1
|
Matsuo-Takasaki M, Kambayashi S, Hemmi Y, Wakabayashi T, Shimizu T, An Y, Ito H, Takeuchi K, Ibuki M, Kawashima T, Masayasu R, Suzuki M, Kawai Y, Umekage M, Kato TM, Noguchi M, Nakade K, Nakamura Y, Nakaishi T, Nishishita N, Tsukahara M, Hayashi Y. Complete suspension culture of human induced pluripotent stem cells supplemented with suppressors of spontaneous differentiation. eLife 2024; 12:RP89724. [PMID: 39529479 PMCID: PMC11556790 DOI: 10.7554/elife.89724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are promising resources for producing various types of tissues in regenerative medicine; however, the improvement in a scalable culture system that can precisely control the cellular status of hiPSCs is needed. Utilizing suspension culture without microcarriers or special materials allows for massive production, automation, cost-effectiveness, and safety assurance in industrialized regenerative medicine. Here, we found that hiPSCs cultured in suspension conditions with continuous agitation without microcarriers or extracellular matrix components were more prone to spontaneous differentiation than those cultured in conventional adherent conditions. Adding PKCβ and Wnt signaling pathway inhibitors in the suspension conditions suppressed the spontaneous differentiation of hiPSCs into ectoderm and mesendoderm, respectively. In these conditions, we successfully completed the culture processes of hiPSCs, including the generation of hiPSCs from peripheral blood mononuclear cells with the expansion of bulk population and single-cell sorted clones, long-term culture with robust self-renewal characteristics, single-cell cloning, direct cryopreservation from suspension culture and their successful recovery, and efficient mass production of a clinical-grade hiPSC line. Our results demonstrate that precise control of the cellular status in suspension culture conditions paves the way for their stable and automated clinical application.
Collapse
Affiliation(s)
- Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Sho Kambayashi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Yasuko Hemmi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Tamami Wakabayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Tomoya Shimizu
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Yuri An
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Hidenori Ito
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Kazuhiro Takeuchi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Masato Ibuki
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Terasu Kawashima
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Rio Masayasu
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Manami Suzuki
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Yoshikazu Kawai
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | | | - Tomoaki M Kato
- Research and Development Center, CiRA FoundationKyotoJapan
| | - Michiya Noguchi
- Cell Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Koji Nakade
- Gene Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Tomoyuki Nakaishi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Naoki Nishishita
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | | | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
- Faculty of Medicine and School of Integrative and Global Majors, University of TsukubaIbarakiJapan
| |
Collapse
|
2
|
Yagi M, Horng JE, Hochedlinger K. Manipulating cell fate through reprogramming: approaches and applications. Development 2024; 151:dev203090. [PMID: 39348466 PMCID: PMC11463964 DOI: 10.1242/dev.203090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024]
Abstract
Cellular plasticity progressively declines with development and differentiation, yet these processes can be experimentally reversed by reprogramming somatic cells to induced pluripotent stem cells (iPSCs) using defined transcription factors. Advances in reprogramming technology over the past 15 years have enabled researchers to study diseases with patient-specific iPSCs, gain fundamental insights into how cell identity is maintained, recapitulate early stages of embryogenesis using various embryo models, and reverse aspects of aging in cultured cells and animals. Here, we review and compare currently available reprogramming approaches, including transcription factor-based methods and small molecule-based approaches, to derive pluripotent cells characteristic of early embryos. Additionally, we discuss our current understanding of mechanisms that resist reprogramming and their role in cell identity maintenance. Finally, we review recent efforts to rejuvenate cells and tissues with reprogramming factors, as well as the application of iPSCs in deriving novel embryo models to study pre-implantation development.
Collapse
Affiliation(s)
- Masaki Yagi
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joy E. Horng
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Ermakova VV, Fokin NP, Aksenov ND, Bakhmet EI, Aleksandrova EV, Kuzmin AA, Tomilin AN. Regulatory Elements Outside Established Pou5f1 Gene Boundaries Are Required for Multilineage Differentiation of Embryonic Stem Cells. Int J Mol Sci 2023; 24:15434. [PMID: 37895112 PMCID: PMC10607089 DOI: 10.3390/ijms242015434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The transcription factor Oct4 can rightfully be considered a pivotal element in maintaining pluripotency. In addition, its ability to function as a pioneer factor enables the reprogramming of somatic cells back into a pluripotent state. To better understand the regulation of the Oct4-encoding gene (Pou5f1), the main genetic elements that regulate its expression in different states of pluripotency ought to be identified. While some elements have been well characterized for their ability to drive Pou5f1 expression, others have yet to be determined. In this work, we show that translocation of the Pou5f1 gene fragment purported to span all essential cis-elements, including the well-known distal and proximal enhancers (DE and PE), into the Rosa26 locus impairs the self-renewal of mouse embryonic stem cells (ESCs) in the naïve pluripotency state, as well as their further advancement through the formative and primed pluripotency states, inducing overall differentiation failure. These results suggest that regulatory elements located outside the previously determined Pou5f1 boundaries are critical for the proper spatiotemporal regulation of this gene during development, indicating the need for their better characterization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexey N. Tomilin
- Institute of Cytology, Russian Academy of Sciences, 194064 St.-Petersburg, Russia; (V.V.E.); (N.P.F.); (N.D.A.); (E.V.A.); (A.A.K.)
| |
Collapse
|
4
|
Sato S, Hishida T, Kinouchi K, Hatanaka F, Li Y, Nguyen Q, Chen Y, Wang PH, Kessenbrock K, Li W, Izpisua Belmonte JC, Sassone-Corsi P. The circadian clock CRY1 regulates pluripotent stem cell identity and somatic cell reprogramming. Cell Rep 2023; 42:112590. [PMID: 37261952 DOI: 10.1016/j.celrep.2023.112590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Distinct metabolic conditions rewire circadian-clock-controlled signaling pathways leading to the de novo construction of signal transduction networks. However, it remains unclear whether metabolic hallmarks unique to pluripotent stem cells (PSCs) are connected to clock functions. Reprogramming somatic cells to a pluripotent state, here we highlighted non-canonical functions of the circadian repressor CRY1 specific to PSCs. Metabolic reprogramming, including AMPK inactivation and SREBP1 activation, was coupled with the accumulation of CRY1 in PSCs. Functional assays verified that CRY1 is required for the maintenance of self-renewal capacity, colony organization, and metabolic signatures. Genome-wide occupancy of CRY1 identified CRY1-regulatory genes enriched in development and differentiation in PSCs, albeit not somatic cells. Last, cells lacking CRY1 exhibit differential gene expression profiles during induced PSC (iPSC) reprogramming, resulting in impaired iPSC reprogramming efficiency. Collectively, these results suggest the functional implication of CRY1 in pluripotent reprogramming and ontogenesis, thereby dictating PSC identity.
Collapse
Affiliation(s)
- Shogo Sato
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA; Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, USA.
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Kenichiro Kinouchi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Fumiaki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Altos Labs, San Diego, CA, USA
| | - Yumei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yumay Chen
- UC Irvine Diabetes Center, Sue and Bill Gross Stem Cell Research Center, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ping H Wang
- UC Irvine Diabetes Center, Sue and Bill Gross Stem Cell Research Center, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Altos Labs, San Diego, CA, USA.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
5
|
Arekatla G, Trenzinger C, Reimann A, Loeffler D, Kull T, Schroeder T. Optogenetic manipulation identifies the roles of ERK and AKT dynamics in controlling mouse embryonic stem cell exit from pluripotency. Dev Cell 2023:S1534-5807(23)00183-1. [PMID: 37207652 DOI: 10.1016/j.devcel.2023.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
ERK and AKT signaling control pluripotent cell self-renewal versus differentiation. ERK pathway activity over time (i.e., dynamics) is heterogeneous between individual pluripotent cells, even in response to the same stimuli. To analyze potential functions of ERK and AKT dynamics in controlling mouse embryonic stem cell (ESC) fates, we developed ESC lines and experimental pipelines for the simultaneous long-term manipulation and quantification of ERK or AKT dynamics and cell fates. We show that ERK activity duration or amplitude or the type of ERK dynamics (e.g., transient, sustained, or oscillatory) alone does not influence exit from pluripotency, but the sum of activity over time does. Interestingly, cells retain memory of previous ERK pulses, with duration of memory retention dependent on duration of previous pulse length. FGF receptor/AKT dynamics counteract ERK-induced pluripotency exit. These findings improve our understanding of how cells integrate dynamics from multiple signaling pathways and translate them into cell fate cues.
Collapse
Affiliation(s)
- Geethika Arekatla
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Christoph Trenzinger
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Andreas Reimann
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Tobias Kull
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
6
|
Zare A, Salehpour A, Khoradmehr A, Bakhshalizadeh S, Najafzadeh V, Almasi-Turk S, Mahdipour M, Shirazi R, Tamadon A. Epigenetic Modification Factors and microRNAs Network Associated with Differentiation of Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Cardiomyocytes: A Review. Life (Basel) 2023; 13:life13020569. [PMID: 36836926 PMCID: PMC9965891 DOI: 10.3390/life13020569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 02/22/2023] Open
Abstract
More research is being conducted on myocardial cell treatments utilizing stem cell lines that can develop into cardiomyocytes. All of the forms of cardiac illnesses have shown to be quite amenable to treatments using embryonic (ESCs) and induced pluripotent stem cells (iPSCs). In the present study, we reviewed the differentiation of these cell types into cardiomyocytes from an epigenetic standpoint. We also provided a miRNA network that is devoted to the epigenetic commitment of stem cells toward cardiomyocyte cells and related diseases, such as congenital heart defects, comprehensively. Histone acetylation, methylation, DNA alterations, N6-methyladenosine (m6a) RNA methylation, and cardiac mitochondrial mutations are explored as potential tools for precise stem cell differentiation.
Collapse
Affiliation(s)
- Afshin Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Aria Salehpour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vahid Najafzadeh
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Sahar Almasi-Turk
- Department of Basic Sciences, School of Medicine, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz 7135644144, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| |
Collapse
|
7
|
Wang X, Wu Q. The Divergent Pluripotent States in Mouse and Human Cells. Genes (Basel) 2022; 13:genes13081459. [PMID: 36011370 PMCID: PMC9408542 DOI: 10.3390/genes13081459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pluripotent stem cells (PSCs), which can self-renew and give rise to all cell types in all three germ layers, have great potential in regenerative medicine. Recent studies have shown that PSCs can have three distinct but interrelated pluripotent states: naive, formative, and primed. The PSCs of each state are derived from different stages of the early developing embryo and can be maintained in culture by different molecular mechanisms. In this review, we summarize the current understanding on features of the three pluripotent states and review the underlying molecular mechanisms of maintaining their identities. Lastly, we discuss the interrelation and transition among these pluripotency states. We believe that comprehending the divergence of pluripotent states is essential to fully harness the great potential of stem cells in regenerative medicine.
Collapse
Affiliation(s)
| | - Qiang Wu
- Correspondence: ; Tel.: +853-8897-2708
| |
Collapse
|
8
|
Identification of microRNAs related with neural germ layer lineage-specific progenitors during reprogramming. J Mol Histol 2022; 53:623-634. [DOI: 10.1007/s10735-022-10082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
|
9
|
Kim Y, Nam Y, Rim YA, Ju JH. Anti-fibrotic effect of a selective estrogen receptor modulator in systemic sclerosis. Stem Cell Res Ther 2022; 13:303. [PMID: 35841004 PMCID: PMC9284699 DOI: 10.1186/s13287-022-02987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background The rarity of systemic sclerosis (SSc) has hampered the development of therapies for this intractable autoimmune disease. Induced pluripotent stem cell (iPSC) can be differentiated into the key disease-affected cells in vitro. The generation of patient-derived iPSCs has opened up possibilities for rare disease modeling. Since these cells can recapitulate the disease phenotypes of the cell in question, they are useful high-throughput platforms for screening for drugs that can reverse these abnormal phenotypes. Methods SSc iPSC was generated from PBMC by Sendai virus. Human iPSC lines from SSc patients were differentiated into dermal fibroblasts and keratinocytes. The iPSC-derived differentiated cells from the SSc patients were used on high-throughput platforms to screen for FDA-approved drugs that could be effective treatments for SSc. Results Skin organoids were generated from these cells exhibited fibrosis that resembled SSc skin. Screening of the 770-FDA-approved drug library showed that the anti-osteoporotic drug raloxifene reduced SSc iPSC-derived fibroblast proliferation and extracellular matrix production and skin fibrosis in organoids and bleomycin-induced SSc-model mice. Conclusions This study reveals that a disease model of systemic sclerosis generated using iPSCs-derived skin organoid is a novel tool for in vitro and in vivo dermatologic research. Since raloxifene and bazedoxifene are well-tolerated anti-osteoporotic drugs, our findings suggest that selective estrogen receptor modulator (SERM)-class drugs could treat SSc fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02987-w.
Collapse
Affiliation(s)
- Yena Kim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,YiPSCELL Inc., 47-3, Banpo-dearo 39-gil, Seocho-gu, Seoul, Republic of Korea
| | - Yoojun Nam
- YiPSCELL Inc., 47-3, Banpo-dearo 39-gil, Seocho-gu, Seoul, Republic of Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea. .,YiPSCELL Inc., 47-3, Banpo-dearo 39-gil, Seocho-gu, Seoul, Republic of Korea. .,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-040, Republic of Korea.
| |
Collapse
|
10
|
Dogan F, Aljumaily RMK, Kitchen M, Forsyth NR. Physoxia Influences Global and Gene-Specific Methylation in Pluripotent Stem Cells. Int J Mol Sci 2022; 23:5854. [PMID: 35628663 PMCID: PMC9148100 DOI: 10.3390/ijms23105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Pluripotent stem cells (PSC) possess unlimited proliferation, self-renewal, and a differentiation capacity spanning all germ layers. Appropriate culture conditions are important for the maintenance of self-renewal, pluripotency, proliferation, differentiation, and epigenetic states. Oxygen concentrations vary across different human tissues depending on precise cell location and proximity to vascularisation. The bulk of PSC culture-based research is performed in a physiologically hyperoxic, air oxygen (21% O2) environment, with numerous reports now detailing the impact of a physiologic normoxia (physoxia), low oxygen culture in the maintenance of stemness, survival, morphology, proliferation, differentiation potential, and epigenetic profiles. Epigenetic mechanisms affect multiple cellular characteristics including gene expression during development and cell-fate determination in differentiated cells. We hypothesized that epigenetic marks are responsive to a reduced oxygen microenvironment in PSCs and their differentiation progeny. Here, we evaluated the role of physoxia in PSC culture, the regulation of DNA methylation (5mC (5-methylcytosine) and 5hmC (5-hydroxymethylcytosine)), and the expression of regulatory enzyme DNMTs and TETs. Physoxia enhanced the functional profile of PSC including proliferation, metabolic activity, and stemness attributes. PSCs cultured in physoxia revealed the significant downregulation of DNMT3B, DNMT3L, TET1, and TET3 vs. air oxygen, accompanied by significantly reduced 5mC and 5hmC levels. The downregulation of DNMT3B was associated with an increase in its promoter methylation. Coupled with the above, we also noted decreased HIF1A but increased HIF2A expression in physoxia-cultured PSCs versus air oxygen. In conclusion, PSCs display oxygen-sensitive methylation patterns that correlate with the transcriptional and translational regulation of the de novo methylase DNMT3B.
Collapse
Affiliation(s)
- Fatma Dogan
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK; (F.D.); (M.K.)
| | - Rakad M. Kh Aljumaily
- Department of Biology, College of Science, University of Baghdad, Baghdad 17635, Iraq;
| | - Mark Kitchen
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK; (F.D.); (M.K.)
| | - Nicholas R. Forsyth
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK; (F.D.); (M.K.)
| |
Collapse
|
11
|
Pervaiz I, Al-Ahmad AJ. In Vitro Models of the Human Blood-Brain Barrier Utilising Human Induced Pluripotent Stem Cells: Opportunities and Challenges. Methods Mol Biol 2022; 2492:53-72. [PMID: 35733038 DOI: 10.1007/978-1-0716-2289-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The blood-brain barrier (BBB) is a component of the neurovascular unit formed by specialized brain microvascular endothelial cells surrounded by astrocytes end-feet processes, pericytes, and a basement membrane. The BBB plays an important role in the maintenance of brain homeostasis and has seen a growing involvement in the pathophysiology of various neurological diseases. On the other hand, the presence of such a barrier remains an important challenge for drug delivery to treat such illnesses.Since the pioneering work describing the isolation and cultivation of primary brain microvascular cells about 50 years ago until now, the development of an in vitro model of the BBB that is scalable, capable to form tight monolayers, and predictive of drug permeability in vivo remained extremely challenging.The recent description of the use of induced pluripotent stem cells (iPSCs) as a modeling tool for neurological diseases raised momentum into the use of such cells to develop new in vitro models of the BBB. This chapter will provide an exhaustive description of the use of iPSCs as a source of cells for modeling the BBB in vitro, describe the advantages and limitations of such model, as well as describe their prospective use for disease modeling and drug permeability screening platforms.
Collapse
Affiliation(s)
- Iqra Pervaiz
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
12
|
Zeng XX, Zeng J, Zhu B. Future generation of combined multimodal approach to treat brain glioblastoma multiforme and potential impact on micturition control. Rev Neurosci 2021; 33:313-326. [PMID: 34529907 DOI: 10.1515/revneuro-2021-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022]
Abstract
Glioblastoma remains lethal even when treated with standard therapy. This review aims to outline the recent development of various advanced therapeutics for glioblastoma and briefly discuss the potential impact of glioblastoma and some of its therapeutic approaches on the neurological function micturition control. Although immunotherapy led to success in treating hematological malignancies, but no similar success occurred in treatment for brain glioblastoma. Neither regenerative medicine nor stem cell therapy led to astounding success in glioblastoma. However, CRISPR Cas system holds potential in multiple applications due to its capacity to knock-in and knock-out genes, modify immune cells and cell receptors, which will enable it to address clinical challenges in immunotherapy such as CAR-T and regenerative therapy for brain glioblastoma, improving the precision and safety of these approaches. The studies mentioned in this review could indicate that glioblastoma is a malignant disease with multiple sophisticated barriers to be overcome and more challenges might arise in the attempt of researchers to yield a successful cure. A multimodal approach of future generation of refined and safe therapeutics derived from CRISPR Cas therapeutics, immunotherapy, and regenerative therapeutics mentioned in this review might prolong survival or even contribute towards a potential cure for glioblastoma.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Guangzhou United Family Hospital, Fangyuan Road 28, Haizhu District, Guangzhou, Postcode: 510000, Guangdong Province, P. R. China
| | - Jianwen Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Yinquan Road B24, Qingyuan City, Postcode: 511500, Guangdong Province, P. R. China
| | - Baoyi Zhu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Yinquan Road B24, Qingyuan City, Postcode: 511500, Guangdong Province, P. R. China
| |
Collapse
|
13
|
Abstract
In the past several decades, the establishment of in vitro models of pluripotency has ushered in a golden era for developmental and stem cell biology. Research in this arena has led to profound insights into the regulatory features that shape early embryonic development. Nevertheless, an integrative theory of the epigenetic principles that govern the pluripotent nucleus remains elusive. Here, we summarize the epigenetic characteristics that define the pluripotent state. We cover what is currently known about the epigenome of pluripotent stem cells and reflect on the use of embryonic stem cells as an experimental system. In addition, we highlight insights from super-resolution microscopy, which have advanced our understanding of the form and function of chromatin, particularly its role in establishing the characteristically "open chromatin" of pluripotent nuclei. Further, we discuss the rapid improvements in 3C-based methods, which have given us a means to investigate the 3D spatial organization of the pluripotent genome. This has aided the adaptation of prior notions of a "pluripotent molecular circuitry" into a more holistic model, where hotspots of co-interacting domains correspond with the accumulation of pluripotency-associated factors. Finally, we relate these earlier hypotheses to an emerging model of phase separation, which posits that a biophysical mechanism may presuppose the formation of a pluripotent-state-defining transcriptional program.
Collapse
Affiliation(s)
| | - Eran Meshorer
- Department of Genetics, the Institute of Life Sciences
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel 9190400
| |
Collapse
|
14
|
Liu QW, Huang QM, Wu HY, Zuo GSL, Gu HC, Deng KY, Xin HB. Characteristics and Therapeutic Potential of Human Amnion-Derived Stem Cells. Int J Mol Sci 2021; 22:ijms22020970. [PMID: 33478081 PMCID: PMC7835733 DOI: 10.3390/ijms22020970] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Stem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells. In this review, we first described the biological characteristics and advantages of hADSCs, especially for their high pluripotency and immunomodulatory effects. Then, we summarized the therapeutic applications and recent progresses of hADSCs in treating various diseases for preclinical research and clinical trials. In addition, the possible mechanisms and the challenges of hADSCs applications have been also discussed. Finally, we highlighted the properties of hADSCs as a promising source of stem cells for cell therapy and regenerative medicine and pointed out the perspectives for the directions of hADSCs applications clinically.
Collapse
Affiliation(s)
- Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Han-You Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Guo-Si-Lang Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Hao-Cheng Gu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-791-8396-9015
| |
Collapse
|
15
|
Immortalization of human hepatocytes from biliary atresia with CDK4 R24C, cyclin D1, and TERT for cytochrome P450 induction testing. Sci Rep 2020; 10:17503. [PMID: 33060611 PMCID: PMC7567112 DOI: 10.1038/s41598-020-73992-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023] Open
Abstract
Hepatocytes are an important tool for in vitro toxicology testing. In addition to primary cultures, a limited number of immortalized cell lines have been developed. We here describe a new cell line, designated as HepaMN, which has been established from a liver associated with biliary atresia. Hepatocytes were isolated from a liver of 4-year-old girl with biliary atresia and immortalized by inoculation with CSII-CMV-TERT, CSII-CMV-Tet-Off, CSII-TRE-Tight-cyclin D1 and CSII-TRE-Tight-CDK4R24C (mutant CDK4: an INK4a-resistant form of CDK4) lentiviruses at the multiplicity of infection of 3 to 10. HepaMN cells exhibited morphological homogeneity, displaying hepatocyte-like phenotypes. Phenotypic studies in vivo and in vitro revealed that HepaMN cells showed polarized and functional hepatocyte features along with a canalicular cell phenotype under defined conditions, and constitutively expressed albumin and carbamoyl phosphate synthetase I in addition to epithelial markers. Since HepaMN cells are immortal and subcloned, kinetics and expression profiles were independent of population doublings. HepaMN cells showed increased CYP3A4 expression after exposure to rifampicin, implying that their close resemblance to normal human hepatocytes makes them suitable for research applications including drug metabolism studies.
Collapse
|
16
|
Wuputra K, Ku CC, Wu DC, Lin YC, Saito S, Yokoyama KK. Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. J Exp Clin Cancer Res 2020; 39:100. [PMID: 32493501 PMCID: PMC7268627 DOI: 10.1186/s13046-020-01584-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Human pluripotent embryonic stem cells have two special features: self-renewal and pluripotency. It is important to understand the properties of pluripotent stem cells and reprogrammed stem cells. One of the major problems is the risk of reprogrammed stem cells developing into tumors. To understand the process of differentiation through which stem cells develop into cancer cells, investigators have attempted to identify the key factors that generate tumors in humans. The most effective method for the prevention of tumorigenesis is the exclusion of cancer cells during cell reprogramming. The risk of cancer formation is dependent on mutations of oncogenes and tumor suppressor genes during the conversion of stem cells to cancer cells and on the environmental effects of pluripotent stem cells. Dissecting the processes of epigenetic regulation and chromatin regulation may be helpful for achieving correct cell reprogramming without inducing tumor formation and for developing new drugs for cancer treatment. This review focuses on the risk of tumor formation by human pluripotent stem cells, and on the possible treatment options if it occurs. Potential new techniques that target epigenetic processes and chromatin regulation provide opportunities for human cancer modeling and clinical applications of regenerative medicine.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
- Saito Laboratory of Cell Technology Institute, Yaita, Tochigi, 329-1571, Japan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Waseda University Research Institute for Science and Engineering, Shinjuku, Tokyo, 162-8480, Japan.
| |
Collapse
|
17
|
Ikehara H, Fujii K, Miyashita T, Ikemoto Y, Nagamine M, Shimojo N, Umezawa A. Establishment of a Gorlin syndrome model from induced neural progenitor cells exhibiting constitutive GLI1 expression and high sensitivity to inhibition by smoothened (SMO). J Transl Med 2020; 100:657-664. [PMID: 31758086 DOI: 10.1038/s41374-019-0346-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
The hedgehog signaling pathway is a vital factor for embryonic development and stem cell maintenance. Dysregulation of its function results in tumor initiation and progression. The aim of this research was to establish a disease model of hedgehog-related tumorigenesis with Gorlin syndrome-derived induced pluripotent stem cells (GS-iPSCs). Induced neural progenitor cells from GS-iPSCs (GS-NPCs) show constitutive high GLI1 expression and higher sensitivity to smoothened (SMO) inhibition compared with wild-type induced neural progenitor cells (WT-NPCs). The differentiation process from iPSCs to NPCs may have similarity in gene expression to Hedgehog signal-related carcinogenesis. Therefore, GS-NPCs may be useful for screening compounds to find effective drugs to control Hedgehog signaling activity.
Collapse
Affiliation(s)
- Hajime Ikehara
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toshiyuki Miyashita
- Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yu Ikemoto
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa, Japan
| | - Marina Nagamine
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
18
|
Aoto S, Katagiri S, Wang Y, Pagnamenta AT, Sakamoto-Abutani R, Toyoda M, Umezawa A, Okamura K. Frequent retrotransposition of endogenous genes in ERCC2-deficient cells derived from a patient with xeroderma pigmentosum. Stem Cell Res Ther 2019; 10:273. [PMID: 31455402 PMCID: PMC6712803 DOI: 10.1186/s13287-019-1381-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/04/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Retrotransposition of protein-coding genes is thought to occur due to the existence of numerous processed pseudogenes in both animals and plants. Unlike retrotransposons including Alu and LINE-1, direct evidence of such retrotransposition events has not been reported to date. Even if such an event occurs in a somatic cell, it is almost impossible to detect it using bulk of cells as a sample. Single-cell analyses or other techniques are needed. METHODS In order to examine genetic stability of stem cells, we have established induced pluripotent stem cell (iPSC) lines from several patients with DNA repair-deficiency disorders, such as ataxia telangiectasia and xeroderma pigmentosum, along with healthy controls. Performing whole-exome sequencing analyses of these parental and iPSC lines, we compiled somatic mutations accumulated by the deficiency of DNA repair mechanisms. Whereas most somatic mutations cannot be detected in bulk, cell reprogramming enabled us to observe all the somatic mutations which had occurred in the cell line. Patterns of somatic mutations should be distinctive depending on which DNA repair gene is impaired. RESULTS The comparison revealed that deficiency of ATM and XPA preferentially gives rise to indels and single-nucleotide substitutions, respectively. On the other hand, deficiency of ERCC2 caused not only single-nucleotide mutations but also many retrotranspositions of endogenous genes, which were readily identified by examining removal of introns in whole-exome sequencing. Although the number was limited, those events were also detected in healthy control samples. CONCLUSIONS The present study exploits clonality of iPSCs to unveil somatic mutation sets that are usually hidden in bulk cell analysis. Whole-exome sequencing analysis facilitated the detection of retrotransposition mutations. The results suggest that retrotranspositions of human endogenous genes are more frequent than expected in somatic cells and that ERCC2 plays a defensive role against transposition of endogenous and exogenous DNA fragments.
Collapse
Affiliation(s)
- Saki Aoto
- Medical Genome Center, National Center for Child Health and Development Research Institute, Setagaya, Tokyo, Japan
| | - Saki Katagiri
- Department of Biology, Faculty of Science, Ochanomizu University, Bunkyo, Tokyo, Japan
- Present address: Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi Japan
| | - Yi Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | | | - Rie Sakamoto-Abutani
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Setagaya, Tokyo, Japan
| | - Masashi Toyoda
- Research team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Setagaya, Tokyo, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Setagaya, Tokyo, Japan
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535 Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| |
Collapse
|
19
|
Miceli M, Baldi D, Cavaliere C, Soricelli A, Salvatore M, Napoli C. Peripheral artery disease: the new frontiers of imaging techniques to evaluate the evolution of regenerative medicine. Expert Rev Cardiovasc Ther 2019; 17:511-532. [PMID: 31220944 DOI: 10.1080/14779072.2019.1635012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Stem cells (ESC, iPSC, MSC) are known to have intrinsic regenerative properties. In the last decades numerous findings have favored the development of innovative therapeutic protocols based on the use of stem cells (Regenerative Medicine/Cell Therapy) for the treatment of numerous diseases including PAD, with promising results in preclinical studies. So far, several clinical studies have shown a general improvement of the patient's clinical outcome, however they possess many critical issues caused by the non-randomized design of the limited number of patients examined, the type cells to be used, their dosage, the short duration of treatment and also their delivery strategy. Areas covered: In this context, the use of the most advanced molecular imaging techniques will allow the visualization of very important physio-pathological processes otherwise invisible with conventional techniques, such as angiogenesis, also providing important structural and functional data. Expert opinion: The new frontier of cell therapy applied to PAD, potentially able to stop or even the process that causes the disease, with particular emphasis on the clinical aspects that different types of cells involve and on the use of more innovative molecular imaging techniques now available.
Collapse
Affiliation(s)
| | | | | | - Andrea Soricelli
- a IRCCS SDN , Naples , Italy.,b Department of Exercise and Wellness Sciences , University of Naples Parthenope , Naples , Italy
| | | | - Claudio Napoli
- a IRCCS SDN , Naples , Italy.,c University Department of Advanced Medical and Surgical Sciences, Clinical Department of Internal Medicine and Specialty Medicine , Università degli Studi della Campania 'Luigi Vanvitelli' , Napes , Italy
| |
Collapse
|
20
|
Yagi M, Kabata M, Ukai T, Ohta S, Tanaka A, Shimada Y, Sugimoto M, Araki K, Okita K, Woltjen K, Hochedlinger K, Yamamoto T, Yamada Y. De Novo DNA Methylation at Imprinted Loci during Reprogramming into Naive and Primed Pluripotency. Stem Cell Reports 2019; 12:1113-1128. [PMID: 31056481 PMCID: PMC6524733 DOI: 10.1016/j.stemcr.2019.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
CpG islands (CGIs) including those at imprinting control regions (ICRs) are protected from de novo methylation in somatic cells. However, many cancers often exhibit CGI hypermethylation, implying that the machinery is impaired in cancer cells. Here, we conducted a comprehensive analysis of CGI methylation during somatic cell reprogramming. Although most CGIs remain hypomethylated, a small subset of CGIs, particularly at several ICRs, was often de novo methylated in reprogrammed pluripotent stem cells (PSCs). Such de novo ICR methylation was linked with the silencing of reprogramming factors, which occurs at a late stage of reprogramming. The ICR-preferred CGI hypermethylation was similarly observed in human PSCs. Mechanistically, ablation of Dnmt3a prevented PSCs from de novo ICR methylation. Notably, the ICR-preferred CGI hypermethylation was observed in pediatric cancers, while adult cancers exhibit genome-wide CGI hypermethylation. These results may have important implications in the pathogenesis of pediatric cancers and the application of PSCs. Several ICRs are de novo methylated in reprogrammed PSCs De novo ICR methylation in iPSCs is linked with transgene silencing Depletion of Dnmt3a prevents reprogrammed PSCs from de novo ICR methylation Pediatric cancers exhibit reprogrammed PSC-like aberration in CGI methylation
Collapse
Affiliation(s)
- Masaki Yagi
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Tomoyo Ukai
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Sho Ohta
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Akito Tanaka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yui Shimada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Michihiko Sugimoto
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Keisuke Okita
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan.
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan.
| |
Collapse
|
21
|
Hassani SN, Moradi S, Taleahmad S, Braun T, Baharvand H. Transition of inner cell mass to embryonic stem cells: mechanisms, facts, and hypotheses. Cell Mol Life Sci 2019; 76:873-892. [PMID: 30420999 PMCID: PMC11105545 DOI: 10.1007/s00018-018-2965-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
Abstract
Embryonic stem cells (ESCs) are immortal stem cells that own multi-lineage differentiation potential. ESCs are commonly derived from the inner cell mass (ICM) of pre-implantation embryos. Due to their tremendous developmental capacity and unlimited self-renewal, ESCs have diverse biomedical applications. Different culture media have been developed to procure and maintain ESCs in a state of naïve pluripotency, and to preserve a stable genome and epigenome during serial passaging. Chromatin modifications such as DNA methylation and histone modifications along with microRNA activity and different signaling pathways dynamically contribute to the regulation of the ESC gene regulatory network (GRN). Such modifications undergo remarkable changes in different ESC media and determine the quality and developmental potential of ESCs. In this review, we discuss the current approaches for derivation and maintenance of ESCs, and examine how differences in culture media impact on the characteristics of pluripotency via modulation of GRN during the course of ICM outgrowth into ESCs. We also summarize the current hypotheses concerning the origin of ESCs and provide a perspective about the relationship of these cells to their in vivo counterparts (early embryonic cells around the time of implantation). Finally, we discuss generation of ESCs from human embryos and domesticated animals, and offer suggestions to further advance this fascinating field.
Collapse
Affiliation(s)
- Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
22
|
Nishino K, Arai Y, Takasawa K, Toyoda M, Yamazaki-Inoue M, Sugawara T, Akutsu H, Nishimura K, Ohtaka M, Nakanishi M, Umezawa A. Epigenetic-scale comparison of human iPSCs generated by retrovirus, Sendai virus or episomal vectors. Regen Ther 2018; 9:71-78. [PMID: 30525077 PMCID: PMC6222281 DOI: 10.1016/j.reth.2018.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/30/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are established by introducing several reprogramming factors, such as OCT3/4, SOX2, KLF4, c-MYC. Because of their pluripotency and immortality, iPSCs are considered to be a powerful tool for regenerative medicine. To date, iPSCs have been established all over the world by various gene delivery methods. All methods induced high-quality iPSCs, but epigenetic analysis of abnormalities derived from differences in the gene delivery methods has not yet been performed. Here, we generated genetically matched human iPSCs from menstrual blood cells by using three kinds of vectors, i.e., retrovirus, Sendai virus, and episomal vectors, and compared genome-wide DNA methylation profiles among them. Although comparison of aberrant methylation revealed that iPSCs generated by Sendai virus vector have lowest number of aberrant methylation sites among the three vectors, the iPSCs generated by non-integrating methods did not show vector-specific aberrant methylation. However, the differences between the iPSC lines were determined to be the number of random aberrant hypermethylated regions compared with embryonic stem cells. These random aberrant hypermethylations might be a cause of the differences in the properties of each of the iPSC lines.
Collapse
Affiliation(s)
- Koichiro Nishino
- Laboratory of Veterinary Biochemistry and Molecular Biology, Graduate School of Medicine and Veterinary Medicine/Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Yoshikazu Arai
- Laboratory of Veterinary Biochemistry and Molecular Biology, Graduate School of Medicine and Veterinary Medicine/Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ken Takasawa
- Laboratory of Veterinary Biochemistry and Molecular Biology, Graduate School of Medicine and Veterinary Medicine/Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Mayu Yamazaki-Inoue
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tohru Sugawara
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hidenori Akutsu
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | | | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
23
|
Dattani A, Sridhar D, Aziz Aboobaker A. Planarian flatworms as a new model system for understanding the epigenetic regulation of stem cell pluripotency and differentiation. Semin Cell Dev Biol 2018; 87:79-94. [PMID: 29694837 DOI: 10.1016/j.semcdb.2018.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/21/2018] [Indexed: 12/11/2022]
Abstract
Planarian flatworms possess pluripotent stem cells (neoblasts) that are able to differentiate into all cell types that constitute the adult body plan. Consequently, planarians possess remarkable regenerative capabilities. Transcriptomic studies have revealed that gene expression is coordinated to maintain neoblast pluripotency, and ensure correct lineage specification during differentiation. But as yet they have not revealed how this regulation of expression is controlled. In this review, we propose that planarians represent a unique and effective system to study the epigenetic regulation of these processes in an in vivo context. We consolidate evidence suggesting that although DNA methylation is likely present in some flatworm lineages, it does not regulate neoblast function in Schmidtea mediterranea. A number of phenotypic studies have documented the role of histone modification and chromatin remodelling complexes in regulating distinct neoblast processes, and we focus on four important examples of planarian epigenetic regulators: Nucleosome Remodeling Deacetylase (NuRD) complex, Polycomb Repressive Complex (PRC), the SET1/MLL methyltransferases, and the nuclear PIWI/piRNA complex. Given the recent advent of ChIP-seq in planarians, we propose future avenues of research that will identify the genomic targets of these complexes allowing for a clearer picture of how neoblast processes are coordinated at the epigenetic level. These insights into neoblast biology may be directly relevant to mammalian stem cells and disease. The unique biology of planarians will also allow us to investigate how extracellular signals feed into epigenetic regulatory networks to govern concerted neoblast responses during regenerative polarity, tissue patterning, and remodelling.
Collapse
Affiliation(s)
- Anish Dattani
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK.
| | - Divya Sridhar
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK.
| |
Collapse
|
24
|
YAMADA Y, YAMADA Y. The causal relationship between epigenetic abnormality and cancer development: in vivo reprogramming and its future application. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:235-247. [PMID: 29887568 PMCID: PMC6085517 DOI: 10.2183/pjab.94.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
There is increasing evidence that cancer cells acquire epigenetic abnormalities as well as genetic mutations during cancer initiation, maintenance, and progression. However, the role of epigenetic regulation in cancer development, especially at the organismal level, remains to be elucidated. Here, we describe the causative role of epigenetic abnormalities in cancer, referring to our in vivo studies using induced pluripotent stem cell technology. We first summarize epigenetic reorganization during cellular reprogramming and introduce our in vivo reprogramming system for investigating the impact of dedifferentiation-driven epigenetic disruption in cancer development. Accordingly, we propose that particular types of cancer, in which causative mutations are not often detectable, such as pediatric cancers like Wilms' tumor, may develop mainly through alterations in epigenetic regulation triggered by dedifferentiation. Finally, we discuss issues that still remain to be resolved, and propose possible future applications of in vivo reprogramming to study cancer and other biological phenomena including organismal aging.
Collapse
Affiliation(s)
- Yosuke YAMADA
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yasuhiro YAMADA
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- AMED-CREST, AMED, Tokyo, Japan
| |
Collapse
|