1
|
Wakabayashi J, Hamaguchi T, Morifuji M, Nagata M. Nicotinamide mononucleotide suppresses cellular senescence and increases aquaporin 5 expression in the submandibular gland of aged male mice to ameliorate aging-related dry mouth. Biogerontology 2024; 26:18. [PMID: 39633075 DOI: 10.1007/s10522-024-10162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Dry mouth results from decreased saliva secretion due to aging or drug side effects. Decreased saliva secretion causes dryness in the oral cavity that makes swallowing difficult and increases the risk of aspiration pneumonia. There are few fundamental treatments for dry mouth. Here we investigated whether treatment of old mice with nicotinamide mononucleotide (NMN) improved factors associated with dry mouth. Young (16-week-old) and old (113-week-old) male mice were treated subcutaneously with saline or NMN (300 mg/kg) once every two days for four weeks and saliva secretion was measured. The amount of nicotinamide adenine dinucleotide (NAD+) in salivary gland tissues was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene expression in the intestinal tract and salivary glands was measured by real-time PCR. The population of cells with acetylation in the submandibular gland was quantified by immunohistological staining. SA-β-gal activity in the submandibular gland was measured to assess cell senescence. Statistical analysis was performed by one-way analysis of variance with Tukey post hoc analysis. The submandibular glands from old mice treated with NMN exhibited increased saliva secretion and NAD+ levels, which both decrease with aging. In addition, the submandibular glands from NMN-treated old mice had decreased acetylation, numbers of senescent cells, and levels of senescence-associated secretory phenotype (SASP) factors, which all increase with aging, as well as increased aquaporin5 (AQP5) mRNA expression. NMN administration may improve dry mouth by regulating cellular senescence in the submandibular gland and increasing expression of AQP5, a water channel involved in saliva secretion, to inhibit age-related decreases in saliva secretion. It is necessary to elucidate further mechanism and confirm its effectiveness in humans.
Collapse
Affiliation(s)
- Jun Wakabayashi
- Wellness Science Labs, Meiji Holdings Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Takahiro Hamaguchi
- Wellness Science Labs, Meiji Holdings Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Masashi Morifuji
- Wellness Science Labs, Meiji Holdings Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan.
| | - Masashi Nagata
- Wellness Science Labs, Meiji Holdings Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| |
Collapse
|
2
|
Fu L, Zhao Z, Zhao S, Zhang M, Teng X, Wang L, Yang T. The involvement of aquaporin 5 in the inflammatory response of primary Sjogren's syndrome dry eye: potential therapeutic targets exploration. Front Med (Lausanne) 2024; 11:1439888. [PMID: 39376655 PMCID: PMC11456562 DOI: 10.3389/fmed.2024.1439888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Sjogren's syndrome (SS) is a chronic autoimmune disease. Mainly due to the infiltration of lymphoplasmic cells into the exocrine glands, especially the salivary glands and lacrimal glands, resulting in reduced tear and saliva secretion. Reduced tear flow can trigger Sjogren's syndrome dry eye (SSDE). Although the pathophysiology of SSDE xerosis remains incompletely understood, recent advances have identified aquaporin-5 (AQP5) as a critical factor in dysregulation of the exocrine gland and epithelium, influencing the clinical presentation of SSDE through modulation of inflammatory microenvironment and tear secretion processes. This review aims to explore AQP5 regulatory mechanisms in SSDE and analyze its potential as a therapeutic target, providing new directions for SSDE treatment.
Collapse
Affiliation(s)
- Lijuan Fu
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zihang Zhao
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuang Zhao
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiying Zhang
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoming Teng
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liyuan Wang
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Ophthalmology Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tiansong Yang
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Felix FA, Zhou J, Li D, Onodera S, Yu Q. Endogenous IL-22 contributes to the pathogenesis of salivary gland dysfunction in the non-obese diabetic model of Sjögren's syndrome. Mol Immunol 2024; 173:20-29. [PMID: 39018744 PMCID: PMC11343657 DOI: 10.1016/j.molimm.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/19/2024]
Abstract
Sjӧgren's syndrome is a systemic autoimmune disease primarily targeting the salivary and lacrimal glands. Our previous investigations have shown that administration of interleukin-22 (IL-22), an IL-10 family cytokine known for its complex and context-dependent effects on tissues, either protective- or detrimental, to salivary glands leads to hypofunction and pathological changes of salivary glands in C57BL/6 mice and in non-obese diabetic (NOD) mice, the latter being a commonly used model of Sjӧgren's syndrome. This study aims to delineate the pathophysiological roles of endogenously produced IL-22 in the development of salivary gland pathologies and dysfunction associated with Sjӧgren's disease in the NOD mouse model. Our results reveal that neutralizing IL-22 offered a protective effect on salivary gland function without significantly affecting the immune cell infiltration of salivary glands or the autoantibody production. Blockade of IL-22 reduced the levels of phosphorylated STAT3 in salivary gland tissues of NOD mice, while its administration to salivary glands had the opposite effect. Correspondingly, the detrimental impact of exogenously applied IL-22 on salivary glands was almost completely abrogated by a specific STAT3 inhibitor. Moreover, IL-22 blockade led to a downregulation of protein amounts of Ten-Eleven-Translocation 2, a methylcytosine dioxygenase critical for mediating interferon-induced responses, in salivary gland epithelial cells. IL-22 neutralization also exerted a protective effect on the salivary gland epithelial cells that express high levels of surface EpCAM and bear the stem cell potential, and IL-22 treatment in vitro hampered the survival/expansion of these salivary gland stem cells, indicating a direct negative impact of IL-22 on these cells. In summary, this study has uncovered a critical pathogenic role of the endogenous IL-22 in the pathogenesis of Sjögren's disease-characteristic salivary gland dysfunction and provided initial evidence that this effect is dependent on STAT3 activation and potentially achieved through fostering Tet2-mediated interferon responses in salivary gland epithelial cells and negatively affecting the EpCAMhigh salivary gland stem cells.
Collapse
Affiliation(s)
- Fernanda Aragão Felix
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States; Department of Oral Surgery, Pathology, and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jing Zhou
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States
| | - Dongfang Li
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-chou, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Qing Yu
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States.
| |
Collapse
|
4
|
Liu Y, Wang F, Cheng B, Zhou G. Melatonin improves salivary gland damage and hypofunction in pSS by inhibiting IL-6/STAT3 signaling through its receptor-dependent manner. Mol Immunol 2024; 169:10-27. [PMID: 38460474 DOI: 10.1016/j.molimm.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVE Primary Sjogren's syndrome (pSS) is an autoimmune disease of the exocrine glands with no specific or efficient treatments. Melatonin, a natural hormone, is revealed to show multiple biological functions, both receptor-dependent and independent effects, including anti-apoptotic, antioxidant, and anti-inflammatory activities. However, the potential mechanism by which melatonin protects salivary glands (SGs) of pSS from damage needs to be clarified. The purpose of current study was to explore the role and receptor-related mechanisms of melatonin in pSS-induced glandular damage. METHODS AND RESULTS NOD/Ltj mice were used to spontaneously mimic pSS-induced glandular hypofunction in vivo and primary human salivary gland epithelial (HSGE) cells were stimulated by interferon-γ (IFN-γ) to mimic pSS-induced inflammation in SGs cells in vitro. Melatonin-treated mice exhibited a significant reduction in SG injury of NOD/Ltj mice, which was accompanied by an increase in salivary flow rate, a decrease in inflammatory infiltration within the gland, and a suppression of oxidative stress indicators as well as cell apoptosis. Notably, both melatonin membrane receptors and nuclear receptors played an important role in the anti-apoptotic effects of melatonin on the SGs of NOD/Ltj mice. Furthermore, melatonin blocked the IL-6/STAT3 pathway through receptor-dependent manners in IFN-γ-stimulated HSGE cells. However, it was evident that the anti-oxidative and anti-apoptotic properties of melatonin on IFN-γ-stimulated HSGE cells were diminished by IL-6 treatment. CONCLUSION Melatonin had the potential to mitigate inflammation, oxidative stress, and apoptosis in SGs of pSS by inhibiting the IL-6/STAT3 pathway through receptor-dependent mechanisms. This intervention effectively prevented glandular damage and preserved functional integrity.
Collapse
Affiliation(s)
- Yi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Fang Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, China.
| | - Gang Zhou
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
5
|
Liao J, Yu X, Huang Z, He Q, Yang J, Zhang Y, Chen J, Song W, Luo J, Tao Q. Chemokines and lymphocyte homing in Sjögren's syndrome. Front Immunol 2024; 15:1345381. [PMID: 38736890 PMCID: PMC11082322 DOI: 10.3389/fimmu.2024.1345381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that typically presents with lymphocyte, dendritic cell, and macrophage infiltration of exocrine gland ducts and the formation of ectopic germinal centers. The interactions of lymphocyte homing receptors and addressins and chemokines and their receptors, such as α4β7/MAdCAM-1, LFA-1/ICAM-1, CXCL13/CXCR5, CCL25/CCR9, CX3CL1/CX3CR1, play important roles in the migration of inflammatory cells to the focal glands and the promotion of ectopic germinal center formation in SS. A variety of molecules have been shown to be involved in lymphocyte homing, including tumor necrosis factor-α, interferon (IFN)-α, IFN-β, and B cell activating factor. This process mainly involves the Janus kinase-signal transducer and activator of transcription signaling pathway, lymphotoxin-β receptor pathway, and nuclear factor-κB signaling pathway. These findings have led to the development of antibodies to cell adhesion molecules, antagonists of chemokines and their receptors, compounds interfering with chemokine receptor signaling, and gene therapies targeting chemokines and their receptors, providing new targets for the treatment of SS in humans. The aim of this study was to explore the relationship between lymphocyte homing and the pathogenesis of SS, and to provide a review of recent studies addressing lymphocyte homing in targeted therapy for SS.
Collapse
Affiliation(s)
- Jiahe Liao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Xinbo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Ziwei Huang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Qian He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jianying Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jiaqi Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Weijiang Song
- Traditional Chinese Medicine Department, Peking University Third Hospital, Beijing, China
| | - Jing Luo
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
| | - Qingwen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
6
|
Vazão AR, Claudino L, Pimpinato PP, Sampaio LV, Fiais GA, de Freitas RN, Justo MP, Brito VGB, Oliveira SHP, Lima RR, Cintra LTÂ, Chaves-Neto AH. Experimental apical periodontitis alters salivary biochemical composition and induces local redox state disturbances in the salivary glands of male rats. Clin Oral Investig 2024; 28:154. [PMID: 38366095 DOI: 10.1007/s00784-024-05540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVES The objective was to evaluate the effects of experimental apical periodontitis on the inflammatory, functional, biochemical, and redox parameters of the parotid and submandibular glands in rats. MATERIALS AND METHODS Twenty 12-week-old male Wistar rats were randomly divided into two groups (n = 10): a control group and apical periodontitis group. After 28 days, the saliva was collected for salivary flow rate and biochemistry composition. Both glands were sampled for quantification of the tumor necrosis factor-alpha (TNF-α) and biochemical analyses of redox state. RESULTS TNF-α concentrations were higher in both salivary glands adjacent to the periapical lesions in animals with apical periodontitis and also compared to the control group. The apical periodontitis group increased the salivary amylase, chloride, potassium, calcium, and phosphate. The total oxidant capacity increased in the parotid gland adjacent to the periapical lesions in the same rat and compared to the control group. Conversely, the total antioxidant capacity of the parotid glands on both sides in the apical periodontitis group was lower than that in the control group. Furthermore, glutathione peroxidase activity increased in the submandibular gland adjacent to the apical periodontitis group compared to the control group. CONCLUSIONS Experimental apical periodontitis alters salivary biochemical composition, in addition to increasing inflammatory marker and inducing local disturbances in the redox state in the parotid and submandibular glands of male rats. CLINICAL RELEVANCE Apical periodontitis could exacerbate the decline in oral health by triggering dysfunction in the salivary glands.
Collapse
Affiliation(s)
- Arieli Raymundo Vazão
- Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Lívia Claudino
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Pedro Penati Pimpinato
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Larissa Victorino Sampaio
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Gabriela Alice Fiais
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Rayara Nogueira de Freitas
- Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Mariana Pagliusi Justo
- Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
- Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Victor Gustavo Balera Brito
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Luciano Tavares Ângelo Cintra
- Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
- Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Antonio Hernandes Chaves-Neto
- Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
7
|
Wang YH, Li W, McDermott M, Son GY, Maiti G, Zhou F, Tao A, Raphael D, Moreira AL, Shen B, Vaeth M, Nadorp B, Chakravarti S, Lacruz RS, Feske S. Regulatory T cells and IFN-γ-producing Th1 cells play a critical role in the pathogenesis of Sjögren's Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576314. [PMID: 38328096 PMCID: PMC10849570 DOI: 10.1101/2024.01.23.576314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Objectives Sjögren's Disease (SjD) is an autoimmune disorder characterized by progressive dysfunction, inflammation and destruction of salivary and lacrimal glands, and by extraglandular manifestations. Its etiology and pathophysiology remain incompletely understood, though a role for autoreactive B cells has been considered key. Here, we investigated the role of effector and regulatory T cells in the pathogenesis of SjD. Methods Histological analysis, RNA-sequencing and flow cytometry were conducted on glands, lungs, eyes and lymphoid tissues of mice with regulatory T cell-specific deletion of stromal interaction proteins (STIM) 1 and 2 ( Stim1/2 Foxp3 ), which play key roles in calcium signaling and T cell function. The pathogenicity of T cells from Stim1/2 Foxp3 mice was investigated through adoptively transfer into lymphopenic host mice. Additionally, single-cell transcriptomic analysis was performed on peripheral blood mononuclear cells (PBMCs) of patients with SjD and control subjects. Results Stim1/2 Foxp3 mice develop a severe SjD-like disorder including salivary gland (SG) and lacrimal gland (LG) inflammation and dysfunction, autoantibodies and extraglandular symptoms. SG inflammation in Stim1/2 Foxp3 mice is characterized by T and B cell infiltration, and transcriptionally by a Th1 immune response that correlates strongly with the dysregulation observed in patients with SjD. Adoptive transfer of effector T cells from Stim1/2 Foxp3 mice demonstrates that the SjD-like disease is driven by interferon (IFN)-γ producing autoreactive CD4 + T cells independently of B cells and autoantiboodies. scRNA-seq analysis identifies increased Th1 responses and attenuated memory Treg function in PBMCs of patients with SjD. Conclusions We report a more accurate mouse model of SjD while providing evidence for a critical role of Treg cells and IFN-γ producing Th1 cells in the pathogenesis of SjD, which may be effective targets for therapy.
Collapse
|
8
|
Zhang P, Abudunaibi M, Zhao Q, Wu Y, Aihaiti G, Wu S, Qi J, Shi L, Xu H. Effect of Infliximab on Radiation-Induced Submandibular Gland Dysfunction in Rats. Radiat Res 2024; 201:77-86. [PMID: 38044712 DOI: 10.1667/rade-22-00192.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Inflammatory response is one of the essential parts of various pathogenic mechanisms of radiation-induced salivary dysfunction. The effect of decreasing the levels of inflammatory cytokines on alleviating submandibular gland injuries after irradiation is unclear. This study aimed to explore the effect of the antibody against tumor necrosis factor-alpha, infliximab, on radiation-induced submandibular gland dysfunction in rats. Male Wistar rats received a single 20 Gy dose to the right submandibular gland region or sham irradiated. Meanwhile, the irradiated group was divided into infliximab treatment groups or untreated groups. Animals were euthanized at 1, 6, and 12 weeks postirradiation, and the irradiated submandibular gland was dissected for subsequent detection. Submandibular gland exposure caused obvious pathological changes. The increased levels of inflammatory cytokines, including tumor necrosis factor-alpha, interleukin-1β, and interleukin-6, represent an aggravated inflammatory response. The results of the western blot, reverse transcription-quantitative polymerase chain reaction, and immunofluorescence staining showed upregulated levels of claudin-1, claudin-3, and aquaporin 5 and downregulated levels of claudin-4. Moreover, nuclear factor kappa-B phosphorylation levels were also up-regulated. In subsequent experiments, we found that infliximab alleviated inflammatory response, up-regulated tumor necrosis factor-alpha, interleukin-1β, and interleukin-6 levels, and improved claudin-1, claudin-3, claudin-4, and aquaporin 5 expression. Our results indicate that infliximab might improve the para-cellular pathway and trans-cellular pathway destruction by reducing the inflammatory.
Collapse
Affiliation(s)
- Pengxin Zhang
- Department of Oral and Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, P. R. China
- Postgraduate College of Xinjiang Medical University, Urumqi 830054, P. R. China
| | - Maimaitituerxun Abudunaibi
- Department of Oral and Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, P. R. China
- Postgraduate College of Xinjiang Medical University, Urumqi 830054, P. R. China
| | - Qi Zhao
- Department of Radiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, P. R. China
| | - Yanhui Wu
- Department of Stomatology, Sijing Hospital of Songjiang District, Shanghai 201601, P. R. China
| | - Guliziba Aihaiti
- Department of Oral and Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, P. R. China
- Postgraduate College of Xinjiang Medical University, Urumqi 830054, P. R. China
| | - Shihan Wu
- Department of Oral and Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, P. R. China
- Postgraduate College of Xinjiang Medical University, Urumqi 830054, P. R. China
| | - Jia Qi
- Department of Oral and Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, P. R. China
- Postgraduate College of Xinjiang Medical University, Urumqi 830054, P. R. China
| | - Liang Shi
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Hui Xu
- Department of Oral and Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, P. R. China
- Stomatology School of Xinjiang Medical University, Urumqi 830054, P. R. China
| |
Collapse
|
9
|
Kudryavtsev I, Benevolenskaya S, Serebriakova M, Grigor'yeva I, Kuvardin E, Rubinstein A, Golovkin A, Kalinina O, Zaikova E, Lapin S, Maslyanskiy A. Circulating CD8+ T Cell Subsets in Primary Sjögren's Syndrome. Biomedicines 2023; 11:2778. [PMID: 37893153 PMCID: PMC10604770 DOI: 10.3390/biomedicines11102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023] Open
Abstract
Currently, multiple studies have indicated that CD8+ T lymphocytes play a role in causing damage to the exocrine glands through acinar injury in primary Sjögren's syndrome (pSS). The aim of this research was to assess the imbalance of circulating CD8+ T cell subsets. We analyzed blood samples from 34 pSS patients and 34 healthy individuals as controls. We used flow cytometry to enumerate CD8+ T cell maturation stages, using as markers CD62L, CD28, CD27, CD4, CD8, CD3, CD45RA and CD45. For immunophenotyping of 'polarized' CD8+ T cell subsets, we used the following monoclonal antibodies: CXCR5, CCR6, CXCR3 and CCR4. The findings revealed that both the relative and absolute numbers of 'naïve' CD8+ T cells were higher in pSS patients compared to the healthy volunteers. Conversely, the proportions of effector memory CD8+ T cells were notably lower. Furthermore, our data suggested that among patients with pSS, the levels of cytotoxic Tc1 CD8+ T cells were reduced, while the frequencies of regulatory cytokine-producing Tc2 and Tc17 CD8+ T cells were significantly elevated. Simultaneously, the Tc1 cell subsets displayed a negative correlation with immunoglobulin G, rheumatoid factor, the Schirmer test and unstimulated saliva flow. On the other hand, the Tc2 cell subsets exhibited a positive correlation with these parameters. In summary, our study indicated that immune dysfunction within CD8+ T cells, including alterations in Tc1 cells, plays a significant role in the development of pSS.
Collapse
Affiliation(s)
- Igor Kudryavtsev
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Stanislava Benevolenskaya
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Maria Serebriakova
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Irina Grigor'yeva
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Evgeniy Kuvardin
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Artem Rubinstein
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Alexey Golovkin
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Olga Kalinina
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Ekaterina Zaikova
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| | - Sergey Lapin
- Federal State Budgetary Educational Institution of Higher Education Academician I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of Russian Federation, St. Petersburg 197022, Russia
| | - Alexey Maslyanskiy
- Federal State Budgetary Institution "Almazov National Medical Research Centre" of the Ministry of Health of the Russian Federation, St. Petersburg 197341, Russia
| |
Collapse
|
10
|
Kelagere Y, Scholand KK, DeJong EN, Boyd AI, Yu Z, Astley RA, Callegan MC, Bowdish DM, Makarenkova HP, de Paiva CS. TNF is a critical cytokine in age-related dry eye disease. Ocul Surf 2023; 30:119-128. [PMID: 37634571 PMCID: PMC10812879 DOI: 10.1016/j.jtos.2023.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex biological process that is characterized by low-grade inflammation, called inflammaging. Aging affects multiple organs including eye and lacrimal gland. Tumor necrosis factor (TNF) is a pleiotropic cytokine that participates in inflammation, activation of proteases such as cathepsin S, and formation of ectopic lymphoid organs. Using genetic and pharmacological approaches, we investigated the role of TNF in age-related dry eye disease, emphasizing the ocular surface and lacrimal gland inflammation. Our results show the increased protein and mRNA levels of TNF in aged lacrimal glands, accompanied by increased TNF, IL1β, IL-18, CCL5, CXCL1, IL-2, IL-2 receptor alpha (CD25), IFN-γ, IL-12p40, IL-17, and IL-10 proteins in tears of aged mice. Moreover, genetic loss of the Tnf-/- in mice decreased goblet cell loss and the development of ectopic lymphoid structures in the lacrimal gland compared to wild-type mice. This was accompanied by a decrease in cytokine production. Treatment of mice at an early stage of aging (12-14-month-old) with TNF inhibitor tanfanercept eye drops for eight consecutive weeks decreased cytokine levels in tears, improved goblet cell density, and decreased the marginal zone B cell frequency in the lacrimal gland compared to vehicle-treated animals. Our studies indicate that modulation of TNF during aging could be a novel strategy for age-related dry eye disease.
Collapse
Affiliation(s)
- Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Erica N DeJong
- McMaster Immunology Research Centre, McMaster University, Ontario, Canada.
| | - Andrea I Boyd
- Graduate Program in Immunology & Microbiology, Baylor College of Medicine, USA.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Roger A Astley
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Michelle C Callegan
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Dawn Me Bowdish
- McMaster Immunology Research Centre, McMaster University, Ontario, Canada.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
11
|
Zhou J, Onodera S, Yu Q. Inhibition of NLRP3 inflammasome activity by MCC950 leads to exacerbation of Sjӧgren's syndrome pathologies in non-obese diabetic mice. Immunology 2023; 168:697-708. [PMID: 36353754 PMCID: PMC10038882 DOI: 10.1111/imm.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Sjӧgren's syndrome (SS) is an autoimmune inflammatory disease characterized by chronic inflammation and dysfunction of exocrine glands and causes dry mouth, dry eyes and various systemic health problems. The objective of this study is to define the in vivo actions of the endogenous NLRP3 inflammasome, a key initiator and mediator of various immune and inflammatory conditions, in newly established SS disease. MCC950, a highly specific small-molecule inhibitor of NLRP3 inflammasome formation and activation, was intraperitoneally administered to the female non-obese diabetic (NOD) mice aged 11 weeks, which have newly established SS-like hyposalivation and pathologies. The injection was conducted three times weekly for three consecutive weeks and mice were analysed for characteristic SS pathologies at the end of the treatments. MCC950 treatment resulted in a marked reduction in salivary secretion and an exacerbation of leukocyte infiltration of submandibular glands. The disease-worsening effect of MCC950 treatment was accompanied by increased T and B cell numbers, enhanced T helper 1 response and reduced aquaporin 5 expression in submandibular glands. Hence, ablation of endogenous NLRP3 inflammasome activity by MCC950 with established autoimmune exocrinopathy exacerbates salivary gland dysfunction and inflammation, indicating a disease-alleviating and inflammation-dampening action of the endogenous NLRP3 inflammasome activity during established SS disease in the non-obese diabetic mouse model.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- These two authors contributed equally to this work
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-chou, Chiyoda-ku, Tokyo 101-0061, Japan
- These two authors contributed equally to this work
| | - Qing Yu
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| |
Collapse
|
12
|
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease with the pathological hallmark of lymphoplasmacytic infiltration of exocrine glands - more specifically salivary and lacrimal glands - resulting in a diminished production of tears and saliva (sicca syndrome). The pathophysiology underscoring the mechanisms of the sicca symptoms in SS has still yet to be unraveled but recent advances have identified a cardinal role of aquaporin-5 (AQP5) as a key player in saliva secretion as well as salivary gland epithelial cell dysregulation. AQP5 expression and localization are significantly altered in salivary glands from patients and mice models of the disease, shedding light on a putative mechanism accounting for diminished salivary flow. Furthermore, aberrant expression and localization of AQP5 protein partners, such as prolactin-inducible protein and ezrin, may account for altered AQP5 localization in salivary glands from patients suffering from SS and are considered as new players in SS development. This review provides an overview of the role of AQP5 in SS salivary gland epithelial cell dysregulation, focusing on its trafficking and protein-protein interactions.
Collapse
|
13
|
Liu Y, Tan YQ, Zhou G. Melatonin: a potential therapeutic approach for the management of primary Sjögren's syndrome. Immunol Res 2023; 71:373-387. [PMID: 36715831 DOI: 10.1007/s12026-023-09360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/03/2023] [Indexed: 01/31/2023]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease that primarily affects the exocrine glands and is mainly characterized by sicca symptoms of the eyes and mouth. Approximately 30-50% of pSS patients develop systemic multi-organ disorders including malignant lymphoma. The etiology of pSS is not well understood; growing evidence suggests that uncontrolled immune/inflammatory responses, excessive oxidative stress, defected apoptosis, dysregulated autophagy, exosomes, and exogenous virus infections may participate in the pathogenesis of pSS. There is no ideal therapeutic method for pSS; the management of pSS is mainly palliative, which aims to alleviate sicca symptoms. Melatonin, as the main secretory product of the pineal gland, has been evidenced to show various physiological functions, including effects of immunoregulation, capability of antioxidation, moderation of autophagy, suppressive activities of apoptosis, regulative capacity of exosomes, properties of anti-infection, and improvement of sleep. The beneficial effects of melatonin have been already validated in some autoimmune diseases such as multiple sclerosis (MS), type 1 diabetes mellitus (T1DM), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD). However, our previous research firstly revealed that melatonin might inhibit pathogenic responses of peripheral Th17 and double-negative (DN) T cells in pSS. More importantly, melatonin administration alleviated the development of pSS in animal models with reduced infiltrating lymphocytes, improved functional activity of salivary gland, and decreased production of inflammatory factors as well as autoantibodies. Owing to the important biological properties reported in melatonin are characteristics closely related to the treatment of pSS; the potential role and underlying mechanisms of melatonin in the administration of pSS are certainly worth further investigations. Consequently, the aim of this review is to give a deep insight to the therapeutic potency of melatonin for pSS.
Collapse
Affiliation(s)
- Yi Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China.
| |
Collapse
|
14
|
OGAWA KENJIROU, URATA KARIN, MAEDA SAKI, OHNO YUTA, SATOH KEITARO, YAMADA YOSHIYUKI, SUZUKI YOSUKE, KOGA YASUKO, SUGAMOTO KAZUHIRO, KAWAGUCHI MAKIKO, KUNITAKE HISATO, NISHIYAMA KAZUO, GOTO YO, NAKAYAMA TAKAYUKI, YAMASAKI MASAO. Blueberry Leaf Extract Prevents Lacrimal Hyposecretion in Sjögren's Syndrome-like Model of Non-obese Diabetic Mice. In Vivo 2023; 37:149-162. [PMID: 36593026 PMCID: PMC9843763 DOI: 10.21873/invivo.13064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND/AIM This study evaluated the effect of blueberry leaf hot water extract (BLEx) on Sjögren's syndrome (SS)-like lacrimal hyposecretion in male non-obese diabetic (NOD) mice. MATERIALS AND METHODS NOD or BALB/c mice were fed 1% BLEx or control (AIN-93G) for 2 weeks from the age of 4 to 6 weeks. Pilocarpine-induced tear volume was measured using a phenol red-impregnated thread. The lacrimal glands were evaluated histologically by H&E staining. The IL-1β and TNF-α levels in the lacrimal gland tissue were measured by ELISA. The mRNA expression levels of secretion-related proteins were measured by real-time PCR. LC3 I/II and arginase 1 expression levels were measured by western blot. RESULTS After feeding with BLEx, pilocarpine-induced tear secretion in NOD mice was increased. In contrast, the mRNA expression levels of the cholinergic muscarinic M3 receptor, aquaporin 5, and ion channels related to lacrimal secretion were not changed by BLEx administration. In addition, the protein expression of arginase 1, which was recently reported to be involved in tear hyposecretion in NOD mice, was also not improved by BLEx administration. Although infiltration in the lacrimal gland of NOD mice was not decreased, the levels of TNF-α and the autophagy-related protein LC3 were significantly suppressed by BLEx treatment. CONCLUSION BLEx treatment may ameliorate lacrimal hyposecretion in NOD mice by delaying the progression of autoimmune disease by suppressing autophagy in lacrimal glands.
Collapse
Affiliation(s)
- KENJIROU OGAWA
- Institute for Tenure Track Promotion, University of Miyazaki, Miyazaki, Japan
| | - KARIN URATA
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - SAKI MAEDA
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - YUTA OHNO
- Department of Pharmacology, Asahi University School of Dentistry, Mizuho, Japan
| | - KEITARO SATOH
- Department of Pharmacology, Meikai University School of Dentistry, Sakado, Japan
| | - YOSHIYUKI YAMADA
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - YOSUKE SUZUKI
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - YASUKO KOGA
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - KAZUHIRO SUGAMOTO
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - MAKIKO KAWAGUCHI
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - HISATO KUNITAKE
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan,Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - KAZUO NISHIYAMA
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan,Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - YO GOTO
- Biolabo Co., Ltd., Kobe, Japan
| | | | - MASAO YAMASAKI
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan,Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
15
|
Sisto M, Ribatti D, Lisi S. Molecular Mechanisms Linking Inflammation to Autoimmunity in Sjögren's Syndrome: Identification of New Targets. Int J Mol Sci 2022; 23:13229. [PMID: 36362017 PMCID: PMC9658723 DOI: 10.3390/ijms232113229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune rheumatic disorder characterized by the lymphocytic infiltration of exocrine glands and the production of autoantibodies to self-antigens. The involvement of the exocrine glands drives the pathognomonic manifestations of dry eyes (keratoconjunctivitis sicca) and dry mouth (xerostomia) that define sicca syndrome. To date, the molecular mechanisms mediating pathological salivary gland dysfunction in SS remain to be elucidated, despite extensive studies investigating the underlying cause of this disease, hampering the development of novel therapeutic strategies. Many researchers have identified a multifactorial pathogenesis of SS, including environmental, genetic, neuroendocrine, and immune factors. In this review, we explore the latest developments in understanding the molecular mechanisms involved in the pathogenesis of SS, which have attracted increasing interest in recent years.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 1, I-70124 Bari, Italy
| | | | | |
Collapse
|
16
|
Zhou J, Onodera S, Hu Y, Yu Q. Interleukin-22 Exerts Detrimental Effects on Salivary Gland Integrity and Function. Int J Mol Sci 2022; 23:ijms232112997. [PMID: 36361787 PMCID: PMC9655190 DOI: 10.3390/ijms232112997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022] Open
Abstract
Interleukin-22 (IL-22) affects epithelial tissue function and integrity in a context-dependent manner. IL-22 levels are elevated in salivary glands of Sjögren’s syndrome (SS) patients, but its role in the pathogenesis of this disease remains unclear. The objective of this study is to elucidate the impact of IL-22 on salivary gland tissue integrity and function in murine models. We showed that IL-22 levels in sera and salivary glands increased progressively in female non-obese diabetic (NOD) mice, accompanying the development of SS. Administration of IL-22 to the submandibular glands of NOD mice prior to the disease onset reduced salivary secretion and induced caspase-3 activation in salivary gland tissues, which were accompanied by alterations in multiple genes controlling tissue integrity and inflammation. Similarly, IL-22 administration to submandibular glands of C57BL/6 mice also induced hyposalivation and caspase-3 activation, whereas blockade of endogenous IL-22 in C57BL/6 mice treated with anti-CD3 antibody mitigated hyposalivation and caspase-3 activation. Finally, IL-22 treatment reduced the number of viable C57BL/6 mouse submandibular gland epithelial cells cultured in vitro, indicating a direct impact of this cytokine on these cells. We conclude that IL-22 exerts a detrimental impact on salivary gland tissues.
Collapse
Affiliation(s)
- Jing Zhou
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Shoko Onodera
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-chou, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Yang Hu
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Qing Yu
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-892-8310
| |
Collapse
|
17
|
Aquaporins: Unexpected actors in autoimmune diseases. Clin Exp Rheumatol 2022; 21:103131. [PMID: 35690248 DOI: 10.1016/j.autrev.2022.103131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
Aquaporins (AQPs), transmembrane proteins allowing the passage of water and sometimes other small solutes and molecules, are involved in autoimmune diseases including neuromyelitis optica, Sjögren's syndrome and rheumatoid arthritis. Both autoantibodies against AQPs and altered expression and/or trafficking of AQPs in various tissue cell types as well as inflammatory cells are playing key roles in pathogenesis of autoimmune diseases. Detection of autoantibodies against AQP4 in the central nervous system has paved the way for a deeper understanding in disease pathophysiology as well as enabling diagnosis. This review provides a comprehensive summary of the roles of AQPs in autoimmune diseases.
Collapse
|
18
|
Zhou J, Zhang X, Yu Q. Plasmacytoid dendritic cells promote the pathogenesis of Sjögren's syndrome. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166302. [PMID: 34780913 PMCID: PMC8714705 DOI: 10.1016/j.bbadis.2021.166302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/17/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) produce type I interferons (IFNs) and promote pathogenesis of multiple autoimmune diseases. Autoimmune Sjögren's syndrome (SS) primarily affects salivary and lacrimal glands, causing their inflammation, destruction and dysfunction. pDCs and type I IFN activity are elevated in salivary glands of SS patients, and this study seeks to elucidate the in vivo actions of pDCs in SS pathogenesis using the non-obese diabetic (NOD) mouse model. We confirmed the type I IFN-dependency of SS development in female NOD mice and elevation of pDC-type I IFN in their submandibular glands (SMGs). We administered a pDC-depleting anti-BST2/CD317 antibody to female NOD mice from 4 to 7 weeks of age at the early stage of SS, and assessed SS pathologies at age 10 weeks, the time of disease onset. Depletion of pDCs impeded the development of SMG inflammation and secretory dysfunction. It drastically reduced the amount of type I IFN mRNA and the number of total leukocytes, and T- and B lymphocytes in SMGs. Gene expression analyses showed that pDC depletion markedly diminished SMG expression of IL-7, BAFF, TNF-α, IFN-γ, CXCL9, CXCL11, CD40, CD40L, Lt-α, Lt-β and NOS2. Hence, pDCs critically contribute to the development and onset of SS-like salivary gland exocrinopathy.
Collapse
Affiliation(s)
- Jing Zhou
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine,188 Longwood Avenue, Boston, MA 02115, USA,Corresponding Authors: Address for correspondence and reprint requests: Jing Zhou, Ph.D., The Forsyth Institute, 245 First Street, Cambridge, MA 02142. , Qing Yu, M.D., Ph.D., The Forsyth Institute, 245 First Street, Cambridge, MA 02142,
| | - Xiaofeng Zhang
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Present address: Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, 450 Brookline Ave, Boston, MA 02215
| | - Qing Yu
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine,188 Longwood Avenue, Boston, MA 02115, USA,Corresponding Authors: Address for correspondence and reprint requests: Jing Zhou, Ph.D., The Forsyth Institute, 245 First Street, Cambridge, MA 02142. , Qing Yu, M.D., Ph.D., The Forsyth Institute, 245 First Street, Cambridge, MA 02142,
| |
Collapse
|
19
|
Abstract
Sjögren's syndrome (SjS) is a systemic autoimmune disease marked by xerostomia (dry mouth), keratoconjunctivitis sicca (eye dryness), and other systematic disorders. Its pathogenesis involves an inflammatory process that is characterized by lymphocytic infiltration into exocrine glands and other tissues. Although the development of ectopic lymphoid tissue and overproduction of autoantibodies by hyperactive B cells suggest that they may promote SjS development, treatment directed towards them fails to induce significant laboratory or clinical improvement. T cells are overwhelming infiltrators in most phases of the disease, and the involvement of multiple T cell subsets of suggests the extraordinary complexity of SjS pathogenesis. The factors, including various cellular subtypes and molecules, regulate the activation and suppression of T cells. T cell activation induces inflammatory cell infiltration, B cell activation, tissue damage, and metabolic changes in SjS. Knowledge of the pathways that link these T cell subtypes and regulation of their activities are not completely understood. This review comprehensively summarizes the research progress and our understanding of T cells in SjS, including CD4+ T cells, CD8+ TRM cells, and innate T cells, to provide insights into for clinical treatment.
Collapse
|
20
|
Saito K, Mori S, Kodama T. McH-lpr/lpr-RA1 mice: A novel spontaneous mouse model of autoimmune sialadenitis. Immunol Lett 2021; 237:3-10. [PMID: 34174253 DOI: 10.1016/j.imlet.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022]
Abstract
Many studies of the autoimmune disease Sjögren's syndrome have been performed using spontaneous mouse models. In the present study, we describe the characteristics of McH/lpr-RA1 mice and propose their use as a novel murine model of autoimmune sialadenitis. The McH/lpr-RA1 mouse is a recombinant congenic strain derived from generation F54 or more of MRL-Faslpr x (MRL- Faslpr x C3H- Faslpr) F1. We show for the first time that this mouse spontaneously develops autoimmune sialadenitis and vasculitis in submandibular gland tissues. Sialadenitis was accompanied by extensive inflammatory cell infiltration and tissue destruction. Immunohistochemical studies revealed that the salivary gland lesions strongly expressed four sialadenitis-related molecules: SSA and SSB (autoantigens of Sjögren's syndrome), gp91phox (an accelerator of reactive oxygen species production) and single strand DNA (a marker of apoptotic cells). In contrast, expression of aquaporin-5 (AQP5), which stimulates salivary secretion was weak or negligible. Statistical correlation analyses indicated that the apoptosis of salivary gland cells provoked by oxidative stress contributed to the severe sialadenitis and reduced expression of AQP5. Our study has demonstrated that McH/lpr-RA1 mice spontaneously develop the pathognomonic features of autoimmune sialadenitis and thus could be used as a new animal model of Sjögren's syndrome.
Collapse
Affiliation(s)
- Keiichi Saito
- Liaison Centre for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shiro Mori
- Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Sendai, Japan; Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.
| |
Collapse
|
21
|
CTRP3 promotes TNF-α-induced apoptosis and barrier dysfunction in salivary epithelial cells. Cell Signal 2021; 85:110042. [PMID: 33991612 DOI: 10.1016/j.cellsig.2021.110042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/17/2021] [Accepted: 05/11/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND C1q/tumour necrosis factor-related protein 3 (CTRP3) plays important roles in metabolism and inflammatory responses in various cells and tissues. However, the expression and function of CTRP3 in salivary glands have not been explored. METHODS The expression and distribution of CTRP3 were detected by western blot, polymerase chain reaction, immunohistochemical and immunofluorescence staining. The effects of CTRP3 on tumour necrosis factor (TNF)-α-induced apoptosis and barrier dysfunction were detected by flow cytometry, western blot, co-immunoprecipitation, and measurement of transepithelial resistance and paracellular tracer flux. RESULTS CTRP3 was distributed in both acinar and ductal cells of human submandibular gland (SMG) and was primarily located in the ducts of rat and mouse SMGs. TNF-α increased the apoptotic rate, elevated expression of cleaved caspase 3 and cytochrome C, and reduced B cell lymphoma-2 (Bcl-2) levels in cultured human SMG tissue and SMG-C6 cells, and CTRP3 further enhanced TNF-α-induced apoptosis response. Additionally, CTRP3 aggravated TNF-α-increased paracellular permeability. Mechanistically, CTRP3 promoted TNF-α-enhanced TNF type I receptor (TNFR1) expression, inhibited the expression of cellular Fas-associated death domain (FADD)-like interleukin-1β converting enzyme inhibitory protein (c-FLIP), and increased the recruitment of FADD with receptor-interacting protein kinase 1 and caspase 8. Moreover, CTRP3 was significantly increased in the labial gland of Sjögren's syndrome patients and in the serum and SMG of nonobese diabetic mice. CONCLUSIONS These findings suggest that the salivary glands are a novel source of CTRP3 synthesis and secretion. CTRP3 might promote TNF-α-induced cell apoptosis through the TNFR1-mediated complex II pathway.
Collapse
|
22
|
Jiang Y, Zhao X, Yu J, Wang Q, Wen C, Huang L. Deciphering potential pharmacological mechanism of Sha-Shen-Mai-Dong decoction on primary Sjogren's syndrome. BMC Complement Med Ther 2021; 21:79. [PMID: 33648502 PMCID: PMC7923330 DOI: 10.1186/s12906-021-03257-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background Sha-Shen-Mai-Dong decoction (SSMD) is a classical prescription widely used in primary Sjogren’s Syndrome (pSS) therapy. This study aims to explore the potential pharmacological mechanism of SSMD on pSS. Methods Active components of SSMD were obtained from Traditional Chinese Medicine Integrative Database and Traditional Chinese Medicine Systems Pharmacology databases and targets of SSMD were predicted by Pharmmapper and STITCH database. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out to explore the function characteristics of SSMD. The expression matrix of microarray of pSS was obtained from Gene Expression Omnibus and we obtained 162 differentially expressed genes (DEGs). Protein-protein interaction (PPI) networks were constructed to identify the hub targets. Principal component analysis (PCA) and molecular docking were conducted to further elucidate the possibility of SSMD for pSS. Results SSMD contained a total of 1056 active components, corresponding to 88 targets, among which peripheral myelin protein 2(PMP2), androgen receptor (AR) and glutamic acid decarboxylase 1(GAD1) are associated with multiple active components in SSMD and may be the core targets. Moreover, these targets were closely related to tissue pathological injury in SS, such as lacrimal gland, salivary gland and nervous system injury. GO and KEGG analysis showed that 88 targets enriched in REDOX process, transcriptional regulation and negative regulation of apoptosis process. Besides, SSMD may influence the cell proliferation, gene transcription through regulating Ras and cAMP-related signaling pathways. In addition, SSMD may show effects on immune regulation, such as macrophage differentiation, Toll-like receptor 4 signaling pathway and T-helper 1 in SS. Moreover, PPI network suggested that FN1, MMP-9 may be the hub targets in SSMD. Result of PCA and molecular docking analysis further determined the feasibility of SSMD in treating pSS. Conclusion SSMD can regulate multiple biological processes by virtue of its multiple active components, thus showing prominent advantage in the treatment of pSS. The discovery of active ingredients and targets in SSMD provides valuable resources for drug research and development for pSS. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03257-7.
Collapse
Affiliation(s)
- Yuepeng Jiang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Xiaoxuan Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jie Yu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Qiao Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Chengping Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310058, China.
| | - Lin Huang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Padern G, Duflos C, Ferreira R, Assou S, Guilpain P, Maria ATJ, Goulabchand R, Galea P, Jurtela M, Jorgensen C, Pers YM. Identification of a Novel Serum Proteomic Signature for Primary Sjögren's Syndrome. Front Immunol 2021; 12:631539. [PMID: 33708222 PMCID: PMC7942395 DOI: 10.3389/fimmu.2021.631539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Context Primary Sjögren's syndrome (pSS) is a complex heterogeneous autoimmune disease (AID) which can mimic rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE). Our exploratory study investigated serum biomarkers that may discriminate pSS from RA and SLE. Methods Serum concentrations of 63 biomarkers involved in immune cell trafficking, inflammatory response, cellular movement, and cell-to-cell signaling were measured in AID patients, included prospectively into the study at the Montpellier University Hospital. A multivariate analysis by multiple logistic regression was performed, and discriminative power assessed using logistic regression adjusted on significant demographic factors. Results Among the 95 patients enrolled, 42 suffered from pSS, 28 from RA, and 25 from SLE. Statistical analysis showed that concentrations of BDNF (OR = 0.493 with 95% CI [0.273-0.891]; p = 0.0193) and I-TAC/CXCL11 (OR = 1.344 with 95% CI [1.027-1.76]; p = 0.0314) can significantly discriminate pSS from RA. Similarly, greater concentrations of sCD163 (OR = 0.803 with 95% CI [0.649-0.994]; p = 0.0436), Fractalkine/CX3CL1 (OR = 0.534 with 95% CI [0.287-0. 991]; p = 0.0466), MCP-1/CCL2 (OR = 0.839 with 95% CI [0.732-0.962]; p = 0.0121), and TNFa (OR = 0.479 with 95% CI [0.247-0.928]; p = 0.0292) were associated with SLE diagnosis compared to pSS. In addition, the combination of low concentrations of BDNF and Fractalkine/CX3CL1 was highly specific for pSS (specificity 96.2%; positive predictive value 80%) compared to RA and SLE, as well as the combination of high concentrations of I-TAC/CXCL11 and low concentrations of sCD163 (specificity 98.1%; positive predictive value 75%). Conclusion Our study highlights biomarkers potentially involved in pSS, RA, and SLE pathophysiology that could be useful for developing a pSS-specific diagnostic tool.
Collapse
Affiliation(s)
- Guillaume Padern
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Claire Duflos
- Clinical Research and Epidemiology Unit, CHU Montpellier, Montpellier University, Montpellier, France
| | - Rosanna Ferreira
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Said Assou
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Philippe Guilpain
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Internal Medicine and Multi-Organic Diseases Department, Hôpital Saint Éloi, CHU Montpellier, Montpellier, France
| | - Alexandre Thibault Jacques Maria
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Internal Medicine and Multi-Organic Diseases Department, Hôpital Saint Éloi, CHU Montpellier, Montpellier, France
| | - Radjiv Goulabchand
- Internal Medicine Department, Caremeau University Hospital, Nîmes, France
| | - Pascale Galea
- BioRad Laboratory, Research and Development Department, Montpellier, France
| | - Maja Jurtela
- Clinical Research and Epidemiology Unit, CHU Montpellier, Montpellier University, Montpellier, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Yves-Marie Pers
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
24
|
Uhl B, Braun C, Dominik J, Luft J, Canis M, Reichel CA. A Novel Experimental Approach for In Vivo Analyses of the Salivary Gland Microvasculature. Front Immunol 2021; 11:604470. [PMID: 33679695 PMCID: PMC7925411 DOI: 10.3389/fimmu.2020.604470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/21/2020] [Indexed: 12/28/2022] Open
Abstract
Microvascular dysfunction plays a fundamental role in the pathogenesis of salivary gland disorders. Restoring and preserving microvascular integrity might therefore represent a promising strategy for the treatment of these pathologies. The mechanisms underlying microvascular dysfunction in salivary glands, however, are still obscure, partly due to the unavailability of adequate in vivo models. Here, we present a novel experimental approach that allows comprehensive in vivo analyses of the salivary gland microvasculature in mice. For this purpose, we employed different microscopy techniques including multi-photon in vivo microscopy to quantitatively analyze interactions of distinct immune cell subsets in the submandibular gland microvasculature required for their infiltration into the surrounding parenchyma and their effects on microvascular function. Confocal microscopy and multi-channel flow cytometry in tissue sections/homogenates complemented these real-time analyses by determining the molecular phenotype of the participating cells. To this end, we identified key adhesion and signaling molecules that regulate the subset- and tissue-specific trafficking of leukocytes into inflamed glands and control the associated microvascular leakage. Hence, we established an experimental approach that allows in vivo analyses of microvascular processes in healthy and diseased salivary glands. This enables us to delineate distinct pathogenetic factors as novel therapeutic targets in salivary gland diseases.
Collapse
Affiliation(s)
- Bernd Uhl
- Department of Otorhinolaryngology—Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Constanze Braun
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julian Dominik
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joshua Luft
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology—Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph A. Reichel
- Department of Otorhinolaryngology—Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
25
|
Ríos-Ríos WDJ, Sosa-Luis SA, Torres-Aguilar H. T Cells Subsets in the Immunopathology and Treatment of Sjogren's Syndrome. Biomolecules 2020; 10:E1539. [PMID: 33187265 PMCID: PMC7698113 DOI: 10.3390/biom10111539] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
Sjogren´s syndrome (SS) is an autoimmune disease whose pathogenesis is characterized by an exacerbated T cell infiltration in exocrine glands, markedly associated to the inflammatory and detrimental features as well as the disease progression. Several helper T cell subsets sequentially converge at different stages of the ailment, becoming involved in specific pathologic roles. Initially, their activated phenotype endows them with high migratory properties and increased pro-inflammatory cytokine secretion in target tissues. Later, the accumulation of immunomodulatory T cells-derived factors, such as IL-17, IFN-γ, or IL-21, preserve the inflammatory environment. These effects favor strong B cell activation, instigating an extrafollicular antibody response in ectopic lymphoid structures mediated by T follicular helper cells (Tfh) and leading to disease progression. Additionally, the memory effector phenotype of CD8+ T cells present in SS patients suggests that the presence of auto-antigen restricted CD8+ T cells might trigger time-dependent and specific immune responses. Regarding the protective roles of traditional regulatory T cells (Treg), uncertain evidence shows decrease or invariable numbers of circulating and infiltrating cells. Nevertheless, an emerging Treg subset named follicular regulatory T cells (Tfr) seems to play a critical protective role owing to their deficiency that enhances SS development. In this review, the authors summarize the current knowledge of T cells subsets contribution to the SS immunopathology, focusing on the cellular and biomolecular properties allowing them to infiltrate and to harm target tissues, and that simultaneously make them key therapeutic targets for SS treatment.
Collapse
Affiliation(s)
- William de Jesús Ríos-Ríos
- Department of Clinical Immunology Research of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68120, Mexico;
| | - Sorely Adelina Sosa-Luis
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico;
| | - Honorio Torres-Aguilar
- Department of Clinical Immunology Research of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68120, Mexico;
| |
Collapse
|
26
|
Parisis D, Chivasso C, Perret J, Soyfoo MS, Delporte C. Current State of Knowledge on Primary Sjögren's Syndrome, an Autoimmune Exocrinopathy. J Clin Med 2020; 9:E2299. [PMID: 32698400 PMCID: PMC7408693 DOI: 10.3390/jcm9072299] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune rheumatic disease characterized by lymphoplasmacytic infiltration of the salivary and lacrimal glands, whereby sicca syndrome and/or systemic manifestations are the clinical hallmarks, associated with a particular autoantibody profile. pSS is the most frequent connective tissue disease after rheumatoid arthritis, affecting 0.3-3% of the population. Women are more prone to develop pSS than men, with a sex ratio of 9:1. Considered in the past as innocent collateral passive victims of autoimmunity, the epithelial cells of the salivary glands are now known to play an active role in the pathogenesis of the disease. The aetiology of the "autoimmune epithelitis" still remains unknown, but certainly involves genetic, environmental and hormonal factors. Later during the disease evolution, the subsequent chronic activation of B cells can lead to the development of systemic manifestations or non-Hodgkin's lymphoma. The aim of the present comprehensive review is to provide the current state of knowledge on pSS. The review addresses the clinical manifestations and complications of the disease, the diagnostic workup, the pathogenic mechanisms and the therapeutic approaches.
Collapse
Affiliation(s)
- Dorian Parisis
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (D.P.); (C.C.); (J.P.)
- Department of Rheumatology, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (D.P.); (C.C.); (J.P.)
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (D.P.); (C.C.); (J.P.)
| | | | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (D.P.); (C.C.); (J.P.)
| |
Collapse
|
27
|
D’Agostino C, Elkashty OA, Chivasso C, Perret J, Tran SD, Delporte C. Insight into Salivary Gland Aquaporins. Cells 2020; 9:cells9061547. [PMID: 32630469 PMCID: PMC7349754 DOI: 10.3390/cells9061547] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
The main role of salivary glands (SG) is the production and secretion of saliva, in which aquaporins (AQPs) play a key role by ensuring water flow. The AQPs are transmembrane channel proteins permeable to water to allow water transport across cell membranes according to osmotic gradient. This review gives an insight into SG AQPs. Indeed, it gives a summary of the expression and localization of AQPs in adult human, rat and mouse SG, as well as of their physiological role in SG function. Furthermore, the review provides a comprehensive view of the involvement of AQPs in pathological conditions affecting SG, including Sjögren's syndrome, diabetes, agedness, head and neck cancer radiotherapy and SG cancer. These conditions are characterized by salivary hypofunction resulting in xerostomia. A specific focus is given on current and future therapeutic strategies aiming at AQPs to treat xerostomia. A deeper understanding of the AQPs involvement in molecular mechanisms of saliva secretion and diseases offered new avenues for therapeutic approaches, including drugs, gene therapy and tissue engineering. As such, AQP5 represents a potential therapeutic target in different strategies for the treatment of xerostomia.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Osama A. Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, 35516 Mansoura, Egypt
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
- Correspondence: ; Tel.: +32-2-5556210
| |
Collapse
|
28
|
Shikayama T, Fujita-Yoshigaki J, Sago-Ito M, Nakamura-Kiyama M, Naniwa M, Hitomi S, Ujihara I, Kataoka S, Yada N, Ariyoshi W, Usui M, Nakashima K, Ono K. Hematogenous apoptotic mechanism in salivary glands in chronic periodontitis. Arch Oral Biol 2020; 117:104775. [PMID: 32512258 DOI: 10.1016/j.archoralbio.2020.104775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/06/2020] [Accepted: 05/15/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of the study is to investigate the apoptotic mechanism in salivary glands in the rat experimental periodontitis model. DESIGN A rat periodontitis model was prepared by using a ligature around the second upper molar. In the salivary (parotid and submandibular) glands and blood samples, putative apoptotic factors and pathway molecules were investigated in vivo and in vitro. RESULTS Four weeks of ligation (chronic periodontitis) demonstrated significant apoptotic atrophy of the salivary gland, but one week of ligation (initial periodontitis) did not. In the blood plasma, tumor necrosis factor-α (TNF-α) was increased in the periodontitis model, but interleukin-1β and -6 were not. TNF-α receptor type 1, which has an intracellular apoptotic pathway, was expressed in the salivary glands of rats. Western blot analysis of cultured rat primary salivary gland cells demonstrated that TNF-α induced cleavage of poly (ADP-ribose) polymerase (PARP) and caspase-3 in a dose-dependent manner, indicating apoptosis induction. Additionally, we found increment of circulating lymphocytes in the model. Expression of mRNA and immunoreactive cells for the B lymphocyte marker CD19 were increased in the salivary gland in the model. Western blotting showed that coculture with extracted B cells from the periodontitis model increased cleaved PARP in salivary gland cells. CONCLUSIONS Chronic periodontitis status leads to an increase in circulating TNF-α and B lymphocyte infiltration, resulting in apoptotic atrophy of the salivary gland as a periodontitis-induced systemic response.
Collapse
Affiliation(s)
- T Shikayama
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan; Division of Periodontology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - J Fujita-Yoshigaki
- Department of Physiology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba 271-8587, Japan.
| | - M Sago-Ito
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - M Nakamura-Kiyama
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan; Division of Periodontology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - M Naniwa
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan; Division of Oral Health Sciences, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - S Hitomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - I Ujihara
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - S Kataoka
- Division of Anatomy, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - N Yada
- Division of Oral Pathology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - W Ariyoshi
- Division of Infections and Molecular Biology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - M Usui
- Division of Periodontology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - K Nakashima
- Division of Periodontology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - K Ono
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan.
| |
Collapse
|
29
|
Zhou J, You BR, Yu Q. Agonist-induced 4-1BB activation prevents the development of Sjӧgren's syndrome-like sialadenitis in non-obese diabetic mice. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165605. [PMID: 31740402 DOI: 10.1016/j.bbadis.2019.165605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/15/2019] [Accepted: 11/01/2019] [Indexed: 11/19/2022]
Abstract
Activation of costimulatory receptor 4-1BB enhances T helper 1 (Th1) and CD8 T cell responses in protective immunity, and prevents or attenuates several autoimmune diseases by increasing Treg numbers and suppressing Th17 or Th2 effector response. We undertook this study to elucidate the impact of enforced 4-1BB activation on the development of Sjögren's syndrome (SS)-like sialadenitis in non-obese diabetic (NOD) model of this disease. An anti-4-1BB agnostic antibody was intraperitoneally injected to female NOD mice aged 7 weeks, prior to the disease onset that occurs around 10-11 weeks of age, 3 times weekly for 2 weeks, and the mice were analyzed for SS pathologies at age 11 weeks. The salivary flow rate was markedly higher in the anti-4-1BB-treated NOD mice compared to the IgG-treated controls. Anti-4-1BB treatment significantly reduced the leukocyte infiltration of the submandibular glands (SMGs) and the levels of serum antinuclear antibodies. Flow cytometric analysis showed that the percentages of CD4 T cells, Th17 cells and plasmacytoid dendritic cells among SMG leukocytes were markedly reduced by anti-4-1BB treatment, in conjunction with a reduction in SMG IL-23p19 mRNA levels and serum IL-17 concentrations. Although the proportion of Tregs and IL-10 mRNA levels in SMGs were not altered by 4-1BB activation, IL-10 mRNA levels in salivary gland-draining lymph nodes and serum IL-10 concentrations were both markedly increased. While anti-4-1BB treatment did not affect the amount of Th1 cells and IFNγ mRNA in the SMGs, it increased these measurables in salivary gland-draining lymph nodes. Hence, agonistic activation of 4-1BB impedes the development of SS-like sialadenitis and hyposalivation.
Collapse
Affiliation(s)
- Jing Zhou
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Bo Ra You
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Qing Yu
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Limaye A, Hall BE, Zhang L, Cho A, Prochazkova M, Zheng C, Walker M, Adewusi F, Burbelo PD, Sun ZJ, Ambudkar IS, Dolan JC, Schmidt BL, Kulkarni AB. Targeted TNF-α Overexpression Drives Salivary Gland Inflammation. J Dent Res 2019; 98:713-719. [PMID: 30958728 DOI: 10.1177/0022034519837240] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation of the salivary glands from pathologic conditions such as Sjögren's syndrome can result in glandular destruction and hyposalivation. To understand which molecular factors may play a role in clinical cases of salivary gland hypofunction, we developed an aquaporin 5 (AQP5) Cre mouse line to produce genetic recombination predominantly within the acinar cells of the glands. We then bred these mice with the TNF-αglo transgenic line to develop a mouse model with salivary gland-specific overexpression of TNF-α; which replicates conditions seen in sialadenitis, an inflammation of the salivary glands resulting from infection or autoimmune disorders such as Sjögren's syndrome. The resulting AQP5-Cre/TNF-αglo mice display severe inflammation in the salivary glands with acinar cell atrophy, fibrosis, and dilation of the ducts. AQP5 expression was reduced in the salivary glands, while tight junction integrity appeared to be disrupted. The immune dysregulation in the salivary gland of these mice led to hyposalivation and masticatory dysfunction.
Collapse
Affiliation(s)
- A Limaye
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - B E Hall
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - L Zhang
- 2 Wuhan University, Wuhan, China
| | - A Cho
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - M Prochazkova
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - C Zheng
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - M Walker
- 3 School of Dentistry, Meharry Medical College, Nashville, TN, USA
| | - F Adewusi
- 4 School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - P D Burbelo
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Z J Sun
- 2 Wuhan University, Wuhan, China
| | - I S Ambudkar
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J C Dolan
- 5 School of Dentistry, New York University, New York, NY, USA
| | - B L Schmidt
- 5 School of Dentistry, New York University, New York, NY, USA
| | - A B Kulkarni
- 1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Affiliation(s)
- Toshio Odani
- Adeno-Associated Virus Biology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - John A. Chiorini
- Adeno-Associated Virus Biology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
The level of TGF-β in sera of patients with primary Sjögren's syndrome. Reumatologia 2019; 57:309-314. [PMID: 32226163 PMCID: PMC7091483 DOI: 10.5114/reum.2019.91276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023] Open
Abstract
Objectives Tumor growth factor β (TGF-β) is a pleiotropic cytokine which controls autoimmune reactions, cell proliferation, and the organ accumulation of lymphocytes. This cytokine has a protective and anti-inflammatory effect in autoimmune processes, but also has a pro-fibrinous activity. Therefore, its importance in the development of systemic sclerosis has been proven. The role of TGF-β in Sjögren’s syndrome is also a valid direction of research. The aim of the presented study is to evaluate the level of TGF-β in sera of primary Sjögren’s syndrome patients and to investigate possible correlations with autoantibodies, cytokines, and cells in biopsy of minor salivary glands active in the pathogenesis of this syndrome. Material and methods Thirty-three primary Sjögren’s syndrome patients were included. Routine laboratory tests and immunological assessment (ANA, anti SS-A, anti SS-B antibodies, rheumatoid factor), ophthalmological assessment with ocular staining scoring, chest X-ray, and high-resolution computed tomography (if necessary) were performed. Serum concentrations of cytokines such as TGF-β, BAFF, APRIL, FLT-3L, LT-α, IL-21, and TNF-α were evaluated using standard ELISA assays. The histopathological evaluation (focus score) and the determination of CD3+, CD4+, CD19+, CD21+, CD35+ cells was performed. Results There was no significant correlation between TGF-β and other tested cytokines or autoantibodies, other than TNF-α. A negative correlation (ρ = –0.472) between TGF-β and TNF-α was found. There were no correlations between TGF-β and: results of ocular examinations, elements of histopathological variables, or lungs changes. Conclusions The authors state that: 1) the results may indicate that TGF-β influences the serum TNF-α activity in pSS patients, 2) our findings suggest that TGF-β may be the strongest inhibitor of TNF-α among cytokines involved in pSS pathogenesis, and 3) the results may explain the ineffectiveness of anti-TNF drugs in the treatment of pSS.
Collapse
|
33
|
Hung YH, Lee YH, Chen PP, Lin YZ, Lin CH, Yen JH. Role of Salivary Immune Parameters in Patients With Primary Sjögren's Syndrome. Ann Lab Med 2018; 39:76-80. [PMID: 30215233 PMCID: PMC6143464 DOI: 10.3343/alm.2019.39.1.76] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/31/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Background Several factors, including clinical manifestations and laboratory data, have been used to evaluate the disease activity of Sjögren's syndrome (SS). We investigated saliva indicators of disease activity in primary SS patients. Methods We enrolled 138 Taiwanese patients with primary SS and 100 Taiwanese normal controls. Interleukin (IL)-6, IL-17A, tumor necrosis factor-alpha (TNF-α), and rheumatoid factor (RF)-IgA levels in saliva samples were measured using ELISA or fluorescent enzyme-linked immunoassay. Serum IgG, IgA, and IgM levels were measured by nephelometry. Erythrocyte sedimentation rate (ESR) was measured with an automatic ESR analyzer. The t-test and Pearson correlation test were used. Results IL-6 level was higher in primary SS patients than in normal controls (14.23±14.77 vs 9.87±7.32, P=0.012), but there were no significant differences in IL-17A, TNF-α, and RF-IgA levels. In primary SS patients, IL-6 level correlated weakly with ESR and IgG levels (r=0.252, P=0.015, and r=0.248, P=0.017, respectively), and TNF-α level correlated weakly with IgG level (r=0.231, P=0.024). Conclusions IL-6 may play a role in SS pathogenesis. Saliva IL-6 might be an indicator of disease activity in primary SS patients.
Collapse
Affiliation(s)
- Yu Hung Hung
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Yung Hung Lee
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Pei Pei Chen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Yuan Zhao Lin
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Chia Hui Lin
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Jeng Hsien Yen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Taiwan.
| |
Collapse
|
34
|
Involvement of Aquaporins in the Pathogenesis, Diagnosis and Treatment of Sjögren's Syndrome. Int J Mol Sci 2018; 19:ijms19113392. [PMID: 30380700 PMCID: PMC6274940 DOI: 10.3390/ijms19113392] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/24/2018] [Accepted: 10/27/2018] [Indexed: 02/07/2023] Open
Abstract
Sjögren’s syndrome (SS) is a chronic autoimmune disease characterized by lymphocytic infiltration of salivary and lacrimal glands resulting in diminished production of saliva and tears. The pathophysiology of SS has not yet been fully deciphered. Classically it has been postulated that sicca symptoms in SS patients are a double step process whereby lymphocytic infiltration of lacrimal and salivary glands (SG) is followed by epithelial cell destruction resulting in keratoconjunctivitis sicca and xerostomia. Recent advances in the field of the pathophysiology of SS have brought in new players, such as aquaporins (AQPs) and anti AQPs autoantibodies that could explain underlying mechanistic processes and unveil new pathophysiological pathways offering a deeper understanding of the disease. In this review, we delineate the link between the AQP and SS, focusing on salivary glands, and discuss the role of AQPs in the treatment of SS-induced xerostomia.
Collapse
|
35
|
Chaly Y, Barr JY, Sullivan DA, Thomas HE, Brodnicki TC, Lieberman SM. Type I Interferon Signaling Is Required for Dacryoadenitis in the Nonobese Diabetic Mouse Model of Sjögren Syndrome. Int J Mol Sci 2018; 19:E3259. [PMID: 30347820 PMCID: PMC6214106 DOI: 10.3390/ijms19103259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/01/2018] [Accepted: 10/13/2018] [Indexed: 12/26/2022] Open
Abstract
Nonobese diabetic (NOD) mice spontaneously develop lacrimal and salivary gland autoimmunity similar to human Sjögren syndrome. In both humans and NOD mice, the early immune response that drives T-cell infiltration into lacrimal and salivary glands is poorly understood. In NOD mice, lacrimal gland autoimmunity spontaneously occurs only in males with testosterone playing a role in promoting lacrimal gland inflammation, while female lacrimal glands are protected by regulatory T cells (Tregs). The mechanisms of this male-specific lacrimal gland autoimmunity are not known. Here, we studied the effects of Treg depletion in hormone-manipulated NOD mice and lacrimal gland gene expression to determine early signals required for lacrimal gland inflammation. While Treg-depletion was not sufficient to drive dacryoadenitis in castrated male NOD mice, chemokines (Cxcl9, Ccl19) and other potentially disease-relevant genes (Epsti1, Ubd) were upregulated in male lacrimal glands. Expression of Cxcl9 and Ccl19, in particular, remained significantly upregulated in the lacrimal glands of lymphocyte-deficient NOD-severe combined immunodeficiency (SCID) mice and their expression was modulated by type I interferon signaling. Notably, Ifnar1-deficient NOD mice did not develop dacryoadenitis. Together these data identify disease-relevant genes upregulated in the context of male-specific dacryoadenitis and demonstrate a requisite role for type I interferon signaling in lacrimal gland autoimmunity in NOD mice.
Collapse
Affiliation(s)
- Yury Chaly
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Jennifer Y Barr
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - David A Sullivan
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Helen E Thomas
- Department of Medicine, St. Vincent's Hospital, St. Vincent's Institute, The University of Melbourne, Fitzroy, Victoria 3065, Australia.
| | - Thomas C Brodnicki
- Department of Medicine, St. Vincent's Hospital, St. Vincent's Institute, The University of Melbourne, Fitzroy, Victoria 3065, Australia.
| | - Scott M Lieberman
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
36
|
Sobhan MR, Mahdinezhad-Yazdi M, Aghili K, Zare-Shehneh M, Rastegar S, Sadeghizadeh-Yazdi J, Neamatzadeh H. Association of TNF-α-308 G > A and -238G > A polymorphisms with knee osteoarthritis risk: A case-control study and meta-analysis. J Orthop 2018; 15:747-753. [PMID: 29946197 PMCID: PMC6014562 DOI: 10.1016/j.jor.2018.05.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE A comprehensive search on electronic databases was conducted to identify all eligible studies of TNF-α polymorphisms and knee osteoarthritis (OA). METHODS Eight studies on TNF-α -308 G > A and three on TNF-α -238G > A polymorphism were identified. RESULTS Overall, the pooled ORs indicated that neither TNF-α -238G > A nor -238G > A polymorphism was associated with knee OA risk. Similarly, in the stratified analysis by ethnicity, no significant association was found. CONCLUSION This meta-analysis results inconsistent with the previous meta-analyses showed that the TNF-α -308 G > A and -238G > A polymorphisms may not be associated with the susceptibility to knee OA.
Collapse
Affiliation(s)
- Mohammad Reza Sobhan
- Department of Orthopedics, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Mahdinezhad-Yazdi
- Department of Orthopedics, Afshar Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kazem Aghili
- Department of Radiology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Zare-Shehneh
- Department of Medical Genetics, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shohreh Rastegar
- Department of Anesthesiology, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jalal Sadeghizadeh-Yazdi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Department of Medical Genetics, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
37
|
Sthoeger Z, Sharabi A, Asher I, Zinger H, Segal R, Shearer G, Elkayam O, Mozes E. The tolerogenic peptide hCDR1 immunomodulates cytokine and regulatory molecule gene expression in blood mononuclear cells of primary Sjogren's syndrome patients. Clin Immunol 2018; 192:85-91. [DOI: 10.1016/j.clim.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
|
38
|
Disruption of CXCR3 function impedes the development of Sjögren's syndrome-like xerostomia in non-obese diabetic mice. J Transl Med 2018; 98:620-628. [PMID: 29348563 PMCID: PMC7650019 DOI: 10.1038/s41374-017-0013-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/07/2017] [Accepted: 12/05/2017] [Indexed: 11/09/2022] Open
Abstract
The chemokine receptor CXCR3 plays an important role in T cell recruitment in various immune responses and autoimmune diseases. Expression of CXCR3 ligands, including CXCL9, CXCL10, and CXCL11, is elevated in the salivary glands of patients with Sjögren's syndrome (SS). To elucidate whether interaction between CXCR3 and its ligands is required for the development of SS, we administrated an anti-CXCR3 blocking antibody (CXCR3-173) to the non-obese diabetic (NOD) mice, a well-defined model of SS, during the stage prior to disease onset. Treatment with this anti-CXCR3 antibody significantly improved salivary secretion, indicating a remission of SS clinical manifestation. Anti-CXCR3 treatment did not affect the gross leukocyte infiltration of the submandibular glands (SMGs) as assessed by hematoxylin and eosin staining. However, flow cytometric analysis showed that anti-CXCR3 treatment markedly reduced the percentage of CXCR3+CD8 T and CXCR3+CD44+CD8 T cells, without affecting that of CXCR3+CD4 T and CXCR3+CD44+CD4 T cells in the SMGs and submandibular lymph nodes, suggesting a preferential effect of this anti-CXCR3 treatment on CXCR3-expressing effector CD8 T cells. Meanwhile, SMG expression of inflammatory factor TNF-α was markedly diminished by anti-CXCR3 treatment. In accordance, anti-CXCR3 significantly enhanced SMG expression of tight junction protein claudin-1 and water channel protein aquaporin 5, two molecules that are crucial for normal salivary secretion and can be down-regulated by TNF-α. Taken together, these findings demonstrated that the interaction between the endogenous CXCR3 and its ligands plays a pro-inflammatory and pathogenic role in the development of SS-like xerostomia in the NOD mouse model.
Collapse
|
39
|
Zhou J, Yu Q. Anti-IL-7 receptor-α treatment ameliorates newly established Sjögren's-like exocrinopathy in non-obese diabetic mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2438-2447. [PMID: 29680668 DOI: 10.1016/j.bbadis.2018.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
The levels of interleukin (IL)-7 and its receptor are elevated in the salivary glands of patients with Sjögren's syndrome (SS). Our previous study indicates that IL-7 plays a critical pathogenic role in the development and onset of SS in a mouse model of this disease. The present study aims at determining whether IL-7 also plays a role in sustaining SS pathologies after the disease onset, by using the non-obese diabetic (NOD) model. Intraperitoneal administration of a blocking antibody against the IL-7 receptor α chain (IL-7Rα) to female NOD mice aged 10 weeks, which exhibited newly onset clinical SS, for the duration of 3 weeks significantly ameliorated characteristic SS pathologies including hyposalivation and leukocyte infiltration of the submandibular glands (SMGs). These changes were accompanied by a decrease in IFN-γ-producing CD4 T- and CD8 T cells, B cells, and lymphocyte chemoattractants CXCL9, -10, -11 and -13 in the SMGs. Anti-IL-7Rα treatment markedly diminished the amount of TNF-α in the SMGs and increased the level of claudin-1 and aquaporin 5, two molecules critical for normal salivary secretion. Furthermore, neutralization of IFN-γ and TNF-α, individually or in combination, considerably improved salivary secretion, reduced leukocyte infiltration and down-regulated CXCL9 and -13 expression in the SMGs. Collectively, the results indicate that endogenous IL-7R signals promote Th1 and Tc1 responses and IFN-γ- and TNF-α production to sustain the persistence of SS-like sialadenitis in NOD mice. These findings suggest that IL-7 and Th1 cytokines could serve as promising therapeutic targets for this prevalent autoimmune disease.
Collapse
Affiliation(s)
- Jing Zhou
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115
| | - Qing Yu
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115..
| |
Collapse
|