clinical findings. Conferring to recent research, some members of the tripartite motif (TRIM) proteins (a subfamily of the RING type E3 ubiquitin ligases) act as significant carcinogenesis regulators. Intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis are all regulated by TRIM family proteins, the majority of which have E3 ubiquitin ligase activity. The expression of TRIMs in tumors is likely to be related to the formation and/or progression of the disease, and TRIM expression could be used to predict cancer prognosis. Breast cancer is the most common malignancy in women and also the leading cause of death. TRIM family proteins have unique, vital activities, and their dysregulation, such as TRIM 21, promotes breast cancer, according to growing evidence. Many TRIM proteins have been identified as important cancer biomarkers, with decreased or elevated levels of expression. TRIM29 functions as a hypoxia-induced tumor suppressor gene, revealing a new molecular mechanism for ATM-dependent breast cancer suppression. In breast cancer cells, the TRIM28-TWIST1-EMT axis exists, and TRIM28 enhances breast cancer metastasis by stabilizing TWIST1, and thereby increasing epithelial-tomesenchymal transition. Interestingly, many TRIM proteins are involved in the control of p53, and many TRIM proteins are likewise regulated by p53, according to current research. Furthermore, TRIMs linked to specific tumors may aid in the creation of innovative TRIM-targeted cancer treatments. This review focuses on TRIM proteins that are involved in tumor development, progression, and are of clinical significance in breast cancer.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
12
|
Sakamoto T, Kuboki S, Furukawa K, Takayashiki T, Takano S, Yoshizumi A, Ohtsuka M. TRIM27-USP7 complex promotes tumour progression via STAT3 activation in human hepatocellular carcinoma. Liver Int 2023; 43:194-207. [PMID: 35753056 DOI: 10.1111/liv.15346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS TRIM27 is stabilized by binding to USP7 and mediates tumour progression in several cancers; however, the roles of TRIM27-USP7 complex on STAT3 activation in HCC are unknown. METHODS Regulations and functions of TRIM27 for activating STAT3 in HCC were assessed using 207 HCC samples or HCC cells. RESULTS TRIM27 expression was increased in some cases of HCC. High TRIM27 expression was an independent predictor for poor prognosis in HCC after surgery. It was correlated with the expression of EpCAM, vimentin, MMP-9, and activation of STAT3 in HCC. TRIM27 expression was correlated with USP7 expression, and HCC with high TRIM27 expression together with high USP7 expression showed enhanced STAT3 activation, resulting in poorer prognosis. p-JAK1 expression was correlated with STAT3 activation in HCC with high TRIM27 expression. In vitro, USP7 knockdown decreased TRIM27 expression, suggesting that USP7 was essential for TRIM27 stabilization. Knocking down of TRIM27 or USP7 suppressed STAT3 activation and overexpression of TRIM27 accelerated STAT3 activation; therefore, the formation of TRIM27-USP7 complex was needed for STAT3 activation, which led to aggressive tumour proliferation and invasion by enhancing EMT and CSC-like property. Binding of JAK1 to TRIM27-USP7 complex was confirmed in vitro. Deletion of TRIM27-USP7 complex by USP7 inhibitor significantly inhibited tumour cell invasion by suppressing STAT3 activation. CONCLUSIONS TRIM27 is stabilized by binding to USP7 and is related to aggressive tumour progression in HCC via STAT3 activation, resulting in poor prognosis after operation. Therefore, TRIM27-USP7 complex is a useful prognostic predictor and a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Toshiya Sakamoto
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Arihito Yoshizumi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | |
Collapse
|
13
|
Wiseman L, Cinti N, Guinn BA. Identification and prioritization of tumour-associated antigens for immunotherapeutic and diagnostic capacity in epithelial ovarian cancer: a systematic literature review. Carcinogenesis 2022; 43:1015-1029. [PMID: 36318800 DOI: 10.1093/carcin/bgac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/18/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a prevalent carcinoma in the female population associated with poor prognostic outcomes, in part due to the late stage of the disease at diagnosis. Aiming to identify tumour-associated antigens (TAAs) with the potential to facilitate earlier detection and targeted therapy of EOC, five scientific literature repositories were systemically searched for primary literature sources reporting the expression of a TAA in the tissue or serum of adult females diagnosed with EOC and healthy women. We identified 7120 articles of which 32 met our inclusion criteria and passed the bias-quality assessment. Subsequently, data were collated on 29 TAAs whose expression had been analysed in 2181 patients and 589 healthy individuals. Reports of CA125 and EpCAM expression were numerous while tissue expression data were available for 28 TAAs. Data were segregated into three meta-cohorts for statistical scrutiny and their capacity for diagnostic and treatment targeting was assessed. We showed that CA-125 was expressed homogenously in EOC patients while EpCAM was expressed heterogeneously. CA-125 was the most promising TAA target for both diagnosis and treatment, gaining a priority score of 12 (/12) while EpCAM gained a priority score of seven. Tissue expression of EOC TAAs was homogenous; 90% of the EOC population express any identified TAA while just 20% of healthy individuals will be positive for the same TAA. We suggest TAA profiling should be a fundamental aspect of EOC diagnosis, sitting alongside the FIGO framework, promoting reduced mortality and directing the development of TAA-targeted therapeutics.
Collapse
Affiliation(s)
- Lucy Wiseman
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Noemi Cinti
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Barbara-Ann Guinn
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
14
|
Wang T, Min L, Gao Y, Zhao M, Feng S, Wang H, Wang Y, Zheng Y. SUMOylation of TUFT1 is essential for gastric cancer progression through AKT/mTOR signaling pathway activation. Cancer Sci 2022; 114:533-545. [PMID: 36380570 PMCID: PMC9899612 DOI: 10.1111/cas.15618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Tuftelin (TUFT1) is highly expressed in various tumor types and promotes tumor growth and metastasis by activating AKT and other core signaling pathways. However, the effects of post-translational modifications of TUFT1 on its oncogenic function remain unexplored. In this study, we found that TUFT1 was SUMOylated at K79. SUMOylation deficiency significantly impaired the ability of TUFT1 to promote the proliferation, migration, and invasion of gastric cancer (GC) cells by blocking AKT/mTOR signaling pathway activation. SUMOylation of TUFT1 is mediated by the E3 SUMO ligase tripartite motif-containing protein 27 (TRIM27), and these two proteins regulate the malignant behavior of GC cells and AKT activation in the same pathway. TUFT1 binds to TRIM27 through its N-terminus, and decreased binding affinity of TUFT1 to TRIM27 significantly impairs its oncogenic effect. In addition, data collected from GC clinical samples indicated that the combined detection of TUFT1 and TRIM27 expression reflected tumor malignancy and patient survival with higher precision. In addition, we proved that SUMOylated TUFT1 is not only an upstream signal for AKT activation but also directly activates mTOR by forming a complex with Rab GTPase activating protein 1, which further inhibits Rab GTPases and promotes the perinuclear accumulation of mTORC1. Altogether, these data indicate that SUMOylated TUFT1 is the active form that affects GC progression through the AKT/mTOR signaling pathway and might be a promising therapeutic target or biomarker for GC progression.
Collapse
Affiliation(s)
- Tianning Wang
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina,Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| | - Lingyuan Min
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Yan Gao
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Mengmeng Zhao
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina,Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| | - Shaojie Feng
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina,Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| | - Huiyun Wang
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Yunshan Wang
- Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| | - Yan Zheng
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanChina,Research Center of Translational MedicineJinan Central Hospital, Shandong UniversityJinanChina
| |
Collapse
|
15
|
Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022; 11:75. [PMID: 36261847 PMCID: PMC9583506 DOI: 10.1186/s40164-022-00322-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
The tripartite-motif (TRIM) family represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. TRIM family is involved in a variety of cellular signaling transductions and biological processes. TRIM family also contributes to cancer initiation, progress, and therapy resistance, exhibiting oncogenic and tumor-suppressive functions in different human cancer types. Moreover, TRIM family members have great potential to serve as biomarkers for cancer diagnosis and prognosis. In this review, we focus on the specific mechanisms of the participation of TRIM family members in tumorigenesis, and cancer development including interacting with dysregulated signaling pathways such as JAK/STAT, PI3K/AKT, TGF-β, NF-κB, Wnt/β-catenin, and p53 hub. In addition, many studies have demonstrated that the TRIM family are related to tumor resistance; modulate the epithelial–mesenchymal transition (EMT) process, and guarantee the acquisition of cancer stem cells (CSCs) phenotype. In the end, we havediscussed the potential of TRIM family members for cancer therapeutic targets.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Chen
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
16
|
Yu C, Rao D, Wang T, Song J, Zhang L, Huang W. Emerging roles of TRIM27 in cancer and other human diseases. Front Cell Dev Biol 2022; 10:1004429. [PMID: 36200036 PMCID: PMC9527303 DOI: 10.3389/fcell.2022.1004429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
As a member of the TRIM protein family, TRIM27 is a RING-mediated E3 ubiquitin ligase that can mark other proteins for degradation. Its ubiquitination targets include PTEN, IκBα and p53, which allows it to regulate many signaling pathways to exert its functions under both physiological and pathological conditions, such as cell proliferation, differentiation and apoptosis. During the past decades, TRIM27 was reported to be involved in many diseases, including cancer, lupus nephritis, ischemia-reperfusion injury and Parkinson's disease. Although the research interest in TRIM27 is increasing, there are few reviews about the diverse roles of this protein. Here, we systematically review the roles of TRIM27 in cancer and other human diseases. Firstly, we introduce the biological functions of TRIM27. Next, we focus on the roles of TRIM27 in cancer, including ovarian cancer, breast cancer and lung cancer. At the same time, we also describe the roles of TRIM27 in other human diseases, such as lupus nephritis, ischemia-reperfusion injury and Parkinson's disease. Finally, we discuss the future directions of TRIM27 research, especially its potential roles in tumor immunity.
Collapse
Affiliation(s)
- Chengpeng Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Jinzhong, China
- Tongji Medical College, Shanxi Tongji Hospital, Huazhong University of Science and Technology, Taiyuan, China
| | - Wenjie Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Yang Y, Zhu Y, Zhou S, Tang P, Xu R, Zhang Y, Wei D, Wen J, Thorne RF, Zhang XD, Guan JL, Liu L, Wu M, Chen S. TRIM27 cooperates with STK38L to inhibit ULK1-mediated autophagy and promote tumorigenesis. EMBO J 2022; 41:e109777. [PMID: 35670107 DOI: 10.15252/embj.2021109777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/27/2022] Open
Abstract
Autophagy represents a fundamental mechanism for maintaining cell survival and tissue homeostasis in response to physiological and pathological stress. Autophagy initiation converges on the FIP200-ATG13-ULK1 complex wherein the serine/threonine kinase ULK1 plays a central role. Here, we reveal that the E3 ubiquitin ligase TRIM27 functions as a negative regulatory component of the FIP200-ATG13-ULK1 complex. TRIM27 directly polyubiquitinates ULK1 at K568 and K571 sites with K48-linked ubiquitin chains, with proteasomal turnover maintaining control over basal ULK1 levels. However, during starvation-induced autophagy, TRIM27 catalyzes non-degradative K6- and K11-linked ubiquitination of the serine/threonine kinase 38-like (STK38L) kinase. In turn, STK38L ubiquitination promotes its activation and phosphorylation of ULK1 at Ser495, rendering ULK1 in a permissive state for TRIM27-mediated hyper-ubiquitination of ULK1. This cooperative mechanism serves to restrain the amplitude and duration of autophagy. Further evidence from mouse models shows that basal autophagy levels are increased in Trim27 knockout mice and that Trim27 differentially regulates tumorigenesis and metastasis. Our study identifies a key role of STK38L-TRIM27-ULK1 signaling axis in negatively controlling autophagy with relevance established in human breast cancer.
Collapse
Affiliation(s)
- Yi Yang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yifu Zhu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuai Zhou
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Peipei Tang
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, China
| | - Ran Xu
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, China.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Yuwei Zhang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Dongping Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lianxin Liu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mian Wu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Song Chen
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, China
| |
Collapse
|
18
|
Yu H, Wan L, Tang Z, Yao C, Zhang D, Jiang M, Wang C, Liu Y, Xue C, Wang X, Shi Y, Zhang L, Wang X, Wei Z. TRIM27 regulates the expression of PDCD4 by the ubiquitin‑proteasome pathway in ovarian and endometrial cancer cells. Oncol Rep 2022; 48:120. [PMID: 35583010 DOI: 10.3892/or.2022.8331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/13/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Huayun Yu
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lu Wan
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhongyun Tang
- Department of Gynecology and Obstetrics, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Chenchen Yao
- Department of Gynecology and Obstetrics, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Derui Zhang
- Department of Gynecology and Obstetrics, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Mengmeng Jiang
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Chongli Wang
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yuqiu Liu
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Chenyue Xue
- Department of Gynecology and Obstetrics, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xishuang Wang
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yongyu Shi
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaoyan Wang
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zengtao Wei
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
19
|
Shi X, Du Y, Li S, Wu H. The Role of SUMO E3 Ligases in Signaling Pathway of Cancer Cells. Int J Mol Sci 2022; 23:3639. [PMID: 35408996 PMCID: PMC8998487 DOI: 10.3390/ijms23073639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)ylation is a reversible post-translational modification that plays a crucial role in numerous aspects of cell physiology, including cell cycle regulation, DNA damage repair, and protein trafficking and turnover, which are of importance for cell homeostasis. Mechanistically, SUMOylation is a sequential multi-enzymatic process where SUMO E3 ligases recruit substrates and accelerate the transfer of SUMO onto targets, modulating their interactions, localization, activity, or stability. Accumulating evidence highlights the critical role of dysregulated SUMO E3 ligases in processes associated with the occurrence and development of cancers. In the present review, we summarize the SUMO E3 ligases, in particular, the novel ones recently identified, and discuss their regulatory roles in cancer pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Huijian Wu
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian 116024, China; (X.S.); (Y.D.); (S.L.)
| |
Collapse
|
20
|
Chen Y, Liu Z, Hu Z, Feng X, Zuo L. Tripartite motif 27 promotes cardiac hypertrophy via PTEN/Akt/mTOR signal pathways. Bioengineered 2022; 13:8323-8333. [PMID: 35311628 PMCID: PMC9208448 DOI: 10.1080/21655979.2022.2051814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tripartite motif-containing 27 (Trim27) is highly expressed in tumor cells and regulates natural immunity and apoptosis. However, the effects of Trim27 in cardiac hypertrophy are not fully elucidated. In this study, we tried to explore the potential role of Trim27 in pressure overload-induced cardiac hypertrophy and the underlying mechanism. The results indicated that compared to sham operation (Sham) group, transverse aortic constriction (TAC) group showed significantly up-regulated Trim27 protein expression (P < 0.05). The neonatal rat cardiomyocytes (NRCMs) were isolated and stimulated with PBS, angiotensin (AngII) and phenylephrine (PE). NRCMs were collected to detect the protein expression of Trim27. The results were consistent with the results in vivo. Compared to PBS treatment, the expression of Trim27 protein in NRCMs was significantly increased after PE or AngII stimulation (P < 0.05, respectively). Knockout of Trim27 can reduce the size of cardiomyocytes and reduce the proteins expression of ANP, BNP, and β-MHC, improve cardiac function, and reverse myocardial hypertrophy (P < 0.05). Trim27 may be involved in regulating the development of cardiac hypertrophy. Further results showed that Trim27 can increase the protein expression of phosphorylation of Akt, GSK3β, mTOR, and P70s6k by interacting with PTEN (phosphatase tensin homolog). These findings revealed that Trim27 can promote cardiac hypertrophy by activating PTEN/Akt/GSK3β/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yan Chen
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Cardiology, Ezhou Central Hospital, Wuhan University, Ezhou, China
| | - Zewen Liu
- Department of Anesthesiology, Ezhou Central Hospital, Wuhan University, Ezhou, China
| | - Zhengqing Hu
- Department of Cardiology, Ezhou Central Hospital, Wuhan University, Ezhou, China
| | - Xiuyuan Feng
- Department of Cardiology, Ezhou Central Hospital, Wuhan University, Ezhou, China
| | - Li Zuo
- Physiology and Biomedical Sciences, Molecular Physiology and Biophysics Laboratory, University of Maine Presque Isle Campus, Presque Isle, ME, USA
| |
Collapse
|
21
|
Zheng D, Zhang Y, Xia Y, Cheng F. A Novel Gene Signature of Tripartite Motif Family for Predicting the Prognosis in Kidney Renal Clear Cell Carcinoma and Its Association With Immune Cell Infiltration. Front Oncol 2022; 12:840410. [PMID: 35371994 PMCID: PMC8968921 DOI: 10.3389/fonc.2022.840410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 12/26/2022] Open
Abstract
Given the importance of tripartite motif (TRIM) proteins in diverse cellular biological processes and that their dysregulation contributes to cancer progression, we constructed a robust TRIM family signature to stratify patients with kidney renal clear cell carcinoma (KIRC). Transcriptomic profiles and corresponding clinical information of KIRC patients were obtained from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. Prognosis-related TRIM family genes were screened and used to construct a novel TRIM family-based signature for the training cohort. The accuracy and generalizability of the prognostic signature were assessed in testing, entire, and external ICGC cohorts. We analyzed correlations among prognostic signatures, tumor immune microenvironment, and immune cell infiltration. The results of univariate Cox regression and Kaplan-Meier survival analyses revealed 27 TRIMs that were robustly associated with the prognosis of patients with KIRC. We applied Lasso regression and multivariate Cox regression analyses to develop a prognostic signature containing the TRIM1, 13, 35, 26, 55, 2, 47, and 27 genes to predict the survival of patients with KIRC. The accuracy and generalizability of this signature were confirmed in internal and external validation cohorts. We also constructed a predictive nomogram based on the signature and the clinicopathological characteristics of sex, age, and T and M status to aid clinical decision-making. We analyzed immune cell infiltration analysis and found that CD8 T cells, memory resting CD4 T cells, and M2 macrophages were the most enriched components in the KIRC tumor immune microenvironment. A higher level of immune infiltration by plasma cells, follicular helper T cells, and activated NK cells, and a lower level of immune infiltration by memory resting CD4 T cells, M1 and M2 macrophages, and resting dendritic cells were associated with higher risk scores. Overall, our eight-gene TRIM family signature has sufficient accuracy and generalizability for predicting the overall survival of patients with KIRC. Furthermore, this prognostic signature is associated with tumor immune status and distinct immune cell infiltrates in the tumor microenvironment.
Collapse
|
22
|
Jafarzadeh A, Noori M, Sarrafzadeh S, Tamehri Zadeh SS, Nemati M, Chatrabnous N, Jafarzadeh S, Hamblin MR, Jafari Najaf Abadi MH, Mirzaei H. MicroRNA-383: A tumor suppressor miRNA in human cancer. Front Cell Dev Biol 2022; 10:955486. [PMID: 36313570 PMCID: PMC9608775 DOI: 10.3389/fcell.2022.955486] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
Downregulated expression of anti-tumor miR-383 has been found in many kinds of cancer. MiR-383 family members can directly target the 3'-untranslated region (3'-UTR) of the mRNA of some pro-tumor genes to attenuate several cancer-related processes, including cell proliferation, invasion, migration, angiogenesis, immunosuppression, epithelial-mesenchymal transition, glycolysis, chemoresistance, and the development of cancer stem cells, whilst promoting apoptosis. Functionally, miR-383 operates as a tumor inhibitor miRNA in many types of cancer, including breast cancer, hepatocellular carcinoma, gastric cancer, pancreatic cancer, colorectal cancer, esophageal cancer, lung cancer, head and neck cancer, glioma, medulloblastoma, melanoma, prostate cancer, cervical cancer, oral squamous cell carcinoma, thyroid cancer, and B-cell lymphoma. Both pro-tumor and anti-tumor effects have been attributed to miR-383 in ovarian cancer. However, only the pro-tumor effects of miR-383 were reported in cholangiocarcinoma. The restoration of miR-383 expression could be considered a possible treatment for cancer. This review discusses the anti-tumor effects of miR-383 in human cancers, emphasizing their downstream target genes and potential treatment approaches.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Majid Noori
- Golestan Hospital Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sarrafzadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Mohammad Hassan Jafari Najaf Abadi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| |
Collapse
|
23
|
Sauerer T, Lischer C, Weich A, Berking C, Vera J, Dörrie J. Single-Molecule RNA Sequencing Reveals IFNγ-Induced Differential Expression of Immune Escape Genes in Merkel Cell Polyomavirus-Positive MCC Cell Lines. Front Microbiol 2021; 12:785662. [PMID: 35003017 PMCID: PMC8727593 DOI: 10.3389/fmicb.2021.785662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive cancer, which is mainly caused by genomic integration of the Merkel cell polyomavirus and subsequent expression of a truncated form of its large T antigen. The resulting primary tumor is known to be immunogenic and under constant pressure to escape immune surveillance. Because interferon gamma (IFNγ), a key player of immune response, is secreted by many immune effector cells and has been shown to exert both anti-tumoral and pro-tumoral effects, we studied the transcriptomic response of MCC cells to IFNγ. In particular, immune modulatory effects that may help the tumor evade immune surveillance were of high interest to our investigation. The effect of IFNγ treatment on the transcriptomic program of three MCC cell lines (WaGa, MKL-1, and MKL-2) was analyzed using single-molecule sequencing via the Oxford Nanopore platform. A significant differential expression of several genes was detected across all three cell lines. Subsequent pathway analysis and manual annotation showed a clear upregulation of genes involved in the immune escape of tumor due to IFNγ treatment. The analysis of selected genes on protein level underlined our sequencing results. These findings contribute to a better understanding of immune escape of MCC and may help in clinical treatment of MCC patients. Furthermore, we demonstrate that single-molecule sequencing can be used to assess characteristics of large eukaryotic transcriptomes and thus contribute to a broader access to sequencing data in the community due to its low cost of entry.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christopher Lischer
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Adrian Weich
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Carola Berking
- Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Julio Vera
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
24
|
Liu J, Xu J, Huang J, Gu C, Liu Q, Zhang W, Gao F, Tian Y, Miao X, Zhu Z, Jia B, Tian Y, Wu L, Zhao H, Feng X, Liu S. TRIM27 contributes to glomerular endothelial cell injury in lupus nephritis by mediating the FoxO1 signaling pathway. J Transl Med 2021; 101:983-997. [PMID: 33854173 PMCID: PMC8044289 DOI: 10.1038/s41374-021-00591-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
Tripartite motif-containing 27 (TRIM27) belongs to the triple motif (TRIM) protein family, which plays a role in a variety of biological activities. Our previous study showed that the TRIM27 protein was highly expressed in the glomerular endothelial cells of patients suffering from lupus nephritis (LN). However, whether TRIM27 is involved in the injury of glomerular endothelial cells in lupus nephritis remains to be clarified. Here, we detected the expression of the TRIM27 protein in glomerular endothelial cells in vivo and in vitro. In addition, the influence of TRIM27 knockdown on endothelial cell damage in MRL/lpr mice and cultured human renal glomerular endothelial cells (HRGECs) was explored. The results revealed that the expression of TRIM27 in endothelial cells was significantly enhanced in vivo and in vitro. Downregulating the expression of TRIM27 inhibited the breakdown of the glycocalyx and the injury of endothelial cells via the FoxO1 pathway. Moreover, HRGECs transfected with the WT-FoxO1 plasmid showed a reduction in impairment caused by LN plasma. Furthermore, suppression of the protein kinase B (Akt) pathway could attenuate damage by mediating the expression of TRIM27. Thus, the present study showed that TRIM27 participated in the injury of glomerular endothelial cells and served as a potential therapeutic target for the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Jinxi Liu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Jie Xu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Jie Huang
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Cunyang Gu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Qingjuan Liu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Wei Zhang
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Fan Gao
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yuexin Tian
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xinyan Miao
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Zixuan Zhu
- Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Baiyun Jia
- Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yu Tian
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
- Department of Rheumatology, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lunbi Wu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Hang Zhao
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xiaojuan Feng
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China.
| | - Shuxia Liu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
25
|
Pauletto E, Eickhoff N, Padrão NA, Blattner C, Zwart W. TRIMming Down Hormone-Driven Cancers: The Biological Impact of TRIM Proteins on Tumor Development, Progression and Prognostication. Cells 2021; 10:1517. [PMID: 34208621 PMCID: PMC8234875 DOI: 10.3390/cells10061517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
The tripartite motif (TRIM) protein family is attracting increasing interest in oncology. As a protein family based on structure rather than function, a plethora of biological activities are described for TRIM proteins, which are implicated in multiple diseases including cancer. With hormone-driven cancers being among the leading causes of cancer-related death, TRIM proteins have been described to portrait tumor suppressive or oncogenic activities in these tumor types. This review describes the biological impact of TRIM proteins in relation to hormone receptor biology, as well as hormone-independent mechanisms that contribute to tumor cell biology in prostate, breast, ovarian and endometrial cancer. Furthermore, we point out common functions of TRIM proteins throughout the group of hormone-driven cancers. An improved understanding of the biological impact of TRIM proteins in cancer may pave the way for improved prognostication and novel therapeutics, ultimately improving cancer care for patients with hormone-driven cancers.
Collapse
Affiliation(s)
- Eleonora Pauletto
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology, PO-Box 3640, 76021 Karlsruhe, Germany;
| | - Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| | - Nuno A. Padrão
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| | - Christine Blattner
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology, PO-Box 3640, 76021 Karlsruhe, Germany;
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| |
Collapse
|
26
|
Wang W, Liu W. PCLasso: a protein complex-based, group lasso-Cox model for accurate prognosis and risk protein complex discovery. Brief Bioinform 2021; 22:6291946. [PMID: 34086850 DOI: 10.1093/bib/bbab212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
For high-dimensional expression data, most prognostic models perform feature selection based on individual genes, which usually lead to unstable prognosis, and the identified risk genes are inherently insufficient in revealing complex molecular mechanisms. Since most genes carry out cellular functions by forming protein complexes-basic representatives of functional modules, identifying risk protein complexes may greatly improve our understanding of disease biology. Coupled with the fact that protein complexes have been shown to have innate resistance to batch effects and are effective predictors of disease phenotypes, constructing prognostic models and selecting features with protein complexes as the basic unit should improve the robustness and biological interpretability of the model. Here, we propose a protein complex-based, group lasso-Cox model (PCLasso) to predict patient prognosis and identify risk protein complexes. Experiments on three cancer types have proved that PCLasso has better prognostic performance than prognostic models based on individual genes. The resulting risk protein complexes not only contain individual risk genes but also incorporate close partners that synergize with them, which may promote the revealing of molecular mechanisms related to cancer progression from a comprehensive perspective. Furthermore, a pan-cancer prognostic analysis was performed to identify risk protein complexes of 19 cancer types, which may provide novel potential targets for cancer research.
Collapse
Affiliation(s)
- Wei Wang
- Heilongjiang Institute of Technology, Harbin 150050, China
| | - Wei Liu
- School of Science at Heilongjiang Institute of Technology, Harbin 150050, China
| |
Collapse
|
27
|
Li Y, Meng Q, Wang L, Cui Y. TRIM27 protects against cardiac ischemia-reperfusion injury by suppression of apoptosis and inflammation via negatively regulating p53. Biochem Biophys Res Commun 2021; 557:127-134. [PMID: 33865220 DOI: 10.1016/j.bbrc.2021.03.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/11/2021] [Indexed: 01/17/2023]
Abstract
Myocardial ischemia/reperfusion (MI/R) has high morbidity and mortality worldwide, but the underlying mechanisms have not been entirely understood. TRIM27 is one of the Tri-domain proteins (TRIM) family proteins with crucial roles in numerous life processes. In the study, we attempted to explore the effects of heart-conditional knockout of TRIM27 (TRIM27cKO) on MI/R progression both in vivo and in vitro. Our results showed that TRIM27 was strongly decreased in murine hearts with MI/R injury and in cardiomyocytes with hypoxic reoxygenation (HR) treatment. TRIM27cKO could further accelerate the infarction size and cardiac dysfunction in MI/R mice. Function study demonstrated that heart-selective TRIM27 deletion significantly aggravated apoptosis in hearts of MI/R mice through enhancing Caspase-3 activities. Moreover, inflammatory response due to MI/R injury was remarkably exacerbated in TRIM27cKO mice by strengthening nuclear factor κB (NF-κB) activation. In addition, p53 expression levels were dramatically up-regulated in hearts of MI/R mice and cardiomyocytes with HR treatment, which were further aggravated by TRIM27cKO. Intriguingly, we found that TRIM27 could interact with p53 and promote its ubquitination. Of note, suppressing p53 remarkably ameliorated TRIM27cKO-intensified apoptotic cell death and inflammation in HR-treated cardiomyocytes. Taken together, all these findings revealed that TRIM27/p53 axis may be involved in MI/R progression, and thus could be a therapeutic target for this disease treatment.
Collapse
Affiliation(s)
- Yan Li
- The Emergency Department, The Sixth Annex Hospital of Xinjiang Medical University, Wulumuqi, 830002, China
| | - Qing Meng
- Department of General Medicine, The Sixth Annex Hospital of Xinjiang Medical University, Wulumuqi, 830002, China
| | - Ling Wang
- Department of General Medicine, The Sixth Annex Hospital of Xinjiang Medical University, Wulumuqi, 830002, China
| | - Yongjian Cui
- Department of General Medicine, The Sixth Annex Hospital of Xinjiang Medical University, Wulumuqi, 830002, China.
| |
Collapse
|
28
|
Hu J, Ding X, Tian S, Chu Y, Liu Z, Li Y, Li X, Wang G, Wang L, Wang Z. TRIM39 deficiency inhibits tumor progression and autophagic flux in colorectal cancer via suppressing the activity of Rab7. Cell Death Dis 2021; 12:391. [PMID: 33846303 PMCID: PMC8041807 DOI: 10.1038/s41419-021-03670-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
The biological function of TRIM39, a member of TRIM family, remains largely unexplored in cancer, especially in colorectal cancer (CRC). In this study, we show that TRIM39 is upregulated in tumor tissues compared to adjacent normal tissues and associated with poor prognosis in CRC. Functional studies demonstrate that TRIM39 deficiency restrains CRC progression in vitro and in vivo. Our results further find that TRIM39 is a positive regulator of autophagosome–lysosome fusion. Mechanistically, TRIM39 interacts with Rab7 and promotes its activity via inhibiting its ubiquitination at lysine 191 residue. Depletion of TRIM39 inhibits CRC progression and autophagic flux in a Rab7 activity-dependent manner. Moreover, TRIM39 deficiency suppresses CRC progression through inhibiting autophagic degradation of p53. Thus, our findings uncover the roles as well as the relevant mechanisms of TRIM39 in CRC and establish a functional relationship between autophagy and CRC progression, which may provide promising approaches for the treatment of CRC.
Collapse
Affiliation(s)
- Jia Hu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xueliang Ding
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shaobo Tian
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yanan Chu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zhibo Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yuqin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaoqiong Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
29
|
Chen SY, Zhang HP, Li J, Shi JH, Tang HW, Zhang Y, Zhang JK, Wen PH, Wang ZH, Shi XY, He YT, Hu BW, Yang H, Guo WZ, Zhang SJ. Tripartite Motif-Containing 27 Attenuates Liver Ischemia/Reperfusion Injury by Suppressing Transforming Growth Factor β-Activated Kinase 1 (TAK1) by TAK1 Binding Protein 2/3 Degradation. Hepatology 2021; 73:738-758. [PMID: 32343849 PMCID: PMC7898667 DOI: 10.1002/hep.31295] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion (I/R) injury, which mainly involves inflammatory responses and apoptosis, is a common cause of organ dysfunction in liver transplantation (LT). As a critical mediator of inflammation and apoptosis in various cell types, the role of tripartite motif-containing (TRIM) 27 in hepatic I/R injury remains worthy of study. APPROACH AND RESULTS This study systemically evaluated the putative role of TRIM27/transforming growth factor β-activated kinase 1 (TAK1)/JNK (c-Jun N-terminal kinase)/p38 signaling in hepatic I/R injury. TRIM27 expression was significantly down-regulated in liver tissue from LT patients, mice subjected to hepatic I/R surgery, and hepatocytes challenged by hypoxia/reoxygenation (H/R) treatment. Subsequently, using global Trim27 knockout mice (Trim27-KO mice) and hepatocyte-specific Trim27 transgenic mice (Trim27-HTG mice), TRIM27 functions to ameliorate liver damage, reduce the inflammatory response, and prevent cell apoptosis. In parallel in vitro studies, activating TRIM27 also prevented H/R-induced hepatocyte inflammation and apoptosis. Mechanistically, TRIM27 constitutively interacted with the critical components, TAK1 and TAK1 binding protein 2/3 (TAB2/3), and promoted the degradation of TAB2/3, leading to inactivation of TAK1 and the subsequent suppression of downstream JNK/p38 signaling. CONCLUSIONS TRIM27 is a key regulator of hepatic I/R injury by mediating the degradation of TAB2/3 and suppression of downstream TAK1-JNK/p38 signaling. TRIM27 may be a promising approach to protect the liver against I/R-mediated hepatocellular damage in transplant recipients.
Collapse
Affiliation(s)
- San-Yang Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Hua-Peng Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Jie Li
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Hong-Wei Tang
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Yi Zhang
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jia-Kai Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Pei-Hao Wen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Zhi-Hui Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Xiao-Yi Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Yu-Ting He
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Bo-Wen Hu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Han Yang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| |
Collapse
|
30
|
TRIM27 Functions as a Novel Oncogene in Non-Triple-Negative Breast Cancer by Blocking Cellular Senescence through p21 Ubiquitination. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:910-923. [PMID: 33251042 PMCID: PMC7666371 DOI: 10.1016/j.omtn.2020.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022]
Abstract
In the current study, we aimed to explore the correlation between TRIM27 and breast cancer prognosis, as well as the functions of TRIM27 in breast cancer and their underlying mechanisms. Bioinformatics analyses were used to examine the correlation between TRIM27 and breast cancer prognosis. Moreover, TRIM27 knockdown and overexpression in breast cancer cells were performed to investigate its functions in breast cancer. Tamoxifen (TAM) was applied to evaluate the influence of TRIM27 on chemoresistance of breast cancer cells, while co-immunoprecipitation (coIP) was performed to identify the E3 ubiquitin ligase capability of TRIM27. High expression of TRIM27 was found in non-triple-negative breast cancer (non-TNBC) tumor tissues and was positively correlated with the mortality of non-TNBC patients. Moreover, TRIM27 could suppress non-TNBC cell apoptosis and senescence, promote cell viability and tumor growth, counteract the anti-cancer effects of TAM, and mediate ubiquitination of p21. In addition, EP300 could enhance the expression of TRIM27 and its transcription promoter H3K27ac. TRIM27, through ubiquitination of p21, might serve as a prognostic biomarker for non-TNBC prognosis. TRIM27 functions as a novel oncogene in non-TNBC cellular processes, especially suppressing cell senescence and interfering with non-TNBC chemoresistance.
Collapse
|
31
|
Liu S, Tian Y, Zheng Y, Cheng Y, Zhang D, Jiang J, Li S. TRIM27 acts as an oncogene and regulates cell proliferation and metastasis in non-small cell lung cancer through SIX3-β-catenin signaling. Aging (Albany NY) 2020; 12:25564-25580. [PMID: 33264103 PMCID: PMC7803540 DOI: 10.18632/aging.104163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022]
Abstract
The Wnt/β-catenin pathway plays vital roles in diverse biological processes, including cell differentiation, proliferation, migration, and insulin sensitivity. A recent study reported that the DNA-binding transcriptional factor SIX3 is essential during embryonic development in vertebrates and capable of downregulating target genes of the Wnt/β-catenin pathway in lung cancer, indicating negative regulation of Wnt/β-catenin activation. However, regulation of the SIX3-Wnt/β-catenin pathway axis remains unknown. We measured the expression of TRIM27 and SIX3 as well as investigated whether there was a correlation between them in lung cancer tissue samples. Herein, we found that the E3 ubiquitin ligase, TRIM27, ubiquitinates, and degrades SIX3. TRIM27 induces non-small cell lung cancer (NSCLC) cell proliferation and metastasis, and the expression of β-catenin, S100P, TGFB3, and MMP-9 were significantly inhibited by SIX3. Furthermore, XAV939 is a selective β-catenin-mediated transcription inhibitor that inhibited TRIM27- and SIX3-mediated NSCLC cell proliferation, migration, and invasion. Clinically, lung tissue samples of cancer patients showed increased TRIM27 expression and decreased SIX3 expression. Taken together, these data demonstrate that TRIM27 acts as an oncogene regulating cell proliferation and metastasis in NSCLC through SIX3-β-catenin signaling.
Collapse
Affiliation(s)
- Shiyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ying Tian
- Xi'an Jiaotong University Press, Xi'an 710049, China
| | - Ying Zheng
- Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Yao Cheng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Danjie Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shaomin Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
32
|
Gibbs ZA, Reza LC, Cheng CC, Westcott JM, McGlynn K, Whitehurst AW. The testis protein ZNF165 is a SMAD3 cofactor that coordinates oncogenic TGFβ signaling in triple-negative breast cancer. eLife 2020; 9:57679. [PMID: 32515734 PMCID: PMC7302877 DOI: 10.7554/elife.57679] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer/testis (CT) antigens are proteins whose expression is normally restricted to germ cells yet aberrantly activated in tumors, where their functions remain relatively cryptic. Here we report that ZNF165, a CT antigen frequently expressed in triple-negative breast cancer (TNBC), associates with SMAD3 to modulate transcription of transforming growth factor β (TGFβ)-dependent genes and thereby promote growth and survival of human TNBC cells. In addition, we identify the KRAB zinc finger protein, ZNF446, and its associated tripartite motif protein, TRIM27, as obligate components of the ZNF165-SMAD3 complex that also support tumor cell viability. Importantly, we find that TRIM27 alone is necessary for ZNF165 transcriptional activity and is required for TNBC tumor growth in vivo using an orthotopic xenograft model in immunocompromised mice. Our findings indicate that aberrant expression of a testis-specific transcription factor is sufficient to co-opt somatic transcriptional machinery to drive a pro-tumorigenic gene expression program in TNBC.
Collapse
Affiliation(s)
- Zane A Gibbs
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Luis C Reza
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chun-Chun Cheng
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jill M Westcott
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kathleen McGlynn
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Angelique W Whitehurst
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
33
|
Yao Y, Liu Z, Cao Y, Guo H, Jiang B, Deng J, Xiong J. Downregulation of TRIM27 suppresses gastric cancer cell proliferation via inhibition of the Hippo-BIRC5 pathway. Pathol Res Pract 2020; 216:153048. [PMID: 32825933 DOI: 10.1016/j.prp.2020.153048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 11/26/2022]
Abstract
Although tripartite motif containing 27 (TRIM27) protein has been implicated in the progression of many cancer types, its role in gastric cancer (GC) remains poorly understood. Given that TRIM27 may be associated with the baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) gene, which is downstream of the Hippo pathway, we clarified their relationship in GC progression. In vitro cultures of 7 GC cell lines, 92 GC patient tumor samples and 46 normal clinical samples were used to examine the influence of changes in TRIM27 expression, which was assessed by quantitative PCR, immunohistochemistry, western blot analysis, and cell viability assays. We found that TRIM27 overexpression was correlated with tumor size, depth of invasion, and poor GC prognosis, while TRIM27 small interfering RNA knockdown inhibited cell proliferation and colony formation, induced apoptosis, and increased sensitivity towards 5-fluorouracil treatment in MGC-803 and HGC-27 GC cell lines. Notably, TRIM27 downregulation resulted in BIRC5 suppression via large tumor suppressor kinase 2 (LATS2) upregulation and subsequent Yes-associated protein 1 (YAP1) inhibition in MGC-803 and HGC-27 GC cell lines. In conclusion, our findings revealed the positive correlation between TRIM27 and GC progression through mediation of the Hippo-BIRC5 axis in GC.
Collapse
Affiliation(s)
- Yangyang Yao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Zhen Liu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yuan Cao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Hui Guo
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Bailing Jiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
34
|
Mandell MA, Saha B, Thompson TA. The Tripartite Nexus: Autophagy, Cancer, and Tripartite Motif-Containing Protein Family Members. Front Pharmacol 2020; 11:308. [PMID: 32226386 PMCID: PMC7081753 DOI: 10.3389/fphar.2020.00308] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a cellular degradative process that has multiple important actions in cancer. Autophagy modulation is under consideration as a promising new approach to cancer therapy. However, complete autophagy dysregulation is likely to have substantial undesirable side effects. Thus, more targeted approaches to autophagy modulation may prove clinically beneficial. One potential avenue to achieving this goal is to focus on the actions of tripartite motif-containing protein family members (TRIMs). TRIMs have key roles in an array of cellular processes, and their dysregulation has been extensively linked to cancer risk and prognosis. As detailed here, emerging data shows that TRIMs can play important yet context-dependent roles in controlling autophagy and in the selective targeting of autophagic substrates. This review covers how the autophagy-related actions of TRIM proteins contribute to cancer and the possibility of targeting TRIM-directed autophagy in cancer therapy.
Collapse
Affiliation(s)
- Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Todd A Thompson
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, United States
| |
Collapse
|
35
|
Gao D, Zhou Z, Huang H. miR-30b-3p Inhibits Proliferation and Invasion of Hepatocellular Carcinoma Cells via Suppressing PI3K/Akt Pathway. Front Genet 2019; 10:1274. [PMID: 31921311 PMCID: PMC6923265 DOI: 10.3389/fgene.2019.01274] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Background: The micro-RNA miR-30b-3p has been reported to play a crucial role in several cancers. However, the biological function of miR-30b-3p in hepatocellular carcinoma (HCC) is still unknown. Methods: RT-qPCR was employed to determine the expression of miR-30b-3p in HCC tissues and cells. The MTT assay, colony formation assay, and cell migration and invasion assay were employed to evaluate the role of miR-30b-3p in HCC cells. A dual-luciferase reporter assay was employed to verify the target of miR-30b-3p. Western blotting was employed to determine the expression of key molecular signal transducers along TRIM27-PI3K/Akt axis. Results: Expression of miR-30b-3p was markedly decreased in HCC tissues and cells and positively correlated with higher overall survival. Moreover, miR-30b-3p overexpression significantly repressed cell viability, proliferation, migration, and invasion of HCC cells in vitro. Notably, we demonstrated that miR-30b-3p directly bound to the 3′-untranslated region of tripartite motif containing 27 (TRIM27) mRNA by downregulating the expression of TRIM27, which was demonstrated to be negatively correlated with miR-30b-3p expression. TRIM27 was demonstrated to have an oncogenic role in HCC cells by enhancing cell viability, proliferation, migration, and invasion. Finally, the miR-30-3p-TRIM27-PI3K/Akt axis was shown to play a crucial role in HCC cells in vitro. Conclusion: Our results indicated that miR-30-3p might act as a new biomarker for the future diagnosis and treatment HCC.
Collapse
Affiliation(s)
- Dongkai Gao
- Department of Infectious Diseases, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Zumo Zhou
- Department of Infectious Diseases, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Heqing Huang
- Department of Infectious Diseases, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| |
Collapse
|
36
|
Wang L, Wang B, Quan Z. Identification of aberrantly methylated‑differentially expressed genes and gene ontology in prostate cancer. Mol Med Rep 2019; 21:744-758. [PMID: 31974616 PMCID: PMC6947816 DOI: 10.3892/mmr.2019.10876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most frequent urological malignancy in men worldwide. DNA methylation has an essential role in the etiology and pathogenesis of PCa. The purpose of the present study was to identify the aberrantly methylated-differentially expressed genes and to determine their potential roles in PCa. The important node genes identified were screened by integrated analysis. Gene expression microarrays and gene methylation microarrays were downloaded and aberrantly methylated-differentially expressed genes were obtained. Enrichment analysis and protein-protein interactions (PPI) were obtained, their interactive and visual networks were created, and the node genes in the PPI network were validated. A total of 105 hypomethylation-high expression genes and 561 hypermethylation-low expression genes along with their biological processes were identified. The top 10 node genes obtained from the PPI network were identified for each of the two gene groups. The methylation and gene expression status of node genes in TCGA database, GEPIA tool, and the HPA database were generally consistent with those of our results. In conclusion, the present study identified 20 aberrantly methylated-differentially expressed genes in PCa by combining bioinformatics analyses of gene expression and gene methylation microarrays, and concurrently, the survival of these genes was analyzed. Notably, methylation is a reversible biological process, which makes it of great biological significance for the diagnosis and treatment of prostate cancer using bioinformatics technology to determine abnormal methylation gene markers. The present study provided novel therapeutic targets for the treatment of PCa.
Collapse
Affiliation(s)
- Linbang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bing Wang
- Laboratory of Environmental Monitoring, Shaanxi Province Health Inspection Institution, Xi'an, Shaanxi 710077, P.R. China
| | - Zhengxue Quan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
37
|
Miao X, Xiang Y, Mao W, Chen Y, Li Q, Fan B. TRIM27 promotes IL-6-induced proliferation and inflammation factor production by activating STAT3 signaling in HaCaT cells. Am J Physiol Cell Physiol 2019; 318:C272-C281. [PMID: 31747314 DOI: 10.1152/ajpcell.00314.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The IL-6/STAT3 signaling pathway is required for the development of psoriatic lesions, and tripartite motif-containing 27 (TRIM27) is a protein inhibitor of activated STAT3 (PIAS3)-interacting protein that could modulate IL-6-induced STAT3 activation. However, whether TRIM27 is associated with the IL-6/STAT3 signaling pathway in psoriasis remains enigmatic. TRIM27 expression and gene set enrichment analysis in patients with psoriasis were determined using bioinformatics. Human keratinocyte HaCaT cells treated with recombinant protein IL-6 (rh-IL-6) were transduced with lentivirus silencing TRIM27 and/or PIAS3 or, otherwise, transduced with lentivirus expressing TRIM27 and/or lentivirus silencing STAT3, or MG132, a proteasome-specific protease inhibitor. Cell proliferation and inflammation factor production were measured using Cell Counting Kit-8 and ELISA, respectively. TRIM27, proliferation marker protein Ki-67 (Ki67), phospho-STAT3 (p-STAT3), STAT3, and PIAS3 expressions were determined using real-time quantitative PCR, immunofluorescence staining, or Western blot analysis. Coimmunoprecipitation combined with ubiquitination analysis was performed to explore the interaction between TRIM27 and PIAS3. In the present study, TRIM27 expression was increased in psoriatic lesions, associated with the IL-6 signaling pathway, and induced by rh-IL-6 in a time-dependent manner. The increased cell proliferation, inflammation factor production, and expression of Ki67 and of p-STAT3 relative to STAT3 induced by rh-IL-6 and TRIM27 overexpression were significantly inhibited by TRIM27 silencing and STAT3 silencing, respectively. More importantly, TRIM27 interacted with PIAS3, and its overexpression promoted PIAS3 ubiquitination in HaCaT cells. PIAS3 silencing also significantly promoted TRIM27-dependent and IL6-induced STAT3 activation, cell proliferation, and inflammation factor production. In conclusion, our results highlight that TRIM27 expression is significantly increased by IL-6 and suggest a TRIM27/STAT3-dependent mechanism for regulation of inflammation and proliferation-associated development of psoriasis.
Collapse
Affiliation(s)
- Xiao Miao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanwei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Mao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiran Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Fan
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
38
|
Ma L, Yao N, Chen P, Zhuang Z. TRIM27 promotes the development of esophagus cancer via regulating PTEN/AKT signaling pathway. Cancer Cell Int 2019; 19:283. [PMID: 31719796 PMCID: PMC6839104 DOI: 10.1186/s12935-019-0998-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
Background Tripartite motif‑containing 27 (TRIM27) belongs to the TRIM protein family, which is closely related to the progression of some certain human cancers. Nevertheless, the biological function of TRIM27 in esophageal squamous cell carcinoma (ESCC) is still not clear. The aim of present research is to examine the function of TRIM27 in ESCC cells. Methods In the present study, RNA interference (RNAi) and lentiviral vector were used to knockdown and overexpression of TRIM27 in ESCC cells respectively. qRT-PCR and western blot were used to examine the expression of TRIM27 in ESCC cells. Cell counting kit-8 (CCK-8) assay was performed to determine the proliferation of cells. Results Our analyses indicated that TRIM27 was a pro-proliferation factor in ESCC cells. Moreover, overexpression of TRIM27 deeply suppressed the apoptosis of ESCC cells and accelerated its glucose uptake. In addition, an AKT inhibitor LY294002 was used to determine the connection between TRIM27 and AKT in ESCC cells. Our results demonstrated that TRIM27 has involved in the PI3/AKT signaling pathway. Moreover, TRIM27 interacted with PTEN and mediated its poly-ubiquitination in ESCC cells. Importantly, the glycolysis inhibitor 3-BrPA also inhibited the effect of TRIM27 on ESCC cells. Hence, TRIM27 also participated in the regulation of energy metabolism in ESCC cells. Conclusions This research not only gained a deep insight into the biological function of TRIM27 but also elucidated its potential target and signaling pathway in human ESCC cells.
Collapse
Affiliation(s)
- Liang Ma
- 1Department of Oncology, The Second Affiliated Hospital of Soochow University, Sanxiang Road No. 1055, Gusu District, Suzhou, 215004 Jiangsu China.,Department of Oncology, First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yulong West Road No.166, Tinghu District, Yancheng, 224001 Jiangsu China
| | - Ninghua Yao
- 3Departments of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu China
| | - Ping Chen
- Department of Oncology, First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yulong West Road No.166, Tinghu District, Yancheng, 224001 Jiangsu China
| | - Zhixiang Zhuang
- 1Department of Oncology, The Second Affiliated Hospital of Soochow University, Sanxiang Road No. 1055, Gusu District, Suzhou, 215004 Jiangsu China
| |
Collapse
|
39
|
E3 Ubiquitin Ligase TRIM Proteins, Cell Cycle and Mitosis. Cells 2019; 8:cells8050510. [PMID: 31137886 PMCID: PMC6562728 DOI: 10.3390/cells8050510] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
The cell cycle is a series of events by which cellular components are accurately segregated into daughter cells, principally controlled by the oscillating activities of cyclin-dependent kinases (CDKs) and their co-activators. In eukaryotes, DNA replication is confined to a discrete synthesis phase while chromosome segregation occurs during mitosis. During mitosis, the chromosomes are pulled into each of the two daughter cells by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units tie chromosomes to the microtubules, send signals to the cells when the attachment is completed and the division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. Protein ubiquitination is a post-translational modification that plays a central role in cellular homeostasis. E3 ubiquitin ligases mediate the transfer of ubiquitin to substrate proteins determining their fate. One of the largest subfamilies of E3 ubiquitin ligases is the family of the tripartite motif (TRIM) proteins, whose dysregulation is associated with a variety of cellular processes and directly involved in human diseases and cancer. In this review we summarize the current knowledge and emerging concepts about TRIMs and their contribution to the correct regulation of cell cycle, describing how TRIMs control the cell cycle transition phases and their involvement in the different functional units of the mitotic process, along with implications in cancer progression.
Collapse
|
40
|
Liu J, Feng X, Tian Y, Wang K, Gao F, Yang L, Li H, Tian Y, Yang R, Zhao L, Miao X, Huang J, Liu Q, Zhang W, Li Y, Wang C, Duan H, Liu S. Knockdown of TRIM27 expression suppresses the dysfunction of mesangial cells in lupus nephritis by FoxO1 pathway. J Cell Physiol 2019; 234:11555-11566. [PMID: 30648253 DOI: 10.1002/jcp.27810] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/05/2018] [Indexed: 12/29/2022]
Abstract
TRIM27 (tripartite motif-containing 27) is a member of the TRIM (tripartite motif) protein family and participates in a variety of biological processes. Some research has reported that TRIM27 was highly expressed in certain kinds of carcinoma cells and tissues and played an important role in the proliferation of carcinoma cells. However, whether TRIM27 takes part in the progression of lupus nephritis (LN) especially in cells proliferation remains unclear. Our study revealed that the overexpression of TRIM27 was observed in the kidneys of patients with LN, lupus mice and mesangial cells exposed to LN plasma which correlated with the proliferation of mesangial cells and ECM (extracellular matrix) deposition. Downregulation of TRIM27 expression suppressed the proliferation of mesangial cells and ECM accumulation in MRL/lpr mice and cultured human mesangial cells (HMCs) by regulating the FoxO1 pathway. Furthermore, the overexpression of FoxO1 remarkably decreased HMCs proliferation level and ECM accumulation in LN plasma-treated HMCs. In addition, the protein kinase B (Akt) signal pathway inhibitor LY294002 significantly reduced the expression of TRIM27 and inhibited the dysfunction of mesangial cells. These above data suggested that TRIM27 mediated abnormal mesangial cell proliferation in kidney of lupus and might be the potential target for treating mesangial cell proliferation of lupus nephritis.
Collapse
Affiliation(s)
- Jinxi Liu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xiaojuan Feng
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yu Tian
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Kexin Wang
- Clinical Medicine, College of Basic Medicine,Hebei Medical University, Shijiazhuang, China
| | - Fan Gao
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Lin Yang
- Department of Nephrology, the Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongbo Li
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yuexin Tian
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Ran Yang
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Lu Zhao
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xinyan Miao
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Jie Huang
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Qingjuan Liu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Wei Zhang
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yuzhe Li
- Clinical Medicine, College of Basic Medicine,Hebei Medical University, Shijiazhuang, China
| | - Chunlin Wang
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | | | | |
Collapse
|
41
|
Up-regulation of miR-383-5p suppresses proliferation and enhances chemosensitivity in ovarian cancer cells by targeting TRIM27. Biomed Pharmacother 2019; 109:595-601. [DOI: 10.1016/j.biopha.2018.10.148] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/03/2018] [Accepted: 10/24/2018] [Indexed: 11/21/2022] Open
|
42
|
Zhang HX, Xu ZS, Lin H, Li M, Xia T, Cui K, Wang SY, Li Y, Shu HB, Wang YY. TRIM27 mediates STAT3 activation at retromer-positive structures to promote colitis and colitis-associated carcinogenesis. Nat Commun 2018; 9:3441. [PMID: 30143645 PMCID: PMC6109048 DOI: 10.1038/s41467-018-05796-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/24/2018] [Indexed: 12/26/2022] Open
Abstract
STAT3 is a transcription factor that plays central roles in various physiological processes and its deregulation results in serious diseases including cancer. The mechanisms on how STAT3 activity is regulated remains enigmatic. Here we identify TRIM27 as a positive regulator of II-6-induced STAT3 activation and downstream gene expression. TRIM27 localizes to retromer-positive punctate structures and serves as a critical link for recruiting gp130, JAK1, and STAT3 to and subsequent phosphorylation of STAT3 at the retromer-positive structures. Overexpression of TRIM27 promotes cancer cell growth in vitro and tumor growth in nude mice, whereas knockdown of TRIM27 has opposite effects. Deficiency of TRIM27 significantly impairs dextran sulfate sodium (DSS)-induced STAT3 activation, inflammatory cytokine expression and colitis as well as azoxymethane (AOM)/DSS-induced colitis-associated cancer in mice. These findings reveal a retromer-dependent mechanism for regulation of STAT3 activation, inflammation, and inflammation-associated cancer development. Aberrant and persistent activation of the transcription factor STAT3 has been found in various types of cancers. Here the authors identify TRIM27 as a positive regulator of IL-6-induced STAT3 activation through the formation of JAK1-STAT3 complex, thus impacting inflammation-induced colon cancer development.
Collapse
Affiliation(s)
- Hong-Xia Zhang
- College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China
| | - Zhi-Sheng Xu
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, 510623, Guangzhou, China.,Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Hen Lin
- College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Mi Li
- College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Tian Xia
- College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Kaisa Cui
- College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Su-Yun Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Youjun Li
- College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Hong-Bing Shu
- College of Life Sciences, Wuhan University, 430072, Wuhan, China. .,Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.
| | - Yan-Yi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China.
| |
Collapse
|
43
|
Zhu H, Wang H, Huang Q, Liu Q, Guo Y, Lu J, Li X, Xue C, Han Q. Transcriptional Repression of p53 by PAX3 Contributes to Gliomagenesis and Differentiation of Glioma Stem Cells. Front Mol Neurosci 2018; 11:187. [PMID: 29937714 PMCID: PMC6003214 DOI: 10.3389/fnmol.2018.00187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/14/2018] [Indexed: 12/31/2022] Open
Abstract
Although there are available therapies as surgery, chemotherapy and radiation, glioblastoma (GBM) still has been considered as the most common and overwhelming primary tumor of brain. In GBM, the brain glioma stem cells (BGSCs) were identified and played a crucial role in resistance of GBM to conventional therapies described above. PAX3 was previously identified by our group as a diagnostic/prognostic marker and a therapeutic regulator in the therapy of GBM. Here, we hypothesized PAX3/p53 axis promoted the process of differentiation, regulating to the cancer stem cell properties, such as proliferation and migration. The correlation between PAX3 and p53 in GBM were first clarified. Immunofluorescence of p53 was shown activated following BGSCs differentiation. We further identified that PAX3 might specifically bind to the promoter of p53 gene, and transcriptionally repressed p53 expression. ChIP assay further confirmed that PAX3/p53 axis regulated the differentiation process of BGSCs. Then, the function of PAX3 in BGSCs were sequentially investigated in vitro and in vivo. Ectopic PAX3 expression promoted BGSCs growth and migration while PAX3 knockdown suppressed BGSCs growth, migration in vitro and in vivo. Similar to PAX3 overexpression, p53 inhibition also showed increase in growth and migration of differentiated BGSCs. Regarding the functional interaction between PAX3 and p53, PAX3 knockdown-mediated decrease in proliferation was partially rescued by p53 inhibition. Hypoxia significantly promoted the migration potential of BGSCs. In addition, hypoxia inducible factor-1α (HIF-1α) might be a potential upstream regulator of PAX3 in differentiated BGSCs under hypoxia. Our work may provide a supplementary mechanism in regulation of the BGSCs differentiation and their functions, which should provide novel therapeutic targets for GBM in future.
Collapse
Affiliation(s)
- Hui Zhu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qingfeng Huang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Qianqian Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yibing Guo
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingjing Lu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaohong Li
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Chengbin Xue
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qianqian Han
- National Institute for Food and Drug Control, Beijing, China
| |
Collapse
|
44
|
Zhang Y, Feng Y, Ji D, Wang Q, Qian W, Wang S, Zhang Z, Ji B, Zhang C, Sun Y, Fu Z. TRIM27 functions as an oncogene by activating epithelial-mesenchymal transition and p-AKT in colorectal cancer. Int J Oncol 2018; 53:620-632. [PMID: 29767249 PMCID: PMC6017157 DOI: 10.3892/ijo.2018.4408] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Abstract
Tripartite motif-containing 27 (TRIM27) belongs to the tripartite motif (TRIM) protein family and is involved in various malignant tumor processes. However, the function and mechanism of TRIM27 in colorectal cancer (CRC) remains to be elucidated. In the present study, the expression of TRIM27 was analyzed in CRC tissues and adjacent normal tissues by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. LoVo and HCT116 cell lines were then selected to further investigate the function of TRIM27 in the proliferation, invasion and metastasis of CRC in vitro and in vivo. Finally, the potential mechanism underlying the effects of TRIM27 in CRC was examined by western blotting. The results showed that TRIM27 was upregulated in CRC tissues, and the expression level of TRIM27 was significantly associated with tumor invasion, metastasis and prognosis. Following TRIM27 inhibition and overexpression in CRC cells, it was found that TRIM27 promoted cell proliferation, possibly via the inhibition of apoptosis and cell cycle regulation. TRIM27 also facilitated invasion and metastasis. Finally, it was observed that TRIM27 promoted epithelial-mesenchymal transition and activated phosphorylated AKT serine/threonine kinase in CRC cells. These results suggested that TRIM27 is an oncogenic protein in the progression of CRC, and may represent a novel target for CRC detection and therapy.
Collapse
Affiliation(s)
- Yue Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dongjian Ji
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qingyuan Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenwei Qian
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shijia Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhiyuan Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bing Ji
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chuan Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
45
|
Fan S, Wang Y, Zhang Z, Lu J, Wu Z, Shan Q, Sun C, Wu D, Li M, Sheng N, Xie Y, Zheng Y. High expression of glutamate-ammonia ligase is associated with unfavorable prognosis in patients with ovarian cancer. J Cell Biochem 2018; 119:6008-6015. [PMID: 29575012 DOI: 10.1002/jcb.26797] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/20/2018] [Indexed: 12/27/2022]
Abstract
Glutamate-ammonia ligase (GLUL), which is also called GS (glutamine synthetase), is the enzyme that catalyzes the synthesis of glutamine from glutamate and ammonia in an ATP-dependent reaction. Here, we found higher expression of GLUL in the ovarian cancer patients was associated with worse disease-free survival (DFS) and overall survival (OS). In addition, GLUL was heterogeneously expressed in various ovarian cancer cells. The mRNA and protein expression levels of GLUL in NIH:OVCAR-3 and ES-2 cells were obviously higher than that in the other types of ovarian cancer cells. Knockdown of GLUL in NIH:OVCAR-3 or ES-2 cells could significantly decrease the proliferation ability. Furthermore, GLUL knockdown markedly inhibited the p38 MAPK signaling pathway in NIH:OVCAR-3 or ES-2 cells. Our findings suggest that decreasing expression of GLUL may be a new approach that can be used for ovarian cancer treatment.
Collapse
Affiliation(s)
- Shaohua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P.R. China
| | - Yanyan Wang
- Department of Medical Ultrasonics, The Affiliated First People's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Zifeng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P.R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P.R. China
| | - Zhiyong Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P.R. China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P.R. China
| | - Chunhui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P.R. China
| | - Dongmei Wu
- Department of Medical Ultrasonics, The Affiliated First People's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Mengqiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P.R. China
| | - Ning Sheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P.R. China
| | - Ying Xie
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P.R. China
| | - Yuanlin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, P.R. China
| |
Collapse
|
46
|
Kanhaiya K, Czeizler E, Gratie C, Petre I. Controlling Directed Protein Interaction Networks in Cancer. Sci Rep 2017; 7:10327. [PMID: 28871116 PMCID: PMC5583175 DOI: 10.1038/s41598-017-10491-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023] Open
Abstract
Control theory is a well-established approach in network science, with applications in bio-medicine and cancer research. We build on recent results for structural controllability of directed networks, which identifies a set of driver nodes able to control an a-priori defined part of the network. We develop a novel and efficient approach for the (targeted) structural controllability of cancer networks and demonstrate it for the analysis of breast, pancreatic, and ovarian cancer. We build in each case a protein-protein interaction network and focus on the survivability-essential proteins specific to each cancer type. We show that these essential proteins are efficiently controllable from a relatively small computable set of driver nodes. Moreover, we adjust the method to find the driver nodes among FDA-approved drug-target nodes. We find that, while many of the drugs acting on the driver nodes are part of known cancer therapies, some of them are not used for the cancer types analyzed here; some drug-target driver nodes identified by our algorithms are not known to be used in any cancer therapy. Overall we show that a better understanding of the control dynamics of cancer through computational modelling can pave the way for new efficient therapeutic approaches and personalized medicine.
Collapse
Affiliation(s)
- Krishna Kanhaiya
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland
| | - Eugen Czeizler
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland
- National Institute for Research and Development for Biological Sciences, Bucharest, Romania
| | - Cristian Gratie
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland
| | - Ion Petre
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland.
| |
Collapse
|
47
|
Chen Y, Sun J, Ma J. Proliferation and invasion of ovarian cancer cells are suppressed by knockdown of TRIM11. Oncol Lett 2017; 14:2125-2130. [PMID: 28781653 PMCID: PMC5530193 DOI: 10.3892/ol.2017.6432] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/29/2017] [Indexed: 11/06/2022] Open
Abstract
Tripartite motif-containing (TRIM)11, an E3 ubiquitin ligase, is involved in the development of the nervous system. As an oncogene, it has also been identified in glioma, lung and colon cancer. However, few studies have been conducted on TRIM11 expression and functions in ovarian cancer. In the present study, we found that TRIM11 expression was obviously elevated in ovarian cancer tissues compared to adjacent non-cancerous tissues. Depletion of TRIM11 in A2780 and SK-OV-3 ovarian cancer cells by transfection of specific small interfering RNA significantly suppressed proliferation and inhibited invasion of cells, even induced apoptosis as indicated by both Cell Counting Kit-8, Annexin V/propidium iodide staining and Transwell assay. Furthermore, we explored the underlying mechanisms. Knockdown of TRIM11 not only affects the expression of cell apoptosis-related (Bcl-2 and Bax) and invasion-related proteins [matrix metalloproteinase (MMP)-2 and MMP-9], but also reduced the phosphorylation levels of ERK and AKT. In conclusion, we showed that TRIM11 was upregulated in ovarian cancer tissue samples and that TRIM11 may serve as an oncogene in ovarian cancer.
Collapse
Affiliation(s)
- Yan Chen
- Clinical Laboratory, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jin Sun
- Clinical Laboratory, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Junyan Ma
- Women's Reproductive Health Laboratory of Zhejiang, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
48
|
Ketcham CM, Umezawa A, Zou H, Siegal GP. Laboratory Investigation web focus on China. J Transl Med 2016; 96:1144-1146. [PMID: 27777411 DOI: 10.1038/labinvest.2016.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The vast growth of China's publishing output is a reflection of the increasing strength of Chinese science. The editors of Laboratory Investigation (LI) present a collection of papers that showcases research by authors from institutions across China, highlighting the significant contributions of Chinese scientists to the journal.
Collapse
Affiliation(s)
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gene P Siegal
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|