1
|
Xu J, Chen C, Sussman JH, Yoshimura S, Vincent T, Pölönen P, Hu J, Bandyopadhyay S, Elghawy O, Yu W, Tumulty J, Chen CH, Li EY, Diorio C, Shraim R, Newman H, Uppuluri L, Li A, Chen GM, Wu DW, Ding YY, Xu JA, Karanfilovski D, Lim T, Hsu M, Thadi A, Ahn KJ, Wu CY, Peng J, Sun Y, Wang A, Mehta R, Frank D, Meyer L, Loh ML, Raetz EA, Chen Z, Wood BL, Devidas M, Dunsmore KP, Winter SS, Chang TC, Wu G, Pounds SB, Zhang NR, Carroll W, Hunger SP, Bernt K, Yang JJ, Mullighan CG, Tan K, Teachey DT. A multiomic atlas identifies a treatment-resistant, bone marrow progenitor-like cell population in T cell acute lymphoblastic leukemia. NATURE CANCER 2025; 6:102-122. [PMID: 39587259 PMCID: PMC11779640 DOI: 10.1038/s43018-024-00863-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/17/2024] [Indexed: 11/27/2024]
Abstract
Refractoriness to initial chemotherapy and relapse after remission are the main obstacles to curing T cell acute lymphoblastic leukemia (T-ALL). While tumor heterogeneity has been implicated in treatment failure, the cellular and genetic factors contributing to resistance and relapse remain unknown. Here we linked tumor subpopulations with clinical outcome, created an atlas of healthy pediatric hematopoiesis and applied single-cell multiomic analysis to a diverse cohort of 40 T-ALL cases. We identified a bone marrow progenitor (BMP)-like leukemia subpopulation associated with treatment failure and poor overall survival. The single-cell-derived molecular signature of BMP-like blasts predicted poor outcome across multiple subtypes of T-ALL and revealed that NOTCH1 mutations additively drive T-ALL blasts away from the BMP-like state. Through in silico and in vitro drug screenings, we identified a therapeutic vulnerability of BMP-like blasts to apoptosis-inducing agents including venetoclax. Collectively, our study establishes multiomic signatures for rapid risk stratification and targeted treatment of high-risk T-ALL.
Collapse
Affiliation(s)
- Jason Xu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjian, China
| | - Jonathan H Sussman
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Satoshi Yoshimura
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tiffaney Vincent
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jianzhong Hu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shovik Bandyopadhyay
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Cell & Molecular Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Elghawy
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wenbao Yu
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph Tumulty
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth Y Li
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Haley Newman
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lahari Uppuluri
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexander Li
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gregory M Chen
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David W Wu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang-Yang Ding
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica A Xu
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Damjan Karanfilovski
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tristan Lim
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miles Hsu
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anusha Thadi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyung Jin Ahn
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chi-Yun Wu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacqueline Peng
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yusha Sun
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Alice Wang
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David Frank
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lauren Meyer
- The Ben Town Center for Childhood Cancer Research, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatric Hematology Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Mignon L Loh
- The Ben Town Center for Childhood Cancer Research, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatric Hematology Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Elizabeth A Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Zhiguo Chen
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kimberly P Dunsmore
- Division of Oncology, University of Virginia Children's Hospital, Charlottesville, VA, USA
| | | | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley B Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nancy R Zhang
- Department of Statistics, University of Pennsylvania, Philadelphia, PA, USA
| | - William Carroll
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathrin Bernt
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - David T Teachey
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Das P, Kumar S, Ranjan R, Arumugam P, Dhole N, Kori R, Yadav A, Singh A, Kanwar V, Singh N. Should we perform baseline NGS testing in precursor T lymphoblastic leukaemias: a single centre experience from Eastern India. Ecancermedicalscience 2024; 18:1815. [PMID: 40171462 PMCID: PMC11959121 DOI: 10.3332/ecancer.2024.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 04/03/2025] Open
Abstract
Introduction T-lymphoblastic leukaemia accounts for approximately one-fourth of acute lymphoblastic leukaemia cases. Sequencing approaches have identified >100 genes that can be mutated in T-cell acute lymphoblastic leukaemia (T-ALL). However, the revised WHO 2022 edition of lymphoid neoplasms still does not incorporate molecular signatures into the T-ALL subgrouping unlike B-ALLs and acute myeloid leukemia, which are classified mainly based on molecular landscapes. Methods This retrospective observational study included all newly diagnosed patients of T-lymphoblastic leukaemia of all age groups who presented during the period between January 2022 and October 2023 in whom complete baseline diagnostic work-up was available including flow cytometry, fluorescence in situ hybridization and next generation sequencing studies. Results There was a lower frequency of karyotypic abnormalities in adult early T progenitor (ETP)-ALLs than in other sub-groups. Non-ETP ALLs showed significant association with NOTCH1 mutations (p ≤ 0.00001), followed by JAK3 (p = 0.01), FBXW7 (p = 0.066) and PHF6 (p = 0.09) mutations. There was no difference between adult and pediatric patients, in terms of genomic profiling except in the PHF6 gene. There was no significant difference between NOTCH1-mutated and NOTCH1-wild T-ALL patients as well as NOTCH1-heterodimerization versus NOTCH1-PEST mutated patients in terms of measurable residual disease (MRD), relapse-free survival (RFS) and/or overall survival (OS). 45.1% of all TALL patients harboured ≥3 mutations. However, the complex molecular profile did not correlate significantly with MRD positivity and poor RFS and/or OS rates. Conclusion Molecular profiling of TALLs do not significantly impact long-term survival outcomes. In resource-constrained settings, we can get away by not doing comprehensive molecular profiling of TALLs at baseline and restrict the sequencing assay to only those cases that are persistently MRD positive or have relapsed.
Collapse
Affiliation(s)
- Prateek Das
- Hematopathology (Oncopathology), Homi Bhabha Cancer Hospital, Varanasi 221010, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sujeet Kumar
- Homi Bhabha National Institute, Mumbai 400094, India
- Department of Medical Oncology (Adult Hematolymphoid Unit), Homi Bhabha Cancer Hospital, Varanasi 221010, India
| | - Raghwesh Ranjan
- Homi Bhabha National Institute, Mumbai 400094, India
- Department of Pediatric Oncology, Homi Bhabha Cancer Hospital, Varanasi 221010, India
| | - Pradeep Arumugam
- Hematopathology (Oncopathology), Homi Bhabha Cancer Hospital, Varanasi 221010, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Nilesh Dhole
- Homi Bhabha National Institute, Mumbai 400094, India
- Hematopathology, Homi Bhabha Cancer Hospital, Varanasi 221010, India
| | - RohitKumar Kori
- Homi Bhabha National Institute, Mumbai 400094, India
- Hematopathology, Homi Bhabha Cancer Hospital, Varanasi 221010, India
| | - Anil Yadav
- Homi Bhabha National Institute, Mumbai 400094, India
- Cancer Cytogenetics, Homi Bhabha Cancer Hospital, Varanasi 221010, India
| | - Anil Singh
- Homi Bhabha National Institute, Mumbai 400094, India
- Department of Medical Oncology (Adult Hematolymphoid Unit), Homi Bhabha Cancer Hospital, Varanasi 221010, India
| | - Vikramjit Kanwar
- Homi Bhabha National Institute, Mumbai 400094, India
- Department of Pediatric Oncology, Homi Bhabha Cancer Hospital, Varanasi 221010, India
| | - Neha Singh
- Hematopathology (Oncopathology), Homi Bhabha Cancer Hospital, Varanasi 221010, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
3
|
Simonin M, Vasseur L, Lengliné E, Lhermitte L, Cabannes-Hamy A, Balsat M, Schmidt A, Dourthe ME, Touzart A, Graux C, Grardel N, Cayuela JM, Arnoux I, Gandemer V, Huguet F, Ducassou S, Lhéritier V, Chalandon Y, Ifrah N, Dombret H, Macintyre E, Petit A, Rousselot P, Lambert J, Baruchel A, Boissel N, Asnafi V. NGS-based stratification refines the risk stratification in T-ALL and identifies a very-high-risk subgroup of patients. Blood 2024; 144:1570-1580. [PMID: 38848537 DOI: 10.1182/blood.2023023754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
ABSTRACT We previously reported a better outcome in adult and pediatric T-cell acute lymphoblastic leukemia (T-ALL) harboring NOTCH1 and/or FBXW7 mutations without alterations of K-N-RAS and PTEN genes. Availability of high-throughput next-generation sequencing (NGS) strategies led us to refine the outcome prediction in T-ALL. Targeted whole-exome sequencing of 72 T-ALL-related oncogenes was performed in 198 adults with T-ALLs in first remission from the GRAALL-2003/2005 protocols and 242 pediatric patients with T-ALLs from the FRALLE2000T. This approach enabled the identification of, to our knowledge, the first NGS-based classifier in T-ALL, categorizing low-risk patients as those with N/F, PHF6, or EP300 mutations, excluding N-K-RAS, PI3K pathway (PTEN, PIK3CA, and PIK3R1), TP53, DNMT3A, IDH1/2, and IKZF1 alterations, with a 5-year cumulative incidence of relapse (CIR) estimated at 21%. Conversely, the remaining patients were classified as high risk, exhibiting a 5-year CIR estimated at 47%. We externally validated this stratification in the pediatric cohort. NGS-based classifier was highly prognostic independently of minimal residual disease (MRD) and white blood cell (WBC) counts, in both adult and pediatric cohorts. Integration of the NGS-based classifier into a comprehensive risk-stratification model, including WBC count at diagnosis and MRD at the end of induction, enabled the identification of an adverse-risk subgroup (25%) with a 5-year CIR estimated at 51%, and a favorable-risk group (32%) with a 5-year CIR estimated at 12%. NGS-based stratification combined with WBC and MRD sharpens the prognostic classification in T-ALL and identifies a new subgroup of patients who may benefit from innovative therapeutic approaches. The GRAALL-2003/2005 studies were registered at www.ClinicalTrials.gov as #NCT00222027 and #NCT00327678.
Collapse
Affiliation(s)
- Mathieu Simonin
- Laboratory of Onco-Hematology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut Necker-Enfants Malades, INSERM U1151, Paris, France
- Department of Pediatric Hematology and Oncology, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Loïc Vasseur
- Epidemiology and Clinical Statistics for Tumor, Respiratory, and Resuscitation, INSERM U1153, Université Paris Cité, Paris, France
- Adolescent and Young Adult Hematology Unit, Saint Louis University Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Etienne Lengliné
- Institut de Recherche Saint-Louis, EA-3518, Université Paris Cité, Paris, France
- Department of Hematology, Saint Louis University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ludovic Lhermitte
- Laboratory of Onco-Hematology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut Necker-Enfants Malades, INSERM U1151, Paris, France
| | | | - Marie Balsat
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Aline Schmidt
- Hematology Department, Angers University Hospital, Angers, France
- PRES LUNAM, INSERM U 892, Angers University, Angers, France
| | - Marie-Emilie Dourthe
- Laboratory of Onco-Hematology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut Necker-Enfants Malades, INSERM U1151, Paris, France
- Department of Pediatric Hematology, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Aurore Touzart
- Laboratory of Onco-Hematology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut Necker-Enfants Malades, INSERM U1151, Paris, France
| | - Carlos Graux
- Department of Hematology, Université Catholique de Louvain, CHU UCL Namur-site Godinne, Yvoir, Belgium
| | - Nathalie Grardel
- Department of Hematology, University Hospital Claude Huriez, Lille, France
| | - Jean-Michel Cayuela
- Institut de Recherche Saint-Louis, EA-3518, Université Paris Cité, Paris, France
- Laboratory of Hematology, Saint Louis University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle Arnoux
- Laboratory of Hematology, La Timone University Hospital, Assitance Publique des Hôpitaux de Marseille, Marseille, France
| | - Virginie Gandemer
- Department of Pediatric Hematology and Oncology, University Hospital of Rennes, Rennes, France
| | - Françoise Huguet
- Department of Hematology, Toulouse University Hospital, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Stéphane Ducassou
- Department of Pediatric Oncology and Hematology, Bordeaux University Hospital, Bordeaux, France
| | - Véronique Lhéritier
- Coordination of the Group for Research on Adult Acute Lymphoblastic Leukemia, Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
| | - Yves Chalandon
- Department of Oncology, Hematology Service, Geneva University Hospitals and Medical School, University of Geneva, Geneva, Switzerland
- Swiss Group for Clinical Cancer Research, Bern, Switzerland
| | - Norbert Ifrah
- Hematology Department, Angers University Hospital, Angers, France
- PRES LUNAM, INSERM U 892, Angers University, Angers, France
| | - Hervé Dombret
- Institut de Recherche Saint-Louis, EA-3518, Université Paris Cité, Paris, France
- Department of Hematology, Saint Louis University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Elizabeth Macintyre
- Laboratory of Onco-Hematology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut Necker-Enfants Malades, INSERM U1151, Paris, France
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | | | - Jérôme Lambert
- Epidemiology and Clinical Statistics for Tumor, Respiratory, and Resuscitation, INSERM U1153, Université Paris Cité, Paris, France
- Biostatistics and Medical Information Department, Saint Louis University Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - André Baruchel
- Department of Pediatric Hematology, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Nicolas Boissel
- Adolescent and Young Adult Hematology Unit, Saint Louis University Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut de Recherche Saint-Louis, EA-3518, Université Paris Cité, Paris, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut Necker-Enfants Malades, INSERM U1151, Paris, France
| |
Collapse
|
4
|
Luo L, Jiao Y, Li Y, Yang P, Gao J, Huang S, Huang W, Wang J, Dong F, Ke X, Zou D, Gao C, Jing H. Efficacy and prognostic factors of allogeneic hematopoietic stem cell transplantation treatment for adolescent and adult Tlymphoblastic leukemia /lymphoma: a large cohort multicenter study in China. Ann Hematol 2024; 103:2073-2087. [PMID: 38581546 DOI: 10.1007/s00277-024-05719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
T lymphoblastic leukemia /lymphoma (T-ALL/LBL) is a rare and highly aggressive neoplasm of lymphoblasts. We evaluated 195 T-ALL/LBL adolescent and adult patients who received ALL-type chemotherapy alone (chemo,n = 72) or in combination with autologous hematopoietic stem cell transplantation(auto-HSCT,n = 23) or allogeneic hematopoietic stem cell transplantation(allo-HSCT,n = 100) from January 2006 to September 2020 in three Chinese medical centers. 167 (85.6%) patients achieved overall response (ORR) with 138 complete response (CR) patients (70.8%) and 29 partial response (PR) patients (14.8%). Until October 1, 2023, no difference was found in 5-year overall survival (5-OS) and 5-year progression free survival(5-PFS) between allo-HSCT and auto-HSCT (5-OS 57.9% vs. 36.7%, P = 0.139, 5-year PFS 49.4% vs. 28.6%, P = 0.078) for patients who achieved CR, for patients who achieved PR, allo-HSCT recipients had higher 5-OS compared with chemo alone recipients (5-OS 23.8% vs. 0, P = 0.042). For patients undergoing allo-HSCT, minimal residual disease (MRD) negative population showed better 5-OS survival compared with MRD positive patients (67.8% vs. 19.6%, p = 0.000). There were no significant differences between early T-cell precursor (ETP), NON-ETP patients with or without expression of one or more myeloid-associated or stem cell-associated (M/S+) markers (NON-ETP with M/S+, NON-ETP without M/S+) groups in allo-HSCT population for 5-OS. (62.9% vs. 54.5% vs.48.4%, P > 0.05). Notch mutations were more common in patients with non-relapsed/refractory disease than relapsed/refractory disease (χ² =4.293, P = 0.038). In conclusion, Allo-HSCT could be an effective consolidation therapy not just for patients with CR, but also for those who achieved PR. The prognosis is significantly improved by obtaining MRD negative prior to allogeneic transplantation.
Collapse
Affiliation(s)
- Lan Luo
- Department of hematology, Peking University Third Hospital, 49 North. Huayuan Road, Beijing, 100191, China
| | - Yang Jiao
- Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, 300020, China
| | - Yan Li
- Department of hematology, Peking University Third Hospital, 49 North. Huayuan Road, Beijing, 100191, China
| | - Ping Yang
- Department of hematology, Peking University Third Hospital, 49 North. Huayuan Road, Beijing, 100191, China
| | - Jinjie Gao
- Department of hematology, Peking University Third Hospital, 49 North. Huayuan Road, Beijing, 100191, China
| | - Sai Huang
- Department of Hematology, Medical School of Chinese PLA, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Wenyang Huang
- Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, 300020, China
| | - Jijun Wang
- Department of hematology, Peking University Third Hospital, 49 North. Huayuan Road, Beijing, 100191, China
| | - Fei Dong
- Department of hematology, Peking University Third Hospital, 49 North. Huayuan Road, Beijing, 100191, China
| | - Xiaoyan Ke
- Department of hematology, Peking University Third Hospital, 49 North. Huayuan Road, Beijing, 100191, China
| | - Dehui Zou
- Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, 300020, China
| | - Chunji Gao
- Department of Hematology, Medical School of Chinese PLA, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Hongmei Jing
- Department of hematology, Peking University Third Hospital, 49 North. Huayuan Road, Beijing, 100191, China.
| |
Collapse
|
5
|
Abolhasani S, Hejazian SS, Karpisheh V, Khodakarami A, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of SF3B1 and NOTCH1 in the pathogenesis of leukemia. IUBMB Life 2023; 75:257-278. [PMID: 35848163 DOI: 10.1002/iub.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/18/2022] [Indexed: 11/09/2022]
Abstract
The discovery of new genes/pathways improves our knowledge of cancer pathogenesis and presents novel potential therapeutic options. For instance, splicing factor 3b subunit 1 (SF3B1) and NOTCH1 genetic alterations have been identified at a high frequency in hematological malignancies, such as leukemia, and may be related to the prognosis of involved patients because they change the nature of malignancies in different ways like mediating therapeutic resistance; therefore, studying these gene/pathways is essential. This review aims to discuss SF3B1 and NOTCH1 roles in the pathogenesis of various types of leukemia and the therapeutic potential of targeting these genes or their mutations to provide a foundation for leukemia treatment.
Collapse
Affiliation(s)
- Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Han H, Yao Y, Wang H, Zhou M, Zhang Z, Xu X, Qi J, Liu Y, Wu D, Han Y. Landscape and clinical impact of NOTCH mutations in newly diagnosed acute myeloid leukemia. Cancer 2023; 129:245-254. [PMID: 36370049 DOI: 10.1002/cncr.34534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND NOTCH mutations (NOTCHmut ) are recognized as major oncogenic drivers associated with controversial clinical impact on T-cell acute lymphoblastic leukemia (T-ALL), whereas their clinical value on acute myeloid leukemia (AML) is poorly defined. METHODS A study involving 878 consecutive newly diagnosed patients with AML was undertaken in an institution with available clinical data to unravel the impact of NOTCHmut on prognosis. RESULTS In the study, NOTCHmut were discovered in 3.6% (32/878) of included patients with AML and composed substitution-missense, frameshift mutation, substitution-nonsense, and insertion-in frame. These mutations were more commonly associated with low platelet (29 vs 42 × 109 /L, p = .024) count and coexisted with BCOR/BCORL1 (15.6% vs 3.2%, p = .001), DNMT3A (28.1% vs 12.5%, p = .021), and MPL (9.4% vs 0.8%, p = .004) mutations compared with NOTCH wild-type (NOTCHwt ). No significant difference was observed in treatment responses between NOTCHmut and NOTCHwt . The presence of NOTCHmut was associated with worse overall survival ([OS], 1 year-OS: 68.0% vs 84.2%; 3 year-OS: 48.3% vs 59.6%; p = .059) and relapse-free survival ([RFS], 1 year-RFS: 78.3% vs 85.4%; 3 year-RFS: 54.5% vs 76.9%; p = .018), especially within the European Leukemia Net 2017 intermediate-risk group. Furthermore, allogeneic hematopoietic stem cell transplantation might abrogate the dismal impact of NOTCHmut on RFS. In multivariate analysis, NOTCHmut were found to be an independent factor negatively influencing RFS (hazard ratio, 2.153; 95% CI, 1.166-3.975; p = .014). CONCLUSION This study suggests that NOTCHmut may serve as an indicator for poor prognosis of AML. PLAIN LANGUAGE SUMMARY Although NOTCH mutations (NOTCHmut ) are well studied in T-cell acute lymphoblastic leukemia (T-ALL), less is known about their incidence and prognostic implications in acute myeloid leukemia (AML). A total of 878 newly diagnosed patients with AML was retrospectively analyzed; it was found that the frequency of NOTCHmut was relatively low but was associated with an adverse prognosis.
Collapse
Affiliation(s)
- Haohao Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yifang Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Meng Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ziyan Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaoyan Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yuejun Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
7
|
Ye MT, Wang Y, Zuo Z, Calin S, He H, Tang Z, Jabbour EJ, Borthakur G, Zhang Y, Yang Y, You MJ. Integrated clinical genotype-phenotype characteristics of early T-cell precursor acute lymphoblastic leukemia. Cancer 2023; 129:49-59. [PMID: 36281717 DOI: 10.1002/cncr.34515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a distinct subtype of T-ALL with a unique immunophenotype and high treatment failure rate. The molecular genetic abnormalities and their prognostic impact in ETP-ALL patients are poorly understood. METHODS The authors performed systematic analyses of the clinicopathologic features with an emphasis on molecular genetic aspects of 32 patients with ETP-ALL. RESULTS The median age was 43 years (range, 16-71). The blasts were positive for cytoplasmic CD3 and CD7 and negative for CD1a and CD8. Other markers expressed included CD34 (88%), CD33 (72%), CD117 (68%), CD13 (58%), CD5 (partial, 56%), CD2 (38%), CD10 (25%), CD56 (partial, 19%), and CD4 (6%). Cytogenetic analyses revealed a diploid karyotype in 10 patients, simple (1-2) abnormalities in 10 patients, and complex karyotype in 10 patients. Next-generation sequencing for 21 patients demonstrated that all had gene mutations (median, four mutations per patient). The most frequently mutated genes were WT1 (38%), NOTCH1 (29%), NRAS (29%), PHF6 (25%), TP53 (24%), ASXL1 (19%), FLT3 (19%), and IKZF1 (19%). All patients except one received multi-agent chemotherapy, and 22 patients underwent allogeneic stem cell transplantation. Thrombocytopenia, an abnormal karyotype, and TP53 mutation were associated with markedly shortened overall survival. Stem cell transplantation significantly improved overall survival. CONCLUSIONS Patients with ETP-ALL often have high mutation burden with increased genomic instability. TP53 mutation was the only molecular prognostic marker and was associated with complex karyotype and greater than or equal to five mutations. These patients may benefit from stem cell transplantation, and recurrent gene mutations may be novel therapeutic markers.
Collapse
Affiliation(s)
- Matthew T Ye
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yi Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steliana Calin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hua He
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yizhuo Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yaling Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,MD Anderson Cancer Center-University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
8
|
Xing L, Xu L, Zhang Y, Che Y, Wang M, Shao Y, Qiu D, Yu H, Zhao F, Zhang J. Recent Insight on Regulations of FBXW7 and Its Role in Immunotherapy. Front Oncol 2022; 12:925041. [PMID: 35814468 PMCID: PMC9263569 DOI: 10.3389/fonc.2022.925041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
SCFFBXW7 E3 ubiquitin ligase complex is a crucial enzyme of the ubiquitin proteasome system that participates in variant activities of cell process, and its component FBXW7 (F-box and WD repeat domain–containing 7) is responsible for recognizing and binding to substrates. The expression of FBXW7 is controlled by multiple pathways at different levels. FBXW7 facilitates the maturity and function maintenance of immune cells via functioning as a mediator of ubiquitination-dependent degradation of substrate proteins. FBXW7 deficiency or mutation results in the growth disturbance and dysfunction of immune cell, leads to the resistance against immunotherapy, and participates in multiple illnesses. It is likely that FBXW7 coordinating with its regulators and substrates could offer potential targets to improve the sensitivity and effects of immunotherapy. Here, we review the mechanisms of the regulation on FBXW7 and its tumor suppression role in immune filed among various diseases (mostly cancers) to explore novel immune targets and treatments.
Collapse
Affiliation(s)
- Liangliang Xing
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Leidi Xu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yinggang Che
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Min Wang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yongxiang Shao
- Department of Anus and Intestine Surgery, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Dan Qiu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Honglian Yu
- Department of Hemato-Oncology, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Feng Zhao
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| |
Collapse
|
9
|
Pediatric T-ALL type-1 and type-2 relapses develop along distinct pathways of clonal evolution. Leukemia 2022; 36:1759-1768. [PMID: 35585141 PMCID: PMC9252914 DOI: 10.1038/s41375-022-01587-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022]
Abstract
The mechanisms underlying T-ALL relapse remain essentially unknown. Multilevel-omics in 38 matched pairs of initial and relapsed T-ALL revealed 18 (47%) type-1 (defined by being derived from the major ancestral clone) and 20 (53%) type-2 relapses (derived from a minor ancestral clone). In both types of relapse, we observed known and novel drivers of multidrug resistance including MDR1 and MVP, NT5C2 and JAK-STAT activators. Patients with type-1 relapses were specifically characterized by IL7R upregulation. In remarkable contrast, type-2 relapses demonstrated (1) enrichment of constitutional cancer predisposition gene mutations, (2) divergent genetic and epigenetic remodeling, and (3) enrichment of somatic hypermutator phenotypes, related to BLM, BUB1B/PMS2 and TP53 mutations. T-ALLs that later progressed to type-2 relapses exhibited a complex subclonal architecture, unexpectedly, already at the time of initial diagnosis. Deconvolution analysis of ATAC-Seq profiles showed that T-ALLs later developing into type-1 relapses resembled a predominant immature thymic T-cell population, whereas T-ALLs developing into type-2 relapses resembled a mixture of normal T-cell precursors. In sum, our analyses revealed fundamentally different mechanisms driving either type-1 or type-2 T-ALL relapse and indicate that differential capacities of disease evolution are already inherent to the molecular setup of the initial leukemia. ![]()
Collapse
|
10
|
Yuan Y, Li J, Xue TL, Hu HR, Lin W, Liu SG, Zhang RD, Zheng HY, Gao C. Prognostic significance of NOTCH1/FBXW7 mutations in pediatric T cell acute lymphoblastic leukemia: a study of minimal residual disease risk-directed CCLG-ALL 2008 treatment protocol. Leuk Lymphoma 2022; 63:1624-1633. [DOI: 10.1080/10428194.2022.2032033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yuan Yuan
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Jun Li
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Tian-Lin Xue
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Hai-Rui Hu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Wei Lin
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Shu-Guang Liu
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Rui-Dong Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Hu-Yong Zheng
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| | - Chao Gao
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Beijing, PR China
| |
Collapse
|
11
|
Zheng YZ, Zheng H, Chen ZS, Hua XL, Le SH, Li J, Hu JD. [Mutational spectrum and its prognostic significance in childhood acute lymphoblastic leukemia based on next-generation sequencing technology]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:19-25. [PMID: 35231988 PMCID: PMC8980667 DOI: 10.3760/cma.j.issn.0253-2727.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 11/05/2022]
Abstract
Objective: This study analyzed the correlation between genetic mutation and prognostic significance in childhood acute lymphoblastic leukemia (ALL) . Methods: Targeted exome by next-generation sequencing (NGS) technology was used to carry out molecular profiling of untreated 141 children with ALL in Fujian Medical University Union Hospital from November 2016 to December 2019. Correlation of genetic features and clinical features and outcomes was analyzed. Results: Among the 141 pediatric patients with ALL, 160 somatic mutations were detected in 83 patients (58.9% ) , including 37 grade Ⅰ mutations and 123 grade Ⅱ mutations. Single nucleotide variation was the most common type of mutation. KRAS was the most common mutant gene (12.5% ) , followed by NOTCH1 (11.9% ) , and NRAS (10.6% ) . RAS pathway (KRAS, FLT3, PTPN11) , PAX5 and TP53 mutations were only detected, and NRAS mutations was mainly found in B-ALL while FBXW7 and PTEN mutations were only found, and NOTCH1 mutation was mainly detected in T-ALL. The average number of mutations detected in each child with T-ALL was significantly higher than in children with B-ALL (4.16±1.33 vs 2.04±0.92, P=0.004) . The children were divided into mutation and non-mutation groups according to the presence or absence of genetic variation. There were no statistically significant differences in sex, age, newly diagnosed white blood cell count, minimal or measurable residual disease monitoring results, expected 3-year event-free survival (EFS) and overall survival (OS) between the two groups (P>0.05) . On the other hand, the proportion of T-ALL and fusion gene negative children in the mutant group was significantly higher than the non-mutation group (P=0.021 and 0.000, respectively) . Among the patients without fusion gene, the EFS of children with grade I mutation was significantly lower than children without grade I mutation (85.5% vs 100.0% , P=0.039) . Among children with B-ALL, the EFS of those with TP53 mutation was significantly lower than those without TP53 mutation (37.5% vs 91.2% , P<0.001) . Conclusion: Genetic variation is more common in childhood ALL and has a certain correlation with clinical phenotype and prognosis. Therefore, targeted exome by NGS can be used as an important supplement to the traditional morphology, immunology, cytogenetics, and molecular biology classification.
Collapse
Affiliation(s)
- Y Z Zheng
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - H Zheng
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Z S Chen
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - X L Hua
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - S H Le
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - J Li
- Department of Pediatric Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - J D Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
12
|
Taj MM, Moorman AV, Hamadeh L, Petit A, Asnafi V, Alby-Laurent F, Vora A, Mansour MR, Gale R, Chevret S, Moppett J, Baruchel A, Macintyre E. Prognostic value of Oncogenetic mutations in pediatric T Acute Lymphoblastic Leukemia: a comparison of UKALL2003 and FRALLE2000T protocols. Leukemia 2022; 36:263-266. [PMID: 34183766 DOI: 10.1038/s41375-021-01334-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/10/2021] [Accepted: 06/16/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Mary M Taj
- Royal Marsden Hospital, NHS Foundation Trust, London, UK
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lina Hamadeh
- Leukaemia Research Cytogenetics Group, Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, AP-HP Hôpital Armand Trousseau, Sorbonne Université, UMRS_938, CDR Saint-Antoine, Paris, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, AP-HP Hôpital Necker-Enfants Malades, Université de Paris and Institut Necker-Enfants Malades, Paris, France
| | - Fanny Alby-Laurent
- Department of Pediatric Hematology and Oncology, AP-HP Hôpital Armand Trousseau, Sorbonne Université, UMRS_938, CDR Saint-Antoine, Paris, France
| | - Ajay Vora
- Great Ormond Street Hospital, London, UK
| | | | - Rosemary Gale
- University College London Cancer Institute, London, UK
| | | | - John Moppett
- University Hospitals Bristol and Weston, Bristol, UK
| | - André Baruchel
- Department of Pediatric Hematology, AP-HP, Hôpital Universitaire Robert Debré, EA 3518, Université de Paris, Paris, France
| | - Elizabeth Macintyre
- Laboratory of Onco-Hematology, AP-HP Hôpital Necker-Enfants Malades, Université de Paris and Institut Necker-Enfants Malades, Paris, France.
| |
Collapse
|
13
|
Shiraz P, Jehangir W, Agrawal V. T-Cell Acute Lymphoblastic Leukemia-Current Concepts in Molecular Biology and Management. Biomedicines 2021; 9:1621. [PMID: 34829849 PMCID: PMC8615775 DOI: 10.3390/biomedicines9111621] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an uncommon, yet aggressive leukemia that accounts for approximately one-fourth of acute lymphoblastic leukemia (ALL) cases. CDKN2A/CDKN2B and NOTCH1 are the most common mutated genes in T-ALL. Children and young adults are treated with pediatric intensive regimens and have superior outcomes compared to older adults. In children and young adults, Nelarabine added to frontline chemotherapy improves outcomes and end of consolidation measurable residual disease has emerged as the most valuable prognostic marker. While outcomes for de-novo disease are steadily improving, patients with relapsed and refractory T-ALL fare poorly. Newer targeted therapies are being studied in large clinical trials and have the potential to further improve outcomes. The role of allogeneic stem cell transplant (HSCT) is evolving due to the increased use of pediatric-inspired regimens and MRD monitoring. In this review we will discuss the biology, treatment, and outcomes in pediatric and adult T-ALL.
Collapse
Affiliation(s)
- Parveen Shiraz
- Blood and Marrow Transplantation/Cell Therapy, Stanford University, Stanford, CA 94305, USA
| | - Waqas Jehangir
- Avera Medical Group Hematology, Transplant & Cellular Therapy, Sioux Falls, SD 57105, USA;
| | - Vaibhav Agrawal
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA;
| |
Collapse
|
14
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
15
|
Integrative genomic analysis of pediatric T-cell lymphoblastic lymphoma reveals candidates of clinical significance. Blood 2021; 137:2347-2359. [PMID: 33152759 DOI: 10.1182/blood.2020005381] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
T-cell lymphoblastic lymphoma (T-LBL) is a heterogeneous malignancy of lymphoblasts committed to T-cell lineage. The dismal outcomes (15%-30%) after T-LBL relapse warrant establishing risk-based treatment. To our knowledge, this study presents the first comprehensive, systematic, integrated, genome-wide analysis including relapsed cases that identifies molecular markers of prognostic relevance for T-LBL. NOTCH1 was identified as the putative driver for T-LBL. An activated NOTCH/PI3K-AKT signaling axis and alterations in cell cycle regulators constitute the core oncogenic program for T-LBL. Mutated KMT2D was identified as a prognostic marker. The cumulative incidence of relapse was 47% ± 17% in patients with KMT2D mutations, compared with 14% ± 3% in wild-type KMT2D. Structural analysis of the mutated domains of KMT2D revealed a plausible impact on structure and functional consequences. These findings provide new insights into the pathogenesis of T-LBL, including high translational potential. The ongoing LBL 2018 trial (www.clinicaltrials.gov #NCT04043494) allows for prospective validation and subsequent fine tuning of the stratification criteria for T-LBL risk groups to improve survival of pediatric patients.
Collapse
|
16
|
Kar R, Jha SK, Ojha S, Sharma A, Dholpuria S, Raju VSR, Prasher P, Chellappan DK, Gupta G, Kumar Singh S, Paudel KR, Hansbro PM, Kumar Singh S, Ruokolainen J, Kesari KK, Dua K, Jha NK. The FBXW7-NOTCH interactome: A ubiquitin proteasomal system-induced crosstalk modulating oncogenic transformation in human tissues. Cancer Rep (Hoboken) 2021; 4:e1369. [PMID: 33822486 PMCID: PMC8388169 DOI: 10.1002/cnr2.1369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ubiquitin ligases or E3 ligases are well programmed to regulate molecular interactions that operate at a post-translational level. Skp, Cullin, F-box containing complex (or SCF complex) is a multidomain E3 ligase known to mediate the degradation of a wide range of proteins through the proteasomal pathway. The three-dimensional domain architecture of SCF family proteins suggests that it operates through a novel and adaptable "super-enzymatic" process that might respond to targeted therapeutic modalities in cancer. RECENT FINDINGS Several F-box containing proteins have been characterized either as tumor suppressors (FBXW8, FBXL3, FBXW8, FBXL3, FBXO1, FBXO4, and FBXO18) or as oncogenes (FBXO5, FBXO9, and SKP2). Besides, F-box members like βTrcP1 and βTrcP2, the ones with context-dependent functionality, have also been studied and reported. FBXW7 is a well-studied F-box protein and is a tumor suppressor. FBXW7 regulates the activity of a range of substrates, such as c-Myc, cyclin E, mTOR, c-Jun, NOTCH, myeloid cell leukemia sequence-1 (MCL1), AURKA, NOTCH through the well-known ubiquitin-proteasome system (UPS)-mediated degradation pathway. NOTCH signaling is a primitive pathway that plays a crucial role in maintaining normal tissue homeostasis. FBXW7 regulates NOTCH protein activity by controlling its half-life, thereby maintaining optimum protein levels in tissue. However, aberrations in the FBXW7 or NOTCH expression levels can lead to poor prognosis and detrimental outcomes in patients. Therefore, the FBXW7-NOTCH axis has been a subject of intense study and research over the years, especially around the interactome's role in driving cancer development and progression. Several studies have reported the effect of FBXW7 and NOTCH mutations on normal tissue behavior. The current review attempts to critically analyze these mutations prognostic value in a wide range of tumors. Furthermore, the review summarizes the recent findings pertaining to the FBXW7 and NOTCH interactome and its involvement in phosphorylation-related events, cell cycle, proliferation, apoptosis, and metastasis. CONCLUSION The review concludes by positioning FBXW7 as an effective diagnostic marker in tumors and by listing out recent advancements made in cancer therapeutics in identifying protocols targeting the FBXW7-NOTCH aberrations in tumors.
Collapse
Affiliation(s)
- Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Ahmedabad, Gujarat, 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 17666, United Arab Emirates
| | - Ankur Sharma
- Department of Life sciences, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Sunny Dholpuria
- Department of Life sciences, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Venkata Sita Rama Raju
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, 302017, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, New South Wales, 2050, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, New South Wales, 2050, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, 2308, Australia
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow, Uttar Pradesh, 226002, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | | | - Kamal Dua
- Centre for Inflammation, Centenary Institute, New South Wales, 2050, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, 2308, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
17
|
Fang-Fang Z, You Y, Wen-Jun L. Progress in research on childhood T-cell acute lymphocytic leukemia, Notch1 signaling pathway, and its inhibitors: A review. Bosn J Basic Med Sci 2021; 21:136-144. [PMID: 32415821 PMCID: PMC7982061 DOI: 10.17305/bjbms.2020.4687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Childhood leukemia is cancer that seriously threatens the life of children in China. Poor sensitivity to chemotherapy and susceptibility to drug resistance are the reasons for the treatment of T-cell acute lymphocytic leukemia (T-ALL) being extremely difficult. Moreover, traditional intensive chemotherapy regimens cause great damage to children. Therefore, it is highly important to search for targeted drugs and develop a precise individualized treatment for child patients. There are activating mutations in the NOTCH1 gene in more than 50% of human T-ALLs and the Notch signaling pathway is involved in the pathogenesis of T-ALL. In this review, we summarize the progress in research on T-ALL and Notch1 signaling pathway inhibitors to provide a theoretical basis for the clinical treatment of T-ALL.
Collapse
Affiliation(s)
- Zhong Fang-Fang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Yang You
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Liu Wen-Jun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| |
Collapse
|
18
|
Canté-Barrett K, Holtzer L, van Ooijen H, Hagelaar R, Cordo’ V, Verhaegh W, van de Stolpe A, Meijerink JPP. A Molecular Test for Quantifying Functional Notch Signaling Pathway Activity in Human Cancer. Cancers (Basel) 2020; 12:cancers12113142. [PMID: 33120947 PMCID: PMC7692325 DOI: 10.3390/cancers12113142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The Notch signal transduction pathway is important for various physiological processes, including immune responses, and plays a role in many diseases, for example cancer. We have developed a new assay to quantitatively measure Notch pathway activity, and we validated it using data from various human cancer cell lines. The assay can be applied across different cell types, and offers numerous possibilities to explore the contribution of the Notch pathway to tumor formation and the stratification of cancer patients. We assessed Notch pathway activity in a cohort of T cell acute lymphoblastic leukemia (T-ALL) patient samples, and found that the pathway activity score more accurately reflects Notch pathway activity than a prediction on the basis of NOTCH1 mutations alone. Finally, we found that patients with low Notch pathway activity had a significantly shorter event-free survival compared to patients who had T-ALL cells with higher activity. Abstract Background: The Notch signal transduction pathway is pivotal for various physiological processes, including immune responses, and has been implicated in the pathogenesis of many diseases. The effectiveness of various targeted Notch pathway inhibitors may vary due to variabilities in Notch pathway activity among individual patients. The quantitative measurement of Notch pathway activity is therefore essential to identify patients who could benefit from targeted treatment. Methods: We here describe a new assay that infers a quantitative Notch pathway activity score from the mRNA levels of generally conserved direct NOTCH target genes. Following the calibration and biological validation of our Notch pathway activity model over a wide spectrum of human cancer types, we assessed Notch pathway activity in a cohort of T-ALL patient samples and related it to biological and clinical parameters, including outcome. Results: We developed an assay using 18 select direct target genes and high-grade serous ovarian cancer for calibration. For validation, seven independent human datasets (mostly cancer series) were used to quantify Notch activity in agreement with expectations. For T-ALL, the median Notch pathway activity was highest for samples with strong NOTCH1-activating mutations, and T-ALL patients of the TLX subtype generally had the highest levels of Notch pathway activity. We observed a significant relationship between ICN1 levels and the absence/presence of NOTCH1-activating mutations with Notch pathway activity scores. Patients with the lowest Notch activity scores had the shortest event-free survival compared to other patients. Conclusions: High Notch pathway activity was not limited to T-ALL samples harboring strong NOTCH1 mutations, including juxtamembrane domain mutations or hetero-dimerization combined with PEST-domain or FBXW7 mutations, indicating that additional mechanisms may activate Notch signaling. The measured Notch pathway activity was related to intracellular NOTCH levels, indicating that the pathway activity score more accurately reflects Notch pathway activity than when it is predicted on the basis of NOTCH1 mutations. Importantly, patients with low Notch pathway activity had a significantly shorter event-free survival compared to patients showing higher activity.
Collapse
Affiliation(s)
- Kirsten Canté-Barrett
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
| | - Laurent Holtzer
- Philips Molecular Pathway Dx, Royal Philips, 5656 AE Eindhoven, The Netherlands; (L.H.); (A.v.d.S.)
| | - Henk van Ooijen
- Philips Research, Royal Philips, 5656 AE Eindhoven, The Netherlands; (H.v.O.); (W.V.)
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
| | - Valentina Cordo’
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
| | - Wim Verhaegh
- Philips Research, Royal Philips, 5656 AE Eindhoven, The Netherlands; (H.v.O.); (W.V.)
| | - Anja van de Stolpe
- Philips Molecular Pathway Dx, Royal Philips, 5656 AE Eindhoven, The Netherlands; (L.H.); (A.v.d.S.)
| | - Jules P. P. Meijerink
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
- Correspondence: ; Tel.: +31-6-15064275
| |
Collapse
|
19
|
Isoform specific FBXW7 mediates NOTCH1 Abruptex mutation C1133Y deregulation in oral squamous cell carcinoma. Cell Death Dis 2020; 11:615. [PMID: 32792479 PMCID: PMC7426429 DOI: 10.1038/s41419-020-02873-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022]
Abstract
Our group previously identified that the NOTCH1 Abruptex domain contains the most mutations in Chinese OSCC patients, including a hotspot mutation (C1133Y). FBXW7 is an E3 ubiquitin ligase that regulates a network of proteins, including NOTCH1, via degradation. In this study, we first described the co-localization of isoform specific FBXW7-FBXW7β and NOTCH1C1133Y mutation in the same cytoplasmic sites. Gain- and loss-of-function assays were performed to examine the tumor suppressor role of FBXW7β in the proliferation and invasion of OSCC cells. The co-expression of NOTCH1C1133Y and FBXW7β significantly attenuated tumor growth. Meanwhile, FBXW7β reversed the oncogenic phenotype and the activation of the AKT/ERK/NFκB pathway induced by NOTCH1C1133Y mutation. FBXW7β downregulated the stability of NOTCH1C1133Y protein and promoted protein ubiquitination. This was the first time that we selected a NOTCH1 hotspot mutation detected in clinical samples and identified the function of FBXW7β that mediated NOTCH1 mutation degradation in OSCC. The newly identified interaction between FBXW7β and NOTCH1C1133Y protein provides new insights into the progression of OSCC, especially regarding Abruptex domain mutations, and represents a valuable target for OSCC therapy.
Collapse
|
20
|
Yu J, Yi T, Lin G, Wen J, Chen L, Chen J, Wu X. [Prognostic significance and risk factors of minimal residual disease ≥1% on 19th day of induction chemotherapy in children with acute lymphoblastic leukemia]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:255-261. [PMID: 32376526 DOI: 10.12122/j.issn.1673-4254.2020.02.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To assess the prognostic value of minimal residual disease on 19th day of induction chemotherapy (D19 MRD) and the risk factors of D19 MRD ≥ 1% in children with acute lymphoblastic leukemia (ALL) treated following the Chinese Children's Cancer Group ALL protocol. METHODS We retrospectively analyzed the data of 243 children with ALL diagnosed between January 1, 2015 and December 31, 2018 in the Department of Pediatrics of Nanfang Hospital (Guangzhou China). Kaplan Meier-survival analysis was performed to compare the survival time between the patients with D19 MRD < 1% and those with D19 MRD ≥ 1%; logistic regression analyisis and Chi-square test were used to identify the risk factors of D19 MRD ≥ 1%. RESULTS Compared with those with D19 MRD ≥ 1%, the children with D19 MRD < 1% had significantly better 3-year overall survival (100% vs 90.2%, P=0.004) and event-free survival (97.6% vs 71.6%, P < 0.001). Univariate analysis showed that the odds ratio (OR) for mediastinal invasion, T-cell immunophenotype, TEL/AML1 fusion gene and the presence of blasts in peripheral blood on the 5th day were 4.47 (95%CI: 0.275-72.968, P=0.034), 5.250 (95%CI: 1.950-14.133, P=0.02), 0.330 (95%CI: 0.112-0.970, P=0.036) and 4.407 (95%CI: 1.782-10.895, P=0.01), respectively. The initial risk stratification (P < 0.001), white blood cell grades (P=0.018) and its counts (P=0.027), and the number of blasts on the 5th day (P < 0.001) were significantly different between the two groups. Multivariate analysis showed that initial risk stratification as intermediate and high risks (OR=2.889, 95% CI: 1.193-6.996) and the presence of blasts in peripheral blood on the 5th day (OR=4.477, 95% CI: 1.692-11.843) were independent risk factors for poor early treatment response. CONCLUSIONS D19 MRD ≥ 1% is a predictor of poor prognosis in children with ALL. Mediastinal invasion, T-cell immunophenotype and the presence of blasts in peripheral blood on the 5th day are all risk factors for poor early treatment response, while TEL/AML1 fusion gene is a protective factor; the initial risk stratification as intermediate to high risk and the presence of blasts in peripheral blood on the 5th day are independent risk factors for poor early treatment response of the patients.
Collapse
Affiliation(s)
- Jieming Yu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen 518028, China
| | - Tiantian Yi
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guanchuan Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Jianyun Wen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Libai Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiaqi Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
Vega-García N, Perez-Jaume S, Esperanza-Cebollada E, Vicente-Garcés C, Torrebadell M, Jiménez-Velasco A, Ortega M, Llop M, Abad L, Vagace JM, Minguela A, Pratcorona M, Sánchez-Garcia J, García-Calderón CB, Gómez-Casares MT, Martín-Clavero E, Escudero A, Riñón Martinez-Gallo M, Muñoz L, Velasco MR, García-Morin M, Català A, Pascual A, Velasco P, Fernández JM, Lassaletta A, Fuster JL, Badell I, Molinos-Quintana Á, Molinés A, Guerra-García P, Pérez-Martínez A, García-Abós M, Robles Ortiz R, Pisa S, Adán R, Díaz de Heredia C, Dapena JL, Rives S, Ramírez-Orellana M, Camós M. Measurable Residual Disease Assessed by Flow-Cytometry Is a Stable Prognostic Factor for Pediatric T-Cell Acute Lymphoblastic Leukemia in Consecutive SEHOP Protocols Whereas the Impact of Oncogenetics Depends on Treatment. Front Pediatr 2020; 8:614521. [PMID: 33614543 PMCID: PMC7892614 DOI: 10.3389/fped.2020.614521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Robust and applicable risk-stratifying genetic factors at diagnosis in pediatric T-cell acute lymphoblastic leukemia (T-ALL) are still lacking, and most protocols rely on measurable residual disease (MRD) assessment. In our study, we aimed to analyze the impact of NOTCH1, FBXW7, PTEN, and RAS mutations, the measurable residual disease (MRD) levels assessed by flow cytometry (FCM-MRD) and other reported risk factors in a Spanish cohort of pediatric T-ALL patients. We included 199 patients treated with SEHOP and PETHEMA consecutive protocols from 1998 to 2019. We observed a better outcome of patients included in the newest SEHOP-PETHEMA-2013 protocol compared to the previous SHOP-2005 cohort. FCM-MRD significantly predicted outcome in both protocols, but the impact at early and late time points differed between protocols. The impact of FCM-MRD at late time points was more evident in SEHOP-PETHEMA 2013, whereas in SHOP-2005 FCM-MRD was predictive of outcome at early time points. Genetics impact was different in SHOP-2005 and SEHOP-PETHEMA-2013 cohorts: NOTCH1 mutations impacted on overall survival only in the SEHOP-PETHEMA-2013 cohort, whereas homozygous deletions of CDKN2A/B had a significantly higher CIR in SHOP-2005 patients. We applied the clinical classification combining oncogenetics, WBC count and MRD levels at the end of induction as previously reported by the FRALLE group. Using this score, we identified different subgroups of patients with statistically different outcome in both Spanish cohorts. In SHOP-2005, the FRALLE classifier identified a subgroup of high-risk patients with poorer survival. In the newest protocol SEHOP-PETHEMA-2013, a very low-risk group of patients with excellent outcome and no relapses was detected, with borderline significance. Overall, FCM-MRD, WBC count and oncogenetics may refine the risk-stratification, helping to design tailored approaches for pediatric T-ALL patients.
Collapse
Affiliation(s)
- Nerea Vega-García
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Sara Perez-Jaume
- Developmental Tumour Biology Laboratory, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Elena Esperanza-Cebollada
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Clara Vicente-Garcés
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Montserrat Torrebadell
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Margarita Ortega
- Cytogenetics Unit, Hematology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Marta Llop
- Molecular Biology Unit, Clinical Analysis Service, La Fe University and Polytechnic Hospital, Valencia, Spain.,Centro de Investigación Biomédica en Red - Cáncer (CIBERONC CB16/12/00284), Madrid, Spain
| | - Lorea Abad
- Paediatric Hemato-Oncology Laboratory, Hospital Niño Jesús, Madrid, Spain
| | | | - Alfredo Minguela
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Marta Pratcorona
- Haematology Laboratory, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Clara B García-Calderón
- Instituto de Biomedicina de Sevilla (IBIS/Consejo Superior de Investigaciones Científicas (CSIC)/Centro de Investigación Biomédica en Red - Cáncer (CIBERONC)), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - María Teresa Gómez-Casares
- Biology and Molecular Haematology and Hemotherapy Service, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canarias, Spain
| | - Estela Martín-Clavero
- Haematology-Cytology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Adela Escudero
- Translational Research in Pediatric Oncology Hematopoietic Transplantation and Cell Therapy, Institute of Medical and Molecular Genetics (INGEMM), Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | | | - Luz Muñoz
- Haematology Laboratory, Hospital Parc Taulí, Sabadell, Spain
| | | | - Marina García-Morin
- Paediatric Hematology Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Albert Català
- Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Paediatric Hematology and Oncology Departments, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | | | - Pablo Velasco
- Pediatric Hematology and Oncology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - José Mª Fernández
- Haematology and Oncology Department, Hospital de La Fe, Valencia, Spain
| | - Alvaro Lassaletta
- Haematology and Oncology Department, Hospital Niño Jesús, Madrid, Spain
| | - José Luis Fuster
- Paediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Isabel Badell
- Paediatric Hematology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Águeda Molinos-Quintana
- Instituto de Biomedicina de Sevilla (IBIS/Consejo Superior de Investigaciones Científicas (CSIC)/Centro de Investigación Biomédica en Red - Cáncer (CIBERONC)), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - Antonio Molinés
- Unit of Hematology and Hemotherapy, H.U. Materno Infantil de Canarias, Canarias, Spain
| | - Pilar Guerra-García
- Paediatric Hemato-Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology Hematopoietic Transplantation and Cell Therapy, Institute of Medical and Molecular Genetics (INGEMM), Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.,Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
| | - Miriam García-Abós
- Pediatric Onco-Hematology Department, Hospital Universitario Donostia, Donostia, Spain
| | - Reyes Robles Ortiz
- Pediatric Onco-Hematology Department, Complejo Hospitalario de Navarra, Navarra, Spain
| | - Sandra Pisa
- Paediatric Hematology Department, Hospital Parc Taulí, Sabadell, Spain
| | - Rosa Adán
- Haematology and Oncology Department, Hospital de Cruces, Bilbao, Spain
| | - Cristina Díaz de Heredia
- Pediatric Hematology and Oncology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - José Luis Dapena
- Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Paediatric Hematology and Oncology Departments, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Susana Rives
- Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Paediatric Hematology and Oncology Departments, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | | | - Mireia Camós
- Haematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Developmental Tumor Biology Group, Leukemia and Other Pediatric Hemopathies, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Sakhdari A, Thakral B, Loghavi S, Kanagal-Shamanna R, Yin CC, Zuo Z, Routbort MJ, Luthra R, Medeiros LJ, Wang SA, Patel KP, Ok CY. RAS and TP53 can predict survival in adults with T-cell lymphoblastic leukemia treated with hyper-CVAD. Cancer Med 2019; 9:849-858. [PMID: 31804006 PMCID: PMC6997098 DOI: 10.1002/cam4.2757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/05/2022] Open
Abstract
Adult T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous group of acute leukemias that account for about one third of all cases of Philadelphia chromosome (Ph)-negative ALL. Recently, a molecular classifier using the mutational status of NOTCH1, FBXW7, RAS, and PTEN (NFRP) has been shown to distinguish low- vs high-risk groups in adult T-ALL patients treated using the Berlin-Frankfurt-Münster ALL protocol. However, it is unknown if this molecular classifier can stratify adult T-ALL patients treated with hyper-CVAD ± nelarabine. We identified a relatively small cohort of 27 adults with T-ALL who were uniformly treated with hyper-CVAD ± nelarabine with available mutational analysis at time of diagnosis. The most commonly mutated genes in this group were NOTCH1 (52%), NRAS (22%), DNMT3A (19%), KRAS (15%), and TP53 (7%). The NFRP molecular classifier failed to stratify overall survival (OS; P = .84) and relapse-free survival (RFS; P = .18) in this cohort. We developed a new stratification model combining K/NRAS and TP53 mutations as high-risk factors and showed that mutations in these genes predicted poorer OS (P = .03) and RFS (P = .04). While the current study is limited by cohort size, these data suggest that the NFRP molecular classifier might not be applicable to adult T-ALL patients treated with hyper-CVAD ± nelarabine. RAS/TP53 mutation status, however, was useful in risk stratification in adults with T-ALL.
Collapse
Affiliation(s)
- Ali Sakhdari
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark J Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
van der Zwet JCG, Cordo' V, Canté-Barrett K, Meijerink JPP. Multi-omic approaches to improve outcome for T-cell acute lymphoblastic leukemia patients. Adv Biol Regul 2019; 74:100647. [PMID: 31523030 DOI: 10.1016/j.jbior.2019.100647] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
In the last decade, tremendous progress in curative treatment has been made for T-ALL patients using high-intensive, risk-adapted multi-agent chemotherapy. Further treatment intensification to improve the cure rate is not feasible as it will increase the number of toxic deaths. Hence, about 20% of pediatric patients relapse and often die due to acquired therapy resistance. Personalized medicine is of utmost importance to further increase cure rates and is achieved by targeting specific initiation, maintenance or resistance mechanisms of the disease. Genomic sequencing has revealed mutations that characterize genetic subtypes of many cancers including T-ALL. However, leukemia may have various activated pathways that are not accompanied by the presence of mutations. Therefore, screening for mutations alone is not sufficient to identify all molecular targets and leukemic dependencies for therapeutic inhibition. We review the extent of the driving type A and the secondary type B genomic mutations in pediatric T-ALL that may be targeted by specific inhibitors. Additionally, we review the need for additional screening methods on the transcriptional and protein levels. An integrated 'multi-omic' screening will identify potential targets and biomarkers to establish significant progress in future individualized treatment of T-ALL patients.
Collapse
Affiliation(s)
| | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | |
Collapse
|
24
|
Noronha EP, Marques LVC, Andrade FG, Thuler LCS, Terra-Granado E, Pombo-de-Oliveira MS. The Profile of Immunophenotype and Genotype Aberrations in Subsets of Pediatric T-Cell Acute Lymphoblastic Leukemia. Front Oncol 2019; 9:316. [PMID: 31338319 PMCID: PMC6503680 DOI: 10.3389/fonc.2019.00316] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous malignancy, which reflects distinctive stages of T-cell differentiation arrest. We have revisited a cohort of pediatric T-ALL, in order to test if immunophenotypes associated with molecular alterations would predict the patient's outcome. Genetic mutations, translocations and copy number alterations were identified through Sanger sequencing, RT-PCR, FISH and multiplex ligation-dependent probe amplification (MLPA). We defined 8 immunophenotypic T-ALL subtypes through multiparametric flow cytometry: early T-cell precursor (ETP, n = 27), immature (n = 38), early cortical (n = 15), cortical (n = 50), late cortical (n = 53), CD4/CD8 double negative mature (n = 31), double positive mature (n = 35) and simple positive mature (n = 31) T-ALL. Deletions (del) or amplifications (amp) in at least one gene were observed in 87% of cases. The most frequent gene alterations were CDKN2A/Bdel (71.4%), NOTCH1mut (47.6%) and FBXW7mut (17%). ETP-ALL had frequent FLT3mut (22.2%) and SUZ12del (16.7%) (p < 0.001), while CDKN2A/Bdel were rarely found in this subtype (p < 0.001). The early cortical T-ALL subtype had high frequencies of NOTCH1mut and IL7Rmut (71%, 28.6%, respectively), whereas, mature T-ALL with double positive CD4/CD8 had the highest frequencies of STIL-TAL1 (36.7%), LEF1del (27.3%) and CASP8AP2del (22.7%). The co-existence of two groups of T-ALL with NOTCH1mut/IL7Rmut, and with TLX3/SUZ12del/NF1del/IL7Rmut, were characterized with statistical significance (p < 0.05) but only STIL-TAL1 (pOS 47.5%) and NOTCH1WT/FBXW7WT (pOS 55.3%) are predictors of poor T-ALL outcomes. In conclusion, we have observed that 8 T-ALL subgroups are characterized by distinct molecular profiles. The mutations in NOTCH1/FBXW7 and STIL-TAL1 rearrangement had a prognostic impact, independent of immunophenotype.
Collapse
Affiliation(s)
- Elda Pereira Noronha
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Luísa Vieira Codeço Marques
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Francianne Gomes Andrade
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Eugênia Terra-Granado
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Maria S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | |
Collapse
|
25
|
Burkhardt B, Hermiston ML. Lymphoblastic lymphoma in children and adolescents: review of current challenges and future opportunities. Br J Haematol 2019; 185:1158-1170. [PMID: 30809797 DOI: 10.1111/bjh.15793] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lymphoblastic lymphoma (LBL) is the second most common type of Non-Hodgkin Lymphoma (NHL) in childhood and adolescence, accounting for 25-35% of all cases. The majority, 70-80%, is of T-lymphoblastic origin while 20-25% arise from B lymphoblasts. With current therapy, the event-free and overall survivals for paediatric LBL patients now exceeds 80%. Therapy, especially in T-LBL with large mediastinal tumours, is challenging, with both significant morbidity and late sequela. An additional challenge is the dismal prognosis of patients with refractory or relapsed disease. This review article will focus on the growing knowledge of the pathogenesis and biology of LBL, recent advances and challenges in the therapy of LBL, and ongoing and future efforts and opportunities in optimizing therapy and developing novel targeted treatment approaches.
Collapse
Affiliation(s)
- Birgit Burkhardt
- Paediatric Haematology and Oncology, University Hospital Muenster, Muenster, Germany
| | - Michelle L Hermiston
- Pediatric Hematology and Oncology, University of California, San Francisco, CA, USA
| |
Collapse
|
26
|
Cannataro VL, Gaffney SG, Sasaki T, Issaeva N, Grewal NKS, Grandis JR, Yarbrough WG, Burtness B, Anderson KS, Townsend JP. APOBEC-induced mutations and their cancer effect size in head and neck squamous cell carcinoma. Oncogene 2019; 38:3475-3487. [PMID: 30647454 PMCID: PMC6499643 DOI: 10.1038/s41388-018-0657-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Recent studies have revealed the mutational signatures underlying the somatic evolution of cancer, and the prevalences of associated somatic genetic variants. Here we estimate the intensity of positive selection that drives mutations to high frequency in tumors, yielding higher prevalences than expected on the basis of mutation and neutral drift alone. We apply this approach to a sample of 525 head and neck squamous cell carcinoma exomes, producing a rank-ordered list of gene variants by selection intensity. Our results illustrate the complementarity of calculating the intensity of selection on mutations along with tallying the prevalence of individual substitutions in cancer: while many of the most prevalently-altered genes were heavily selected, their relative importance to the cancer phenotype differs from their prevalence and from their P value, with some infrequent variants exhibiting evidence of strong positive selection. Furthermore, we extend our analysis of effect size by quantifying the degree to which mutational processes (such as APOBEC mutagenesis) contributes mutations that are highly selected, driving head and neck squamous cell carcinoma. We calculate the substitutions caused by APOBEC mutagenesis that make the greatest contribution to cancer phenotype among patients. Lastly, we demonstrate via in vitro biochemical experiments that the APOBEC3B protein can deaminate the cytosine bases at two sites whose mutant states are subject to high net realized selection intensities-PIK3CA E545K and E542K. By quantifying the effects of mutations, we deepen the molecular understanding of carcinogenesis in head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Vincent L Cannataro
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Stephen G Gaffney
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Tomoaki Sasaki
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Natalia Issaeva
- Yale Cancer Center, Yale University, New Haven, CT, USA.,Division of Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Nicholas K S Grewal
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Wendell G Yarbrough
- Yale Cancer Center, Yale University, New Haven, CT, USA.,Division of Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Barbara Burtness
- Yale Cancer Center, Yale University, New Haven, CT, USA.,Department of Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University, New Haven, CT, USA.,Yale Cancer Center, Yale University, New Haven, CT, USA.,Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA. .,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. .,Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
| |
Collapse
|
27
|
Kimura S, Seki M, Yoshida K, Shiraishi Y, Akiyama M, Koh K, Imamura T, Manabe A, Hayashi Y, Kobayashi M, Oka A, Miyano S, Ogawa S, Takita J. NOTCH1 pathway activating mutations and clonal evolution in pediatric T-cell acute lymphoblastic leukemia. Cancer Sci 2019; 110:784-794. [PMID: 30387229 PMCID: PMC6361559 DOI: 10.1111/cas.13859] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
Molecular mechanisms involved in the relapse of T‐cell acute lymphoblastic leukemia (T‐ALL) are not fully understood, although activating NOTCH1 signaling due to NOTCH1/FBXW7 alterations is a major oncogenic driver. To unravel the relevance of NOTCH1/FBXW7 mutations associated with relapse, we performed whole–exome sequencing in 30 pediatric T‐ALL cases, among which 11 diagnosis‐relapse paired cases were further investigated to track the clonal evolution of relapse using amplicon–based deep sequencing. NOTCH1/FBXW7 alterations were detected in 73.3% (diagnosis) and 72.7% (relapse) of cases. Single nucleotide variations in the heterodimerization domain were the most frequent (40.0%) at diagnosis, whereas proline, glutamic acid, serine, threonine–rich (PEST) domain alterations were the most frequent at relapse (54.5%). Comparison between non–relapsed and relapsed cases at diagnosis showed a predominance of PEST alterations in relapsed cases (P = .045), although we failed to validate this in the TARGET cohort. Based on the clonal analysis of diagnosis‐relapse samples, we identified NOTCH1 “switching” characterized by different NOTCH1 mutations in a major clone between diagnosis and relapse samples in 2 out of 11 diagnosis‐relapse paired cases analyzed. We found another NOTCH1 “switching” case in a previously reported Berlin‐Frankfurt‐Münster cohort (n = 13), indicating NOTCH1 importance in both the development and progression of T‐ALL. Despite the limitations of having a small sample size and a non–minimal residual disease–based protocol, our results suggest that the presence of NOTCH1 mutations might contribute to the disease relapse of T‐ALL.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Hiroshima University, Hiroshima, Japan
| | - Masafumi Seki
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaharu Akiyama
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Atsushi Manabe
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | | | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University, Hiroshima, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Yeh TC, Liang DC, Liu HC, Jaing TH, Chen SH, Hou JY, Yang CP, Huang YJ, Yao HW, Huang TY, Lin TH, Shih LY. Clinical and biological relevance of genetic alterations in pediatric T-cell acute lymphoblastic leukemia in Taiwan. Pediatr Blood Cancer 2019; 66:e27496. [PMID: 30280491 DOI: 10.1002/pbc.27496] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/23/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The leukemogenesis of T-cell acute lymphoblastic leukemia (T-ALL) involves multistep processes of genetic alterations. We aimed to determine the genetic alterations including common fusion transcripts, overexpression of T-cell transcription factor oncogenes, and deletion or mutation of targeted genes in pediatric T-ALL in Taiwan as well as their impact on outcomes in those treated with the Taiwan Pediatric Oncology Group-ALL-2002 protocol. PROCEDURE Between 1995 and 2015, bone marrow samples obtained from 102 children aged <18 years consecutively diagnosed with T-ALL were examined. Thirty-two genetic alterations were examined by reverse transcription polymerase chain reaction (PCR) assays-PCR-based assays-followed by direct sequencing, real time quantitative PCR with TaqMan assays, or multiplex ligase probe amplification. RESULTS TAL1 overexpression, CDKN2A/2B deletions, and NOTCH1 mutation were the most frequent aberrations while none had NF1, SUZ12 deletion, JAK1 or JAK2 mutations, or NUP214-ABL1 fusion in our cohort. The most frequent cooperating occurrence of genetic alterations included CDKN2A/2B and MTAP, MTAP and CDKN2B, LEF1 and PTPN2, and HOX11L2 and PHF6 mutation/deletion. NOTCH1 mutations conferred a favorable overall survival, whereas SIL-TAL1 fusion, TAL overexpression, LEF1 deletion, and PHF6 deletion/mutation were associated with an inferior outcome. By multivariate analysis, PHF6 mutation/deletion was the only independent predictor for inferior overall survival. CONCLUSIONS The present study showed that the frequencies of genetic alterations in Taiwanese children with T-ALL differed considerably from those reported in Western countries. PHF6 mutation/deletion was an independently adverse predictor.
Collapse
Affiliation(s)
- Ting-Chi Yeh
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Der-Cherng Liang
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Hsi-Che Liu
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Tang-Her Jaing
- Division of Hematology-Oncology, Department of Pediatrics, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsiang Chen
- Division of Hematology-Oncology, Department of Pediatrics, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Yin Hou
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Chao-Ping Yang
- Division of Hematology-Oncology, Department of Pediatrics, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Hsien-Wen Yao
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Ting-Yu Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Tung-Huei Lin
- Division of Hematology-Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Lee-Yung Shih
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Hematology-Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| |
Collapse
|
29
|
Heikamp EB, Pui CH. Next-Generation Evaluation and Treatment of Pediatric Acute Lymphoblastic Leukemia. J Pediatr 2018; 203:14-24.e2. [PMID: 30213460 PMCID: PMC6261438 DOI: 10.1016/j.jpeds.2018.07.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/25/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Emily B Heikamp
- Department of Pediatrics, Section of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, TX; Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, TX.
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN; Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
30
|
The depletion of PHF6 decreases the drug sensitivity of T-cell acute lymphoblastic leukemia to prednisolone. Biomed Pharmacother 2018; 109:2210-2217. [PMID: 30551478 DOI: 10.1016/j.biopha.2018.11.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
Mutation of PHF6 has been identified in Börjeson-Forssman-Lehmann syndrome and some types of subsets of childhood leukemia. However, the molecular function and the relationship of PHF6 mutation with glucocorticoid drug resistance during T-ALL treatment remains elusive. Here we report the influence of PHF6 expression on the drug response of T-ALL to prednisolone, and the underlying mechanism of this. Through sanger sequencing and western blotting assays, we identified two T-ALL cell lines with wild-type PHF6 expression, including SIL-ALL and CCRF-CEM, and two T-ALL cell lines without PHF6 expression, including TALL-1 and HPB-ALL, due to the nonsense and frameshift mutations in the coding region of PHF6. MTT assays showed that SIL-ALL and CCRF-CEM were much more sensitive to prednisolone. However, TALL-1 and HPB-ALL were much more resistance to prednisolone. Further knockout of PHF6 led to the resistant of both SIL-ALL and CCRF-CEM cells to prednisolone. On the contrary, the correction of the PHF6 point mutation in HPB-ALL cells with CRISPR-CAS9 method increased the sensibility of both cell lines to prednisolone. Then we found that PHF6 repress p21 expression through direct binding and recruiting RBPP4 to its promoter region. Finally, the co-treatment of p21 inhibitor increased the sensitivity of TALL-1 and HPB-ALL cells to prednisolone. Collectively, our findings not only enrich our understanding of the relationship between PHF6 mutation and drug resistance but also indicate a new therapeutic potential for those T-ALL patients containing the PHF6 mutation.
Collapse
|
31
|
Furness CL, Mansur MB, Weston VJ, Ermini L, van Delft FW, Jenkinson S, Gale R, Harrison CJ, Pombo-de-Oliveira MS, Sanchez-Martin M, Ferrando AA, Kearns P, Titley I, Ford AM, Potter NE, Greaves M. The subclonal complexity of STIL-TAL1+ T-cell acute lymphoblastic leukaemia. Leukemia 2018; 32:1984-1993. [PMID: 29556024 PMCID: PMC6127084 DOI: 10.1038/s41375-018-0046-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022]
Abstract
Single-cell genetics were used to interrogate clonal complexity and the sequence of mutational events in STIL-TAL1+ T-ALL. Single-cell multicolour FISH was used to demonstrate that the earliest detectable leukaemia subclone contained the STIL-TAL1 fusion and copy number loss of 9p21.3 (CDKN2A/CDKN2B locus), with other copy number alterations including loss of PTEN occurring as secondary subclonal events. In three cases, multiplex qPCR and phylogenetic analysis were used to produce branching evolutionary trees recapitulating the snapshot history of T-ALL evolution in this leukaemia subtype, which confirmed that mutations in key T-ALL drivers, including NOTCH1 and PTEN, were subclonal and reiterative in distinct subclones. Xenografting confirmed that self-renewing or propagating cells were genetically diverse. These data suggest that the STIL-TAL1 fusion is a likely founder or truncal event. Therapies targeting the TAL1 auto-regulatory complex are worthy of further investigation in T-ALL.
Collapse
Affiliation(s)
- Caroline L Furness
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Marcela B Mansur
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Paediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Victoria J Weston
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Luca Ermini
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Frederik W van Delft
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Sarah Jenkinson
- Department of Haematology, University College London Cancer Institute, University College London, London, UK
| | - Rosemary Gale
- Department of Haematology, University College London Cancer Institute, University College London, London, UK
| | - Christine J Harrison
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Maria S Pombo-de-Oliveira
- Paediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Pamela Kearns
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Ian Titley
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Anthony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Nicola E Potter
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
32
|
Fuhrmann S, Schabath R, Möricke A, Zimmermann M, Kunz JB, Kulozik AE, Ludwig WD, Schrappe M, Karawajew L, Ratei R. Expression of CD56 defines a distinct subgroup in childhood T-ALL with inferior outcome. Results of the ALL-BFM 2000 trial. Br J Haematol 2018; 183:96-103. [PMID: 30028023 DOI: 10.1111/bjh.15503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022]
Abstract
This study reports the prognostic impact of the expression of the natural killer cell marker CD56 in a large series of risk-adapted paediatric patients with T cell acute lymphoblastic leukaemia (T-ALL; n = 493) treated within the ALL-Berlin-Frankfurt-Münster (BFM) 2000 protocol. The immunophenotype was analysed centrally at diagnosis using flow cytometry and correlated with clinical parameters and outcome. CD56 expression was detected in 7·1% and early T-cell precursor (ETP) phenotype in 6·7% of all T-ALL patients. The percentage of ETP in the CD56+ T-ALL cohort was 4-fold higher than in the whole cohort. CD56+ T-ALL frequently expressed the progenitor marker CD34 and myeloid antigens CD13 and CD33. The 5-year event-free survival (EFS) rates for the European Group for the Immunological classification of Leukaemias/World Health Organization subgroups and the ETP phenotype were not statistically different. By contrast, patients with CD56 expression had a significantly reduced EFS (60 ± 8%) and overall survival (60 ± 8%) at 5 years, with a hazard ratio of 2·46 (P = 0·002) and 2·99 (P < 0·001), respectively. Moreover, CD56 expression in combination with the minimal residual disease (MRD)-based high risk assignment defined a population with a 'very-high' risk probability of relapse in the ALL-BFM 2000 trial. The CD56 marker has the potential to augment MRD-based risk stratification and may serve as a molecular target for antibody-based treatment strategies in childhood T-ALL.
Collapse
Affiliation(s)
- Stephan Fuhrmann
- Department of Haematology and Stem Cell Transplantation, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Richard Schabath
- Department of Haematology and Stem Cell Transplantation, Helios Klinikum Berlin Buch, Berlin, Germany.,MLL Munich Leukaemia Laboratory, Munich, Germany
| | - Anja Möricke
- Department of Paediatrics, Universitätsklinikum Schleswig Holstein, Kiel, Germany
| | | | - Joachim B Kunz
- Department of Paediatric Oncology, Haematology and Immunology, Angelika Lautenschläger Children's Hospital, University of Heidelberg, Heidelberg, Germany
| | - Andreas E Kulozik
- Department of Paediatric Oncology, Haematology and Immunology, Angelika Lautenschläger Children's Hospital, University of Heidelberg, Heidelberg, Germany
| | - Wolf-Dieter Ludwig
- Department of Haematology and Stem Cell Transplantation, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Martin Schrappe
- Department of Paediatrics, Universitätsklinikum Schleswig Holstein, Kiel, Germany
| | - Leonid Karawajew
- Department of Paediatric Oncology/Haematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Richard Ratei
- Department of Haematology and Stem Cell Transplantation, Helios Klinikum Berlin Buch, Berlin, Germany.,Helios Klinikum Bad Saarow, Bad Saarow, Germany
| |
Collapse
|
33
|
Piovan E, Tosello V, Amadori A, Zanovello P. Chemotactic Cues for NOTCH1-Dependent Leukemia. Front Immunol 2018; 9:633. [PMID: 29666622 PMCID: PMC5891592 DOI: 10.3389/fimmu.2018.00633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022] Open
Abstract
The NOTCH signaling pathway is a conserved signaling cascade that regulates many aspects of development and homeostasis in multiple organ systems. Aberrant activity of this signaling pathway is linked to the initiation and progression of several hematological malignancies, exemplified by T-cell acute lymphoblastic leukemia (T-ALL). Interestingly, frequent non-mutational activation of NOTCH1 signaling has recently been demonstrated in B-cell chronic lymphocytic leukemia (B-CLL), significantly extending the pathogenic significance of this pathway in B-CLL. Leukemia patients often present with high-blood cell counts, diffuse disease with infiltration of the bone marrow, secondary lymphoid organs, and diffusion to the central nervous system (CNS). Chemokines are chemotactic cytokines that regulate migration of cells between tissues and the positioning and interactions of cells within tissue. Homeostatic chemokines and their receptors have been implicated in regulating organ-specific infiltration, but may also directly and indirectly modulate tumor growth. Recently, oncogenic NOTCH1 has been shown to regulate infiltration of leukemic cells into the CNS hijacking the CC-chemokine ligand 19/CC-chemokine receptor 7 chemokine axis. In addition, a crucial role for the homing receptor axis CXC-chemokine ligand 12/CXC-chemokine receptor 4 has been demonstrated in leukemia maintenance and progression. Moreover, the CCL25/CCR9 axis has been implicated in the homing of leukemic cells into the gut, particularly in the presence of phosphatase and tensin homolog tumor suppressor loss. In this review, we summarize the latest developments regarding the role of NOTCH signaling in regulating the chemotactic microenvironmental cues involved in the generation and progression of T-ALL and compare these findings to B-CLL.
Collapse
Affiliation(s)
- Erich Piovan
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy.,Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, Padova, Italy
| | - Valeria Tosello
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Alberto Amadori
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy.,Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, Padova, Italy
| | - Paola Zanovello
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy.,Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, Padova, Italy
| |
Collapse
|
34
|
Palmi C, Savino AM, Silvestri D, Bronzini I, Cario G, Paganin M, Buldini B, Galbiati M, Muckenthaler MU, Bugarin C, Della Mina P, Nagel S, Barisone E, Casale F, Locatelli F, Lo Nigro L, Micalizzi C, Parasole R, Pession A, Putti MC, Santoro N, Testi AM, Ziino O, Kulozik AE, Zimmermann M, Schrappe M, Villa A, Gaipa G, Basso G, Biondi A, Valsecchi MG, Stanulla M, Conter V, Te Kronnie G, Cazzaniga G. CRLF2 over-expression is a poor prognostic marker in children with high risk T-cell acute lymphoblastic leukemia. Oncotarget 2018; 7:59260-59272. [PMID: 27449287 PMCID: PMC5312310 DOI: 10.18632/oncotarget.10610] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/01/2016] [Indexed: 12/01/2022] Open
Abstract
Pediatric T-ALL patients have a worse outcome compared to BCP-ALL patients and they could benefit from new prognostic marker identification. Alteration of CRLF2 gene, a hallmark correlated with poor outcome in BCP-ALL, has not been reported in T-ALL. We analyzed CRLF2 expression in 212 T-ALL pediatric patients enrolled in AIEOP-BFM ALL2000 study in Italian and German centers. Seventeen out of 120 (14.2%) Italian patients presented CRLF2 mRNA expression 5 times higher than the median (CRLF2-high); they had a significantly inferior event-free survival (41.2%±11.9 vs. 68.9%±4.6, p=0.006) and overall survival (47.1%±12.1 vs. 73.8%±4.3, p=0.009) and an increased cumulative incidence of relapse/resistance (52.9%±12.1 vs. 26.2%±4.3, p=0.007) compared to CRLF2-low patients. The prognostic value of CRLF2 over-expression was validated in the German cohort. Of note, CRLF2 over-expression was associated with poor prognosis in the high risk (HR) subgroup where CRLF2-high patients were more frequently allocated. Interestingly, although in T-ALL CRLF2 protein was localized mainly in the cytoplasm, in CRLF2-high blasts we found a trend towards a stronger TSLP-induced pSTAT5 response, sensitive to the JAK inhibitor Ruxolitinib. In conclusion, CRLF2 over-expression is a poor prognostic marker identifying a subset of HR T-ALL patients that could benefit from alternative therapy, potentially targeting the CRLF2 pathway.
Collapse
Affiliation(s)
- Chiara Palmi
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | - Angela M Savino
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | - Daniela Silvestri
- Center of Biostatistics for Clinical Epidemiology, Department of Health Sciences, University of Milano-Bicocca, Milan, Italy.,Clinica Pediatrica, Università di Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | - Ilaria Bronzini
- Laboratory of Onco-Hematology, Department SDB, Università di Padova, Padova, Italy
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maddalena Paganin
- Laboratory of Onco-Hematology, Department SDB, Università di Padova, Padova, Italy
| | - Barbara Buldini
- Laboratory of Onco-Hematology, Department SDB, Università di Padova, Padova, Italy
| | - Marta Galbiati
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg and EMBL/Medical Faculty Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Cristina Bugarin
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | - Pamela Della Mina
- Microscopy and Image Analysis Consortium, Università di Milano-Bicocca, Monza, Italy
| | - Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Elena Barisone
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy
| | - Fiorina Casale
- Pediatric Oncology Service, Pediatric Department of 2nd University of Naples, Naples, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, IRCCS Ospedale Bambino Gesù, Rome - University of Pavia, Pavia, Italy
| | - Luca Lo Nigro
- Center of Pediatric Hematology Oncology, Azienda Ospedaliero-Universitaria "Policlinico Vittorio Emanuele", Catania, Italy
| | | | - Rosanna Parasole
- Department of Pediatric Hemato-Oncology, Ospedale Pausilipon, Napoli, Italy
| | - Andrea Pession
- Department of Pediatrics, "Lalla Seràgnoli" Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Maria C Putti
- Laboratory of Onco-Hematology, Department SDB, Università di Padova, Padova, Italy
| | - Nicola Santoro
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University "A. Moro" of Bari, Bari, Italy
| | - Anna M Testi
- Division of Hematology, Department of Biotechnologies and Hematology, "Sapienza" University of Rome, Rome, Italy
| | - Ottavio Ziino
- Pediatric Hematology and Oncology Unit, A.R.N.A.S. Civico, Di Cristina and Benfratelli Hospital, Palermo, Italy
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg and EMBL/Medical Faculty Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Martin Zimmermann
- Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Antonello Villa
- Microscopy and Image Analysis Consortium, Università di Milano-Bicocca, Monza, Italy
| | - Giuseppe Gaipa
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | - Giuseppe Basso
- Laboratory of Onco-Hematology, Department SDB, Università di Padova, Padova, Italy
| | - Andrea Biondi
- Clinica Pediatrica, Università di Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | - Maria G Valsecchi
- Center of Biostatistics for Clinical Epidemiology, Department of Health Sciences, University of Milano-Bicocca, Milan, Italy
| | - Martin Stanulla
- Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Valentino Conter
- Clinica Pediatrica, Università di Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | - Geertruy Te Kronnie
- Laboratory of Onco-Hematology, Department SDB, Università di Padova, Padova, Italy
| | - Giovanni Cazzaniga
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| |
Collapse
|
35
|
Abstract
Notch is commonly activated in lymphoid malignancies through ligand-independent and ligand-dependent mechanisms. In T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), ligand-independent activation predominates. Negative Regulatory Region (NRR) mutations trigger supraphysiological Notch1 activation by exposing the S2 site to proteolytic cleavage in the absence of ligand. Subsequently, cleavage at the S3 site generates the activated form of Notch, intracellular Notch (ICN). In contrast to T-ALL, in mature lymphoid neoplasms such as chronic lymphocytic leukemia (CLL), the S2 cleavage site is exposed through ligand-receptor interactions. Thus, agents that disrupt ligand-receptor interactions might be useful for treating these malignancies. Notch activation can be enhanced by mutations that delete the C-terminal proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) domain. These mutations do not activate the Notch pathway per se, but rather impair degradation of ICN. In this chapter, we review the mechanisms of Notch activation and the importance of Notch for the genesis and maintenance of lymphoid malignancies. Unfortunately, targeting the Notch pathway with pan-Notch inhibitors in clinical trials has proven challenging. These clinical trials have encountered dose-limiting on-target toxicities and primary resistance. Strategies to overcome these challenges have emerged from the identification and improved understanding of direct oncogenic Notch target genes. Other strategies have arisen from new insights into the "nuclear context" that selectively directs Notch functions in lymphoid cancers. This nuclear context is created by factors that co-bind ICN at cell-type specific transcriptional regulatory elements. Disrupting the functions of these proteins or inhibiting downstream oncogenic pathways might combat cancer without the intolerable side effects of pan-Notch inhibition.
Collapse
|
36
|
Study of NOTCH1 and FBXW7 Mutations and Its Prognostic Significance in South Indian T-Cell Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2018; 40:e1-e8. [PMID: 29200162 DOI: 10.1097/mph.0000000000001006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
NOTCH1/FBXW7 mutations trigger oncogenic NOTCH1 signaling and its downstream target genes play crucial roles in the molecular pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL). In the present study, NOTCH1 and FBXW7 mutations were studied in 25 primary T-ALL samples. All 34 exons of NOTCH1 and hotspot exons (exon 9 and exon 10) of FBXW7 were polymerase chain reaction amplified and sequenced for mutations. Our results showed that 13/25 (52%) were NOTCH1-mutated, of which 11 patients (44%) showed mutation in the hotspot exons. Four patients (16%) had mutations in non-hotspot exons of NOTCH1. Notably, 2 T-ALL patients (8%) harbored mutations in both hotspot and non-hotspot exons of NOTCH1, whereas 2 patients (8%) had mutations in the hotspot exons of FBXW7. In all, 7 mutations were identified which were not previously reported. The real-time polymerase chain reaction study in 15 patients revealed that increased expression of activated NOTCH1 was found in NOTCH1/FBXW7 hotspot exon-mutated cases. In addition, NOTCH1/FBXW7-mutated patients had showed upregulated HES1, c-MYC, NOTCH3 gene expression. When survival analysis was performed including samples (n=50) from our previous study, an early treatment response and better survival was observed in NOTCH1/FBXW7 hotspot-mutated patients. Our study suggests that NOTCH1/FBXW7 hotspot-mutated T-ALL cases had better response to ALL BFM-95 protocol.
Collapse
|
37
|
Pomari E, Lovisa F, Carraro E, Primerano S, D'Amore ESG, Bonvini P, Nigro LL, Vito RD, Vinti L, Farruggia P, Pillon M, Basso G, Basso K, Mussolin L. Clinical impact of miR-223 expression in pediatric T-Cell lymphoblastic lymphoma. Oncotarget 2017; 8:107886-107898. [PMID: 29296210 PMCID: PMC5746112 DOI: 10.18632/oncotarget.22386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/28/2017] [Indexed: 01/24/2023] Open
Abstract
Although probability of event-free survival in pediatric lymphoblastic T-cell lymphoma (T-LBL) is about 75%, survival in relapsed patients is very poor, so the identification of new molecular markers is crucial for treatment optimization. Here, we demonstrated that the over-expression of miR-223 promotes tumor T-LBL cell growth, migration and invasion in vitro. We found out that SIK1, an anti-metastatic protein, is a direct target of miR-223 and consequently is significantly reduced in miR-223-overexpressing tumor cells. We measured miR-223 expression levels at diagnosis in tumor biopsies from 67 T-LBL pediatric patients for whom complete clinical and follow up data were available, and we found that high miR-223 expression (above the median value) is associated with worse prognosis (PFS 66% vs 94%, P=0.0036). In addition, the multivariate analysis, conducted taking into account miR-223 expression level and other molecular and clinical characteristics, showed that only high level of miR-223 is an independent factor for worse prognosis. MiR-223 represents a promising marker for treatment stratification in pediatric patients with T-LBL and we provide the first evidence of miR-223 potential role as oncomir by SIK1 repression.
Collapse
Affiliation(s)
- Elena Pomari
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy.,Centre for Tropical Diseases, Ospedale Sacro Cuore-Don Calabria, 37024 Negrar, Italy
| | - Federica Lovisa
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy.,Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Elisa Carraro
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy
| | - Simona Primerano
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy.,Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, 35127 Padova, Italy
| | | | - Paolo Bonvini
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy.,Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Luca Lo Nigro
- Center of Paediatric Haematology, Azienda Policlinico-OVE, 95123 Catania, Italy
| | - Rita De Vito
- Department of Paediatric Haemato-Oncology, IRCCS Ospedale Bambino Gesù, 00165 Roma, Italy
| | - Luciana Vinti
- Department of Paediatric Haemato-Oncology, IRCCS Ospedale Bambino Gesù, 00165 Roma, Italy
| | - Piero Farruggia
- Department of Paediatric Haemato-Oncology, ARNAS Ospedali Civico, G Di Cristina, 90127 Palermo, Italy
| | - Marta Pillon
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy
| | - Giuseppe Basso
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy
| | - Katia Basso
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, NY 10027, New York, USA
| | - Lara Mussolin
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy.,Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, 35127 Padova, Italy
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition. RECENT FINDINGS NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions. SUMMARY Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.
Collapse
|
39
|
Speirs C, Williams JJL, Riches K, Salt IP, Palmer TM. Linking energy sensing to suppression of JAK-STAT signalling: A potential route for repurposing AMPK activators? Pharmacol Res 2017; 128:88-100. [PMID: 29037480 DOI: 10.1016/j.phrs.2017.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/12/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
Exaggerated Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling is key to the pathogenesis of pro-inflammatory disorders, such as rheumatoid arthritis and cardiovascular diseases. Mutational activation of JAKs is also responsible for several haematological malignancies, including myeloproliferative neoplasms and acute lymphoblastic leukaemia. Accumulating evidence links adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), an energy sensor and regulator of organismal and cellular metabolism, with the suppression of immune and inflammatory processes. Recent studies have shown that activation of AMPK can limit JAK-STAT-dependent signalling pathways via several mechanisms. These novel findings support AMPK activation as a strategy for management of an array of disorders characterised by hyper-activation of the JAK-STAT pathway. This review discusses the pivotal role of JAK-STAT signalling in a range of disorders and how both established clinically used and novel AMPK activators might be used to treat these conditions.
Collapse
Affiliation(s)
- Claire Speirs
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jamie J L Williams
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Kirsten Riches
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Timothy M Palmer
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
40
|
Arber DA, Borowitz MJ, Cessna M, Etzell J, Foucar K, Hasserjian RP, Rizzo JD, Theil K, Wang SA, Smith AT, Rumble RB, Thomas NE, Vardiman JW. Initial Diagnostic Workup of Acute Leukemia: Guideline From the College of American Pathologists and the American Society of Hematology. Arch Pathol Lab Med 2017; 141:1342-1393. [PMID: 28225303 DOI: 10.5858/arpa.2016-0504-cp] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - A complete diagnosis of acute leukemia requires knowledge of clinical information combined with morphologic evaluation, immunophenotyping and karyotype analysis, and often, molecular genetic testing. Although many aspects of the workup for acute leukemia are well accepted, few guidelines have addressed the different aspects of the diagnostic evaluation of samples from patients suspected to have acute leukemia. OBJECTIVE - To develop a guideline for treating physicians and pathologists involved in the diagnostic and prognostic evaluation of new acute leukemia samples, including acute lymphoblastic leukemia, acute myeloid leukemia, and acute leukemias of ambiguous lineage. DESIGN - The College of American Pathologists and the American Society of Hematology convened a panel of experts in hematology and hematopathology to develop recommendations. A systematic evidence review was conducted to address 6 key questions. Recommendations were derived from strength of evidence, feedback received during the public comment period, and expert panel consensus. RESULTS - Twenty-seven guideline statements were established, which ranged from recommendations on what clinical and laboratory information should be available as part of the diagnostic and prognostic evaluation of acute leukemia samples to what types of testing should be performed routinely, with recommendations on where such testing should be performed and how the results should be reported. CONCLUSIONS - The guideline provides a framework for the multiple steps, including laboratory testing, in the evaluation of acute leukemia samples. Some aspects of the guideline, especially molecular genetic testing in acute leukemia, are rapidly changing with new supportive literature, which will require on-going updates for the guideline to remain relevant.
Collapse
|
41
|
Liu RB, Guo JG, Liu TZ, Guo CC, Fan XX, Zhang X, Hu WH, Cai XY. Meta-analysis of the clinical characteristics and prognostic relevance of NOTCH1 and FBXW7 mutation in T-cell acute lymphoblastic leukemia. Oncotarget 2017; 8:66360-66370. [PMID: 29029518 PMCID: PMC5630418 DOI: 10.18632/oncotarget.18576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/26/2017] [Indexed: 11/29/2022] Open
Abstract
The NOTCH1 signaling pathway is crucial for T-cell development, and NOTCH1 and/or FBXW7 mutations are frequently detected in T-cell acute lymphoblastic leukemia (T-ALL). We performed a systematic review and meta-analysis of 18 randomized controlled trials (RCTs) to assess the prognostic impact of mutations in the NOTCH1 pathway. After retrieving relevant articles from PubMed, EMBASE, and the Cochrane Library, we investigated overall survival (OS) and event-free survival (EFS) with hazard ratios (HRs) using fixed-effects or random-effects models and conducted subgroup analyses based on population and mutation status. NOTCH1/FBXW7 mutations correlated significantly with better prognosis (5-year EFS: HR, 0.57; 95% confidence interval [CI], 0.46 to 0.68; P < 0.001 and 5-year OS: HR, 0.61; 95% CI, 0.51 to 0.74; P < 0.001). The HR for 5-year EFS and OS with NOTCH1 mutations were 0.63 (95% CI, 0.53 to 0.75) and 0.76 (95% CI, 0.60 to 0.95), respectively; with FBXW7 mutations, they were 0.82 (95% CI, 0.60 to 1.11) and 0.79 (95% CI, 0.55 to 1.12), respectively. However, differences between children and adults showed no significance. We conclude that the presence of NOTCH1/FBXW7 mutations is an independent prognostic factor for 5-year EFS and 5-year OS.
Collapse
Affiliation(s)
- Rong-Bin Liu
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jian-Gui Guo
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Radiation Oncology, The First People's Hospital of Foshan, Foshan, China
| | - Tian-Ze Liu
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Cheng-Cheng Guo
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Neurosurgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xin-Xiang Fan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Xiao Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei-Han Hu
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiu-Yu Cai
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
42
|
Hof J, Kox C, Groeneveld-Krentz S, Bandapalli OR, Karawajew L, Schedel K, Kunz JB, Eckert C, Ludwig WD, Ratei R, Rhein P, Henze G, Muckenthaler MU, Kulozik AE, von Stackelberg A, Kirschner-Schwabe R. NOTCH1 mutation, TP53 alteration and myeloid antigen expression predict outcome heterogeneity in children with first relapse of T-cell acute lymphoblastic leukemia. Haematologica 2017; 102:e249-e252. [PMID: 28360149 DOI: 10.3324/haematol.2016.157792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jana Hof
- Department of Pediatrics, Division of Oncology and Hematology, Charité - University Medical Center Berlin.,German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Corinne Kox
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Stefanie Groeneveld-Krentz
- Department of Pediatrics, Division of Oncology and Hematology, Charité - University Medical Center Berlin
| | - Obul R Bandapalli
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Leonid Karawajew
- Department of Pediatrics, Division of Oncology and Hematology, Charité - University Medical Center Berlin
| | - Katharina Schedel
- Department of Pediatrics, Division of Oncology and Hematology, Charité - University Medical Center Berlin
| | - Joachim B Kunz
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Cornelia Eckert
- Department of Pediatrics, Division of Oncology and Hematology, Charité - University Medical Center Berlin.,German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolf-Dieter Ludwig
- HELIOS Medical Clinic Berlin-Buch, Clinic for Hematology, Oncology, Tumor Immunology and Palliative Care, Berlin
| | - Richard Ratei
- HELIOS Medical Clinic Berlin-Buch, Clinic for Hematology, Oncology, Tumor Immunology and Palliative Care, Berlin
| | - Peter Rhein
- Department of Pediatrics, Division of Oncology and Hematology, Charité - University Medical Center Berlin
| | - Günter Henze
- Department of Pediatrics, Division of Oncology and Hematology, Charité - University Medical Center Berlin
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Arend von Stackelberg
- Department of Pediatrics, Division of Oncology and Hematology, Charité - University Medical Center Berlin
| | - Renate Kirschner-Schwabe
- Department of Pediatrics, Division of Oncology and Hematology, Charité - University Medical Center Berlin .,German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
43
|
Management of adults with T-cell lymphoblastic leukemia. Blood 2017; 129:1134-1142. [DOI: 10.1182/blood-2016-07-692608] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/27/2016] [Indexed: 12/17/2022] Open
Abstract
Abstract
T-cell acute lymphoblastic leukemia (ALL) is a rare disease in adults with inferior survival outcomes compared with those seen in pediatric patients. Although potentially curable with ∼50% survival at 5 years, adult patients with relapsed disease have dismal outcomes with <10% of patients surviving long term. This review will discuss the diagnosis and management of adult patients with newly diagnosed T-cell ALL with an emphasis on the immunophenotypic and genetic analyses required to assign prognosis, risk stratify, and guide post-remission therapy. The evidence for the main components of complex T-cell ALL treatment regimens is described. The importance of monitoring minimal residual disease is emphasized, with a discussion of the different methods used. The results of hematopoietic cell transplantation are analyzed, and recommendations made about which patients should be considered for this intervention. The treatment of the adolescent and young adult group is delineated, and the role of using “pediatric-inspired” regimens in older adults considered. We also describe the current data and potential future options for the use of novel therapies, including nelarabine and γ-secretase inhibitors, in adult patients with T-cell ALL.
Collapse
|
44
|
Richter-Pechańska P, Kunz JB, Hof J, Zimmermann M, Rausch T, Bandapalli OR, Orlova E, Scapinello G, Sagi JC, Stanulla M, Schrappe M, Cario G, Kirschner-Schwabe R, Eckert C, Benes V, Korbel JO, Muckenthaler MU, Kulozik AE. Identification of a genetically defined ultra-high-risk group in relapsed pediatric T-lymphoblastic leukemia. Blood Cancer J 2017; 7:e523. [PMID: 28157215 PMCID: PMC5386337 DOI: 10.1038/bcj.2017.3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022] Open
Abstract
In the search for genes that define critical steps of relapse in pediatric T-cell acute lymphoblastic leukemia (T-ALL) and can serve as prognostic markers, we performed targeted sequencing of 313 leukemia-related genes in 214 patients: 67 samples collected at the time of relapse and 147 at initial diagnosis. As relapse-specific genetic events, we identified activating mutations in NT5C2 (P=0.0001, Fisher's exact test), inactivation of TP53 (P=0.0007, Fisher's exact test) and duplication of chr17:q11.2-24.3 (P=0.0068, Fisher's exact test) in 32/67 of T-ALL relapse samples. Alterations of TP53 were frequently homozygous events, which significantly correlated with higher rates of copy number alterations in other genes compared with wild-type TP53 (P=0.0004, Mann–Whitney's test). We subsequently focused on mutations with prognostic impact and identified genes governing DNA integrity (TP53, n=8; USP7, n=4; MSH6, n=4), having key roles in the RAS signaling pathway (KRAS, NRAS, n=8), as well as IL7R (n=4) and CNOT3 (n=4) to be exclusively mutated in fatal relapses. These markers recognize 24/49 patients with a second event. In 17 of these patients with mostly refractory relapse and dire need for efficient treatment, we identified candidate targets for personalized therapy with p53 reactivating compounds, MEK inhibitors or JAK/STAT-inhibitors that may be incorporated in future treatment strategies.
Collapse
Affiliation(s)
- P Richter-Pechańska
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - J B Kunz
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - J Hof
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - M Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - T Rausch
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.,European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - O R Bandapalli
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - E Orlova
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - G Scapinello
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,University of Padua, Padua, Italy
| | - J C Sagi
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - M Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - M Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - G Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - R Kirschner-Schwabe
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - C Eckert
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - V Benes
- European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - J O Korbel
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.,European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - M U Muckenthaler
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - A E Kulozik
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| |
Collapse
|
45
|
Karrman K, Johansson B. Pediatric T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2016; 56:89-116. [PMID: 27636224 DOI: 10.1002/gcc.22416] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022] Open
Abstract
The most common pediatric malignancy is acute lymphoblastic leukemia (ALL), of which T-cell ALL (T-ALL) comprises 10-15% of cases. T-ALL arises in the thymus from an immature thymocyte as a consequence of a stepwise accumulation of genetic and epigenetic aberrations. Crucial biological processes, such as differentiation, self-renewal capacity, proliferation, and apoptosis, are targeted and deranged by several types of neoplasia-associated genetic alteration, for example, translocations, deletions, and mutations of genes that code for proteins involved in signaling transduction, epigenetic regulation, and transcription. Epigenetically, T-ALL is characterized by gene expression changes caused by hypermethylation of tumor suppressor genes, histone modifications, and miRNA and lncRNA abnormalities. Although some genetic and gene expression patterns have been associated with certain clinical features, such as immunophenotypic subtype and outcome, none has of yet generally been implemented in clinical routine for treatment decisions. The recent advent of massive parallel sequencing technologies has dramatically increased our knowledge of the genetic blueprint of T-ALL, revealing numerous fusion genes as well as novel gene mutations. The challenges now are to integrate all genetic and epigenetic data into a coherent understanding of the pathogenesis of T-ALL and to translate the wealth of information gained in the last few years into clinical use in the form of improved risk stratification and targeted therapies. Here, we provide an overview of pediatric T-ALL with an emphasis on the acquired genetic alterations that result in this disease. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kristina Karrman
- Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden.,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bertil Johansson
- Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden.,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
46
|
Spinella JF, Cassart P, Richer C, Saillour V, Ouimet M, Langlois S, St-Onge P, Sontag T, Healy J, Minden MD, Sinnett D. Genomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals novel recurrent driver mutations. Oncotarget 2016; 7:65485-65503. [PMID: 27602765 PMCID: PMC5323170 DOI: 10.18632/oncotarget.11796] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with variable prognosis. It represents 15% of diagnosed pediatric ALL cases and has a threefold higher incidence among males. Many recurrent alterations have been identified and help define molecular subgroups of T-ALL, however the full range of events involved in driving transformation remain to be defined. Using an integrative approach combining genomic and transcriptomic data, we molecularly characterized 30 pediatric T-ALLs and identified common recurrent T-ALL targets such as FBXW7, JAK1, JAK3, PHF6, KDM6A and NOTCH1 as well as novel candidate T-ALL driver mutations including the p.R35L missense mutation in splicesome factor U2AF1 found in 3 patients and loss of function mutations in the X-linked tumor suppressor genes MED12 (frameshit mutation p.V167fs, splice site mutation g.chrX:70339329T>C, missense mutation p.R1989H) and USP9X (nonsense mutation p.Q117*). In vitro functional studies further supported the putative role of these novel T-ALL genes in driving transformation. U2AF1 p.R35L was shown to induce aberrant splicing of downstream target genes, and shRNA knockdown of MED12 and USP9X was shown to confer resistance to apoptosis following T-ALL relevant chemotherapy drug treatment in Jurkat leukemia cells. Interestingly, nearly 60% of novel candidate driver events were identified among immature T-ALL cases, highlighting the underlying genomic complexity of pediatric T-ALL, and the need for larger integrative studies to decipher the mechanisms that contribute to its various subtypes and provide opportunities to refine patient stratification and treatment.
Collapse
Affiliation(s)
| | - Pauline Cassart
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Chantal Richer
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Virginie Saillour
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Manon Ouimet
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Sylvie Langlois
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Pascal St-Onge
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Thomas Sontag
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Jasmine Healy
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Daniel Sinnett
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
47
|
Wang Q, Li Y, Cheng J, Chen L, Xu H, Li Q, Pang T. Sam68 affects cell proliferation and apoptosis of human adult T-acute lymphoblastic leukemia cells via AKT/mTOR signal pathway. Leuk Res 2016; 46:1-9. [DOI: 10.1016/j.leukres.2016.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 01/02/2023]
|
48
|
Burkhardt B, Mueller S, Khanam T, Perkins SL. Current status and future directions of T-lymphoblastic lymphoma in children and adolescents. Br J Haematol 2016; 173:545-59. [DOI: 10.1111/bjh.14017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Birgit Burkhardt
- Paediatric Haematology and Oncology; University Hospital Muenster; Germany
| | - Stephanie Mueller
- Paediatric Haematology and Oncology; University Hospital Muenster; Germany
| | - Tasneem Khanam
- Paediatric Haematology and Oncology; University Hospital Muenster; Germany
| | - Sherrie L. Perkins
- Department of Pathology; University of Utah Health Sciences Center, ARUP Institute for Clinical and Experimental Pathology; Salt Lake City Utah
| |
Collapse
|
49
|
Jenkinson S, Kirkwood AA, Goulden N, Vora A, Linch DC, Gale RE. Impact of PTEN abnormalities on outcome in pediatric patients with T-cell acute lymphoblastic leukemia treated on the MRC UKALL2003 trial. Leukemia 2016; 30:39-47. [PMID: 26220040 PMCID: PMC4705426 DOI: 10.1038/leu.2015.206] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/29/2015] [Accepted: 07/22/2015] [Indexed: 12/21/2022]
Abstract
PTEN gene inactivation by mutation or deletion is common in pediatric T-cell acute lymphoblastic leukemia (T-ALL), but the impact on outcome is unclear, particularly in patients with NOTCH1/FBXW7 mutations. We screened samples from 145 patients treated on the MRC UKALL2003 trial for PTEN mutations using heteroduplex analysis and gene deletions using single nucleotide polymorphism arrays, and related genotype to response to therapy and long-term outcome. PTEN loss-of-function mutations/gene deletions were detected in 22% (PTEN(ABN)). Quantification of mutant level indicated that 67% of mutated cases harbored more than one mutant, with up to four mutants detected, consistent with the presence of multiple leukemic sub-clones. Overall, 41% of PTEN(ABN) cases were considered to have biallelic abnormalities (mutation and/or deletion) with complete loss of PTEN in a proportion of cells. In addition, 9% of cases had N- or K-RAS mutations. Neither PTEN nor RAS genotype significantly impacted on response to therapy or long-term outcome, irrespective of mutant level, and there was no evidence that they changed the highly favorable outcome of patients with double NOTCH1/FBXW7 mutations. These results indicate that, for pediatric patients treated according to current protocols, routine screening for PTEN or RAS abnormalities at diagnosis is not warranted to further refine risk stratification.
Collapse
Affiliation(s)
- S Jenkinson
- Department of Haematology, UCL Cancer Institute, London, UK
| | - A A Kirkwood
- Cancer Research UK & UCL Cancer Trials Centre, London, UK
| | - N Goulden
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - A Vora
- Department of Haematology, Sheffield Children's Hospital, Sheffield, UK
| | - D C Linch
- Department of Haematology, UCL Cancer Institute, London, UK
| | - R E Gale
- Department of Haematology, UCL Cancer Institute, London, UK
| |
Collapse
|
50
|
Pullos AN, Castilho RM, Squarize CH. HPV Infection of the Head and Neck Region and Its Stem Cells. J Dent Res 2015; 94:1532-43. [PMID: 26353884 DOI: 10.1177/0022034515605456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human papillomavirus (HPV) is an etiologic agent associated with the development of head and neck squamous carcinoma (HNSCC)-in particular, oropharyngeal squamous cell carcinoma. The HPV-positive HNSCC is characterized by genetic alterations, clinical progression, and therapeutic response, which are distinct from HPV-negative head and neck cancers, suggesting that virus-associated tumors constitute a unique entity among head and neck cancers. Malignant stem cells, or cancer stem cells, are a subpopulation of tumor cells that self-renew, initiate new tumors upon transplantation, and are resistant to therapy, and their discovery has revealed novel effects of oncovirus infection in cancer. In this review, we provide a virus-centric view and novel insights into HPV-positive head and neck pathogenesis. We discuss the influence of cancer stem cells, HPV oncoproteins, altered molecular pathways, and mutations in cancer initiation and cancer progression. We compiled a catalogue of the mutations associated with HPV-positive HNSCC, which may be a useful resource for genomic-based studies aiming to develop personalized therapies. We also explain recent changes in mass vaccination campaigns against HPV and the potential long-term impact of vaccinations on the prevention and treatment of HPV-positive head and neck cancers.
Collapse
Affiliation(s)
- A N Pullos
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - R M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - C H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| |
Collapse
|